285 lines
11 KiB
Python
285 lines
11 KiB
Python
import base64
|
||
import datetime
|
||
import hashlib
|
||
import hmac
|
||
import json
|
||
import ssl
|
||
import time
|
||
import xml.etree.ElementTree as ET
|
||
from datetime import datetime
|
||
from time import mktime
|
||
from urllib.parse import urlencode
|
||
from wsgiref.handlers import format_date_time
|
||
|
||
import websocket
|
||
|
||
from Config.Config import XF_APPID, XF_APISECRET, XF_APIKEY
|
||
|
||
|
||
class XunFeiAudioEvaluator_cn:
|
||
"""讯飞语音评测类(中文专用)"""
|
||
def __init__(self, appid, api_key, api_secret, audio_file, txt):
|
||
self.appid = appid
|
||
self.api_key = api_key
|
||
self.api_secret = api_secret
|
||
self.audio_file = audio_file
|
||
self.txt = txt.strip() # 确保文本预处理
|
||
self.host_url = "wss://ise-api.xfyun.cn/v2/open-ise"
|
||
self.evaluation_results = {} # 统一结果存储变量
|
||
self.websocket_url = ""
|
||
|
||
def generate_auth_url(self):
|
||
"""生成鉴权URL"""
|
||
now_time = datetime.now()
|
||
now_date = format_date_time(mktime(now_time.timetuple()))
|
||
|
||
origin_base = "host: " + "ise-api.xfyun.cn" + "\n"
|
||
origin_base += "date: " + now_date + "\n"
|
||
origin_base += "GET " + "/v2/open-ise " + "HTTP/1.1"
|
||
|
||
# SHA256加密
|
||
signature_sha = hmac.new(
|
||
self.api_secret.encode('utf-8'),
|
||
origin_base.encode('utf-8'),
|
||
digestmod=hashlib.sha256
|
||
).digest()
|
||
signature_sha = base64.b64encode(signature_sha).decode(encoding='utf-8')
|
||
|
||
authorization_origin = f'api_key="{self.api_key}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha}"'
|
||
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
|
||
|
||
dict_data = {
|
||
"authorization": authorization,
|
||
"date": now_date,
|
||
"host": "ise-api.xfyun.cn"
|
||
}
|
||
|
||
return self.host_url + '?' + urlencode(dict_data)
|
||
|
||
def parse_evaluation_results(self, xml_content):
|
||
"""解析评测结果XML并提得分信息(整合版)"""
|
||
try:
|
||
root = ET.fromstring(xml_content)
|
||
|
||
# 查找包含评分数据的节点(优先read_chapter,兼容read_sentence)
|
||
score_nodes = root.findall('.//read_chapter') + root.findall('.//read_sentence')
|
||
if not score_nodes:
|
||
print("未找到评分节点")
|
||
return
|
||
|
||
# 优先使用第一个包含total_score的节点
|
||
target_node = None
|
||
for node in score_nodes:
|
||
if 'total_score' in node.attrib:
|
||
target_node = node
|
||
break
|
||
|
||
if not target_node:
|
||
print("未找到包含评分数据的有效节点")
|
||
return
|
||
|
||
# 提取核心评分字段
|
||
self.evaluation_results = {
|
||
'total_score': float(target_node.get('total_score', 0)),
|
||
'accuracy_score': float(target_node.get('accuracy_score', 0)),
|
||
'fluency_score': float(target_node.get('fluency_score', 0)),
|
||
'integrity_score': float(target_node.get('integrity_score', 0)),
|
||
'tone_score': float(target_node.get('tone_score', 0)),
|
||
'phone_score': float(target_node.get('phone_score', 0)),
|
||
'emotion_score': float(target_node.get('emotion_score', 0)),
