You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

430 lines
19 KiB

<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"><key id="d11" for="edge" attr.name="created_at" attr.type="long"/>
<key id="d10" for="edge" attr.name="file_path" attr.type="string"/>
<key id="d9" for="edge" attr.name="source_id" attr.type="string"/>
<key id="d8" for="edge" attr.name="keywords" attr.type="string"/>
<key id="d7" for="edge" attr.name="description" attr.type="string"/>
<key id="d6" for="edge" attr.name="weight" attr.type="double"/>
<key id="d5" for="node" attr.name="created_at" attr.type="long"/>
<key id="d4" for="node" attr.name="file_path" attr.type="string"/>
<key id="d3" for="node" attr.name="source_id" attr.type="string"/>
<key id="d2" for="node" attr.name="description" attr.type="string"/>
<key id="d1" for="node" attr.name="entity_type" attr.type="string"/>
<key id="d0" for="node" attr.name="entity_id" attr.type="string"/>
<graph edgedefault="undirected"><node id="三角形ABC">
<data key="d0">三角形ABC</data>
<data key="d1">category</data>
<data key="d2">A geometric figure used to demonstrate the triangle inequality theorem and other geometric properties.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="三角不等式">
<data key="d0">三角不等式</data>
<data key="d1">category</data>
<data key="d2">A mathematical inequality stating that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="欧几里得第五公理">
<data key="d0">欧几里得第五公理</data>
<data key="d1">category</data>
<data key="d2">A foundational axiom in Euclidean geometry, also known as the parallel postulate, used in geometric proofs.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="几何原本">
<data key="d0">几何原本</data>
<data key="d1">category</data>
<data key="d2">A classical mathematical text by Euclid, containing foundational principles of geometry, including propositions like 'the larger angle subtends the larger side.'</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="点D">
<data key="d0">点D</data>
<data key="d1">category</data>
<data key="d2">A constructed point in the geometric proof used to demonstrate the triangle inequality by forming an isosceles triangle.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="点P">
<data key="d0">点P</data>
<data key="d1">category</data>
<data key="d2">An arbitrary interior point of triangle ABC used to prove that ∠BPC &gt; ∠A through geometric relationships.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="直线AB">
<data key="d0">直线AB</data>
<data key="d1">category</data>
<data key="d2">A line segment in triangle ABC extended to point D in the proof of the triangle inequality.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="等腰三角形BCD">
<data key="d0">等腰三角形BCD</data>
<data key="d1">category</data>
<data key="d2">An isosceles triangle formed in the proof, where |BD|=|BC| and ∠BDC=∠BCD.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="命题19">
<data key="d0">命题19</data>
<data key="d1">category</data>
<data key="d2">A proposition from Euclid's Elements stating that the larger angle subtends the larger side, used in the proof.</data>
<data key="d3">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="BP">
<data key="d0">BP</data>
<data key="d1">organization</data>
<data key="d2">BP is a line segment in the geometric figure, intersecting AC at point D.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="AC">
<data key="d0">AC</data>
<data key="d1">organization</data>
<data key="d2">AC is a line segment in the geometric figure, intersected by BP at point D.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="D">
<data key="d0">D</data>
<data key="d1">person</data>
<data key="d2">D is the point of intersection between BP and AC in the geometric figure.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="∠BPC">
<data key="d0">∠BPC</data>
<data key="d1">category</data>
<data key="d2">∠BPC is an angle in the geometric figure, which is an exterior angle of triangle PCD.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="∠PCD">
<data key="d0">∠PCD</data>
<data key="d1">category</data>
<data key="d2">∠PCD is an angle in the geometric figure, part of triangle PCD.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="∠PDC">
<data key="d0">∠PDC</data>
<data key="d1">category</data>
<data key="d2">∠PDC is an angle in the geometric figure, part of triangle PCD and an exterior angle of triangle BAD.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="∠DBA">
<data key="d0">∠DBA</data>
