Files
dsProject/dsLightRag/Util/LlmUtil.py
2025-08-14 15:45:08 +08:00

94 lines
3.2 KiB
Python

from openai import OpenAI
from Config.Config import *
import sys
from openai import AsyncOpenAI # 新增异步客户端导入
# 保留原同步函数,添加异步版本
async def get_llm_response_async(query_text: str, stream: bool = True):
"""
异步获取大模型的响应
@param query_text: 查询文本
@param stream: 是否使用流式输出
@return: 流式响应生成器或完整响应文本
"""
client = AsyncOpenAI(
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
)
try:
# 创建请求
completion = await client.chat.completions.create(
model=LLM_MODEL_NAME,
messages=[
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': query_text}
],
stream=stream
)
if stream:
# 流式输出模式,返回生成器
async for chunk in completion:
# 确保 chunk.choices 存在且不为空
if chunk and chunk.choices and len(chunk.choices) > 0:
# 确保 delta 存在
delta = chunk.choices[0].delta
if delta:
# 确保 content 存在且不为 None 或空字符串
content = delta.content
if content is not None and content.strip():
print(content, end='', flush=True)
yield content
else:
# 非流式处理
if completion and completion.choices and len(completion.choices) > 0:
message = completion.choices[0].message
if message:
content = message.content
if content is not None and content.strip():
yield content
except Exception as e:
print(f"大模型请求异常: {str(e)}", file=sys.stderr)
yield f"处理请求时发生异常: {str(e)}"
# 保留原同步函数
def get_llm_response(query_text: str, stream: bool = True):
"""
获取大模型的响应
@param query_text: 查询文本
@param stream: 是否使用流式输出
@return: 完整响应文本
"""
client = OpenAI(
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
)
# 创建请求
completion = client.chat.completions.create(
model=LLM_MODEL_NAME,
messages=[
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': query_text}
],
stream=stream
)
full_response = []
if stream:
for chunk in completion:
# 提取当前块的内容
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response.append(content)
# 实时输出内容,不换行
print(content, end='', flush=True)
else:
# 非流式处理
full_response.append(completion.choices[0].message.content)
return ''.join(full_response)