|
||
'is_rejected': target_node.get('is_rejected', 'false') == 'true'
|
||
}
|
||
|
||
# 提取句子级得分
|
||
sentences = []
|
||
for sent in target_node.findall('.//sentence'):
|
||
sentences.append({
|
||
'content': sent.get('content', ''),
|
||
'total_score': float(sent.get('total_score', 0)),
|
||
'fluency_score': float(sent.get('fluency_score', 0))
|
||
})
|
||
self.evaluation_results['sentences'] = sentences
|
||
|
||
print(f"解析成功,提取到{len(self.evaluation_results)}个评分字段")
|
||
|
||
except ET.ParseError as e:
|
||
print(f"XML解析失败: {e}, 内容: {xml_content[:200]}")
|
||
self.evaluation_results = {'error': f'解析失败: {str(e)}'}
|
||
|
||
def on_message(self, ws, message):
|
||
"""WebSocket消息处理"""
|
||
print(f"Received message: {message}")
|
||
try:
|
||
data = json.loads(message)
|
||
if data.get('code') != 0:
|
||
self.evaluation_results = {'error': data.get('message', 'Unknown error')}
|
||
return
|
||
|
||
inner_data = data.get('data', {})
|
||
xml_b64 = inner_data.get('data', '')
|
||
if xml_b64:
|
||
xml_data = base64.b64decode(xml_b64)
|
||
xml_content = xml_data.decode("utf-8")
|
||
self.parse_evaluation_results(xml_content) # 直接调用整合后的解析方法
|
||
ws.close()
|
||
except Exception as e:
|
||
print(f"Error processing message: {e}")
|
||
self.evaluation_results = {'error': str(e)}
|
||
|
||
# 安全获取data字段
|
||
response_data = data.get("data", {})
|
||
status = response_data.get("status")
|
||
|
||
if status == 2 and response_data.get("data"):
|
||
# 解析评测结果
|
||
xml_data = base64.b64decode(response_data["data"])
|
||
xml_content = xml_data.decode("utf-8")
|
||
self.parse_evaluation_results(xml_content)
|
||
ws.close()
|
||
|
||
def on_error(self, ws, error):
|
||
"""错误处理"""
|
||
print(f"Error: {error},{ws}")
|
||
|
||
def on_close(self, ws, reason, res):
|
||
"""连接关闭处理"""
|
||
print(f"WebSocket connection closed,{ws}")
|
||
|
||
def on_open(self, ws):
|
||
"""连接建立处理(中文专用配置)"""
|
||
print(f"WebSocket connection opened,{ws},ws连接建立成功...")
|
||
|
||
# 发送初始参数(中文专用配置)
|
||
send_dict = {
|
||
"common": {
|
||
"app_id": self.appid
|
||
},
|
||
"business": {
|
||
"category": "read_chapter",
|
||
"rstcd": "utf8",
|
||
"sub": "ise",
|
||
"group": "adult", # 根据文档设置为小学组
|
||
"ent": "cn_vip", # 固定中文引擎
|
||
"tte": "utf-8",
|
||
"cmd": "ssb",
|
||
#"auf": "audio/L16;rate=16000", # 修复参数格式错误
|
||
"aue": "lame",# mp3
|
||
"text": '\uFEFF' + "[content]\n" + self.txt, # 确保UTF8 BOM
|
||
"extra_ability": "multi_dimension" # 启用多维度评分
|
||
},
|
||
"data": {
|
||
"status": 0,
|
||
}
|
||
}
|
||
ws.send(json.dumps(send_dict))
|
||
|
||
# 发送音频数据
|
||
with open(self.audio_file, "rb") as file_flag:
|
||
total_sent = 0
|
||
while True:
|
||
buffer = file_flag.read(1280)
|
||
if not buffer:
|
||
# 发送最后一帧(仅在有数据发送时)
|
||
if total_sent > 0:
|
||
my_dict = {
|
||
"business": {
|
||
"cmd": "auw",
|
||
"aus": 4,
|
||
"aue": "lame"
|
||
},
|
||
"data": {