<data key="d1">category</data>
<data key="d2">∠DBA is an angle in the geometric figure, part of triangle BAD.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="∠A">
<data key="d0">∠A</data>
<data key="d1">category</data>
<data key="d2">∠A is an angle in the geometric figure, part of triangle BAD.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="P">
<data key="d0">P</data>
<data key="d1">person</data>
<data key="d2">Point P is a vertex in the geometric proof where angle BPC is located.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="B">
<data key="d0">B</data>
<data key="d1">person</data>
<data key="d2">Point B is a vertex in the geometric proof where angle DBA is located.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="A">
<data key="d0">A</data>
<data key="d1">person</data>
<data key="d2">Point A is a vertex in the geometric proof where angle A is located.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="C">
<data key="d0">C</data>
<data key="d1">person</data>
<data key="d2">Point C is a vertex in the geometric proof where angle PCD is located.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="△PCD">
<data key="d0">△PCD</data>
<data key="d1">category</data>
<data key="d2">Triangle PCD is part of the geometric proof where angle BPC is an exterior angle.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<node id="△BAD">
<data key="d0">△BAD</data>
<data key="d1">category</data>
<data key="d2">Triangle BAD is part of the geometric proof where angle PDC is an exterior angle.</data>
<data key="d3">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d4">unknown_source</data>
<data key="d5">1752656859</data>
</node>
<edge source="三角形ABC" target="三角不等式">
<data key="d6">9.0</data>
<data key="d7">The triangle ABC is used to demonstrate the triangle inequality, showing that the sum of two sides is greater than the third.</data>
<data key="d8">geometric proof,inequality</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="三角形ABC" target="几何原本">
<data key="d6">7.0</data>
<data key="d7">The proof involving triangle ABC relies on propositions from Euclid's 'Elements,' such as the relationship between angles and sides.</data>
<data key="d8">classical text,geometric principles</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="三角形ABC" target="点D">
<data key="d6">8.0</data>
<data key="d7">Point D is constructed by extending side AB of triangle ABC to demonstrate the triangle inequality.</data>
<data key="d8">geometric construction,proof technique</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="三角形ABC" target="点P">
<data key="d6">7.0</data>
<data key="d7">Point P is an arbitrary interior point of triangle ABC used to prove that ∠BPC &gt; ∠A.</data>
<data key="d8">geometric proof,interior angle</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="欧几里得第五公理" target="几何原本">
<data key="d6">8.0</data>
<data key="d7">Euclid's Fifth Postulate is a key component of the 'Elements of Geometry,' which forms the basis for many geometric proofs.</data>
<data key="d8">axiomatic system,mathematical foundation</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="欧几里得第五公理" target="等腰三角形BCD">
<data key="d6">8.0</data>
<data key="d7">The properties of isosceles triangle BCD are used in conjunction with Euclid's Fifth Postulate to prove the triangle inequality.</data>
<data key="d8">axiomatic application,proof logic</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="点D" target="等腰三角形BCD">
<data key="d6">9.0</data>
<data key="d7">Point D is connected to C to form the isosceles triangle BCD, where |BD|=|BC|.</data>
<data key="d8">geometric construction,isosceles properties</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="点D" target="直线AB">
<data key="d6">9.0</data>
<data key="d7">Line AB is extended to create point D, which is essential for constructing the proof of the triangle inequality.</data>
<data key="d8">line extension,proof construction</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="点P" target="命题19">
<data key="d6">8.0</data>
<data key="d7">The proof involving point P uses Proposition 19 from Euclid's Elements to compare angles and sides.</data>
<data key="d8">angle comparison,geometric proposition</data>
<data key="d9">chunk-d4c4f366a47f3e13da193e0b600addae</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="BP" target="AC">
<data key="d6">8.0</data>
<data key="d7">BP intersects AC at point D in the geometric figure.</data>
