Files
dsProject/dsLightRag/Util/GGB/Backup/GGB_3_QVQ_Test.py
2025-08-14 15:45:08 +08:00

136 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import logging
from Util.ObsUtil import ObsUploader
prompt = """
### 几何图形识别专家指令(输入:纯几何图形照片)
**任务目标**
精确提取图形中的几何元素及其空间关系为GeoGebra重建建立数学模型
## 一、坐标系建立规则(必须遵守)
1. 原点设定:
- 若存在明显顶点,选最左下角的点为原点(0,0)
- 若图形对称,选对称中心为原点
- 示例原点O = 三角形ABC的顶点A
2. 坐标轴定向:
- 优先顺序:水平线段 > 垂直线段 > 最长线段
- 具体规则:
if 存在水平线段: 以该线段为x轴正方向
elif 存在垂直结构: 以最左侧垂直线为y轴
else: 以最长线段为基准轴
## 二、元素列举
1. 按点,线,三角形,四边形,梯形,平行四边形,矩形,正方形,圆等由简单到复杂的顺序列举所有图形
2. 详细描述元素之间的关系比如点D在线段AB上
3. 详细描述元素之间的位置关系比如D 在A点正上方B在CD边的上方中间位置
"""
from openai import OpenAI
from Config.Config import ALY_LLM_BASE_URL, ALY_LLM_API_KEY, OBS_AK, OBS_SERVER, OBS_SK, OBS_PREFIX, OBS_BUCKET
logger = logging.getLogger(__name__)
# 批量处理图片
def batch_qvq(output_dir, img_list):
img_url_list = []
for file_path in img_list:
# 创建上传器实例
uploader = ObsUploader(OBS_AK, OBS_SK, "https://" + OBS_SERVER)
# 上传参数
object_key = OBS_PREFIX + "/" + file_path
# 执行上传
success, result = uploader.upload_file(OBS_BUCKET, object_key, file_path)
# 处理结果
if success:
logger.info(f'{file_path}上传成功!')
# 获取上传文件的 URL
file_url = f"https://{OBS_BUCKET}.{OBS_SERVER}/{object_key}"
img_url_list.append(file_url)
else:
logger.error(f'{file_path}上传失败!')
if 'errorCode' in result:
logger.info(f'错误代码: {result["errorCode"]}')
logger.info(f'错误信息: {result["errorMessage"]}')
else:
logger.error(f'错误信息: {result["error"]}')
# 多张图片开始解析
answer_content = ""
for img_url in img_url_list:
answer_content = answer_content + qvq_single(img_url)
# 保存结果到JSON文件
qvq_result = f"{output_dir}/QvqResult.json"
with open(qvq_result, "w", encoding='utf-8') as f:
f.write(answer_content)
return qvq_result
def qvq_single(image_url):
# 初始化OpenAI客户端
client = OpenAI(
api_key=ALY_LLM_API_KEY,
base_url=ALY_LLM_BASE_URL
)
reasoning_content = "" # 定义完整思考过程
answer_content = "" # 定义完整回复
is_answering = False # 判断是否结束思考过程并开始回复
# 创建聊天完成请求
completion = client.chat.completions.create(
model="qvq-max", # 此处以 qvq-max 为例,可按需更换模型名称
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
},
},
{"type": "text",
"text": prompt},
],
},
],
stream=True,
)
print("\n" + "=" * 20 + "思考过程" + "=" * 20 + "\n")
for chunk in completion:
# 如果chunk.choices为空则打印usage
if not chunk.choices:
print("\nUsage:")
print(chunk.usage)
else:
delta = chunk.choices[0].delta
# 打印思考过程
if hasattr(delta, 'reasoning_content') and delta.reasoning_content != None:
print(delta.reasoning_content, end='', flush=True)
reasoning_content += delta.reasoning_content
else:
# 开始回复
if delta.content != "" and is_answering is False:
print("\n" + "=" * 20 + "完整回复" + "=" * 20 + "\n")
is_answering = True
# 打印回复过程
print(delta.content, end='', flush=True)
answer_content += delta.content
# print("=" * 20 + "完整思考过程" + "=" * 20 + "\n")
# print(reasoning_content)
# print("=" * 20 + "完整回复" + "=" * 20 + "\n")
answer_content = answer_content.replace("```json", "")
answer_content = answer_content.replace("```", "")
return answer_content
if __name__ == '__main__':
img_url = "https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/extracted/26c367a3c3cf20e62e1d6c7904f6abf6/image_1.png"
ans = qvq_single(img_url)
print(ans)