117 lines
3.9 KiB
Python
117 lines
3.9 KiB
Python
import hashlib # 导入哈希库
|
||
import time
|
||
import warnings
|
||
|
||
from elasticsearch import Elasticsearch
|
||
from langchain_openai import OpenAIEmbeddings # 直接导入嵌入模型
|
||
from pydantic import SecretStr # 用于包装API密钥
|
||
|
||
from Config import Config
|
||
|
||
# 抑制HTTPS相关警告
|
||
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
||
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
||
|
||
|
||
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
||
"""
|
||
将长文本向量化并插入到Elasticsearch,基于文本内容哈希实现去重
|
||
|
||
参数:
|
||
long_text: 要插入的长文本
|
||
tags: 可选的标签列表
|
||
|
||
返回:
|
||
bool: 插入是否成功
|
||
"""
|
||
try:
|
||
# 1. 初始化Elasticsearch连接
|
||
es = Elasticsearch(
|
||
hosts=Config.ES_CONFIG['hosts'],
|
||
basic_auth=Config.ES_CONFIG['basic_auth'],
|
||
verify_certs=False
|
||
)
|
||
|
||
# 2. 检查索引是否存在,不存在则创建
|
||
index_name = Config.ES_CONFIG['index_name']
|
||
if not es.indices.exists(index=index_name):
|
||
# 定义mapping结构
|
||
mapping = {
|
||
"mappings": {
|
||
"properties": {
|
||
"embedding": {
|
||
"type": "dense_vector",
|
||
"dims": 1024, # 根据实际embedding维度调整
|
||
"index": True,
|
||
"similarity": "l2_norm"
|
||
},
|
||
"user_input": {"type": "text"},
|
||
"tags": {
|
||
"type": "object",
|
||
"properties": {
|
||
"tags": {"type": "keyword"},
|
||
"full_content": {"type": "text"}
|
||
}
|
||
},
|
||
"timestamp": {"type": "date"}
|
||
}
|
||
}
|
||
}
|
||
es.indices.create(index=index_name, body=mapping)
|
||
print(f"索引 '{index_name}' 创建成功")
|
||
|
||
# 3. 生成文本内容的哈希值作为文档ID(实现去重)
|
||
doc_id = hashlib.md5(long_text.encode('utf-8')).hexdigest()
|
||
print(f"文本哈希值: {doc_id}")
|
||
|
||
# 4. 检查文档是否已存在
|
||
if es.exists(index=index_name, id=doc_id):
|
||
print(f"文档已存在,跳过插入: {doc_id}")
|
||
return True
|
||
|
||
# 5. 准备标签
|
||
if tags is None:
|
||
tags = ["general_text"]
|
||
tags_dict = {"tags": tags, "full_content": long_text}
|
||
|
||
# 6. 获取当前时间
|
||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||
|
||
# 7. 直接创建嵌入模型并生成向量
|
||
embeddings = OpenAIEmbeddings(
|
||
model=Config.EMBED_MODEL_NAME,
|
||
base_url=Config.EMBED_BASE_URL,
|
||
api_key=SecretStr(Config.EMBED_API_KEY)
|
||
)
|
||
|
||
# 8. 生成文本嵌入向量
|
||
embedding = embeddings.embed_documents([long_text])[0]
|
||
|
||
# 9. 准备文档数据
|
||
doc = {
|
||
'tags': tags_dict,
|
||
'user_input': long_text[:500], # 取前500个字符作为摘要
|
||
'timestamp': timestamp,
|
||
'embedding': embedding
|
||
}
|
||
|
||
# 10. 插入数据到Elasticsearch(使用哈希值作为ID)
|
||
es.index(index=index_name, id=doc_id, document=doc)
|
||
print(f"长文本数据插入成功: {doc_id}")
|
||
return True
|
||
except Exception as e:
|
||
print(f"插入数据失败: {e}")
|
||
return False
|
||
|
||
|
||
def main():
|
||
# 示例1:插入单个长文本
|
||
long_text = "这是一个测试长文本,用于演示基于内容哈希的去重机制。"
|
||
tags = ["test", "hash_deduplication"]
|
||
insert_long_text_to_es(long_text, tags)
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|