<data key="d8">geometric intersection,line segments</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="BP" target="D">
<data key="d6">8.0</data>
<data key="d7">BP passes through point D where it intersects AC.</data>
<data key="d8">intersection,line-point relation</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="AC" target="D">
<data key="d6">8.0</data>
<data key="d7">AC passes through point D where it intersects BP.</data>
<data key="d8">intersection,line-point relation</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="D" target="△PCD">
<data key="d6">9.0</data>
<data key="d7">Point D is a vertex of triangle PCD.</data>
<data key="d8">geometric construction,triangle vertex</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="D" target="△BAD">
<data key="d6">9.0</data>
<data key="d7">Point D is a vertex of triangle BAD.</data>
<data key="d8">geometric construction,triangle vertex</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠BPC" target="∠PCD">
<data key="d6">9.0</data>
<data key="d7">∠BPC is an exterior angle of triangle PCD, which includes ∠PCD.</data>
<data key="d8">angle relationship,exterior angle</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠BPC" target="∠PDC">
<data key="d6">9.0</data>
<data key="d7">∠BPC is an exterior angle of triangle PCD, which includes ∠PDC.</data>
<data key="d8">angle relationship,exterior angle</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠BPC" target="∠A">
<data key="d6">10.0</data>
<data key="d7">∠BPC is greater than ∠A due to the sum of angles ∠PCD and ∠DBA.</data>
<data key="d8">angle comparison,geometric proof</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠BPC" target="△PCD">
<data key="d6">10.0</data>
<data key="d7">Angle BPC is an exterior angle of triangle PCD.</data>
<data key="d8">exterior angle,triangle property</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠PCD" target="△PCD">
<data key="d6">10.0</data>
<data key="d7">Angle PCD is an interior angle of triangle PCD.</data>
<data key="d8">interior angle,triangle property</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠PDC" target="∠DBA">
<data key="d6">9.0</data>
<data key="d7">∠PDC is an exterior angle of triangle BAD, which includes ∠DBA.</data>
<data key="d8">angle relationship,exterior angle</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠PDC" target="∠A">
<data key="d6">9.0</data>
<data key="d7">∠PDC is an exterior angle of triangle BAD, which includes ∠A.</data>
<data key="d8">angle relationship,exterior angle</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠PDC" target="△PCD">
<data key="d6">10.0</data>
<data key="d7">Angle PDC is an interior angle of triangle PCD.</data>
<data key="d8">interior angle,triangle property</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠PDC" target="△BAD">
<data key="d6">10.0</data>
<data key="d7">Angle PDC is an exterior angle of triangle BAD.</data>
<data key="d8">exterior angle,triangle property</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠DBA" target="△BAD">
<data key="d6">10.0</data>
<data key="d7">Angle DBA is an interior angle of triangle BAD.</data>
<data key="d8">interior angle,triangle property</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="∠A" target="△BAD">
<data key="d6">10.0</data>
<data key="d7">Angle A is an interior angle of triangle BAD.</data>
<data key="d8">interior angle,triangle property</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="P" target="△PCD">
<data key="d6">9.0</data>
<data key="d7">Point P is a vertex of triangle PCD.</data>
<data key="d8">geometric construction,triangle vertex</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="B" target="△BAD">
<data key="d6">9.0</data>
<data key="d7">Point B is a vertex of triangle BAD.</data>
<data key="d8">geometric construction,triangle vertex</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="A" target="△BAD">
<data key="d6">9.0</data>
<data key="d7">Point A is a vertex of triangle BAD.</data>
<data key="d8">geometric construction,triangle vertex</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
<edge source="C" target="△PCD">
<data key="d6">9.0</data>
<data key="d7">Point C is a vertex of triangle PCD.</data>
<data key="d8">geometric construction,triangle vertex</data>
<data key="d9">chunk-618195be0ad6c05ea189e352a4c2e7bb</data>
<data key="d10">unknown_source</data>
<data key="d11">1752656859</data>
</edge>
</graph></graphml>