You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

170 lines
9.3 KiB

<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d11" for="edge" attr.name="created_at" attr.type="long" />
<key id="d10" for="edge" attr.name="file_path" attr.type="string" />
<key id="d9" for="edge" attr.name="source_id" attr.type="string" />
<key id="d8" for="edge" attr.name="keywords" attr.type="string" />
<key id="d7" for="edge" attr.name="description" attr.type="string" />
<key id="d6" for="edge" attr.name="weight" attr.type="double" />
<key id="d5" for="node" attr.name="created_at" attr.type="long" />
<key id="d4" for="node" attr.name="file_path" attr.type="string" />
<key id="d3" for="node" attr.name="source_id" attr.type="string" />
<key id="d2" for="node" attr.name="description" attr.type="string" />
<key id="d1" for="node" attr.name="entity_type" attr.type="string" />
<key id="d0" for="node" attr.name="entity_id" attr.type="string" />
<graph edgedefault="undirected">
<node id="Triangle ABC">
<data key="d0">Triangle ABC</data>
<data key="d1">geo</data>
<data key="d2">Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="Triangle Inequality">
<data key="d0">Triangle Inequality</data>
<data key="d1">category</data>
<data key="d2">The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="Euclid's Fifth Postulate">
<data key="d0">Euclid's Fifth Postulate</data>
<data key="d1">category</data>
<data key="d2">Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="Proposition 19">
<data key="d0">Proposition 19</data>
<data key="d1">category</data>
<data key="d2">Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="三角形ABC">
<data key="d0">三角形ABC</data>
<data key="d1">geo</data>
<data key="d2">三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="三角不等式">
<data key="d0">三角不等式</data>
<data key="d1">category</data>
<data key="d2">三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="欧几里得第五公理">
<data key="d0">欧几里得第五公理</data>
<data key="d1">category</data>
<data key="d2">欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="几何原本">
<data key="d0">几何原本</data>
<data key="d1">category</data>
<data key="d2">几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="命题19">
<data key="d0">命题19</data>
<data key="d1">category</data>
<data key="d2">命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="点D">
<data key="d0">点D</data>
<data key="d1">geo</data>
<data key="d2">点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="等腰三角形BCD">
<data key="d0">等腰三角形BCD</data>
<data key="d1">geo</data>
<data key="d2">等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<edge source="Triangle ABC" target="Triangle Inequality">
<data key="d6">9.0</data>
<data key="d7">Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.</data>
<data key="d8">geometric proof,inequality</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="Triangle Inequality" target="Proposition 19">
<data key="d6">7.0</data>
<data key="d7">Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.</data>
<data key="d8">geometric logic,proof technique</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="Euclid's Fifth Postulate" target="Proposition 19">
<data key="d6">8.0</data>
<data key="d7">Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.</data>
<data key="d8">angle-side relationship,geometric principles</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="三角形ABC" target="三角不等式">
<data key="d6">9.0</data>
<data key="d7">The proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.</data>
<data key="d8">geometric proof,inequality demonstration</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="三角形ABC" target="点D">
<data key="d6">7.0</data>
<data key="d7">Point D is constructed from triangle ABC by extending side AB to create additional geometric relationships.</data>
<data key="d8">auxiliary point,geometric construction</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="三角不等式" target="几何原本">
<data key="d6">7.0</data>
<data key="d7">The triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.</data>
<data key="d8">historical reference,mathematical foundation</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="欧几里得第五公理" target="命题19">
<data key="d6">8.0</data>
<data key="d7">Euclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.</data>
<data key="d8">geometric principles,logical progression</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="命题19" target="等腰三角形BCD">
<data key="d6">8.0</data>
<data key="d7">The isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.</data>
<data key="d8">angle properties,proof technique</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
</graph>
</graphml>