Files
dsProject/dsAiTeachingModel/Topic/HighChemistry/vdb_chunks.json
2025-08-15 08:54:53 +08:00

1 line
1.8 MiB
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{"embedding_dim": 1024, "data": [{"__id__": "chunk-e14f65565c66746826a597f4e3c2d5c1", "__created_at__": 1754897909, "content": "高中化学必修一教案\n/\n+----------------------+----------------------+----------------------+\n| > 课题: 引言 | 授课班级 | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 1 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 了解化学与工农业生产 |\n| | | 及日常生活的密切关系 |\n| 学 | 与技能 | |\n| | | |\n| 目 | | |\n| | | |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程与 | 了解化学科学 |\n| | | 的理论基础与研究方法 |\n| | 方法 | |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通过化学在 |\n| | | 工农业及生活中的应用 |\n| | 态度 | ,激发同学们对化学科 |\n| | | 学的学习兴趣,使同学 |\n| | 价值观 | 们热爱化学这们学科。 |\n| | | |\n| | | 2、通过师生 |\n| | | 互动,增加师生感情、 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 化学的新认识 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 高中化学的 | |\n| | 知识特点以及学习方法 | |\n+----------------------+----------------------+----------------------+\n| | 引 言 | |\n| 知识结构与板书设计 | | |\n| | 一、再说化学: | |\n| | | |\n| | 化学就 | |\n| | 是研究物质的组成、结 | |\n| | 构、性质、变化规律以 | |\n| | 及合成的自然科学。 | |\n| | | |\n| | 二、学习内容 | |\n| | | |\n| | 三、学习特点: | |\n| | | |\n| | 我的几点要求 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| 放一组现代化学 | [学生活 | |\n| 与人类生活关系的图片 | 动]阅读教材引言内容 | |\n| | | |\n| [导入]化学是一门充 | 学生讨论,教师总结 | |\n| 满神奇色彩的科学,从 | | |\n| 现在开始,我和同学们 | 学生的怨 | |\n| 一道来探索化学的奥秘 | 言:面宽,琐碎,难学 | |\n| | ,易忘。针对学生的问 | |\n| [讲]化学研究的领域 | 题,提出针对性解决方 | |\n| 不仅局限于传统意义上 | 法,让学生对高中化学 | |\n| 的化学反应,一些现代 | 学习充满信心与挑战。 | |\n| 生物领域及物理领域都 | | |\n| 需要我们化学家参与研 | | |\n| 究,如刚才看到的几组 | | |\n| 图片,可以说无论从生 | | |\n| 活还是将来的任何工作 | | |\n| 都离不开化学。化学是 | | |\n| 一门实用性很强的科学 | | |\n| | | |\n| [板 | | |\n| 书]一、再说化学: | | |\n| | | |\n| [展示并总结] | | |\n| | | |\n| 1、化学是 | | |\n| 一门应用性很强的科学 | | |\n| | | |\n| /(1/) | | |\n| 解 | | |\n| 开许多物质结构之迷, | | |\n| 在工厂大规模生产化工 | | |\n| 产品,如人工牛胰岛素 | | |\n| | | |\n| /(2/) | | |\n| 合成并 | | |\n| 开发诸多自然界中并不 | | |\n| 存在的新物质和新材料 | | |\n| | | |\n| /(3/) | | |\n| 为解决 | | |\n| 困扰现代社会的环境问 | | |\n| 题、能源问题和资源问 | | |\n| 题提供更多的有效途径 | | |\n| | | |\n| /(4/) | | |\n| 利用化 | | |\n| 学高效综合应用自然资 | | |\n| 源和保护环境,使国民 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-fbe5d75866bfd7238875fdba3d01d983", "__created_at__": 1754897909, "content": "为解决 | | |\n| 困扰现代社会的环境问 | | |\n| 题、能源问题和资源问 | | |\n| 题提供更多的有效途径 | | |\n| | | |\n| /(4/) | | |\n| 利用化 | | |\n| 学高效综合应用自然资 | | |\n| 源和保护环境,使国民 | | |\n| 经济能良性、可持续发 | | |\n| 展、为子孙后代造福, | | |\n| 使人类生活得更美好。 | | |\n| | | |\n| 2、化学与社 | | |\n| 会发展以及人们生活质 | | |\n| 量的提高有密切的关系 | | |\n| | | |\n| ① | | |\n| 衣:由于化学纤维、染 | | |\n| 料的合成与发展,人们 | | |\n| 穿上了各种鲜艳、光彩 | | |\n| 夺目、非常漂亮的化纤 | | |\n| 服装,生活丰富多彩。 | | |\n| | | |\n| ②食:由于化肥 | | |\n| 河农药的生产和使用, | | |\n| 使农作物增产增收,解 | | |\n| 决了人们的吃饭问题, | | |\n| 让人们的餐桌更为丰富 | | |\n| ,吃得营养、吃得好。 | | |\n| | | |\n| ③住: | | |\n| 钢铁、水泥、玻璃、涂 | | |\n| 料等一些建筑、装饰材 | | |\n| 料的生产,使用,建起 | | |\n| 许多高楼大厦,使人们 | | |\n| 住得舒适,生活愉快。 | | |\n| | | |\n| ④行:人 | | |\n| 造橡胶的合成、石油化 | | |\n| 学工业的发展,是汽车 | | |\n| 工业普及的基础;镁铝 | | |\n| 轻合金、钢铁、钛等金 | | |\n| 属材料和一些功能材料 | | |\n| 得应用,制成了飞机、 | | |\n| 轮船,宇宙飞船,使人 | | |\n| 日行万里不再是梦想。 | | |\n| | | |\n| ⑤硅等半导体 | | |\n| 的发展和应用,是当今 | | |\n| 计算机发展的基础,计 | | |\n| 算机的使用和普及大大 | | |\n| 加速了高新科学技术和 | | |\n| 信息技术的迅猛发展。 | | |\n| | | |\n| 3、基 | | |\n| 础化学知识对于识别伪 | | |\n| 科学,判断某些商品是 | | |\n| 否会影响环境质量或人 | | |\n| 体健康等也是必需的。 | | |\n| | | |\n| [点 | | |\n| 击试题1、下列说 | | |\n| 法,违反科学原理的是 | | |\n| C | | |\n| | | |\n| A. | | |\n| 干冰可用于人工降雨 | | |\n| | | |\n| B.闪电时空气中的 | | |\n| N2可变为氮的化合物 | | |\n| | | |\n| C.添加少量某物 | | |\n| 质可将水变成燃料油 | | |\n| | | |\n| D.在一定温度、压强 | | |\n| 下石墨可变成金刚石 | | |\n| | | |\n| * | | |\n| *2、下列广告用语在 | | |\n| 科学性上没有错误的是 | | |\n| D | | |\n| | | |\n| A.这种饮料 | | |\n| 中不含任何化学物质 | | |\n| | | |\n| | | |\n| B.这种矿泉水绝对纯净 | | |\n| ,其中不含任何离子 | | |\n| | | |\n| C.这种 | | |\n| 口服液含丰富的氧、氮 | | |\n| 、磷、锌等微量元素 | | |\n| | | |\n| | | |\n| D.没有水就没有生命 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6b5fc7392f747a8e8369f11372fa67ef", "__created_at__": 1754897909, "content": ".这种矿泉水绝对纯净 | | |\n| ,其中不含任何离子 | | |\n| | | |\n| C.这种 | | |\n| 口服液含丰富的氧、氮 | | |\n| 、磷、锌等微量元素 | | |\n| | | |\n| | | |\n| D.没有水就没有生命 | | |\n| | | |\n| [展示并总结] | | |\n| | | |\n| 4.现代化学已经 | | |\n| 成为发展国民经济、发 | | |\n| 展社会生产的重要源泉 | | |\n| | | |\n| [讲]现代社 | | |\n| 会的众多领域都需要在 | | |\n| 某种场合应用到化学成 | | |\n| 果,像电子学、半导体 | | |\n| 、原子能、信息工程、 | | |\n| 宇航工程、研制药物、 | | |\n| 消除公害、保护环境、 | | |\n| 合成材料等等,都离不 | | |\n| 开化学。展望未来,化 | | |\n| 学一定会在综合开发各 | | |\n| 种资源,多方面应用新 | | |\n| 能源,设法研制各种新 | | |\n| 材料,进一步探索生命 | | |\n| 、海洋、空间的奥秘方 | | |\n| 面更好的为人类服务。 | | |\n| | | |\n| | | |\n| [问]化学是什么? | | |\n| | | |\n| [板书]化学就 | | |\n| 是研究物质的组成、结 | | |\n| 构、性质、变化规律以 | | |\n| 及合成的自然科学。 | | |\n| | | |\n| 二、学习内容 | | |\n| | | |\n| [投 | | |\n| 影]高中化学课程分 | | |\n| 为必修和选修两部分。 | | |\n| | | |\n| 必修 | | |\n| 课程化学I和化学II | | |\n| | | |\n| 选修 | | |\n| 课程1、化学与生活 | | |\n| 2、化学与技术 | | |\n| 3、物质结构与性质 | | |\n| | | |\n| 4、化学反应原理 | | |\n| 5、有机化学基础 | | |\n| 6、实验化学 | | |\n| | | |\n| | | |\n| 讲]高一我们将完成 | | |\n| 必修部分的化学I和化 | | |\n| 学II计4学分高二 | | |\n| 开始根据自己未来人生 | | |\n| 方向不同将从六个模块 | | |\n| 中选修一门(每个模块 | | |\n| 2学分)修满6学分后 | | |\n| ,高中化学结业,理式 | | |\n| 方向的考生,将从剩下 | | |\n| 的5个模块中选取2-3个 | | |\n| 模块,迎接升学考试, | | |\n| 为今后的学习作准备。 | | |\n| | | |\n| 本 | | |\n| 学期我们将完成必修I | | |\n| 的内容,本书共分为四 | | |\n| 章,从实验化学入手, | | |\n| 围绕无机化学的基本理 | | |\n| 论和基本研究方法展开 | | |\n| | | |\n| [板 | | |\n| 书]三、学习特点: | | |\n| | | |\n| * | | |\n| *1、高中化学的特点 | | |\n| | | |\n| 初中教材涉及到的基础 | | |\n| 知识,理论性不强,抽 | | |\n| 象程度不高。高中教材 | | |\n| 与初中教材相比,深广 | | |\n| 度明显加深,由描述向 | | |\n| 推理发展的特点日趋明 | | |\n| 显,知识的横向联系和 | | |\n| 综合程度有所提高,研 | | |\n| 究问题常常涉及到本质 | | |\n| ,在能力要求上也出现 | | |\n| 了形象思维向抽象思维 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ffcdc9022d5053fe1113c1e9231112f6", "__created_at__": 1754897909, "content": "|\n| 度明显加深,由描述向 | | |\n| 推理发展的特点日趋明 | | |\n| 显,知识的横向联系和 | | |\n| 综合程度有所提高,研 | | |\n| 究问题常常涉及到本质 | | |\n| ,在能力要求上也出现 | | |\n| 了形象思维向抽象思维 | | |\n| 的飞跃。有的内容如: | | |\n| \"摩尔\"、\"元素周期律\" | | |\n| 、\"氧化还原反应\"等等 | | |\n| 知识理论性强,抽象程 | | |\n| 度高,这些内容历来被 | | |\n| 认为是造成学生分化、 | | |\n| 学习困难的重点知识。 | | |\n| | | |\n| 2、 | | |\n| 学习困难的主要原因 | | |\n| | | |\n| 1、思想松 | | |\n| 懈,学习缺乏紧迫感; | | |\n| 坚持已有的学 | | |\n| 法,相信自己的老习惯 | | |\n| | | |\n| 2、 | | |\n| 过多地依赖老师,学习 | | |\n| 的自觉性、自主性较差 | | |\n| | | |\n| 3、不遵循学 | | |\n| 习规律和方法,忽视学 | | |\n| 习的基本环节(如:预 | | |\n| 习、听课、复习、独立 | | |\n| 作业、总结、评估等。 | | |\n| 听课时,把握不住知识 | | |\n| 的重难点,理解不透。 | | |\n| 有的知识印象不深,造 | | |\n| 成知识缺陷日积月累。 | | |\n| ) | | |\n| | | |\n| [讲] | | |\n| 好的开端是成功的一大 | | |\n| 半,我们又一次站在了 | | |\n| 新的起点。该怎么办? | | |\n| 初 | | |\n| 三的化学学得怎么样对 | | |\n| 高中化学的学习没什么 | | |\n| 影响,有学好的想法, | | |\n| 肯学,就一定能学好! | | |\n| 要 | | |\n| 学好就要有自己良好的 | | |\n| 学习习惯和学习方法。 | | |\n| 大家应该更新学习 | | |\n| 方法,不能用初中的学 | | |\n| 习方法学高中的化学! | | |\n| | | |\n| 我的几点要求: | | |\n| | | |\n| 1、 | | |\n| 化学我们现在有一本教 | | |\n| 材,一本学案,一本实 | | |\n| 验报告册,还需要准备 | | |\n| 纠错本,一本笔记,还 | | |\n| 希望同学们自己能有一 | | |\n| 本习题册或辅导书(不 | | |\n| 作硬性要求,不具体规 | | |\n| 定,但你必须得做题) | | |\n| | | |\n| 2、纪律是一切 | | |\n| 的保障,除遵守班规外 | | |\n| ,上课打完预铃,就把 | | |\n| 化学书,练习册,笔记 | | |\n| ,卷子等一切跟我化学 | | |\n| 教学有关的东西准备好 | | |\n| | | |\n| 3、 | | |\n| 按时完成作业,早晨进 | | |\n| 班就把化学作业放到讲 | | |\n| 台上,上早自习之前, | | |\n| 科代表收好,第一节课 | | |\n| 下课,课代表查清化学 | | |\n| 作业并送到我办公室。 | | |\n| 不交作业者严惩不待。 | | |\n| | | |\n| 4、 | | |\n| 必须记笔记。主要记书 | | |\n| 上没有明确写的,我补 | | |\n| 充上去的知识,和我总 | | |\n| 结出的规律。以及我在 | | |\n| 做专题训练时讲的典型 | | |\n| 题。要想记好笔记,一 | | |\n| 方面要求课前预习,另 | | |\n| 一方面要求同学们课后 | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2fa7fd17af0654b3f33037a5973b203a", "__created_at__": 1754897909, "content": "没有明确写的,我补 | | |\n| 充上去的知识,和我总 | | |\n| 结出的规律。以及我在 | | |\n| 做专题训练时讲的典型 | | |\n| 题。要想记好笔记,一 | | |\n| 方面要求课前预习,另 | | |\n| 一方面要求同学们课后 | | |\n| 整理,(整理内容包括 | | |\n| 三部分:一是上课没记 | | |\n| 全的,二是你们在看辅 | | |\n| 导书中发现一些比较好 | | |\n| 的例题或解题规律,及 | | |\n| 时补充上去;三是我们 | | |\n| 平常做卷子时的错题, | | |\n| 要将题抄上,正确解法 | | |\n| 记上,并要在下面标出 | | |\n| 所涉及的知识点,以便 | | |\n| 复习时候用)。尽管我 | | |\n| 们现在付出很多,但高 | | |\n| 二会考复习及高三总复 | | |\n| 习的时候这些笔记将成 | | |\n| 为我们的宝库。要求: | | |\n| 每周检查一次,每周二 | | |\n| 早上科代表把笔记跟作 | | |\n| 业一起收,送到我办公 | | |\n| 室。从下周起就开始。 | | |\n| | | |\n| 5、及时做 | | |\n| 对应的练习册,不用我 | | |\n| 提醒,跟我进度做,我 | | |\n| 讲完新课都会及时讲练 | | |\n| 习册,讲之前随堂检查 | | |\n| | | |\n| 6、 | | |\n| 同学们手里要有一本适 | | |\n| 合自己的辅导书或习题 | | |\n| 集,也跟着进度做,有 | | |\n| 什么问题及时来找我。 | | |\n| | | |\n| 7、答疑 | | |\n| 制度:希望同学们积极 | | |\n| 主动利用下课时间和午 | | |\n| 休时间去办公室找我, | | |\n| 也可以在第八节课让科 | | |\n| 代表找我进班答疑。我 | | |\n| 的教学经验:问题的多 | | |\n| 少与你们的成绩成正比 | | |\n| 。如果对化学有兴趣的 | | |\n| 同学,我希望你们能深 | | |\n| 入的学习,我不相信化 | | |\n| 学竞赛只属于尖子班, | | |\n| 只要你们需要,我可以 | | |\n| 为你们提供一切帮助。 | | |\n| | | |\n| 作业:认真预习, | | |\n| 并回顾一下初中化学实 | | |\n| 验都有哪些注意事项。 | | |\n+----------------------+----------------------+----------------------+\n| 教学回顾: | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第一章 | 授课班级 | |\n| 第一节 | | |\n| 化 | | |\n| 学实验基本方法(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 1 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、树立安全意 |\n| | | 识,能识别化学品安全 |\n| 学 | 与 | 使用的标识,初步形成 |\n| | | 良好的实验工作习惯。 |\n| 目 | 技能 | |\n| | | 2、知道 |\n| 的 | | 现实生活中常见的一些 |\n| | | 混合物分离和提纯的方 |\n| | | 法,用已有的生活经验 |\n| | | 使学生加深对混合物分 |\n| | | 离、提纯等实验的认识 |\n| | | |\n| | | 3、初步学会溶解、过 |\n| | | 滤、蒸发等基本操作。 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通 |\n| | | 过创设情境,导入实验 |\n| | 与 | 安全标识、化学品安全 |\n| | | 使用标识,进而掌握实 |\n| | 方法 | 验的基本准备常识,并 |\n| | | 形成良好的实验习惯。 |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-aa737c9e6085818b80d6a7eaef945f89", "__created_at__": 1754897909, "content": "|\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通 |\n| | | 过创设情境,导入实验 |\n| | 与 | 安全标识、化学品安全 |\n| | | 使用标识,进而掌握实 |\n| | 方法 | 验的基本准备常识,并 |\n| | | 形成良好的实验习惯。 |\n| | | |\n| | | 2、初 |\n| | | 步学会模仿、移植现有 |\n| | | 的例子,撰写实验报告 |\n| | | |\n| | | 3、通过独立思考、 |\n| | | 探索,在对物质性质研 |\n| | | 究的同时,能设计出自 |\n| | | 己的实验方案,并逐渐 |\n| | | 在设计中体现自己的个 |\n| | | 性,具有一定的创造性 |\n| | | |\n| | | 4、初步尝试在实验 |\n| | | 探究中与人合作与交流 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、体 |\n| | | 验科学探究的过程,学 |\n| | 态度 | 习运用以实验为基础的 |\n| | | 研究方法,提高学生的 |\n| | 价值观 | 科学素养,为学生的终 |\n| | | 身可持续发展奠定基础 |\n| | | |\n| | | 2、发展学习化学的兴 |\n| | | 趣,乐于探究物质变化 |\n| | | 的奥秘,体验科学探究 |\n| | | 的艰辛和喜悦,逐渐培 |\n| | | 养科学精神和科学品质 |\n| | | |\n| | | 3、树立绿色化学思想 |\n| | | ,形成环境保护的意识 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 过滤和蒸发的操作方法 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 正确的实验研究方 | |\n| | 法及实验报告的撰写; | |\n+----------------------+----------------------+----------------------+\n| 知 | 第一章 | |\n| | 从实验学化学 | |\n| 识 | | |\n| | 第一节 | |\n| 结 | 化学实验的基本方法 | |\n| | | |\n| 构 | 一、化学实验安全 | |\n| | 1、遵守实验室规则 | |\n| 与 | | |\n| | 2、了解安全措施 | |\n| 板 | | |\n| | 3、掌 | |\n| 书 | 握正确的操作方法。 | |\n| | | |\n| 设 | 二、 | |\n| | 混合物的分离与提纯 | |\n| 计 | | |\n| | 1、基本概念物质 | |\n| | 的分离&物质的提纯 | |\n| | | |\n| | 2、操作原 | |\n| | 则:四原则&三必须 | |\n| | | |\n| | 3、基本实验方法 | |\n| | 过滤与蒸发结 | |\n| | 晶、蒸馏与萃取分液 | |\n| | | |\n| | (一) | |\n| | 过 | |\n| | 滤和蒸发filtration | |\n| | and evaporation | |\n| | | |\n| | 实 | |\n| | 验1---1粗盐的提纯 | |\n| | | |\n| | 实验1-2 SO~4~^2―^ | |\n| | 等离子的检验与除杂 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 通过实验室的全景的 | |\n| 引言]化学是一门以 | 感受,学生自己提出有 | |\n| 实验为基础的自然科学 | 关实验室的一些想法, | |\n| ,科学规律是通过对自 | 很容易就能让学生自己 | |\n| 然现象的发现、探究和 | 走进实验教学,为实验 | |\n| 反复验证形成的。化学 | 教学打下良好的基础。 | |\n| 研究的主要方法是实验 | | |\n| 方法,所以学习化学离 | 观察、思考、 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b764d464a919a1a83749b7e697312e5c", "__created_at__": 1754897909, "content": "想法, | |\n| ,科学规律是通过对自 | 很容易就能让学生自己 | |\n| 然现象的发现、探究和 | 走进实验教学,为实验 | |\n| 反复验证形成的。化学 | 教学打下良好的基础。 | |\n| 研究的主要方法是实验 | | |\n| 方法,所以学习化学离 | 观察、思考、 | |\n| 不开实验,掌握实验方 | 讨论、提出自己的想法 | |\n| 法以及完成化学实验所 | | |\n| 必需的技能,是学好化 | 学生自己 | |\n| 学的关键。那么大家高 | 总结出来的实验安全知 | |\n| 中阶段学习化学的第一 | 识比教师讲的要深刻得 | |\n| 章就是\"从实验学化学\" | 多,通过学生自己得到 | |\n| | 的东西能在学生的头脑 | |\n| [板书]第一章 | 中有长久的印象,并能 | |\n| 从实验学化学 | 成为以后受用的知识。 | |\n| | | |\n| 第一节 | 通过对实验的一些安 | |\n| 化学实验的基本方法 | 全内容的记录,学生能 | |\n| | 认识到安全实验的重要 | |\n| 一、化学实验安全 | 性,为以后的实验安全 | |\n| | 打下了一个良好的基础 | |\n| (投景实验室全景) | | |\n| | 请同学们阅读教材, | |\n| [引]这就是我 | 并认识各图标的意义。 | |\n| 们准备做实验的化学实 | | |\n| 验室,看到实验室,同 | 学生阅读P~4 | |\n| 学们想到了什么呢?化 | ~注意问题1、2、3学 | |\n| 学实验是化学的精灵, | 生回答实验注意问题, | |\n| 我们做为新世纪的高中 | 教师穿插、补充、完善 | |\n| 生,要有良好的实验品 | | |\n| 质,在做实验前,我们 | 学 | |\n| 要做的事情是什么呢? | 生阅读教材上的资料卡 | |\n| | 片与提示,讨论并设计 | |\n| (做好实验准备工作) | 实验验证自己的结论。 | |\n| | | |\n| | | |\n| 讲]做实验前,要先 | | |\n| 读实验室规则,没有规 | | |\n| 则不成方圆,只有明确 | | |\n| 了实验室规则,我们才 | | |\n| 能更好地利用实验室。 | | |\n| | | |\n| 有的同学一定认 | | |\n| 为化学实验很难并有一 | | |\n| 定的危险性,还有的同 | | |\n| 学认为做好实验很好玩 | | |\n| 。其实,化学实验是用 | | |\n| 来检验、探索物质的操 | | |\n| 作,是学术性的研究, | | |\n| 不能依靠个人的一些喜 | | |\n| 好、情绪来做实验,实 | | |\n| 验有一定的安全要求, | | |\n| 只要你能做到安全要求 | | |\n| ,就可以很轻松地完成 | | |\n| 实验,那么,实验的安 | | |\n| 全又有些什么内容呢? | | |\n| | | |\n| [思考与交 | | |\n| 流]根据你做化学实验 | | |\n| 和探究的经验以及你在 | | |\n| 初中所学的知识,想一 | | |\n| 想在进行化学实验时应 | | |\n| 注意哪些安全问题? | | |\n| | | |\n| [学 | | |\n| 生讨论并投影总结] | | |\n| | | |\n| 1、取用 | | |\n| 药品的安全注意事项: | | |\n| | | |\n| (1)不 | | |\n| 能用手接触药品,不要 | | |\n| 把鼻孔凑到容器口去闻 | | |\n| 药品(特别是气体),不 | | |\n| 得尝任何药品的味道。 | | |\n| | | |\n| (2)按用量取药,若 | | |\n| 无用量说明,一般应按 | | |\n| 最少量取用液体1-2 | | |\n| mL | | |\n| ,固 | | |\n| 体只需盖满试管底部。 | | |\n| | | |\n| (3)实验 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-f1295da953ce77e6dfddc1790c0f6d00", "__created_at__": 1754897909, "content": "|\n| (2)按用量取药,若 | | |\n| 无用量说明,一般应按 | | |\n| 最少量取用液体1-2 | | |\n| mL | | |\n| ,固 | | |\n| 体只需盖满试管底部。 | | |\n| | | |\n| (3)实验 | | |\n| 剩余的药品既不能放回 | | |\n| 原瓶,也不要随意丢弃 | | |\n| ,更不要拿出实验室, | | |\n| 要放入指定的容器内。 | | |\n| | | |\n| 2.用酒精灯 | | |\n| 加热的安全注意事项: | | |\n| | | |\n| | | |\n| 1在使用前要先检 | | |\n| 查灯里有无酒精。向灯 | | |\n| 内添加酒精时,不能超 | | |\n| 过酒精灯容积的2/3。 | | |\n| | | |\n| 2在使用时要 | | |\n| 注意几点:绝对禁止向 | | |\n| 燃着的酒精灯里添加酒 | | |\n| 精,以免失火;绝对禁 | | |\n| 止用燃着的一只酒精灯 | | |\n| 去点燃另一只酒精灯。 | | |\n| | | |\n| 3用完酒精灯 | | |\n| 不可用嘴吹灭,必须用 | | |\n| 灯帽盖灭,并盖两次。 | | |\n| | | |\n| /(4/) | | |\n| 不慎洒出 | | |\n| 的酒精若在桌上燃烧起 | | |\n| 来,不要惊谎,应立即 | | |\n| 用湿抹布或沙子扑盖。 | | |\n| | | |\n| 3.着火和烫伤的处 | | |\n| 理、化学灼伤的处理、 | | |\n| 如何防止中毒、意外事 | | |\n| 故的紧急处理方法等。 | | |\n| | | |\n| 着火烫伤时应该先 | | |\n| 冷敷。浓硫酸灼伤时先 | | |\n| 用干布小心拭去浓硫酸 | | |\n| ,再用大量的水冲洗。 | | |\n| | | |\n| [讲] | | |\n| 刚才同学们发表了很 | | |\n| 多关于实验安全应该注 | | |\n| 意的事项,那么大家还 | | |\n| 要注意常用的危险化学 | | |\n| 标志。请见课本P~4~。 | | |\n| | | |\n| ![](stat | | |\n| ic/Images/a91144fda2 | | |\n| c741b0b9694ebcfa9d1d | | |\n| eb/media/image1.png) | | |\n| | | |\n| [讲] | | |\n| 实验安全是为避免受到 | | |\n| 意外伤害的保障,要想 | | |\n| 我们的探究实验取得成 | | |\n| 果,我们还必须遵守实 | | |\n| 验的有关原则、安全措 | | |\n| 施及正确的操作方法。 | | |\n| | | |\n| [板书] | | |\n| 1、遵守实验室规则 | | |\n| | | |\n| 2、了解安全措施 | | |\n| | | |\n| 3、掌 | | |\n| 握正确的操作方法。 | | |\n| | | |\n| [过渡 | | |\n| ]以上是我们做实验 | | |\n| 必须遵守的一些注意事 | | |\n| 项,正确我们学习几种 | | |\n| 化学实验的基本操作。 | | |\n| | | |\n| [思考与交流] | | |\n| 淘金者是利用什么方法 | | |\n| 和性质将金子从沙里分 | | |\n| 离出来?如果有铁屑和 | | |\n| 沙混合物,你用什么方 | | |\n| 法将铁屑分离出来? | | |\n| | | |\n| (沙里淘金是 | | |\n| 从含金量相对较大的沙 | | |\n| 里淘金。根据金是游", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-54a2defc206ee2584539308361420336", "__created_at__": 1754897909, "content": "子从沙里分 | | |\n| 离出来?如果有铁屑和 | | |\n| 沙混合物,你用什么方 | | |\n| 法将铁屑分离出来? | | |\n| | | |\n| (沙里淘金是 | | |\n| 从含金量相对较大的沙 | | |\n| 里淘金。根据金是游离 | | |\n| 态存在,密度比沙大的 | | |\n| 性质,可以用水洗法将 | | |\n| 金子从沙里分离出来。 | | |\n| | | |\n| 如果是沙和铁 | | |\n| 屑的混合物,可以用物 | | |\n| 理方法用磁铁吸取的方 | | |\n| 法将二者分离出来。) | | |\n| | | |\n| [过]以 | | |\n| 上我们用的都是较简单 | | |\n| 的物理方法,大多数分 | | |\n| 离与提纯需要我们进一 | | |\n| 步学习一些新的方法。 | | |\n| | | |\n| [板书]二、 | | |\n| 混合物的分离与提纯 | | |\n| | | |\n| 1、基本概念 | | |\n| | | |\n| 物质的 | | |\n| 分离:将混合物中各 | | |\n| 物质通过物理变化或化 | | |\n| 学变化,把各成分彼此 | | |\n| 分开的过程。 | | |\n| | | |\n| 物质的提纯:把 | | |\n| 混合物中的杂质除去, | | |\n| 以得到纯净物的过程。 | | |\n| | | |\n| 2、操作原则 | | |\n| | | |\n| 四原则: | | |\n| | | |\n| (1) | | |\n| 不增/--/-/-/--提纯 | | |\n| 过程中不增加新的杂质 | | |\n| | | |\n| (* | | |\n| *2)不减/-/-/-/-/-- | | |\n| 不减少欲被提纯的物质 | | |\n| | | |\n| (3)易 | | |\n| 分离/-/-/-/-/--被 | | |\n| 提纯物与杂质容易分离 | | |\n| | | |\n| (4)易复原/-/-/-/ | | |\n| -/--被提纯物质要复原 | | |\n| | | |\n| 三必须: | | |\n| | | |\n| /(1/) | | |\n| 除杂试剂必须过量 | | |\n| | | |\n| /(2/) | | |\n| 过量 | | |\n| 试剂必须除尽(因为过 | | |\n| 量试剂带入新的杂质) | | |\n| | | |\n| /(3/) | | |\n| 除杂途径必须选最佳 | | |\n| | | |\n| * | | |\n| *3、基本实验方法 | | |\n| | | |\n| 过滤与蒸发结 | | |\n| 晶、蒸馏与萃取分液 | | |\n| | | |\n| [设问]大家初中 | | |\n| 时学习了混合物的分离 | | |\n| 和提纯的方法有哪些? | | |\n| | | |\n| (过滤、蒸发、结晶等) | | |\n| | | |\n| [设 | | |\n| 问]过滤使用于什么 | | |\n| 类型的混合物的分离? | | |\n| | | |\n| (过滤是将 | | |\n| 不溶于液体的固体分离 | | |\n| 的方法。固液分离。) | | |\n| | | |\n| | | |\n| [讲]现在我们来利 | | |\n| 用初中学习的过滤和蒸 | | |\n| 发的方法来提纯粗盐。 | | |\n| | | |\n| [板书](一) | | |\n| 过 | | |\n| 滤和蒸发filtration | | |\n| and evaporation | | |\n| | | |\n| [实验1-- | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-bc2a9ce630d954f5d94ce0dcfa0d20d9", "__created_at__": 1754897909, "content": "学习的过滤和蒸 | | |\n| 发的方法来提纯粗盐。 | | |\n| | | |\n| [板书](一) | | |\n| 过 | | |\n| 滤和蒸发filtration | | |\n| and evaporation | | |\n| | | |\n| [实验1-- | | |\n| -1粗盐的提纯]{.ul} | | |\n| | | |\n| 仪器 | | |\n| 天平,烧杯,玻璃棒 | | |\n| ,漏斗,铁架台,铁圈 | | |\n| | | |\n| ------ | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ------- ------------ | | |\n| -------------------- | | |\n| 步骤 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 现象 | | |\n| 1溶解称取4克粗 | | |\n| 盐加到盛有12mL水的小 | | |\n| 烧杯中,用玻璃棒搅拌 | | |\n| 使氯化钠充分溶解。 | | |\n| | | |\n| 粗盐 | | |\n| 逐渐溶解,溶液浑浊。 | | |\n| 2过 | | |\n| 滤组装好仪器将1 | | |\n| 中所得到的混合物进行 | | |\n| 过滤。若滤液浑浊,要 | | |\n| 再次过滤,直到滤液澄 | | |\n| 清为止。 | | |\n| 滤纸上有不 | | |\n| 溶物残留,溶液澄清。 | | |\n| | | |\n| 3蒸发将过滤后的 | | |\n| 澄清溶液转入蒸发皿, | | |\n| 加热,并用玻璃棒搅拌 | | |\n| ,防止液滴飞溅。当出 | | |\n| 现较多固体时停止加热 | | |\n| ,余热蒸干。 蒸发 | | |\n| 皿中产生了白色固体。 | | |\n| ------ | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ------- ------------ | | |\n| -------------------- | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 1、过滤 | | |\n| | | |\n| 原理:利用物质的 | | |\n| 溶解性差异,将液体和 | | |\n| 不溶于液体的固体分离 | | |\n| 开来的方法。例如用过 | | |\n| 滤法除去粗盐中的泥沙 | | |\n| 。 | | |\n| | | |\n| 操作要点: | | |\n| | | |\n| ①\"一贴\" | | |\n| :折叠后的滤纸放入漏 | | |\n| 斗后,用食指按住,加 | | |\n| 入少量蒸馏水润湿,使 | | |\n| 之紧贴在漏斗内壁,赶 | | |\n| 走纸和壁之间的气泡。 | | |\n| | | |\n| ②\"二 | | |\n| 低\":滤纸边缘应略 | | |\n| 低于漏斗边缘;加入漏 | | |\n| 斗中液体的液面应略低 | | |\n| 于滤纸的边缘(略低约 | | |\n| 1cm),以防 | | |\n| 止未过滤的液体外溢。 | | |\n| | | |\n| * | | |\n| *③\"三接触\":漏斗颈 | | |\n| 末端与承接滤液的烧杯 | | |\n| 内壁相接触;使滤液沿 | | |\n| 烧杯内壁流下;向漏斗 | | |\n| 中倾倒液体时,要使玻 | | |\n| 璃棒一端与滤纸三折部 | | |\n| 分轻轻接触;承接液体", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b8c1f8576e0c797f134bb22d8e796372", "__created_at__": 1754897909, "content": "<22> | | |\n| 末端与承接滤液的烧杯 | | |\n| 内壁相接触;使滤液沿 | | |\n| 烧杯内壁流下;向漏斗 | | |\n| 中倾倒液体时,要使玻 | | |\n| 璃棒一端与滤纸三折部 | | |\n| 分轻轻接触;承接液体 | | |\n| 的烧杯嘴和玻璃棒接触 | | |\n| ,使欲过滤的液体在玻 | | |\n| 棒的引流下流向漏斗。 | | |\n| | | |\n| 注意:如 | | |\n| 果过滤是为了得到洁净 | | |\n| 的沉淀物,则需对沉淀 | | |\n| 物进行洗涤,方法是: | | |\n| 向过滤器里加入适量蒸 | | |\n| 馏水,使水面浸没沉淀 | | |\n| 物,待水滤去后,再加 | | |\n| 水洗涤,连续洗几次, | | |\n| 直至沉淀物洗净为止。 | | |\n| | | |\n| 2、结晶 | | |\n| | | |\n| 原理:利用溶剂对 | | |\n| 被提纯物质及杂质的溶 | | |\n| 解度不同,可以使被提 | | |\n| 纯物质从过饱和溶液中 | | |\n| 析出。而让杂质全部或 | | |\n| 大部分仍留在溶液中, | | |\n| 从而达到提纯的目的。 | | |\n| | | |\n| (1)蒸发结晶:通 | | |\n| 过蒸发或气化,减少一 | | |\n| 部分溶剂使溶液达到饱 | | |\n| 和而析出晶体。此法主 | | |\n| 要用于溶解度随温度改 | | |\n| 变而变化不大的物质。 | | |\n| | | |\n| (2)冷却结晶 | | |\n| :通过降低温度,使 | | |\n| 溶液冷却达到饱和而析 | | |\n| 出晶体。重结晶指的是 | | |\n| 重复冷却结晶。此法主 | | |\n| 要用于溶解度随温度下 | | |\n| 降而明显减小的物质。 | | |\n| | | |\n| 注意:通常我 | | |\n| 们是两种方法结合使用 | | |\n| | | |\n| (1) | | |\n| 进行蒸发时,液体放置 | | |\n| 在蒸发皿中的量不得超 | | |\n| 过蒸发皿容量的2/3 | | |\n| 以免加热时溶液溅出。 | | |\n| | | |\n| (2)在加热过程 | | |\n| 中,要用玻璃棒不断搅 | | |\n| 拌液体,以免液体局部 | | |\n| 过热而致使液滴飞溅。 | | |\n| | | |\n| | | |\n| 思考题如何将NaCl | | |\n| 和KNO~3~ 分离? | | |\n| | | |\n| 将两者的混 | | |\n| 合物置于烧杯中,加少 | | |\n| 量100摄氏度热水在 | | |\n| 加热的情况下不断少量 | | |\n| 加入热水并搅拌,直至 | | |\n| 混合物完全溶解;停止 | | |\n| 加热,冷却(可以用冰 | | |\n| 水水浴),当温度降至 | | |\n| 30摄氏度时硝酸钾 | | |\n| 晶体析出;过滤混合溶 | | |\n| 液得到较为纯净硝酸钾 | | |\n| 晶体;蒸发滤液,得到 | | |\n| 较为纯净的氯化钾晶体 | | |\n| | | |\n| [思考与 | | |\n| 交流]从上述实验中我 | | |\n| 们所制得的实验是纯净 | | |\n| 物吗?可能还有什么杂 | | |\n| 质没有除去,用什么方 | | |\n| 法可以检验出它们? | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-eda3c7e9c83c17f227c15b37832d6e2d", "__created_at__": 1754897909, "content": "<22>晶体 | | |\n| | | |\n| [思考与 | | |\n| 交流]从上述实验中我 | | |\n| 们所制得的实验是纯净 | | |\n| 物吗?可能还有什么杂 | | |\n| 质没有除去,用什么方 | | |\n| 法可以检验出它们? | | |\n| | | |\n| [讲]海水中含 | | |\n| 有可溶于水的CaCl~2~ | | |\n| 、 | | |\n| MgCl~2~以及一些硫酸 | | |\n| 盐,所以食盐中也可能 | | |\n| 含有这些物质,而它们 | | |\n| 可溶于水所以在过滤中 | | |\n| 无法除去,也即是我们 | | |\n| 现在所得的产品中含有 | | |\n| 这些杂质,那我们该如 | | |\n| 何检验出它们是否存在 | | |\n| 。请大家先思考一下, | | |\n| 在进行物质检验时,我 | | |\n| 们采取的步骤是什么? | | |\n| | | |\n| (先对试样的 | | |\n| 外观进行观察,确定其 | | |\n| 颜色、状态、气味等。 | | |\n| 当试样是固体时,有时 | | |\n| 需要先将少量试样配成 | | |\n| 溶液,再进行鉴定。) | | |\n| | | |\n| [思 | | |\n| 考与交流]我们现在要 | | |\n| 设计实验来鉴定食盐中 | | |\n| 有可能含有的CaCl~2~ | | |\n| 、MgCl~2~ | | |\n| 以及一些硫酸盐。 | | |\n| | | |\n| [实验设 | | |\n| 计]现在有一份经过 | | |\n| 过滤蒸发提纯的实验, | | |\n| 要除去其中的CaCl~2~ | | |\n| 、MgCl~2~ | | |\n| 以及一些硫酸盐,请你 | | |\n| 设计实验将它们除去。 | | |\n| | | |\n| | | |\n| 实验步骤将0.5g | | |\n| 盐放入试管中加入2 | | |\n| ml的水先滴几滴盐酸 | | |\n| 酸化,然后向试管中滴 | | |\n| 入几滴BaCl~2~溶液, | | |\n| | | |\n| 现象:有白色沉 | | |\n| 淀证明有SO~4~^2―^ | | |\n| 离子。 | | |\n| | | |\n| 加盐酸酸化的目的 | | |\n| 是为了排除碳酸根的影 | | |\n| 响,改用硝酸可以吗? | | |\n| 不可以,因为硝酸会氧 | | |\n| 化亚硫酸根为硫酸根) | | |\n| | | |\n| 过滤后在滤液中加入 | | |\n| 氢氧化钠溶液,再过滤 | | |\n| 。最后加入Na~2~CO~3~ | | |\n| 溶液。 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| ------ | | |\n| --- --------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| 杂质 加入的 | | |\n| 试剂 化学方程式 | | |\n| 硫酸 | | |\n| 盐 BaCl~2~ aq | | |\n| BaCl~2~ + Na~2~SO~ | | |\n| 4~==BaSO~4~↓+ 2 NaCl | | |\n| M | | |\n| gCl~2~ NaOH aq | | |\n| MgCl~2~ +2 NaOH | | |\n| ==Mg(OH)~2~ ↓+2NaCl | | |\n| CaCl | | |\n| ~2~ Na~2~CO~3~ aq | | |\n| CaCl~2~ + Na~2~CO~ | | |\n| 3~ ==CaCO~3~ ↓+2NaCl | | |\n| ------ | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-daba611dce22238cec5fafa044662849", "__created_at__": 1754897909, "content": "| |\n| ==Mg(OH)~2~ ↓+2NaCl | | |\n| CaCl | | |\n| ~2~ Na~2~CO~3~ aq | | |\n| CaCl~2~ + Na~2~CO~ | | |\n| 3~ ==CaCO~3~ ↓+2NaCl | | |\n| ------ | | |\n| --- --------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| [思 | | |\n| 考与交流]加入试剂的 | | |\n| 顺序能否改变,你设计 | | |\n| 的实验有引入其他杂质 | | |\n| 离子么,如何除去? | | |\n| | | |\n| (能改变 | | |\n| 只要保证Na~2~CO~3~ | | |\n| 在BaCl~2~ | | |\n| 之后,盐酸加在最后 | | |\n| 就可以因为BaCl~2~ | | |\n| +Na~2~CO~3~ | | |\n| ==BaCO~3~ ↓+2NaCl | | |\n| 最后会剩余OH^―^ | | |\n| 、CO~3~^2―^ | | |\n| 这两种杂质,为除去 | | |\n| ,可向滤液中加入适量 | | |\n| 盐酸,边加边搅拌,直 | | |\n| 到不再产生气泡为止) | | |\n| | | |\n| | | |\n| [总结]我们这节课 | | |\n| 进行了的提纯实验,主 | | |\n| 要是练习过滤和蒸发的 | | |\n| 操作。另外,我们还学 | | |\n| 习了用化学方法鉴定物 | | |\n| 质,请看下面的练习: | | |\n| | | |\n| 课后 | | |\n| 作业P10---2、3、7 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第一章 | 授课班级 | |\n| 第一节 | | |\n| 化 | | |\n| 学实验基本方法(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 1 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、了解萃取原理 |\n| | | ,掌握萃取的实验操作 |\n| 学 | 与 | |\n| | | 2、了解蒸 |\n| 目 | 技能 | 馏原理,练习蒸馏操作 |\n| | | |\n| 的 | | 3、会 |\n| | | 用合理的方法检验离子 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过 |\n| | | 实验操作和实验安全问 |\n| | 与 | 题的分析,让学生对实 |\n| | | 验探究有进一步的认识 |\n| | 方法 | |\n| | | 2、通过对初中常见 |\n| | | 物质分离与提纯以及分 |\n| | | 离提纯物质一般方法的 |\n| | | 复习巩固,培养学生综 |\n| | | 合抽象的逻辑思维能力 |\n| | | 、语言表达能力、实验 |\n| | | 设计和评价辨析能力。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、让学生在实验中感 |\n| | | 受实验仪器和实验设计 |\n| | 态度 | 的巧妙,感受化学之美 |\n| | | |\n| | 价值观 | |\n+----------------------+----------------------+----------------------+\n| 重 点 | 萃取与 | |\n| | 蒸馏的原理;萃取与蒸 | |\n| | 馏的操作及注意事项。 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 萃取与蒸馏的操作 | |\n+----------------------+----------------------+----------------------+\n| 知 | (二) | |\n| | 蒸馏 | |\n| 识 | 和萃取(distillation | |\n| | and extraction) | |\n| 结 | | |\n| | 1、蒸馏 [实验1-3 | |\n| 构 | 实 | |\n| | 验室制取蒸馏水]{.ul} | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-0dd265470b76a171bb74a1fdb6493faa", "__created_at__": 1754897909, "content": "二) | |\n| | 蒸馏 | |\n| 识 | 和萃取(distillation | |\n| | and extraction) | |\n| 结 | | |\n| | 1、蒸馏 [实验1-3 | |\n| 构 | 实 | |\n| | 验室制取蒸馏水]{.ul} | |\n| 与 | | |\n| | 2、萃取 [实验1-4 | |\n| 板 | 碘的萃取]{.ul} | |\n| | | |\n| 书 | 3、分液 | |\n| | | |\n| 设 | | |\n| | 萃取与分液的步骤: | |\n| 计 | | |\n| | a. | |\n| | 检验分液漏斗是否漏水 | |\n| | b.加入溶液 | |\n| | ,加入萃取剂,振荡 | |\n| | | |\n| | c.静置分层 | |\n| | d.分液 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 教师 | |\n| 引言]上节课我们学 | 引导,学生思考、讨论 | |\n| 习了粗盐的提纯,通过 | | |\n| 除杂质过滤的方法得到 | 提醒学生联系实际生活 | |\n| 比较纯的盐水,大家想 | | |\n| 想如果我们要把盐水变 | 引导出蒸馏的概念 | |\n| 为淡水,该怎么做呢? | | |\n| | 引导学生设计实验 | |\n| 比如 | | |\n| 说在海边,渔民们是怎 | 思考与讨论 | |\n| 么解决生活用水的问题 | 研究,强化蒸馏的操作 | |\n| ;前段时间,中央电视 | | |\n| 台播放了郑和下西洋的 | ![](static/Images | |\n| 那段历史,大家知道他 | /a91144fda2c741b0b96 | |\n| 们是怎么解决长期在海 | 94ebcfa9d1deb/media/ | |\n| 上漂泊的吃水问题吗? | image3.png){width=\"1 | |\n| | .3854166666666667in\" | |\n| | height=\"2. | |\n| [展示]海水变淡水 | 0930555555555554in\"} | |\n| | | |\n| [引 | ![](static/Images | |\n| ]做汤的时候,观察 | /a91144fda2c741b0b96 | |\n| 过锅盖吗?锅盖上有水 | 94ebcfa9d1deb/media/ | |\n| 珠,这水珠与汤不什么 | image4.png){width=\"0 | |\n| 不同?为什么会有水珠 | .8645833333333334in\" | |\n| ?水蒸汽凝结?为什么 | height=\"1. | |\n| 水蒸汽会凝结成水珠? | 6458333333333333in\"} | |\n| | | |\n| | | |\n| [讲]汤沸腾后,水 | | |\n| 蒸汽遇温度低的锅盖而 | | |\n| 凝成水珠附于锅盖。那 | | |\n| 么这是一个什么过程, | | |\n| 我们在化学中应怎么称 | | |\n| 呼?大家想一想蒸馏是 | | |\n| 不是一种分离混合物的 | | |\n| 方法?如果是,那么是 | | |\n| 分离什么样的混合物? | | |\n| | | |\n| [过] | | |\n| 混合物的分离和提纯 | | |\n| 除了过滤、蒸发外,还 | | |\n| 有其他很多方法,这节 | | |\n| 课,我们来学习另外两 | | |\n| 种新方法:蒸馏和萃取 | | |\n| | | |\n| [板书](二) | | |\n| 蒸馏 | | |\n| 和萃取(distillation | | |\n| and extraction) | | |\n| | | |\n| [过]首先, | | |\n| 让我们利用实验室通过 | | |\n| 蒸馏的方法除去自来水 | | |\n| 中的杂质制取蒸馏水", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-3d03ce2af9538aabb4f6025b8b02569c", "__created_at__": 1754897909, "content": "| | |\n| 蒸馏 | | |\n| 和萃取(distillation | | |\n| and extraction) | | |\n| | | |\n| [过]首先, | | |\n| 让我们利用实验室通过 | | |\n| 蒸馏的方法除去自来水 | | |\n| 中的杂质制取蒸馏水的 | | |\n| 实验来学习蒸馏的过程 | | |\n| | | |\n| 板书1、蒸馏 | | |\n| | | |\n| [引 | | |\n| 入]我们引用的自来 | | |\n| 水是纯净的水吗?不是 | | |\n| 。因为自来水厂使用了 | | |\n| 消毒剂氯对水进行了消 | | |\n| 毒。使水中含有Cl^―^ | | |\n| 。我们可 | | |\n| 以利用加入硝酸银溶液 | | |\n| 检验是否含有氯离子。 | | |\n| | | |\n| [实验 | | |\n| 演示]自来水中加入 | | |\n| 硝酸酸化的硝酸银溶液 | | |\n| | | |\n| [讲] | | |\n| 有明显白色沉淀生成, | | |\n| 证明自来水中含有氯离 | | |\n| 子。那么,我们应该用 | | |\n| 什么方法除去自来水中 | | |\n| 的氯离子呢?能否向上 | | |\n| 一堂课中使用化学方法 | | |\n| ,加入试剂反应除去? | | |\n| | | |\n| (不能。加 | | |\n| 入试剂后会引入新的杂 | | |\n| 质,达不到我们实验目 | | |\n| 的。要想得到纯净水。 | | |\n| 可以使用加热将水变为 | | |\n| 水蒸汽,然后再冷凝为 | | |\n| 纯净的液态蒸馏水。) | | |\n| | | |\n| [小结 | | |\n| ]实验室就是使用蒸 | | |\n| 馏的方法制取蒸馏水。 | | |\n| | | |\n| [投] | | |\n| | | |\n| (1)原理 | | |\n| :利用互溶的液体混合 | | |\n| 物中各组分的沸点不同 | | |\n| ,给液体混合物加热, | | |\n| 使其中的某一组分变成 | | |\n| 蒸气再冷凝成液体,从 | | |\n| 而达到分离提纯的目的 | | |\n| 。[蒸馏一般用于分离 | | |\n| 沸点相差较大的液体混 | | |\n| 合物。]{.ul}(例如蒸 | | |\n| 馏含有Fe3+的水提纯其 | | |\n| 中水份,蒸馏石油提纯 | | |\n| 不同沸点的有机组分) | | |\n| | | |\n| * | | |\n| *2仪器铁架台 | | |\n| 、酒精灯、石棉网、蒸 | | |\n| 馏烧瓶、冷凝管、温度 | | |\n| 计、胶塞、牛角管(尾 | | |\n| 接管)、锥形瓶、胶管 | | |\n| | | |\n| [实验演示 | | |\n| ]实验室制取蒸馏水 | | |\n| | | |\n| 3 | | |\n| 蒸馏时的注意事项: | | |\n| | | |\n| a.烧瓶内 | | |\n| 液体的容积不超过2/3 | | |\n| ,烧瓶要垫上石棉网加 | | |\n| 热,烧瓶中还要加入沸 | | |\n| 石(碎瓷片)防止爆沸。 | | |\n| | | |\n| b.温度计下端水银 | | |\n| 泡应置于烧瓶支管处, | | |\n| 测量逸出气体的温度。 | | |\n| | | |\n| c.冷 | | |\n| 凝水下口进,上口出。 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-159243af6afe16becde82553ce43d2f5", "__created_at__": 1754897909, "content": "<22>片)防止爆沸。 | | |\n| | | |\n| b.温度计下端水银 | | |\n| 泡应置于烧瓶支管处, | | |\n| 测量逸出气体的温度。 | | |\n| | | |\n| c.冷 | | |\n| 凝水下口进,上口出。 | | |\n| | | |\n| d.实 | | |\n| 验开始时,先开冷凝水 | | |\n| ,后加热。实验结束时 | | |\n| ,先停止加热,后关冷 | | |\n| 凝水。溶液不可蒸干。 | | |\n| | | |\n| [讲]锥形 | | |\n| 瓶中的液体就是蒸馏水 | | |\n| ,我们再用硝酸银溶液 | | |\n| 检验是否含有氯离子。 | | |\n| | | |\n| [实验演示] | | |\n| 蒸馏水加入硝酸银溶液 | | |\n| | | |\n| ![](st | | |\n| atic/Images/a91144fd | | |\n| a2c741b0b9694ebcfa9d | | |\n| 1deb/media/image2.pn | | |\n| g){width=\"1.83125in\" | | |\n| height=\"1 | | |\n| .461111111111111in\"} | | |\n| [投影小结实验] | | |\n| | | |\n| [实验1-3 | | |\n| 实 | | |\n| 验室制取蒸馏水]{.ul} | | |\n| | | |\n| --------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| 实验 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 现象 | | |\n| 1、在试管中加入 | | |\n| 少量自来水,滴入几滴 | | |\n| 稀硝酸和几滴硝酸银溶 | | |\n| 液。 