You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
### 题目1
**题目序号**: 1
** 题目内容**: 已知集合 $A=\left\{x \mid -5 < x ^{ 3 } < 5 \right \}, B = \left \{-3,-1,0,2,3 \right \}$,则 $ A \cap B = $
** 选项** :
A . $ \{-1 , 0 \}$
B . $ \{2 , 3 \}$
C . $ \{-3 , -1 , 0 \}$
D . $ \{-1 , 0 , 2 \}$
** 答案** : A
** 解析** : $ A \cap B = \{-1,0 \}$,选 A 。
---
### 题目2
**题目序号** : 2
** 题目内容** : 若 $ \frac { 2 }{ z-1 }= 1 + i $,则 $ z = $
** 选项** :
A . $ -1-i $
B . $ -1 + i $
C . $ 1-i $
D . $ 1 + i $
** 答案** : C
---
### 题目3
**题目序号** : 3
** 题目内容** : 已知向量 $ \vec { a }=( 0 , 1 )$, $ \vec { b }=( 2 , x )$,若 $ \vec { b } \perp ( \vec { b } -4 \vec { a })$,则 $ x = $
** 选项** :
A . $ -2 $
B . $ -1 $
C . $ 1 $
D . $ 2 $
** 答案** : D
** 解析** : $ \vec { b } -4 \vec { a }=( 2 , x-4 )$, $ \vec { b } \perp ( \vec { b } -4 \vec { a })$, $ \therefore \vec { b }( \vec { b } -4 \vec { a })= 0 $, $ \therefore 4 + x ( x-4 )= 0 $, $ \therefore x = 2$,选 D 。
---
### 题目4
**题目序号** : 4
** 题目内容** : 已知 $ \cos ( \alpha + \beta )= m $, $ \tan \alpha \tan \beta = 2$,则 $ \cos ( \alpha- \beta )=$
** 选项** :
A . $ -3m $
B . $ - \frac { m }{ 3 }$
C . $ \frac { m }{ 3 }$
D . $ 3m $
** 答案** : A
** 解析** : $ \left \{\begin { array }{ l } \cos \alpha \cos \beta- \sin \alpha \sin \beta = m \\\frac { \sin \alpha \sin \beta }{ \cos \alpha \cos \beta }= 2 \end { array } \right .$, $ \therefore \left \{\begin { array }{ l } \sin \alpha \sin \beta = -2m \\\cos \alpha \cos \beta = -m \end{array} \right.$ $ \cos ( \alpha- \beta )= \cos \alpha \cos \beta + \sin \alpha \sin \beta = -m-2m=-3m$,选 A 。
---
### 题目5
**题目序号** : 5
** 题目内容** : 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 $ \sqrt { 3 }$,则圆锥的体积为
** 选项** :
A . $ 2 \sqrt { 3 } \pi $
B . $ 3 \sqrt { 3 } \pi $
C . $ 6 \sqrt { 3 } \pi $
D . $ 9 \sqrt { 3 } \pi $
** 答案** : B
** 解析** : 设它们底面半径为 $ r $,圆锥母线 $ l $, $ \therefore 2 \pi r \sqrt { 3 }= \pi rl $, $ \therefore l = \sqrt{3}$,则圆锥的体积为 $ \frac { 1 }{ 3 } \pi r ^{ 2 } h $。