|
||
"status": 2,
|
||
"data": "" # 空字符串表示结束
|
||
}
|
||
}
|
||
ws.send(json.dumps(my_dict))
|
||
time.sleep(1)
|
||
break
|
||
|
||
# 发送中间音频帧
|
||
send_dict = {
|
||
"business": {
|
||
"cmd": "auw",
|
||
"aus": 1,
|
||
"aue": "lame"
|
||
},
|
||
"data": {
|
||
"status": 1,
|
||
"data": str(base64.b64encode(buffer).decode()),
|
||
"data_type": 1,
|
||
"encoding": "raw"
|
||
}
|
||
}
|
||
ws.send(json.dumps(send_dict))
|
||
total_sent += len(buffer)
|
||
time.sleep(0.04)
|
||
|
||
def get_evaluation_summary(self):
|
||
"""获取评测结果摘要"""
|
||
if not self.evaluation_results:
|
||
return "暂无评测结果"
|
||
|
||
summary = "=== 语音评测结果摘要 ===\n"
|
||
summary += f"总得分: {self.evaluation_results.get('total_score', 0):.4f}\n"
|
||
summary += f"准确度得分: {self.evaluation_results.get('accuracy_score', 0):.4f}\n"
|
||
summary += f"流畅度得分: {self.evaluation_results.get('fluency_score', 0):.4f}\n"
|
||
# 修复这里,使用completeness_score
|
||
summary += f"完整度得分: {self.evaluation_results.get('completeness_score', 0):.4f}\n"
|
||
summary += f"标准度得分: {self.evaluation_results.get('standard_score', 0):.4f}\n"
|
||
summary += f"单词数量: {self.evaluation_results.get('word_count', 0)}\n"
|
||
summary += f"是否被拒绝: {'是' if self.evaluation_results.get('is_rejected', False) else '否'}\n"
|
||
|
||
if 'sentence' in self.evaluation_results:
|
||
sentence = self.evaluation_results['sentence']
|
||
summary += f"\n=== 句子级别得分 ===\n"
|
||
summary += f"句子准确度: {sentence.get('accuracy_score', 0):.4f}\n"
|
||
summary += f"句子流畅度: {sentence.get('fluency_score', 0):.4f}\n"
|
||
summary += f"句子总分: {sentence.get('total_score', 0):.4f}\n"
|
||
|
||
if 'words' in self.evaluation_results:
|
||
summary += f"\n=== 单词级别得分 ===\n"
|
||
for i, word in enumerate(self.evaluation_results['words']):
|
||
dp_msg = self._get_dp_message_description(word['dp_message'])
|
||
summary += f"{i + 1}. {word['content']}: {word['total_score']:.4f} ({dp_msg})\n"
|
||
|
||
return summary
|
||
|
||
def _get_dp_message_description(self, dp_message):
|
||
"""获取dp_message描述"""
|
||
descriptions = {
|
||
0: "正常",
|
||
16: "漏读",
|
||
32: "增读",
|
||
64: "回读",
|
||
128: "替换"
|
||
}
|
||
return descriptions.get(dp_message, f"未知({dp_message})")
|
||
|
||
def run_evaluation(self):
|
||
"""运行评测(修复SSL配置)"""
|
||
start_time = datetime.now()
|
||
websocket.enableTrace(False)
|
||
|
||
ws_url = self.generate_auth_url()
|
||
ws_entity = websocket.WebSocketApp(
|
||
ws_url,
|
||
on_message=self.on_message,
|
||
on_error=self.on_error,
|
||
on_close=self.on_close,
|
||
on_open=self.on_open
|
||
)
|
||
|
||
# 修复SSL配置,启用证书验证
|
||
import certifi
|
||
ws_entity.run_forever(sslopt={
|
||
"cert_reqs": ssl.CERT_REQUIRED,
|
||
"ca_certs": certifi.where()
|
||
})
|
||
|
||
end_time = datetime.now()
|
||
evaluation_time = end_time - start_time
|
||
print(f"评测耗时: {evaluation_time}")
|
||
|
||
return self.evaluation_results, evaluation_time
|
||
|