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 加硝酸银溶液有白色沉 | | |\n| 淀产生,且沉淀不溶解 | | |\n| 2、在100 | | |\n| mL烧瓶中加入约1/3体 | | |\n| 积的自来水,再加入几 | | |\n| 粒沸石(或碎瓷片),如 | | |\n| 图连接好装置,向冷凝 | | |\n| 管中通入冷却水。加热 | | |\n| 烧瓶,弃去开始馏出的 | | |\n| 总分液体,用锥形瓶收 | | |\n| 集约10 mL 液体,停止 | | |\n| 加热 加热,烧瓶中 | | |\n| 水温升高到100℃沸腾 | | |\n| 在锥形瓶中收集蒸馏水 | | |\n| 3、取 | | |\n| 少量收集到的液体加入 | | |\n| 试管中,然后滴入几滴 | | |\n| 稀硝酸和几滴硝酸银溶 | | |\n| 液 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 加硝酸银溶 | | |\n| 液于蒸馏水中,无沉淀 | | |\n| --------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-c538c8c28c51cf73e817a5ea90470fcc", "__created_at__": 1754897909, "content": "| | |\n| --------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| [思考] | | |\n| | | |\n| 1、为 | | |\n| 什么冷却水通入方向与 | | |\n| 被冷凝蒸气流向相反 | | |\n| | | |\n| (为 | | |\n| 了使蒸馏出的蒸气与冷 | | |\n| 却水长时间充分接触, | | |\n| 带走尽可能多的热量) | | |\n| | | |\n| 2、为 | | |\n| 什么温度计水银球的顶 | | |\n| 端要与圆底烧瓶支管下 | | |\n| 沿处于同一水平线? | | |\n| | | |\n| (对于蒸馏 | | |\n| 来说,只有精确控制蒸 | | |\n| 馏的温度才能达到分离 | | |\n| 提纯的目的,而蒸馏烧 | | |\n| 瓶支管口的温度正是被 | | |\n| 蒸馏变为气体某组分的 | | |\n| 温度,故温度计水银球 | | |\n| 顶端要与圆底烧瓶支管 | | |\n| 下沿处于同一水平线) | | |\n| | | |\n| 3、在日常生 | | |\n| 活中,我们应用蒸馏的 | | |\n| 方法可以将海水淡化, | | |\n| 或制造无水酒精。若采 | | |\n| 用蒸馏的方法分离酒精 | | |\n| 和水的混合物,先蒸馏 | | |\n| 出来的物质是什么? | | |\n| | | |\n| (酒精沸点低 | | |\n| ,先蒸出的是酒精。) | | |\n| | | |\n| 4、从 | | |\n| 这个实验中,大家可以 | | |\n| 看出蒸馏适用于什么类 | | |\n| 型的混合物的分离? | | |\n| | | |\n| [投]( | | |\n| 4蒸馏的使用范围: | | |\n| | | |\n| 液态混合物 | | |\n| 中,沸点不同,除去难 | | |\n| 挥发或不挥发的物质。 | | |\n| | | |\n| [思考] | | |\n| 蒸馏与蒸发的区别: | | |\n| | | |\n| (加 | | |\n| 热是为了获得溶液的残 | | |\n| 留物时,要用蒸发;加 | | |\n| 热是为了收集蒸气的冷 | | |\n| 凝液体时,要用蒸馏) | | |\n| | | |\n| [过渡]在 | | |\n| 日常生活中,有时我们 | | |\n| 的衣服粘了油渍,可以 | | |\n| 用汽油擦洗,这就是萃 | | |\n| 取的应用。接下来我们 | | |\n| 学习另外的一种分离方 | | |\n| 法,叫做萃取与分液。 | | |\n| | | |\n| 板书2、萃取 | | |\n| | | |\n| [过 | | |\n| ]我们先来认识这个 | | |\n| 新的仪器:分液漏斗。 | | |\n| | | |\n| [展示 | | |\n| 仪器]分液漏斗的组 | | |\n| 成,分液漏斗的活塞、 | | |\n| 盖子同漏斗本身是配套 | | |\n| 的。使用漏斗前要检验 | | |\n| 漏斗是否漏水。方法为 | | |\n| :关闭活塞,在漏斗中 | | |\n| 加少量水,盖好盖子, | | |\n| 用右手压住分液漏斗口 | | |\n| 部,左手握住", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-7d1818c5615196c525c7f0c78fd8aefe", "__created_at__": 1754897909, "content": "| 盖子同漏斗本身是配套 | | |\n| 的。使用漏斗前要检验 | | |\n| 漏斗是否漏水。方法为 | | |\n| :关闭活塞,在漏斗中 | | |\n| 加少量水,盖好盖子, | | |\n| 用右手压住分液漏斗口 | | |\n| 部,左手握住活塞部分 | | |\n| ,把分液漏斗倒转过来 | | |\n| 用力振荡,看是否漏水 | | |\n| | | |\n| [投](1)定 | | |\n| 义:利用某溶质在互不 | | |\n| 相溶的溶剂中的溶解度 | | |\n| 不同,用一种溶剂把溶 | | |\n| 质从它与另一种溶剂组 | | |\n| 成的溶液中提取出来, | | |\n| 在利用分液的原理和方 | | |\n| 法将它们分离开来。 | | |\n| | | |\n| [讲解+实验演示] | | |\n| 我们通过实验来解释 | | |\n| 萃取的定义,我们知道 | | |\n| 碘单质在水中的溶解度 | | |\n| 不大,碘水呈黄棕色。 | | |\n| 碘是溶质,水是溶剂。 | | |\n| 取10ml饱和碘水倒入 | | |\n| 分液漏斗中。接着 | | |\n| ,按照萃取的定义,我 | | |\n| 们要用另一种溶剂加把 | | |\n| 溶质碘从碘水中提取出 | | |\n| 来,这另外一种溶剂的 | | |\n| 选择要符合一些条件, | | |\n| | | |\n| [投]( | | |\n| 2萃取剂的选择 | | |\n| | | |\n| a.溶质 | | |\n| 在萃取剂的溶解度要比 | | |\n| 在原溶剂(水)大。 | | |\n| | | |\n| b.萃取剂与原 | | |\n| 溶剂(水)不互溶。 | | |\n| | | |\n| c.萃取剂 | | |\n| 与溶液不发生发应。 | | |\n| | | |\n| [讲解+实验演 | | |\n| 示]那么,我们根据 | | |\n| 这些条件可以选择了四 | | |\n| 氯化碳,由于碘在四氯 | | |\n| 化碳的溶解度比较大, | | |\n| 所以我们加入4ml就可 | | |\n| 以了,进行振荡。请大 | | |\n| 家注意振荡的操作 | | |\n| :用右手压住分液漏斗 | | |\n| 口部,左手握住活塞部 | | |\n| 分,把分液漏斗倒转过 | | |\n| 来用力振荡,注意放气 | | |\n| 怎么(强调放气的重要 | | |\n| 性)。振荡后将分液漏 | | |\n| 斗放在铁架台上静置。 | | |\n| | | |\n| [讲解 | | |\n| ]静置后,大家发现 | | |\n| 漏斗中的液体分为两层 | | |\n| ,下层为紫红色,这一 | | |\n| 层为碘的四氯化碳的溶 | | |\n| 液。上层溶液颜色变淡 | | |\n| 了,证明碘水中的碘已 | | |\n| 经被萃取到四氯化碳中 | | |\n| 了,达到了碘和水分离 | | |\n| 的目的,这就是萃取。 | | |\n| | | |\n| [引导] | | |\n| 大家想想,萃取后, | | |\n| 如何分离?比如汤上面 | | |\n| 的油层是怎样弄走的? | | |\n| | | |\n| (勺子舀, | | |\n| 吸管吸,。。。。。) | | |\n| | | |\n| [讲]我们试想一 | | |\n| 下,可不可以想办法使 | | |\n| 汤使下面流走,让油刚 | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-18b83846698347e053f1987ec4d6d3e7", "__created_at__": 1754897909, "content": "| 的油层是怎样弄走的? | | |\n| | | |\n| (勺子舀, | | |\n| 吸管吸,。。。。。) | | |\n| | | |\n| [讲]我们试想一 | | |\n| 下,可不可以想办法使 | | |\n| 汤使下面流走,让油刚 | | |\n| 好留在容器中。容器下 | | |\n| 面有通道,汤从下面流 | | |\n| 走,在汤刚好流完时, | | |\n| 关闭通道,这样汤和油 | | |\n| 不就分开了吗,这正好 | | |\n| 符合分液漏斗的结构。 | | |\n| | | |\n| 板书3、分液 | | |\n| | | |\n| [讲解 | | |\n| +实验演示]最后一 | | |\n| 步,就是把四氯化碳层 | | |\n| 和水层分开,这就是分 | | |\n| 液。首先,打开盖子( | | |\n| 塞子),为什么?(平 | | |\n| 衡大气压)将活塞打开 | | |\n| ,使下层液体慢慢流出 | | |\n| 。漏斗下端口靠烧杯壁 | | |\n| 。上层液体从上口倒出 | | |\n| ,为什么?(防止上层 | | |\n| 液体混带有下层液体) | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| (1)定义:把两 | | |\n| 种互不相溶的液体(且 | | |\n| 密度不同)分开的操作 | | |\n| | | |\n| [板书] | | |\n| 萃取与分液的步骤: | | |\n| | | |\n| a.检 | | |\n| 验分液漏斗是否漏水 | | |\n| | | |\n| b.加入溶液 | | |\n| ,加入萃取剂,振荡 | | |\n| | | |\n| c.静置分层 | | |\n| | | |\n| d.分液 | | |\n| | | |\n| [小 | | |\n| 结]通过这个实验,大 | | |\n| 家要掌握的是萃取剂的 | | |\n| 选择(三个条件),以 | | |\n| 及掌握萃取与分液的操 | | |\n| 作步骤。(四个步骤) | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二节 | 授课班级 | |\n| 化学计量 | | |\n| 在实验中的应用(一) | | |\n| | | |\n| /-/-/-/-/-- | | |\n| 物质的量和摩尔质量 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 1 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、认识摩尔 |\n| | | 是物质的是的基本单位 |\n| 学 | 与 | ,了解物质的量与微观 |\n| | | 粒子之间的关系,了解 |\n| 目 | 技能 | 摩尔质量的概念,了 |\n| | | 解提出摩尔这一概念的 |\n| 的 | | 重要性和必要性,懂得 |\n| | | 阿伏加德罗常数的涵义 |\n| | | |\n| | | 2、了解物质的量 |\n| | | 、摩尔质量、物质的质 |\n| | | 量之间的关系,能用于 |\n| | | 进行简单的化学计算。 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、初步培养 |\n| | | 学生演绎推理、归纳推 |\n| | 与 | 理、逻辑推理和运用化 |\n| | | 学知识进行计算的能力 |\n| | 方法 | |\n| | | 2、通过物 |\n| | | 质的量这一联系微观粒 |\n| | | 子与宏观质量的物理量 |\n| | | 的学习,引导学生以化 |\n| | | 学的眼光、从微观的角 |\n| | | 度地认识丰富多彩的物 |\n| | | 质世界,认识到宏观和 |\n| | | 微", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-28c0b6d1015a2701094a0123954f8eb5", "__created_at__": 1754897909, "content": "、通过物 |\n| | | 质的量这一联系微观粒 |\n| | | 子与宏观质量的物理量 |\n| | | 的学习,引导学生以化 |\n| | | 学的眼光、从微观的角 |\n| | | 度地认识丰富多彩的物 |\n| | | 质世界,认识到宏观和 |\n| | | 微观的相互转化是研究 |\n| | | 化学的科学方法之一。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1 |\n| | | 、通过对概念的透彻理 |\n| | 态度 | 解,培养学生严谨、认 |\n| | | 真的学习态度,体会定 |\n| | 价值观 | 量研究的方法对研究和 |\n| | | 学习化学的重要作用。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 物质的量及 | |\n| | 单位;摩尔质量的概念 | |\n| | 和有关摩尔质量的计算 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 物质的量及 | |\n| | 单位/-/-/-/-/--摩尔 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第二节 | |\n| | 化学 | |\n| 识 | 计量在实验中的应用 | |\n| | | |\n| 结 | * | |\n| | *一、物质的量(amount | |\n| 构 | of | |\n| | substance)的单 | |\n| 与 | 位/-/--摩尔(mole) | |\n| | | |\n| 板 | 1. | |\n| | 是一个物理量,符号为 | |\n| 书 | *n* | |\n| | 单位为摩尔(mol)。 | |\n| 设 | | |\n| | 2、阿伏加德罗 | |\n| 计 | 常数表示1mol任何粒 | |\n| | 子的粒子数符号为N | |\n| | ~A~单位为mol^-1^ | |\n| | 数值约为6.02/*10^23^ | |\n| | mol^-1^ | |\n| | | |\n| | 3、注意使用m | |\n| | ol时必须指明粒子的 | |\n| | 种类,可以是分子、原 | |\n| | 子、离子、电子等。 | |\n| | | |\n| | 4.N、 | |\n| | *N*~A~与n的关系  | |\n| | *A*~1~= | |\n| | | |\n| | 1 | |\n| | mol任何 | |\n| | 粒子或物质的质量是以 | |\n| | 克为单位,在数值上就 | |\n| | 等于该粒子的相对原子 | |\n| | (分子、离子)质量。 | |\n| | | |\n| | 5、摩尔质量 | |\n| | | |\n| | (1)定义:单 | |\n| | 位物质的量的物质所具 | |\n| | 有的质量符号为M | |\n| | | |\n| | (2)、公式:*M*= | |\n| | 单位 g·mol^1^ | |\n| | | |\n| | 6、有关 | |\n| | 摩尔质量的相关计算 | |\n| | | |\n| | 例124.5 g | |\n| | H~2~SO~4~ | |\n| | 的物质的量是 | |\n| | /_/_/_/_/_/_/_/_/_ | |\n| | | |\n| | 解H~2~SO~4~ | |\n| | 的相对分子质量 | |\n| | 为98,则*M*(H~2~SO~4~ | |\n| | )=98 g·mol^1^。 | |\n| | | |\n| | *n*(H~2~SO~4~ | |\n| | )===0.25mol。答:略 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 引发学习兴趣,引 | |\n| [引言]我们在初中 | 出把微小物质扩大倍数 | |\n| 时知道,分子、原子", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2d2176f738fd5d7348aae761a8c123da", "__created_at__": 1754897909, "content": "答:略 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 引发学习兴趣,引 | |\n| [引言]我们在初中 | 出把微小物质扩大倍数 | |\n| 时知道,分子、原子、 | 形成一定数目的集体以 | |\n| 离子等我们肉眼看不见 | 便于方便生活,方便科 | |\n| 的粒子,可以构成客观 | 学研究,方便相互交流 | |\n| 存在的、具有一定质量 | | |\n| 的物质,这说明,在我 | 学生自学,师生一 | |\n| 们肉眼看不见的粒子与 | 问一答,检验自学成果 | |\n| 物质的质量之间,必定 | | |\n| 存在着某种联系,那么 | 进行化学史的教 | |\n| ,联系他们的桥梁是什 | 育,培养学生科学态度 | |\n| 么呢?要解决这个问题 | | |\n| ,我们来学习第二节化 | [6. | |\n| 学计量在实验中的应用 | 02/*10^23^个]{.ul} | |\n| | | |\n| [板书]第二节 | [2 | |\n| 化学 | .408/*10^24^]{.ul} | |\n| 计量在实验中的应用 | | |\n| | [6. | |\n| [讲]就像长度 | 02/*10^23/ ^]{.ul} | |\n| 可用来表示物体的长短 | | |\n| ,温度可表示为物体的 | A、 × | |\n| 冷热程度一样,物质的 | 没有指出 | |\n| 量可用来表示物质所含 | 是分子、原子或离子 | |\n| 粒子数的多少,其符号 | | |\n| 为n它是国际单位制 | B. √ | |\n| 中的基本物理量,四个 | | |\n| 字缺一不可,物质的量 | C. × | |\n| 单位是摩尔符号mol | 小米不是微观粒子 | |\n| ,简称摩。 | | |\n| | 1. (2 mol) | |\n| [投] | | |\n| [国际单位制(SI | 2. | |\n| )的7个基本单位]{.ul} | 3.01/*10^24^ | |\n| | | |\n| ---------- | 引导学生自我总结公式 | |\n| ------------------ | | |\n| -------------------- | [ | |\n| | 3.01/*10^23^]{.ul} | |\n| 物理量的符号 | | |\n| 单位名称及符号 | [1.204/*10^24^ | |\n| 长度 lL | 2 | |\n| 米m | .408/*10^24^]{.ul} | |\n| 时间 t | | |\n| 秒s | [6.02/*10^23^ | |\n| | 6.02/*10^23^]{.ul} | |\n| 质量 m | | |\n| 千克kg | H^^ 、Cl^―^ 各1 | |\n| 温 | mol | |\n| 度 T | | |\n| 开尔文K | [10]{.ul} | |\n| 发 | 6.02/*10^24^ | |\n| 光强度 IIv | | |\n| 坎德拉cd | 学生 | |\n| | 推导,教师巡视并指导 | |\n| 电流 I | | |\n| 安培A | 教师引发思考 | |\n| 物 | ,学生展开讨论,一步 | |\n| 质的量 n | 步得出结论,有利于学 | |\n| 摩尔mol | 生对概念的深入理解和 | |\n| ---------- | 推理,归纳能力的培养 | |\n| ------------------ | | |\n| -------------------- | 学生讨论 | |\n| | | |\n| [板书] | 学生阅读, | |\n| | | |\n| * | [18g]{.ul} | |\n| *一、物质的量(amount | | |\n| of | [58.5g]{.ul} | |\n| substance)的单 | | |\n| 位/-/", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-fbd5ed91dbff4ff4433a59a9297c786a", "__created_at__": 1754897909, "content": "---- | 学生讨论 | |\n| | | |\n| [板书] | 学生阅读, | |\n| | | |\n| * | [18g]{.ul} | |\n| *一、物质的量(amount | | |\n| of | [58.5g]{.ul} | |\n| substance)的单 | | |\n| 位/-/--摩尔(mole) | [23g]{.ul} | |\n| | | |\n| 1. | [32g]{.ul} | |\n| 是一个物理量,符号为 | | |\n| *n* | [23]{.ul} | |\n| 单位为摩尔(mol)。 | g·mol^1^ | |\n| | | |\n| [过渡] | [58.5]{.ul} | |\n| 从物质的量设立的目的 | g·mol^1^ | |\n| 上看,物质的量实际上 | | |\n| 表示含有一定数目粒子 | [96]{.ul} | |\n| 的集体。这个集体的组 | g·mol^1^ | |\n| 成者是粒子,这种集体 | | |\n| 有大有小,也就是集体 | [53 g]{.ul} | |\n| 内的粒子数目有多有少 | | |\n| 。因此,物质的量是专 | [147g 63 96g | |\n| 门用于计算粒子数目的 | 3g]{.ul} | |\n| 物理量。那么物质的是 | | |\n| 的1个单位即1mol表示 | [108g/mol]{.ul} | |\n| 的粒子数目是多少呢? | | |\n| | C | |\n| [学生活 | | |\n| 动阅读教材45页上 | | |\n| 内容,理解物质的量在 | | |\n| 粒子数目上的大小关系 | | |\n| | | |\n| 1mol粒 | | |\n| 子的数目大约是多少? | | |\n| | | |\n| (约为6.02/*10^23^个) | | |\n| | | |\n| 6. | | |\n| 02/*10^23^这个数值是 | | |\n| 以什么为依据得出的? | | |\n| | | |\n| (是以0. | | |\n| 012kg^12^C中所含碳原 | | |\n| 子数为依据得出来的) | | |\n| | | |\n| * | | |\n| *[问]^12^C原子特 | | |\n| 指什么结构的碳原子? | | |\n| | | |\n| (^1 | | |\n| 2^C指原子核内有6个质 | | |\n| 子和6个中子的碳原子) | | |\n| | | |\n| [师]大家 | | |\n| 回答得很好。由此,我 | | |\n| 们可以得出以下结论: | | |\n| | | |\n| 1mol任何 | | |\n| 粒子的数目是0.012kg^ | | |\n| 12^C中所含的碳原子数 | | |\n| 目约为6.02/*10^23^个 | | |\n| | | |\n| 1mol | | |\n| 任何粒子的数目也叫阿 | | |\n| 伏加德罗常数。阿伏加 | | |\n| 德罗是意大利物理学家 | | |\n| 。因他对6.02/*10^23^ | | |\n| 这个数据的测得有着很 | | |\n| 大的贡献,故用他的名 | | |\n| 字来表示1mol任何粒子 | | |\n| 的粒子数,以示纪念。 | | |\n| | | |\n| 化学上,我们用 | | |\n| N~A~来表示阿伏加德罗 | | |\n| 常数其单位mol^-1^ | | |\n| 它表示1mol任何粒子 | | |\n| 的粒子数,其数值近似 | | |\n| 6.02/*10^23^个等于。 | | |\n| | | |\n| 板书2 | | |\n| 、阿伏加德罗常数: | | |\n| | | |\n| 表示1mol任何粒 | | |\n| 子的粒", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6d5dcf2f5a5c63aabdbde7376685e4f5", "__created_at__": 1754897909, "content": "粒子 | | |\n| 的粒子数,其数值近似 | | |\n| 6.02/*10^23^个等于。 | | |\n| | | |\n| 板书2 | | |\n| 、阿伏加德罗常数: | | |\n| | | |\n| 表示1mol任何粒 | | |\n| 子的粒子数符号为N | | |\n| ~A~单位为mol^-1^ | | |\n| 数值约为6.02/*10^23^ | | |\n| mol^-1^ | | |\n| | | |\n| [师]下面 | | |\n| 请同学们点击试题,看 | | |\n| 看平常计算中是如何应 | | |\n| 用阿伏加德罗常数的。 | | |\n| | | |\n| [点击试题]填空 | | |\n| | | |\n| 1. 1 mol | | |\n| H~ | | |\n| 2~所含氢气分子的个数 | | |\n| 。 | | |\n| | | |\n| 2. 2 mol氢分子含 | | |\n| 个氢原子。 | | |\n| | | |\n| 3. 1 mol | | |\n| SO~4~^2―^是 | | |\n| 个硫酸根离子。 | | |\n| | | |\n| [讲]物质的量 | | |\n| 只限制了所含粒子个数 | | |\n| 的多少,并没限制粒子 | | |\n| 的种类所以使用mol | | |\n| 时应 | | |\n| 注明所指粒子是哪种? | | |\n| | | |\n| | | |\n| 板书3、注意使用m | | |\n| ol时必须指明粒子的 | | |\n| 种类,可以是分子、原 | | |\n| 子、离子、电子等。 | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 判 | | |\n| 断正误,说明理由。 | | |\n| | | |\n| A. 1 mol氢 | | |\n| | | |\n| B. 1 molCO~2~ √ | | |\n| | | |\n| C. 1 mol小米 × | | |\n| 小米不是微观粒子 | | |\n| | | |\n| [讲] | | |\n| 请大家根据摩尔相关 | | |\n| 知识,进行如下计算。 | | |\n| | | |\n| | | |\n| [例题]根据摩尔的有 | | |\n| 关知识,进行计算。 | | |\n| | | |\n| 1. | | |\n| 1.2 | | |\n| 04×10^24^个H合多少 | | |\n| mol?  (2 mol) | | |\n| | | |\n| 2. 5 | | |\n| mol的O~2 | | |\n| ~中有多少个氧气分子? | | |\n|  3.01/*10^24^ | | |\n| | | |\n| 3. | | |\n| * | | |\n| N*个水分子的物质的量 | | |\n| 是多少?(已知,阿伏加 | | |\n| 德罗常数为*N*~A~) | | |\n| | | |\n| [讲]由以 | | |\n| 上练习,我们得出粒子 | | |\n| 总个数N、阿伏加德罗 | | |\n| 常数*N*~A~、物质的量 | | |\n| n三者之间的关系为 | | |\n| | | |\n| 板书4.N、* | | |\n| N*~A~与n的关系  | | |\n| | | |\n| [讲]摩尔是一个 | | |\n| 巨大数量粒子集合体, | | |\n| 可以是整数,也可以是 | | |\n| 小数例如可以有0.5 | | |\n| mol O~2~0.01 mol | | |\n| H~2~SO~4~等,但分 | | |\n| 子、原子等具体的粒子 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b44cd5e81a10eafde3780aedc44f00ce", "__created_at__": 1754897909, "content": "<22>摩尔是一个 | | |\n| 巨大数量粒子集合体, | | |\n| 可以是整数,也可以是 | | |\n| 小数例如可以有0.5 | | |\n| mol O~2~0.01 mol | | |\n| H~2~SO~4~等,但分 | | |\n| 子、原子等具体的粒子 | | |\n| ,只能是整数,就不能 | | |\n| 说0.5个或0.01个。下 | | |\n| 面请大家做随堂练习3 | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 1.0.5 mol水中含有 | | |\n| 个水分子。 | | |\n| | | |\n| 2.2 mol水中含有 | | |\n| 个水分子, | | |\n| 个氢原子。 | | |\n| | | |\n| 3.1 mol | | |\n| H~2~SO~4~中含有 | | |\n| 个H~2~SO~4~分子, | | |\n| 个硫酸根离子。 | | |\n| | | |\n| 4.1 mol | | |\n| HCl | | |\n| 溶于水,水中存在的溶 | | |\n| 质粒子是什么?它们的 | | |\n| 物质的量各是多少? | | |\n| | | |\n| 5.1个水分子中有 | | |\n| 个电子1 mol | | |\n| H~2~O中呢? | | |\n| | | |\n| [过] | | |\n| 前面我们学习了物质 | | |\n| 的量,知道它是一个基 | | |\n| 本物理量,单位为摩尔 | | |\n| ,它表示含有一定数目 | | |\n| 的粒子集体。那么1 | | |\n| mol粒子的数目 | | |\n| 是以什么为标准得出来 | | |\n| 的?其数目约为多少? | | |\n| | | |\n| (是以0.012 kg | | |\n| ^12^C中所含碳原子 | | |\n| 数目为标准得来的;其 | | |\n| 数目约为6.02×10^23^) | | |\n| | | |\n| [问]我 | | |\n| 们初中所学某种原子的 | | |\n| 相对原子质量也是以碳 | | |\n| 12原子为标准得出来 | | |\n| 的,它是怎样定义的? | | |\n| | | |\n| (以碳12原子的质 | | |\n| 量的1/12作为标准其 | | |\n| 他原子的质量跟它比较 | | |\n| 所得的数值,就是这种 | | |\n| 原子的相对原子质量) | | |\n| | | |\n| [师]很好 | | |\n| 请大家推导思考题1 | | |\n| | | |\n| [思 | | |\n| 考]假如一原子的质量 | | |\n| 为*m*~1~12原子 | | |\n| 的质量为*m*~C~,则该 | | |\n| 原子的相对原子质量*A | | |\n| *~1~怎样表示?请大家 | | |\n| 用代数式表示出来。 | | |\n| | | |\n| [副板]*A*~1~= | | |\n| | | |\n| [师] | | |\n| 大家表示的都很正确 | | |\n| 。若另一种原子的质量 | | |\n| 为*m*~2~,则它的相对 | | |\n| 原子质量*A*~2~又该怎 | | |\n| 样表示,请大家口答。 | | |\n| | | |\n| (*A*~2~=。) | | |\n| | | |\n| [问] | | |\n| *A*~1~比*A*~2~与*m | | |\n| *~1~与*m*~2~的关系是 | | |\n| 什么呢?请大家推导。 | | |\n| | | |\n| ( | | |\n| *A*~1~* | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-9132f612300a6c0319286c50a79aa3e6", "__created_at__": 1754897909, "content": "| | |\n| [问] | | |\n| *A*~1~比*A*~2~与*m | | |\n| *~1~与*m*~2~的关系是 | | |\n| 什么呢?请大家推导。 | | |\n| | | |\n| ( | | |\n| *A*~1~* | | |\n| A*~2~=*m*~1~*m*~2~) | | |\n| | | |\n| | | |\n| 师]很正确!这也就 | | |\n| 是说:原子的质量比= | | |\n| 原子相对原子质量比。 | | |\n| | | |\n| [师]下面 | | |\n| 让我们导出下列关系: | | |\n| | | |\n| 微观粒子 一个C原子 | | |\n| 一个O原子 一个Fe原子 | | |\n| | | |\n| 1 mol C原子 1 mol | | |\n| O原子 1 mol Fe原子 | | |\n| | | |\n| 宏观质量 0.012 kg=12 | | |\n| g *x* g *y* g | | |\n| | | |\n| 相对原子质量 12 16 | | |\n| 56 | | |\n| | | |\n| [师]由 | | |\n| 刚才我们对原子相对原 | | |\n| 子质量的深入理解知道 | | |\n| :原子的质量比=原子 | | |\n| 的相对原子质量比。∴1 | | |\n| mol任何 | | |\n| 原子的质量比,就等于 | | |\n| 它们的相对原子质量比 | | |\n| 。请大家根据此结论, | | |\n| 计算出*x*值和*y*值。 | | |\n| | | |\n| [结果]*x*=16 | | |\n| *y*=56 | | |\n| | | |\n| 1 | | |\n| mol | | |\n| 钠原子的质量是多少?1 | | |\n| mol氢原子的质量呢 | | |\n| | | |\n| (1 | | |\n| mol钠原子的质量是23 | | |\n| g1 | | |\n| mol氢原子的质量是1 | | |\n| g) | | |\n| | | |\n| [问] | | |\n| 由此可得出什么结论? | | |\n| | | |\n| (1 | | |\n| mol任何原子的 | | |\n| 质量,在数值上都等于 | | |\n| 它们的相对原子质量) | | |\n| | | |\n| [问]单位呢? | | |\n| | | |\n| ( 克!) | | |\n| | | |\n| 1 | | |\n| mol分子的质量 | | |\n| ,与它的相对分子质量 | | |\n| 有什么关系?为什么? | | |\n| | | |\n| (因为分 | | |\n| 子都是由原子构成的, | | |\n| 而分子的相对分子质量 | | |\n| 等于构成它的原子的相 | | |\n| 对原子质量的总和。1 | | |\n| m | | |\n| ol任何原子的质量在数 | | |\n| 值上等于它的相对原子 | | |\n| 质量单位为克则1 | | |\n| mol | | |\n| 任何分子的质量就应该 | | |\n| 在数值上等于它的相对 | | |\n| 分子质量,单位为克) | | |\n| | | |\n| [师]很 | | |\n| 正确!那么,对于粒子 | | |\n| 中的离子来讲,又将怎 | | |\n| 样呢?请大家阅读课本 | | |\n| 12页最后一段后回答。 | | |\n| | | |\n| (对于离子来说,由 | | |\n| 于电子的质量很小,当 | | |\n| 原子得到或失去电子变 | | |\n| 成离子时,电子的质量 | | |\n| 可略去不计因此1 | | |\n| mol离子的质", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-a309a5b17ebdec7068243a6796e39047", "__created_at__": 1754897909, "content": "| |\n| 12页最后一段后回答。 | | |\n| | | |\n| (对于离子来说,由 | | |\n| 于电子的质量很小,当 | | |\n| 原子得到或失去电子变 | | |\n| 成离子时,电子的质量 | | |\n| 可略去不计因此1 | | |\n| mol离子的质 | | |\n| 量在数值上就等于该离 | | |\n| 子的式量,单位为克) | | |\n| | | |\n| [师]回答得 | | |\n| 很好,综合以上分析, | | |\n| 我们可得出以下结论: | | |\n| | | |\n| 副板1 | | |\n| mol任何粒 | | |\n| 子或物质的质量是以克 | | |\n| 为单位,在数值上就等 | | |\n| 于该粒子的相对原子( | | |\n| 分子、离子)质量。 | | |\n| | | |\n| [师] | | |\n| 请大家做以下练习: | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 1 mol | | |\n| H~2~O的质量是 。 | | |\n| | | |\n| 1 mol NaCl的质量是 | | |\n| 。 | | |\n| | | |\n| 1 mol | | |\n| Na^+^的质量是 。 | | |\n| | | |\n| 1 mol S的质量是 | | |\n| 。 | | |\n| | | |\n| [师 | | |\n| 化学上我们把1 | | |\n| mol物质所具 | | |\n| 有的质量叫摩尔质量。 | | |\n| | | |\n| [板 | | |\n| 书5、摩尔质量 | | |\n| | | |\n| (1)定义:单 | | |\n| 位物质的量的物质所具 | | |\n| 有的质量符号为M | | |\n| | | |\n| [师] | | |\n| 也就是说,物质的摩尔 | | |\n| 质量是该物质的质量与 | | |\n| 该物质的物质的量之比 | | |\n| | | |\n| [板 | | |\n| 书](2)、公式:*M*= | | |\n| 单位 g·mol^1^ | | |\n| | | |\n| [讲] | | |\n| 依据此式,我们可以 | | |\n| 把物质的质量与构成物 | | |\n| 质的粒子集体/-/-/-- | | |\n| 物质的量联系起 | | |\n| 来,请大家口答下列空 | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 1.Na的摩尔质量 | | |\n| 。 | | |\n| | | |\n| 2.NaCl的摩尔质量 | | |\n| 。 | | |\n| | | |\n| 3. SO摩尔质量 。 | | |\n| | | |\n| [师] | | |\n| 大家在解答有关摩尔质 | | |\n| 量的问题时,一定要注 | | |\n| 意单位!下面,让我们 | | |\n| 根据摩尔质量的为进行 | | |\n| 计算。注意解题格式。 | | |\n| | | |\n| 板书6、有关 | | |\n| 摩尔质量的相关计算 | | |\n| | | |\n| 例124.5 g | | |\n| H~2~SO~4~ | | |\n| 的物质的量是 | | |\n| /_/_/_/_/_/_/_/_/_ | | |\n| | | |\n| 解H~2~SO~4~ | | |\n| 的相对分子质量 | | |\n| 为98,则*M*(H~2~SO~4~ | | |\n| )=98 g·mol^1^。 | | |\n| | | |\n| *n*(H~2~SO~4~ | | |\n| )===0.25mol。答:略 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-25356722cc5ef79560f5a2bbfb399395", "__created_at__": 1754897909, "content": "~4~ | | |\n| 的相对分子质量 | | |\n| 为98,则*M*(H~2~SO~4~ | | |\n| )=98 g·mol^1^。 | | |\n| | | |\n| *n*(H~2~SO~4~ | | |\n| )===0.25mol。答:略 | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 1。5 mol | | |\n| Na~2~CO~3~ | | |\n| 的质量是多少? | | |\n| | | |\n| [小结]从本节 | | |\n| 课的学习中我们知道:1 | | |\n| m | | |\n| ol不同的物质中构成 | | |\n| 它们的粒子的数目虽然 | | |\n| 相同,但由于不同粒子 | | |\n| 的质量一般不同故1 | | |\n| mol不同物质的 | | |\n| 质量一般也不相同,以 | | |\n| 克为单位时,其数值就 | | |\n| 等于构成该物质的粒子 | | |\n| 的相对原子(或分子) | | |\n| 质量。