71 lines
2.6 KiB
Python
71 lines
2.6 KiB
Python
from openai import OpenAI
|
||
|
||
from Config.Config import ALY_LLM_BASE_URL, ALY_LLM_API_KEY
|
||
|
||
# 初始化OpenAI客户端
|
||
client = OpenAI(
|
||
api_key=ALY_LLM_API_KEY,
|
||
base_url=ALY_LLM_BASE_URL
|
||
)
|
||
|
||
reasoning_content = "" # 定义完整思考过程
|
||
answer_content = "" # 定义完整回复
|
||
is_answering = False # 判断是否结束思考过程并开始回复
|
||
|
||
prompt = """
|
||
你是一个严谨的数学助手,请将以下初中几何题进行描述,需包含:
|
||
【1】有哪些主体元素?比如 直角等腰三角形,等腰三角形,直角三角形,都有哪些,先列举大的,再列举小的。
|
||
【2】这些主体元素的位置关系是什么样的,比如AB是斜边,角C是90度角,AB是水平的,适合做坐标系的X轴。
|
||
【3】除主体元素外,其它的辅助元素有哪些?都应该如何描述清楚?
|
||
"""
|
||
# 创建聊天完成请求
|
||
completion = client.chat.completions.create(
|
||
model="qvq-max", # 此处以 qvq-max 为例,可按需更换模型名称
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": "https://dsideal.obs.cn-north-1.myhuaweicloud.com/wb/math.jpg"
|
||
},
|
||
},
|
||
{"type": "text",
|
||
"text": prompt},
|
||
],
|
||
},
|
||
],
|
||
stream=True,
|
||
)
|
||
|
||
print("\n" + "=" * 20 + "思考过程" + "=" * 20 + "\n")
|
||
|
||
for chunk in completion:
|
||
# 如果chunk.choices为空,则打印usage
|
||
if not chunk.choices:
|
||
print("\nUsage:")
|
||
print(chunk.usage)
|
||
else:
|
||
delta = chunk.choices[0].delta
|
||
# 打印思考过程
|
||
if hasattr(delta, 'reasoning_content') and delta.reasoning_content != None:
|
||
print(delta.reasoning_content, end='', flush=True)
|
||
reasoning_content += delta.reasoning_content
|
||
else:
|
||
# 开始回复
|
||
if delta.content != "" and is_answering is False:
|
||
print("\n" + "=" * 20 + "完整回复" + "=" * 20 + "\n")
|
||
is_answering = True
|
||
# 打印回复过程
|
||
print(delta.content, end='', flush=True)
|
||
answer_content += delta.content
|
||
|
||
# print("=" * 20 + "完整思考过程" + "=" * 20 + "\n")
|
||
# print(reasoning_content)
|
||
# print("=" * 20 + "完整回复" + "=" * 20 + "\n")
|
||
# 保存成QvqResult.txt
|
||
with open("QvqResult.txt", "w", encoding='utf-8') as f:
|
||
f.write(answer_content)
|
||
print("试题解析文本保存成功!")
|