|
|
import asyncio
|
|
|
import os
|
|
|
import shutil
|
|
|
from raganything import RAGAnything, RAGAnythingConfig
|
|
|
from Util.LightRagUtil import create_llm_model_func, create_embedding_func, create_vision_model_func, \
|
|
|
format_exam_content
|
|
|
import logging
|
|
|
|
|
|
# 在程序开始时添加以下配置
|
|
|
logging.basicConfig(
|
|
|
level=logging.INFO, # 设置日志级别为INFO
|
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
)
|
|
|
|
|
|
# 更详细地控制日志输出
|
|
|
logger = logging.getLogger('lightrag')
|
|
|
logger.setLevel(logging.INFO)
|
|
|
handler = logging.StreamHandler()
|
|
|
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
|
|
logger.addHandler(handler)
|
|
|
|
|
|
|
|
|
async def main():
|
|
|
# 要处理的文件路径
|
|
|
file_path = "Docx/《动能定理》巩固练习.docx"
|
|
|
WORKING_DIR = "../Topic/WuLi"
|
|
|
fileName = file_path.split('/')[-1].replace(".docx", "").replace(".doc", "")
|
|
|
|
|
|
# 删除output目录下的所有文件
|
|
|
output_dir = "../output"
|
|
|
if not os.path.exists(output_dir):
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
|
# 删除WORKING_DIR下的所有文件
|
|
|
shutil.rmtree(WORKING_DIR, ignore_errors=True)
|
|
|
os.makedirs(WORKING_DIR, exist_ok=True)
|
|
|
|
|
|
# 指定最终的索引生成目录,启动索引生成
|
|
|
config = RAGAnythingConfig(
|
|
|
working_dir=WORKING_DIR,
|
|
|
mineru_parse_method="auto",
|
|
|
enable_image_processing=True, # 处理图片
|
|
|
enable_table_processing=True, # 处理表格
|
|
|
enable_equation_processing=True, # 处理公式
|
|
|
)
|
|
|
# 自定义的大模型函数
|
|
|
llm_model_func = create_llm_model_func()
|
|
|
# 自定义的可视模型函数
|
|
|
vision_model_func = create_vision_model_func(llm_model_func)
|
|
|
# 自定义的嵌入函数
|
|
|
embedding_func = create_embedding_func()
|
|
|
rag = RAGAnything(
|
|
|
config=config,
|
|
|
llm_model_func=llm_model_func,
|
|
|
vision_model_func=vision_model_func,
|
|
|
embedding_func=embedding_func,
|
|
|
)
|
|
|
# 需要注意:注释掉将整理出来的文档内容插入到LightRAG的代码。
|
|
|
# await rag.process_document_complete(
|
|
|
# file_path=file_path,
|
|
|
# output_dir=output_dir,
|
|
|
# parse_method="auto",
|
|
|
# # MinerU特殊参数 - 支持的所有kwargs:
|
|
|
# lang="ch", # 文档语言优化(如:"ch", "en", "ja")
|
|
|
# # device="cuda:0", # 推理设备:"cpu", "cuda", "cuda:0", "npu", "mps"
|
|
|
# # start_page=0, # 起始页码(0为基准,适用于PDF)
|
|
|
# # end_page=10, # 结束页码(0为基准,适用于PDF)
|
|
|
# formula=True, # 启用公式解析
|
|
|
# table=True, # 启用表格解析
|
|
|
# backend="pipeline", # 解析后端:"pipeline", "vlm-transformers"等
|
|
|
# source="local", # 模型源:"huggingface", "modelscope", "local"
|
|
|
#
|
|
|
# # RAGAnything标准参数
|
|
|
# display_stats=True, # 显示内容统计信息
|
|
|
# split_by_character=None, # 可选的文本分割字符
|
|
|
# doc_id=None, # 可选的文档ID
|
|
|
# )
|
|
|
|
|
|
"""
|
|
|
修正一下MinerU生成的Latex中,如果是数字加圆圈的样式 \textcircled{1},
|
|
|
无法在Typora或者PyCharm中显示的问题,改成兼容性更强的 \enclose{circle}{1}
|
|
|
"""
|
|
|
path = r'../output/' + fileName + '/auto'
|
|
|
finalName = path + r'/' + fileName + '.md'
|
|
|
with open(finalName, 'r', encoding='utf-8') as f:
|
|
|
content = f.read()
|
|
|
content = content.replace(r'\textcircled', r'\enclose{circle}')
|
|
|
# 按【题型】分割试题
|
|
|
question_types = ["不定项选择", "单选题", "多选题", "填空题", "判断题", "完型填空题", "计算题"]
|
|
|
|
|
|
# 按 【题型】 分隔开
|
|
|
content = content.replace("\n\n", "\n")
|
|
|
questions = content.split('【题型】')
|
|
|
|
|
|
idx = 0
|
|
|
for q in questions:
|
|
|
# 干掉 【题型】前面的文档标题,比如: # 《动能定理》巩固练习
|
|
|
if idx == 0 and q != "":
|
|
|
idx = idx + 1
|
|
|
continue
|
|
|
# 干掉空行
|
|
|
if q.strip() == "" or q == '\n':
|
|
|
continue
|
|
|
q='【题型】'+q
|
|
|
print(q)
|
|
|
print("\n")
|
|
|
|
|
|
# with open(path + r'/测试.md', 'w', encoding='utf-8') as f:
|
|
|
# f.write(formatted_content)
|
|
|
# 将path目录下的images目录,整体拷贝到 output下
|
|
|
shutil.rmtree(output_dir + r'/images')
|
|
|
shutil.copytree(path + r'/images', output_dir + r'/images')
|
|
|
# 删除path目录下
|
|
|
# shutil.rmtree(path)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
asyncio.run(main())
|