在进行有关摩尔 | | |\n| 质量的计算时,一定要 | | |\n| 注意单位和解题格式。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二节 | 授课班级 | |\n| 化学计量 | | |\n| 在实验中的应用(二) | | |\n| | | |\n| / | | |\n| -/-/-/-/--气体摩尔体 | | |\n| 积和阿伏加德罗定律 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 1 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、知道固、液、气 |\n| | | 态物质的一些特性,初 |\n| 学 | 与 | 步学会运用气体摩尔体 |\n| | | 积等概念进行简单计算 |\n| 目 | 技能 | |\n| | | |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、从分 |\n| | | 析研究影响固体、液体 |\n| | 与 | 、气体体积的大小主要 |\n| | | 因素过程中,培养问题 |\n| | 方法 | 的意识,调动研究的主 |\n| | | 观欲望,体验归纳整理 |\n| | | 的过程,学习分析矛盾 |\n| | | 的主要方面和次要方面 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通过影响物质体积 |\n| | | 大小的因素和气体摩尔 |\n| | 态度 | 体积的学习,培养与人 |\n| | | 合作的团队精神,善于 |\n| | 价值观 | 合作学习,共同提高, |\n| | | 在学习中感受化学世界 |\n| | | 的美丽、奇妙和和谐。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 气体摩尔体积 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 决定物质体积 | |\n| | 的因素;气体摩尔体积 | |\n+----------------------+----------------------+----------------------+\n| 知 | 二、气体摩尔体积 | |\n| | (molar volume of gas | |\n| 识 | ) | |\n| | | |\n| 结 | 1、定义单位物质 | |\n| | 的量气体所占的体积 | |\n| 构 | | |\n| | 2、符号Vm | |\n| 与 | | |\n| | 3、定义式Vm= | |\n| 板 | | |\n| | 4、 | |\n| 书 | 单位国际m^3^/mol | |\n| | 常用L/mol | |\n| 设 | | |\n| | 5 | |\n| 计 | 、气体在标准状况下的 | |\n| | 摩尔体积约是22.4L | |\n| | | |\n| | 6 | |\n| | 、阿伏加德罗定律: | |\n| | | |\n| | 在 | |\n| | 相", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-06c6a28efc31325203106a5e32a1bc7e", "__created_at__": 1754897909, "content": "设 | | |\n| | 5 | |\n| 计 | 、气体在标准状况下的 | |\n| | 摩尔体积约是22.4L | |\n| | | |\n| | 6 | |\n| | 、阿伏加德罗定律: | |\n| | | |\n| | 在 | |\n| | 相同的温度和压强下, | |\n| | 相同体积的任何气体都 | |\n| | 含有相同数目的分子 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 引导学生由旧知识的 | |\n| 复习]通过上一节课 | 再现进入新知识的学习 | |\n| 的学习我们知道1 | | |\n| mol任何物质的 | 采用 | |\n| 粒子个数都相等,都约 | 数据归纳出事物规律的 | |\n| 为6.02/*10^23^个1 | 科学方法,导出气体摩 | |\n| mol任何物质的质量 | 尔体积的概念,培养学 | |\n| 都是以g为单位在数 | 生的科学归纳思维能力 | |\n| 值上等于构成该物质的 | | |\n| 粒子(分子,原子,离 | 学生讨论 | |\n| 子等)的式量。那么1 | | |\n| mol任何物质的 | 引 | |\n| 体积又该如何确定呢? | 导学生在脑海里建立理 | |\n| | 想模型,形象地分析物 | |\n| 1 | 质体积决定因素,对学 | |\n| mol任何物质的质量 | 生进行空间想像能力和 | |\n| 我们都可以用摩尔质量 | 逻辑推理能力的训练。 | |\n| 作桥梁把它计算出来, | | |\n| | 学生积极思考, | |\n| [副板书] | 相互讨论,和老师一起 | |\n| | 共同归纳出决定物质所 | |\n| [讲] | 占体积大小的三个因素 | |\n| 若想要通过质量求体积 | | |\n| ,还需搭座什么桥呢? | 温度越大,距 | |\n| | 离越大,导致热胀冷缩 | |\n| (还 | | |\n| 需要知道物质的密度) | 压强越大 | |\n| | ,排列越紧,距离越大 | |\n| [问] | | |\n| 质量、密度和体积三 | * | |\n| 者之间的关系是什么? | *(×,物质应是气体) | |\n| | | |\n| [副板书] | ( | |\n| | ×,未指明条件标况) | |\n|   *密度 | | |\n| | (√,气体体 | |\n|     体 | 积与分子种类无关) | |\n| 积======质量 | | |\n| | | |\n|        | (×未指明气体体积是否 | |\n| 密度÷ | 在相同条件下测定) | |\n| | | |\n| | (×,只在标况下) | |\n| 讲]那么,请同学们 | | |\n| 思考一下,物质的体积 | (×,不一定) | |\n| 与微观粒子间是否存在 | | |\n| 着一些关系呢?也就是 | 学生思考并回答,由气 | |\n| 说体积与物质的量之间 | 体摩尔体积概念逐渐过 | |\n| 能否通过一个物理量建 | 渡到阿伏加德罗定律, | |\n| 立起某种关系呢?也就 | 易于学生理解和接受。 | |\n| 是说体积与物质的量之 | | |\n| 间能否通过一个物理量 | 引导学生推导出阿伏 | |\n| 建立起某种联系呢?让 | 加德罗定律的简单应用 | |\n| 我们带着这个问题,亲 | | |\n| 自动手寻找一下答案。 | | |\n| | | |\n| 请同学们填 | | |\n| 写教材P13上科学探究2 | | |\n| | | |\n| [投]科学探究 | | |\n| | | |\n| | | |\n| ------ ------------ |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-26ff1b31effe64a803cd670fc9fa7a88", "__created_at__": 1754897909, "content": "| 我们带着这个问题,亲 | | |\n| 自动手寻找一下答案。 | | |\n| | | |\n| 请同学们填 | | |\n| 写教材P13上科学探究2 | | |\n| | | |\n| [投]科学探究 | | |\n| | | |\n| | | |\n| ------ ------------ | | |\n| -- ----------------- | | |\n| 密度/g·L^- | | |\n| 1^ 1 mol物质的体积 | | |\n| O~2~ | | |\n| 1.429 22.4 | | |\n| H~2~ | | |\n| 0.0899 22.4 | | |\n| | | |\n| ------ ------------ | | |\n| -- ----------------- | | |\n| | | |\n| 2、下表列出了0℃、101 | | |\n| kPa(标 | | |\n| 准体积)时O~2~和H~2~ | | |\n| 的密度请计算出1 | | |\n| mol O~2~和H~2~的体积 | | |\n| | | |\n| -------- | | |\n| --- --------------- | | |\n| -------- ----------- | | |\n| | | |\n| 密度/g·cm^-3^ | | |\n| 质量 g 体积cm^3^ | | |\n| | | |\n| Fe 7.86 | | |\n| 56 7.2 | | |\n| | | |\n| Al 2.70 | | |\n| 27 10 | | |\n| | | |\n| H~2~O 0.998 | | |\n| 18 18 | | |\n| H | | |\n| ~2~SO~4~ 1.83 | | |\n| 98 53.6 | | |\n| -------- | | |\n| --- --------------- | | |\n| -------- ----------- | | |\n| | | |\n| 下表列出 | | |\n| 了20℃时几种固体和液 | | |\n| 体的密度请计算出1 | | |\n| mol这几种物质的体积 | | |\n| | | |\n| [讲]请同学们根 | | |\n| 据计算结果,并参照投 | | |\n| 影上1mol几种物质的体 | | |\n| 积示意图,分析物质的 | | |\n| 存在状态跟体积的关系 | | |\n| | | |\n| [投影小结] | | |\n| | | |\n| 1、1 mol | | |\n| 不同的固态或 | | |\n| 液态的物质、体积不同 | | |\n| | | |\n| 2、在相同状态下1 | | |\n| mol | | |\n| 气体的体积基本相同 | | |\n| | | |\n| 3、同样是1 mol | | |\n| 物质,气体和固 | | |\n| 体的体积相差很大。(1 | | |\n| mol | | |\n| H~2~O在液态时是18 | | |\n| mL在100 | | |\n| ℃气 | | |\n| 态时约为3.06/*10^4^ | | |\n| mL 相差约1700倍 | | |\n| | | |\n| | | |\n| 问]一堆排球、一堆 | | |\n| 篮球,都紧密堆积,哪 | | |\n| 一堆球所占体积更大? | | |\n| | | |\n| 如果球 | | |\n| 的数目都为一百个呢? | | |\n| | | |\n| 如果球和球之 | | |\n| 间都间隔1米在操场 | | |\n| 上均匀地分布,哪一堆 | | |\n| 球所占总的体积更大? | | |\n| | | |\n| | | |\n| 投影]液态水变成水 | | |\n| 蒸气的图的动画模拟。 | | |\n| | | |\n| [投影]", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-740ce94be6299890ab21f61df9b2ed71", "__created_at__": 1754897909, "content": "| | |\n| 上均匀地分布,哪一堆 | | |\n| 球所占总的体积更大? | | |\n| | | |\n| | | |\n| 投影]液态水变成水 | | |\n| 蒸气的图的动画模拟。 | | |\n| | | |\n| [投影]固体 | | |\n| Fe、液体H~2~O、气体 | | |\n| CO~2~粒子间距示意图 | | |\n| | | |\n| [投影小结] | | |\n| | | |\n| 决定物质 | | |\n| 体积大小有三个因素: | | |\n| | | |\n| ①物质 | | |\n| 所含结构微粒数多少; | | |\n| | | |\n| ②微 | | |\n| 粒间的距离(固态、液 | | |\n| 态距离小,排列紧密, | | |\n| 气态分子间排列疏松) | | |\n| | | |\n| ③微粒本身的大小 | | |\n| (液态时小,气态时大) | | |\n| | | |\n| [讲]在 | | |\n| 我们计算中,物质的粒 | | |\n| 子数是相同的都是1 | | |\n| mol | | |\n| ,那么后两个因素对体 | | |\n| 积大小有什么影响呢? | | |\n| | | |\n| [小结]对 | | |\n| 于固体和液体来说,粒 | | |\n| 子间距离非常小,主要 | | |\n| 取决于粒子本身的大小 | | |\n| ,对于气态来说,粒子 | | |\n| 间大小相差无几,主要 | | |\n| 取决于粒子间的距离。 | | |\n| | | |\n| [讲] | | |\n| 现在我们清楚了固、液 | | |\n| 、气态体积的决定因素 | | |\n| 。再进一步考虑,为什 | | |\n| 么相同外界条件下1 | | |\n| mol固态、液态物质所 | | |\n| 具有的体积不同而1 | | |\n| mol | | |\n| 气体物质所具 | | |\n| 有的体积却基本相同? | | |\n| | | |\n| | | |\n| 小结]在固态和液态 | | |\n| 中,粒子本身的大小不 | | |\n| 同决定了其体积不同, | | |\n| 而不同的气体在一定的 | | |\n| 外界条件下,分子间的 | | |\n| 距离可看作近似相同, | | |\n| | | |\n| 同时,由我们所学 | | |\n| 的物理知识可知,粒子 | | |\n| 间距离主要受环境也就 | | |\n| 是温度和压强的影响, | | |\n| 因此,在谈到气体体积 | | |\n| 时必须注明外界条件。 | | |\n| | | |\n| [过]事实上, | | |\n| 在我们学习生活乃至科 | | |\n| 研领域,用得更多的气 | | |\n| 体的体积,而不是质量 | | |\n| 。无数实验事实证明, | | |\n| 外界条件相同时,物质 | | |\n| 的量相同的任何气体都 | | |\n| 含有相同的体积。这给 | | |\n| 我们研究气体提供了很 | | |\n| 大的方便,为些,我们 | | |\n| 专门引出了气体摩尔体 | | |\n| 积的概念,这也是我们 | | |\n| 这节课所要学习的内容 | | |\n| | | |\n| [板 | | |\n| 书]二、气体摩尔体积 | | |\n| (molar volume of gas | | |\n| ) | | |\n| | | |\n| 1、定义单位物质 | | |\n| 的量气体所占的体积 | | |\n| | | |\n| [讲]气体 | | |\n| 摩尔体积即气体的体积 | | |\n| 与气体的物质的量之", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-0338e54ecc686f3b4112357f43198aec", "__created_at__": 1754897909, "content": "olar volume of gas | | |\n| ) | | |\n| | | |\n| 1、定义单位物质 | | |\n| 的量气体所占的体积 | | |\n| | | |\n| [讲]气体 | | |\n| 摩尔体积即气体的体积 | | |\n| 与气体的物质的量之比 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 2、符号Vm | | |\n| | | |\n| 3、定义式Vm= | | |\n| | | |\n| 4、 | | |\n| 单位国际m^3^/mol | | |\n| 常用L/mol | | |\n| | | |\n| [讲]我 | | |\n| 们为了研究方便,通常 | | |\n| 将温度为O℃压强101 | | |\n| kPa | | |\n| 时的状况称为标准状态 | | |\n| ,根据大量实验事实证 | | |\n| 明在标准状况下1 | | |\n| mol任何气 | | |\n| 体的体积都约是22.4L | | |\n| | | |\n| 板书5 | | |\n| 、气体在标准状况下的 | | |\n| 摩尔体积约是22.4L | | |\n| | | |\n| [投影]注意: | | |\n| | | |\n| 1.为了 | | |\n| 研究的方便,科学上把 | | |\n| 温度为0°C、压强为101 | | |\n| kPa规定为标准 | | |\n| 状态用S·T·P表示。 | | |\n| | | |\n| 2.气体摩尔体积 | | |\n| 仅仅是针对气体而言。 | | |\n| | | |\n| 3.同温同压下 | | |\n| ,气体的体积只与气体 | | |\n| 的分子数目有关,而与 | | |\n| 气体分子的种类无关。 | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 判断正误 | | |\n| | | |\n| 1.标况下1 | | |\n| mol任何 | | |\n| 物质的体积都约为22.4 | | |\n| L。 | | |\n| | | |\n| 2.1 | | |\n| m | | |\n| ol气体的体积约为22.4 | | |\n| L。 | | |\n| | | |\n| 3.标况下1 mol | | |\n| O~2~和N~2~混合气(任 | | |\n| 意比)的体积约为22.4 | | |\n| L。 | | |\n| | | |\n| 4.22.4 | | |\n| L气体所 | | |\n| 含分子数一定大于11.2 | | |\n| L | | |\n| 气体所含的分子数。 | | |\n| | | |\n| 5.任何条件下,气 | | |\n| 体的摩尔体积都是22.4 | | |\n| L。 | | |\n| | | |\n| | | |\n| 6.只有在标况下,气体 | | |\n| 的摩尔体积才能是22.4 | | |\n| L。 | | |\n| | | |\n| | | |\n| 思考]同温同压下,如 | | |\n| 果气体的体积相同则气 | | |\n| 体的物质的量是否也相 | | |\n| 同呢?所含的分子数呢? | | |\n| | | |\n| [总结 | | |\n| ]因为气体分子间的 | | |\n| 平均距离随着温度、压 | | |\n| 强的变化而改变,各种 | | |\n| 气体在一定的温度和压 | | |\n| 强下,分子间的平均距 | | |\n| 离是相等的。所以,同 | | |\n| 温同压下,相同体积气 | | |\n| 体的物质的量", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-89ae2102846cd4fd993f4f32e38073e9", "__created_at__": 1754897909, "content": "| | |\n| 平均距离随着温度、压 | | |\n| 强的变化而改变,各种 | | |\n| 气体在一定的温度和压 | | |\n| 强下,分子间的平均距 | | |\n| 离是相等的。所以,同 | | |\n| 温同压下,相同体积气 | | |\n| 体的物质的量相等。所 | | |\n| 含的分子个数也相等。 | | |\n| 这一结论最早是由意大 | | |\n| 利科学家阿伏加德罗发 | | |\n| 现的,并被许多的科学 | | |\n| 实验所证实,成为定律 | | |\n| ,叫阿伏加德罗定律。 | | |\n| | | |\n| 板书6 | | |\n| 、阿伏加德罗定律: | | |\n| | | |\n| 在相 | | |\n| 同的温度和压强下,相 | | |\n| 同体积的任何气体都含 | | |\n| 有相同数目的分子。 | | |\n| | | |\n| [讲]对这 | | |\n| 一定律的理解一定要明 | | |\n| 确,适用范围为气体。 | | |\n| | | |\n| 在定律中有四同: | | |\n| \"同温\"、\"同压\"、\"同 | | |\n| 体积\"、\"同分子数目\" | | |\n| ,三同就可定为一同。 | | |\n| | | |\n| [投影小结] | | |\n| | | |\n| 1、同温、同压 | | |\n| 下,同体积的两种气体 | | |\n| 必含有相同数目的分子 | | |\n| | | |\n| 2、同 | | |\n| T、P下同分子数目的 | | |\n| 两种气体体积必然相同 | | |\n| | | |\n| 3、同温下两种气体 | | |\n| 体积相同,分子数也相 | | |\n| 同,则压强必然相等。 | | |\n| | | |\n| [总结]我们首先 | | |\n| 研究了影响物质的体积 | | |\n| 的因素有多种,对于气 | | |\n| 体,相同条件下,物质 | | |\n| 的量相同的气体含有相 | | |\n| 同的体积,为此,引入 | | |\n| 气体摩尔体积的概念。 | | |\n| 标准状况下,气体摩尔 | | |\n| 体积的数值约为22.4L/ | | |\n| mol。 | | |\n| 只要同学们掌握气体摩 | | |\n| 尔体积的概念和阿伏加 | | |\n| 德罗定律的涵义,很容 | | |\n| 易做气体的物质的量和 | | |\n| 体积之间的相关计算。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第一章 | 授课班级 | |\n| 从实验学化学 | | |\n| 专题复习 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 通过本章知识的 |\n| | | 复习,让学生进一步掌 |\n| 学 | 与技能 | 握化学实验基本方法。 |\n| | | |\n| 目 | | |\n| | | |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 通过 |\n| | | 知识归纳总结的教学, |\n| | 与方法 | 让学生学会对所学知识 |\n| | | 进行归纳总结,引起学 |\n| | | 生对学习方法的重视。 |\n+----------------------+----------------------+----------------------+\n| | 情感态度价值观 | 通过本次课的学习 |\n| | | ,让学生找到学习的感 |\n| | | 觉,重视轻松学习的方 |\n| | | 法,感受学习的快乐。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 1、巩固 | |\n| | 过滤、蒸发、蒸馏、萃 | |\n| | 取基本操作及注意事项 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-980f59f38bf65b6c1fa0f9ed24c6c644", "__created_at__": 1754897909, "content": "学习 |\n| | | ,让学生找到学习的感 |\n| | | 觉,重视轻松学习的方 |\n| | | 法,感受学习的快乐。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 1、巩固 | |\n| | 过滤、蒸发、蒸馏、萃 | |\n| | 取基本操作及注意事项 | |\n| | | |\n| | 2、巩固物 | |\n| | 质的量及物质的量浓度 | |\n| | 溶液配制实验基本操作 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 让学生学会归 | |\n| | 纳总结,并能充分认识 | |\n| | 归纳总结知识的好处。 | |\n+----------------------+----------------------+----------------------+\n| 知 | 一 | |\n| | 、本章知识结构梳理 | |\n| 识 | | |\n| | (一) | |\n| 结 | 、混合物分离与提纯 | |\n| | | |\n| 构 | 1、过 | |\n| | 滤操作应注意做到\"一 | |\n| 与 | 贴、二低、三接触\" | |\n| | | |\n| 板 | 2、蒸 | |\n| | 馏操作应注意的事项 | |\n| 书 | | |\n| | 3、 | |\n| 设 | 萃取的操作方法如下 | |\n| | | |\n| 计 | * | |\n| | *4、分液的操作方法 | |\n| | | |\n| | (二)物质的量 | |\n| | | |\n| | 1、 | |\n| | 物 | |\n| | 质的量的单位――摩尔 | |\n| | | |\n| | 2、气体摩尔体积 | |\n| | | |\n| | 3、物质的量 | |\n| | 在化学实验中的应用 | |\n| | | |\n| | 二、本章专题讲座 | |\n| | | |\n| | (一) | |\n| | 平均摩尔质量的计算 | |\n| | | |\n| | | |\n| | 1、平均摩尔质量(M) | |\n| | | |\n| | 2、求算方法 | |\n| | | |\n| | (1)已知混合 | |\n| | 物的总质量(m~混~)和 | |\n| | 总物质的量(n~混~) | |\n| | | |\n| | M= | |\n| | | |\n| | (2) | |\n| | 已知标准状况下 | |\n| | 混合气体的密度d~混~ | |\n| | 则M==22.4/*d~混~ | |\n| | | |\n| | (3) | |\n| | 相对密度:已知同温、 | |\n| | 同压下,混合气体的密 | |\n| | 度d~混~是一种简单气 | |\n| | 体A的密度d~A~的D倍 | |\n| | 则D称为相对密度。 | |\n| | | |\n| | D= | |\n| | | |\n| | (二) | |\n| | 有关 | |\n| | 气体摩尔体积的计算 | |\n| | | |\n| | (三) | |\n| | 溶 | |\n| | 液中溶质的质量分数与 | |\n| | 物质的量浓度的换算 | |\n| | | |\n| | C~B~== w= | |\n| | | |\n| | (四) | |\n| | 有 | |\n| | 关溶液稀释问题的计算 | |\n| | m~1~w~1~=m~2~w~2~ | |\n| | C~1~V~1~=C~2~V~2~ | |\n| | | |\n| | (五) | |\n| | 不同 | |\n| | 浓度溶液混合的计算 | |\n| | | |\n| | 1、体积 | |\n| | 可加合时的混合问题 | |\n| | | |\n| | 公式C==", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6be68d359016eb1b303903c47fa6169f", "__created_at__": 1754897909, "content": "2~V~2~ | |\n| | | |\n| | (五) | |\n| | 不同 | |\n| | 浓度溶液混合的计算 | |\n| | | |\n| | 1、体积 | |\n| | 可加合时的混合问题 | |\n| | | |\n| | 公式C== | |\n| | | |\n| | 2、不同浓度的两 | |\n| | 溶液混合后w的求算 | |\n| | | |\n| | (六) 十字交叉法 | |\n| | | |\n| | 1、原理 | |\n| | | |\n| | 2 | |\n| | 、适用范围:凡能满足 | |\n| | a n~A~ + b n~B~ | |\n| | ==c(n~A~+n | |\n| | ~B~)关系的混合问题, | |\n| | 均能用十字交叉法。 | |\n| | | |\n| | 3、典型应用 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 本题运用了 | |\n| 引入]我们已经学习完 | 相对密度、平均相对分 | |\n| 了第一章的知识,即化 | 子质量、质量守恒定律 | |\n| 学实验基本方法。那么 | 等知识进行综合判断。 | |\n| 同学们对知识的掌握情 | | |\n| 况怎么样呢?是不是都 | 不 | |\n| 掌握了?有没有缺漏, | 给溶液密度认为可加合 | |\n| 作业是否做对了,做的 | | |\n| 时候是否遇到什么困难 | 求质量 | |\n| ?你怎么知道你学习的 | 分数认为体积不可加合 | |\n| 情况呢?通过考试?那 | | |\n| 考试之前呢?要知道自 | 溶质的摩尔 | |\n| 己的学习情况,知识掌 | 质量大小溶剂,溶液的 | |\n| 握的情况,我们需要对 | 密度大于1一般情况 | |\n| 所学知识进行归纳总结 | 下若M/>18ρ~1~/>1 | |\n| ,并且对自己的学习方 | | |\n| 法也要进行归纳总结。 | | |\n| | | |\n| [讲]请同学准 | | |\n| 备两个本子:一个叫知 | | |\n| 识归纳总结本,专门用 | | |\n| 于每章节后对知识进行 | | |\n| 归纳总结;另一个是错 | | |\n| 题本,请记录下你每天 | | |\n| 做错的题目,并用红笔 | | |\n| 注明你做错的原因,再 | | |\n| 在后面附上正确答案。 | | |\n| | | |\n| [板书]一 | | |\n| 、本章知识结构梳理 | | |\n| | | |\n| (一) | | |\n| 、混合物分离与提纯 | | |\n| | | |\n| /[讲述/] | | |\n| 物质的分离是把混 | | |\n| 合物中各物质经过物理 | | |\n| (或化学)变化,将其彼 | | |\n| 此分开的过程,分开后 | | |\n| 各物质要恢复到原来的 | | |\n| 状态;物质的提纯是把 | | |\n| 混合物中的杂质除去, | | |\n| 以得到纯物质的过程。 | | |\n| | | |\n| ![pic_113 | | |\n| 576](static/Images/a | | |\n| 91144fda2c741b0b9694 | | |\n| ebcfa9d1deb/media/im | | |\n| age20.jpeg){width=\"3 | | |\n| .6347222222222224in\" | | |\n| height=\"2. | | |\n| 3965277777777776in\"} | | |\n| | | |\n| /[投影/] | | |\n| | | |\n| /[讲述/] | | |\n| 1、过 | | |\n| 滤操作应注意做到\"一 | | |\n| 贴、二低、三接触\" |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-d158c860bb37a3f160f8adb3a8ae9882", "__created_at__": 1754897909, "content": "2. | | |\n| 3965277777777776in\"} | | |\n| | | |\n| /[投影/] | | |\n| | | |\n| /[讲述/] | | |\n| 1、过 | | |\n| 滤操作应注意做到\"一 | | |\n| 贴、二低、三接触\" | | |\n| | | |\n| ①\"一贴\" | | |\n| :折叠后的滤纸放入漏 | | |\n| 斗后,用食指按住,加 | | |\n| 入少量蒸馏水润湿,使 | | |\n| 之紧贴在漏斗内壁,赶 | | |\n| 走纸和壁之间的气泡。 | | |\n| | | |\n| ② | | |\n| \"二低\":滤纸边缘应略 | | |\n| 低于漏斗边缘;加入漏 | | |\n| 斗中液体的液面应略低 | | |\n| 于滤纸的边缘(略低约 | | |\n| 1cm),以防 | | |\n| 止未过滤的液体外溢。 | | |\n| | | |\n| ③\"三接触\":漏斗 | | |\n| 颈末端与承接滤液的烧 | | |\n| 杯内壁相接触;使滤液 | | |\n| 沿烧杯内壁流下;向漏 | | |\n| 斗中倾倒液体时,要使 | | |\n| 玻璃棒一端与滤纸三折 | | |\n| 部分轻轻接触;承接液 | | |\n| 体的烧杯嘴和玻璃棒接 | | |\n| 触,使欲过滤的液体在 | | |\n| 玻棒的引流下流向漏斗 | | |\n| 。过滤后如果溶液仍然 | | |\n| 浑浊,应重新过滤一遍 | | |\n| 。如果滤液对滤纸有腐 | | |\n| 蚀作用,一般可用石棉 | | |\n| 或玻璃丝代替滤纸。如 | | |\n| 果过滤是为了得到洁净 | | |\n| 的沉淀物,则需对沉淀 | | |\n| 物进行洗涤,方法是: | | |\n| 向过滤器里加入适量蒸 | | |\n| 馏水,使水面浸没沉淀 | | |\n| 物,待水滤去后,再加 | | |\n| 水洗涤,连续洗几次, | | |\n| 直至沉淀物洗净为止。 | | |\n| | | |\n| /[板书/] | | |\n| 1、过 | | |\n| 滤操作应注意做到\"一 | | |\n| 贴、二低、三接触\" | | |\n| | | |\n| /[板书/]2、蒸 | | |\n| 馏操作应注意的事项 | | |\n| | | |\n| [讲述]* | | |\n| *①蒸馏烧瓶中所盛液体 | | |\n| 不能超过其容积的2 | | |\n| 3也不能少于13 | | |\n| | | |\n| ②温度计水银球 | | |\n| 部分应置于蒸馏烧瓶支 | | |\n| 管口下方约0.5cm处; | | |\n| | | |\n| ③冷凝管中冷却 | | |\n| 水从下口进,上口出; | | |\n| | | |\n| ④ | | |\n| 为防止爆沸可在蒸馏烧 | | |\n| 瓶中加入适量碎瓷片; | | |\n| | | |\n| ⑤蒸馏烧瓶的支 | | |\n| 管和伸入接液管的冷凝 | | |\n| 管必须穿过橡皮塞,以 | | |\n| 防止馏出液混入杂质; | | |\n| | | |\n| ⑥加热 | | |\n| 温度不能超过混合物中 | | |\n| 沸点最高物质的沸点。 | | |\n| | | |\n| /[板书/]3、萃 | | |\n| 取的操作方法如下: | | |\n| | | |\n| [讲述] | | |\n| ①用普通", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2013c497592385b3f3bc9215cf92cc6d", "__created_at__": 1754897909, "content": "<22>加热 | | |\n| 温度不能超过混合物中 | | |\n| 沸点最高物质的沸点。 | | |\n| | | |\n| /[板书/]3、萃 | | |\n| 取的操作方法如下: | | |\n| | | |\n| [讲述] | | |\n| ①用普通漏斗把待萃 | | |\n| 取的溶液注入分液漏斗 | | |\n| ,再注入足量萃取液; | | |\n| | | |\n| ②随即振荡,使 | | |\n| 溶质充分转移到萃取剂 | | |\n| 中。振荡的方法是用右 | | |\n| 手压住上口玻璃塞,左 | | |\n| 手握住活塞部分,反复 | | |\n| 倒转漏斗并用力振荡; | | |\n| | | |\n| ③然后将分液漏斗置 | | |\n| 于铁架台的铁环上静置 | | |\n| ,待分层后进行分液; | | |\n| | | |\n| ④蒸发 | | |\n| 萃取剂即可得到纯净的 | | |\n| 溶质。为把溶质分离干 | | |\n| 净,一般需多次萃取。 | | |\n| | | |\n| 板书4 | | |\n| 、分液的操作方法: | | |\n| | | |\n| | | |\n| 讲]①用普通漏斗把 | | |\n| 要分离的液体注入分液 | | |\n| 漏斗内,盖好玻璃塞; | | |\n| | | |\n| ②将 | | |\n| 分液漏斗置于铁架台的 | | |\n| 铁圈上,静置,分层; | | |\n| | | |\n| ③ | | |\n| 将玻璃塞打开,使塞上 | | |\n| 的凹槽对准漏牛口上的 | | |\n| 小孔再盖好,使漏斗内 | | |\n| 外空气相通,以保证漏 | | |\n| 斗里的液体能够流出; | | |\n| | | |\n| ④打开活塞,使 | | |\n| 下层液体慢慢流出,放 | | |\n| 入烧杯,待下层液体流 | | |\n| 完立即关闭活塞,注意 | | |\n| 不可使上层液体流出; | | |\n| | | |\n| ⑤从漏斗 | | |\n| 上端口倒出上层液体。 | | |\n| | | |\n| /[学生讨论/]化 | | |\n| 学方法提纯和分离物质 | | |\n| 的\"四原则\"和\"三必须\" | | |\n| | | |\n| /[讲述/](1)\" | | |\n| 四原则\"是:一不增(提 | | |\n| 纯过程中不增加新的杂 | | |\n| 质);二不减(不减少欲 | | |\n| 被提纯的物质);三易 | | |\n| 分离(被提纯物与杂质 | | |\n| 容易分离);四易复原 | | |\n| (被提纯物质要复原)。 | | |\n| | | |\n| ( | | |\n| 2)\"三必须\"是:一除杂 | | |\n| 试剂必须过量;二过量 | | |\n| 试剂必须除尽(因为过 | | |\n| 量试剂带入新的杂质) | | |\n| ;三除杂途径选最佳。 | | |\n| | | |\n| (二)物质的量 | | |\n| | | |\n| 1、 | | |\n| 物 | | |\n| 质的量的单位――摩尔 | | |\n| | | |\n| 1.物质的量n | | |\n| )是表示含有一定数目 | | |\n| 粒子的集体的物理量。 | | |\n| 七个基本物理量之一。 | | |\n| | | |\n| 2.摩尔mol: | | |\n| 把含有6.02 | | |\n| × | | |\n| 10^23^个粒子的任何粒 | | |\n| 子", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ad916842ee7f76c2395917c6cca604a1", "__created_at__": 1754897909, "content": "数目 | | |\n| 粒子的集体的物理量。 | | |\n| 七个基本物理量之一。 | | |\n| | | |\n| 2.摩尔mol: | | |\n| 把含有6.02 | | |\n| × | | |\n| 10^23^个粒子的任何粒 | | |\n| 子集体计量为1摩尔。 | | |\n| | | |\n| 3.阿 | | |\n| 伏加德罗常数1mol物 | | |\n| 质中所含的\"微粒数\"。 | | |\n| | | |\n| 把6.02 | | |\n| X10^23^mol^-1^ | | |\n| 叫作阿伏加德罗常数。 | | |\n| | | |\n| 4.物质的量 | | |\n| 物质所含微粒 | | |\n| 数目/阿伏加德罗常数 | | |\n| n =N/NA | | |\n| | | |\n| 5.摩尔质量M | | |\n| | | |\n| /(1/) | | |\n| 定义:单 | | |\n| 位物质的量的物质所具 | | |\n| 有的质量叫摩尔质量. | | |\n| | | |\n| 2单位g/mol 或 | | |\n| g.mol^-1^ | | |\n| | | |\n| /(3/) | | |\n| 数值: | | |\n| 等于该粒子的相对原子 | | |\n| 质量或相对分子质量. | | |\n| | | |\n| 6.物质的量 | | |\n| =物质的质量/摩尔质量 | | |\n| ( n = m/M ) | | |\n| | | |\n| ![HWOCRTEMP_R | | |\n| OC00](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage22.jpeg){width=\" | | |\n| 4.352777777777778in\" | | |\n| height=\"1.59375in\"} | | |\n| | | |\n| [板书 | | |\n| 2、气体摩尔体积 | | |\n| | | |\n| 1.气体摩尔体积Vm | | |\n| | | |\n| 1定义单位物 | | |\n| 质的量的气体所占的体 | | |\n| 积叫做气体摩尔体积. | | |\n| | | |\n| 2单位L/mol 或 | | |\n| m^3^/mol | | |\n| | | |\n| 2 | | |\n| .物质的量=气体的体积 | | |\n| /气体摩尔体积n=V/Vm | | |\n| | | |\n| 3.0℃ 101KPa , Vm = | | |\n| 22.4 L/mol | | |\n| | | |\n| * | | |\n| *板书3、物质的量 | | |\n| 在化学实验中的应用 | | |\n| | | |\n| 1.物质的量浓度. | | |\n| | | |\n| 1定义以单 | | |\n| 位体积溶液里所含溶质 | | |\n| B的物质的量来表示溶 | | |\n| 液组成的物理量,叫做 | | |\n| 溶质B的物质的浓度。 | | |\n| | | |\n| 2单位mol/L , | | |\n| mol/m^3^ | | |\n| | | |\n| 3物质的量浓度 | | |\n| 溶质的 | | |\n| 物质的量/溶液的体积 | | |\n| C~B~ = n~B~/V | | |\n| | | |\n| 2.