Files
dsProject/dsRagAnything/ShiTi/Res/3、整理后的结果.md
2025-08-14 15:45:08 +08:00

61 lines
1.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### 题目1
**题目序号**: 1
**题目内容**: 已知集合 $A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}$,则 $A \cap B=$
**选项**:
A. $\{-1,0\}$
B. $\{2,3\}$
C. $\{-3,-1,0\}$
D. $\{-1,0,2\}$
**答案**: A
**解析**: $A \cap B=\{-1,0\}$,选 A
---
### 题目2
**题目序号**: 2
**题目内容**: $\frac{2}{z-1}=1+i$ $z=$
**选项**:
A. $-1-i$
B. $-1+i$
C. $1-i$
D. $1+i$
**答案**: C
---
### 题目3
**题目序号**: 3
**题目内容**: 已知向量 $\vec{a}=(0,1)$$\vec{b}=(2,x)$ $\vec{b} \perp (\vec{b}-4\vec{a})$ $x=$
**选项**:
A. $-2$
B. $-1$
C. $1$
D. $2$
**答案**: D
**解析**: $\vec{b}-4\vec{a}=(2,x-4)$$\vec{b} \perp (\vec{b}-4\vec{a})$$\therefore \vec{b}(\vec{b}-4\vec{a})=0$$\therefore 4+x(x-4)=0$$\therefore x=2$,选 D
---
### 题目4
**题目序号**: 4
**题目内容**: 已知 $\cos(\alpha+\beta)=m$$\tan \alpha \tan \beta=2$,则 $\cos(\alpha-\beta)=$
**选项**:
A. $-3m$
B. $-\frac{m}{3}$
C. $\frac{m}{3}$
D. $3m$
**答案**: A
**解析**: $\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.$$\therefore \left\{\begin{array}{l}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{array}\right.$ $\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m$,选 A
---
### 题目5
**题目序号**: 5
**题目内容**: 已知圆柱和圆锥的底面半径相等侧面积相等且它们的高均为 $\sqrt{3}$则圆锥的体积为
**选项**:
A. $2\sqrt{3}\pi$
B. $3\sqrt{3}\pi$
C. $6\sqrt{3}\pi$
D. $9\sqrt{3}\pi$
**答案**: B
**解析**: 设它们底面半径为 $r$圆锥母线 $l$$\therefore 2\pi r\sqrt{3}=\pi rl$$\therefore l=\sqrt{3}$,则圆锥的体积为 $\frac{1}{3}\pi r^{2}h$。