一 | | |\n| 定物质的量浓度的配制 | | |\n| | | |\n| 1基 | | |\n| 本原理:根据欲配制溶 | | |\n| <20>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-22bcb609b52a0c220676f83d580eabb9", "__created_at__": 1754897909, "content": "溶液的体积 | | |\n| C~B~ = n~B~/V | | |\n| | | |\n| 2.一 | | |\n| 定物质的量浓度的配制 | | |\n| | | |\n| 1基 | | |\n| 本原理:根据欲配制溶 | | |\n| 液的体积和溶质的物质 | | |\n| 的量浓度,用有关物质 | | |\n| 的量浓度计算的方法, | | |\n| 求出所需溶质的质量或 | | |\n| 体积,在容器内将溶质 | | |\n| 用溶剂稀释为规定的体 | | |\n| 积,就得欲配制得溶液. | | |\n| | | |\n| 2主要操作 | | |\n| | | |\n| a.检验是否漏水. | | |\n| | | |\n| b.配制溶液 | | |\n| | | |\n| 1.计算 2.称量3.溶解 | | |\n| 4.冷却5.转移 6.洗涤 | | |\n| 7.定容 8.摇匀 | | |\n| 9.贮存溶液. | | |\n| | | |\n| 注意事项: | | |\n| | | |\n| A | | |\n| 选用与欲配制溶 | | |\n| 液体积相同的容量瓶. | | |\n| | | |\n| B | | |\n| 使用 | | |\n| 前必须检查是否漏水. | | |\n| | | |\n| C | | |\n| 不能 | | |\n| 在容量瓶内直接溶解. | | |\n| | | |\n| D | | |\n| 溶解完的溶液等 | | |\n| 冷却至室温时再转移. | | |\n| | | |\n| E | | |\n| 定容 | | |\n| 时当液面离刻度线1 | | |\n| ―2cm时改用滴管以平 | | |\n| 视法观察加水至液面最 | | |\n| 低处与刻度相切为止. | | |\n| | | |\n| 3.溶液稀释: | | |\n| C(浓溶液)·V(浓溶液) | | |\n| = | | |\n| C(稀溶液·V(稀溶液) | | |\n| | | |\n| [板书 | | |\n| ]二、本章专题讲座 | | |\n| | | |\n| (一) | | |\n| 平均摩尔质量的计算 | | |\n| | | |\n| | | |\n| 1、平均摩尔质量(M) | | |\n| | | |\n| | | |\n| 讲假设混合气体为1 | | |\n| mol组成1 | | |\n| mol | | |\n| 混和气体的每一种气体 | | |\n| 的摩尔质量与其所占体 | | |\n| 积比的乘积之和以g/ | | |\n| mol为单位 | | |\n| 就是混合气体的平均摩 | | |\n| 尔质量。平均摩尔质量 | | |\n| 不仅适用于气体,对固 | | |\n| 体和液体也同样适用。 | | |\n| | | |\n| | | |\n| 板书2、求算方法 | | |\n| | | |\n| (1)已知混合 | | |\n| 物的总质量(m~混~)和 | | |\n| 总物质的量(n~混~) | | |\n| | | |\n| M= | | |\n| | | |\n| 投影例1、已 | | |\n| 知空气中N~2~和O~2~的 | | |\n| 体积比为41求空气 | | |\n| 的平均相对分子质量 | | |\n| | | |\n| ∵ | | |\n| | | |\n| ∴ 设N~2~为4 | | |\n| mol", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-8b4410b504bc0aefc8598d53800ef66e", "__created_at__": 1754897909, "content": "、已 | | |\n| 知空气中N~2~和O~2~的 | | |\n| 体积比为41求空气 | | |\n| 的平均相对分子质量 | | |\n| | | |\n| ∵ | | |\n| | | |\n| ∴ 设N~2~为4 | | |\n| molO~2~为1 mol | | |\n| | | |\n| M== g/ mol | | |\n| | | |\n| [板书](2) | | |\n| 已知标准状况下 | | |\n| 混合气体的密度d~混~ | | |\n| 则M==22.4/*d~混~ | | |\n| | | |\n| (3) | | |\n| 相对密度:已知同温、 | | |\n| 同压下,混合气体的密 | | |\n| 度d~混~是一种简单气 | | |\n| 体A的密度d~A~的D倍 | | |\n| 则D称为相对密度。 | | |\n| | | |\n| D= | | |\n| | | |\n| * | | |\n| *投影例2、某气体 | | |\n| 对H~2~的相对密度为14 | | |\n| ,求该气体分子量。 | | |\n| | | |\n| M=2/*14=28 | | |\n| | | |\n| [板书](二) | | |\n| 有关 | | |\n| 气体摩尔体积的计算 | | |\n| | | |\n| [投影] | | |\n| 例3、标准状况下2.2 | | |\n| g | | |\n| C | | |\n| O~2~的体积是多少? | | |\n| | | |\n| 解 | | |\n| 法:*n*(CO~2~)==0.05 | | |\n| mol。 | | |\n| | | |\n| 因 | | |\n| 为标况下*V*~m~=22.4 | | |\n| L·mol^1^。 | | |\n| | | |\n| *V*(CO~2~)=* | | |\n| n*(CO~2~)*V*~m~=0.05 | | |\n| mol×22.4 | | |\n| L·mol^1^=1.12 L。 | | |\n| | | |\n| 答在标准状况下2.2 | | |\n| g CO~2~的体积为1.12 | | |\n| L。 | | |\n| | | |\n| 例4、在 | | |\n| 标准状况下测得1.9 | | |\n| 2克某气体的体积为672 | | |\n| mL。计算此气 | | |\n| 体的相对分子质量。 | | |\n| | | |\n| 解 | | |\n| 法一:解:在标准状况 | | |\n| 下,该气体的密度为: | | |\n| | | |\n| *ρ*~标~==2.86 | | |\n| g·L^1^ | | |\n| | | |\n| 标准 | | |\n| 状况下,*V*~m~=22.4 | | |\n| L·mol^1^。 | | |\n| | | |\n| 则 | | |\n| 该气体的摩尔质量为: | | |\n| | | |\n| *M*=*ρ*~标~×22.4 | | |\n| L·mol^1^=2.86 | | |\n| g·L^1^×22.4 | | |\n| L·mol^1^=64 | | |\n| g·mol^1^ | | |\n| | | |\n| 即该气体 | | |\n| 的相对分子质量为64。 | | |\n| | | |\n| 解 | | |\n| 法二:解:标准状况下 | | |\n| ,该气体的物质的量为 | | |\n| | | |\n| *n*==0.03 mol | | |\n| | | |\n| 摩", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6622a9165a299585329a194527431e31", "__created_at__": 1754897909, "content": "气体 | | |\n| 的相对分子质量为64。 | | |\n| | | |\n| 解 | | |\n| 法二:解:标准状况下 | | |\n| ,该气体的物质的量为 | | |\n| | | |\n| *n*==0.03 mol | | |\n| | | |\n| 摩尔质量为:*M*==64 | | |\n| g·mol^1^, | | |\n| | | |\n| 即气体 | | |\n| 的相对分子质量为64。 | | |\n| | | |\n| 答:此气体 | | |\n| 的相对分子质量为64。 | | |\n| | | |\n| [讲 | | |\n| ]在进行有关物质的量 | | |\n| 之间的换算时,必须熟 | | |\n| 悉各量之间的关系,对 | | |\n| 气体进行的计算,尤其 | | |\n| 要注意外界条件,对于 | | |\n| 同一个问题,往往通过 | | |\n| 不同途径来进行解决。 | | |\n| | | |\n| [板书](三) | | |\n| 溶 | | |\n| 液中溶质的质量分数与 | | |\n| 物质的量浓度的换算 | | |\n| | | |\n| C~B~== w= | | |\n| | | |\n| [讲]公式在使用时, | | |\n| 不带单位,直接带数值 | | |\n| ,结果处直接加单位。 | | |\n| | | |\n| [板书](四) | | |\n| 有关 | | |\n| 溶液稀释问题的计算 | | |\n| | | |\n| | | |\n| 讲]稀释浓溶液时,溶 | | |\n| 液的质量或体积要发生 | | |\n| 变化,但溶质的量(质 | | |\n| 量或物质的量)均不变 | | |\n| 。为此,在用一定物质 | | |\n| 的量浓度的溶液配制新 | | |\n| 溶液时,遵循溶质守恒 | | |\n| | | |\n| [板书] | | |\n| m~1~w~1~=m~2~w~2~ | | |\n| | | |\n| * | | |\n| *C~1~V~1~=C~2~V~2~ | | |\n| | | |\n| [板书](五) | | |\n| 不同 | | |\n| 浓度溶液混合的计算 | | |\n| | | |\n| [思考 | | |\n| ]体积何时可加合? | | |\n| | | |\n| [讲]若相互混 | | |\n| 合的溶液均为稀溶液, | | |\n| 可看作密度均近似为1 | | |\n| g/ | | |\n| cm^3^,混合前后的质量 | | |\n| 比等于其体积比,因而 | | |\n| V混等于各溶液的体积 | | |\n| 之和。若相互混合的溶 | | |\n| 液中有浓度较大的,或 | | |\n| 浓溶液的稀释由于混合 | | |\n| 前后溶液的密度有较大 | | |\n| 变化造成了溶液体积的 | | |\n| 较大损失此时V=m/p | | |\n| | | |\n| 板书1、体积 | | |\n| 可加合时的混合问题 | | |\n| | | |\n| 公式C== | | |\n| | | |\n| [板 | | |\n| 书2、不同浓度的两 | | |\n| 溶液混合后w的求算 | | |\n| | | |\n| [讨论] | | |\n| | | |\n| 设有同种溶质 | | |\n| 不同浓度的两份,其溶 | | |\n| 质的质量分数分别为w~ | | |\n| 1~、w~2~,密", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-1f34c1d033f71f912f0ebdfd4854644f", "__created_at__": 1754897909, "content": "溶液混合后w的求算 | | |\n| | | |\n| [讨论] | | |\n| | | |\n| 设有同种溶质 | | |\n| 不同浓度的两份,其溶 | | |\n| 质的质量分数分别为w~ | | |\n| 1~、w~2~,密度为ρ~1~ | | |\n| 、ρ~2~且w~1~/>w~2~ | | |\n| | | |\n| /(1/) | | |\n| 当两者等质量混合时, | | |\n| | | |\n| w~混~= | | |\n| | | |\n| /(2/) | | |\n| 当两等体积混合时, | | |\n| | | |\n| w== | | |\n| | | |\n| I、当溶液密度 | | |\n| 大于1时w~1~/>w~2,~ | | |\n| ρ~1~/>ρ~2~ | | |\n| | | |\n| w/> | | |\n| | | |\n| II、当溶液密度 | | |\n| 小于1时w~1~/>w~2,~ | | |\n| ρ~1~/<ρ~2~ | | |\n| | | |\n| w/< | | |\n| | | |\n| [小结 | | |\n| ]主要就两方面的问题 | | |\n| 进行了探讨,一是表示 | | |\n| 溶液组成的溶质的物质 | | |\n| 的量浓度和溶质的质量 | | |\n| 的相互换算,解题的关 | | |\n| 键要进行具体的假设。 | | |\n| 要么设溶液的质量为m | | |\n| g | | |\n| 要么设溶液的体积为V | | |\n| L | | |\n| 二是有关溶液稀释的问 | | |\n| 题,它遵循的原则是: | | |\n| 稀释前后溶质的量不变 | | |\n| ,由此建立等量关系。 | | |\n| | | |\n| [板书](六) | | |\n| 十字交叉法 | | |\n| | | |\n| [讲]十字 | | |\n| 交叉法是巧解二元混合 | | |\n| 问题的一种常见的有效 | | |\n| 方法。若a、b分别表示 | | |\n| 为某二元混合物中的两 | | |\n| 种组分A、B的量C为a | | |\n| 、b的相对平均值n~A | | |\n| ~/n~B~为二元混合体系 | | |\n| 中A和B的组成比 | | |\n| | | |\n| * | | |\n| *板书1、原理 | | |\n| | | |\n| 2 | | |\n| 、适用范围:凡能满足 | | |\n| a n~A~ + b n~B~ | | |\n| ==c(n~A~+n | | |\n| ~B~)关系的混合问题, | | |\n| 均能用十字交叉法。 | | |\n| | | |\n| 3、典型应用 | | |\n| | | |\n| [投影](1) | | |\n| 用组分的相对分 | | |\n| 子质量与混合气体的平 | | |\n| 均相对分子质量做十字 | | |\n| 交叉,求组分体积比或 | | |\n| 含量或物质的量之比。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 化学物质及其变化 | | |\n| | | |\n| 第一节 | | |\n| 物质的分类(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、能根据物质的 |\n| | | 组成和性质对物质进行 |\n| 学 | 与 | 分类,并尝试按不同的 |\n| | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-5be0a0be02984d85399f1f8ae67985ed", "__created_at__": 1754897909, "content": "| | |\n| 物质的分类(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、能根据物质的 |\n| | | 组成和性质对物质进行 |\n| 学 | 与 | 分类,并尝试按不同的 |\n| | | 方法对物质进行分类。 |\n| 目 | 技能 | |\n| | | 2、知道胶 |\n| 的 | | 体是一种常见的分散系 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、培养学生 |\n| | | 科学抽象、概括整理、 |\n| | 与 | 归纳总结,准确系统地 |\n| | | 掌握知识规律的方法。 |\n| | 方法 | |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通 |\n| | | 过幻灯教学,活跃课堂 |\n| | 态度 | 气氛,吸引学生注意, |\n| | | 培养好学上进的情感。 |\n| | 价值观 | |\n| | | 2 |\n| | | 、创设情境,诱导学生 |\n| | | 积极思考与讨论,激发 |\n| | | 学习动机,培养学生兴 |\n| | | 趣,并体验成功喜悦。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 初 | |\n| | 步学会根据物质的组成 | |\n| | 和性质对物质进行分类 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 分类 | |\n| | 法的意义及常见化学物 | |\n| | 质及其变化的分类方法 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第二章 | |\n| | 化学物质及变化 | |\n| 识 | | |\n| | 第一节 | |\n| 结 | 物质的分类(一) | |\n| | | |\n| 构 | 一、 | |\n| | 简单分类法及其应用 | |\n| 与 | | |\n| | 1交叉分类法 | |\n| 板 | | |\n| | Na~2~CO~3~ 钠盐 | |\n| 书 | | |\n| | Na~2~SO~4~ 钾盐 | |\n| 设 | | |\n| | K~2~SO~4~ 硫酸盐 | |\n| 计 | | |\n| | K~2~CO~3~ 碳酸盐 | |\n| | | |\n| | 2、树状分类法 | |\n| | | |\n| | 二、分散系( | |\n| | dispersion | |\n| | system)及其分类 | |\n| | | |\n| | 1、分散系 | |\n| | | |\n| | (1) | |\n| | 分 | |\n| | 散系:将一种或几种物 | |\n| | 质以粒子形式分散到另 | |\n| | 一种物质里所形成的混 | |\n| | 合物,称为分散系。 | |\n| | | |\n| | (2) | |\n| | 分散质和分散剂: | |\n| | 分散系中分散成粒子的 | |\n| | 物质叫做分散质,另一 | |\n| | 种物质叫做分散剂。 | |\n| | | |\n| | (3)、分类: | |\n| | | |\n| | 常见的 | |\n| | 分散系有溶液、悬浊液 | |\n| | 、乳浊液、胶体等。 | |\n| | | |\n| | 一般地 | |\n| | 说,溶液分散质粒子小 | |\n| | 于1nm浊液中离子通 | |\n| | 常大于100nm介于1n | |\n| | m100nm的为胶体。 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 由生活实 | |\n| [引入]大千世界, | 际入手,学生讨论图书 | |\n| 芸芸众生,物质形态多 | 及商品的分类方法,", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-8497efc5f9e446022601285c863e91df", "__created_at__": 1754897909, "content": "----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | 由生活实 | |\n| [引入]大千世界, | 际入手,学生讨论图书 | |\n| 芸芸众生,物质形态多 | 及商品的分类方法,理 | |\n| 样而丰富。如此之多的 | 解物质的分类的意义。 | |\n| 东西,如果不进行分类 | | |\n| ,那对于科学研究是一 | | |\n| 个致命的打击。比如到 | | |\n| 图书馆借书,如果书目 | | |\n| 没有进行分类,要找一 | | |\n| 本书简直是大海捞针。 | | |\n| 所以说分类研究方法是 | | |\n| 科学研究必备的手段, | | |\n| 物质进行分类后,同一 | | |\n| 类物质由于具有相似的 | | |\n| 性质,故更方便对比。 | | |\n| | | |\n| [投影] | | |\n| 图书馆中陈列的图书 | | |\n| 、超市中的商品摆放。 | | |\n| | | |\n| [导入 | | |\n| ]初中我们已经学习 | | |\n| 了一些物质的分类方法 | | |\n| ,今天我们继续在初中 | | |\n| 的基础上来进行研究。 | | |\n| | | |\n| [板书]第二章 | | |\n| 化学物质及变化 | | |\n| | | |\n| 第一节 | | |\n| 物质的分类(一) | | |\n| | | |\n| [引入] | | |\n| 我们知道分类如果从 | | |\n| 不同角度入手就会有很 | | |\n| 多不同方法,例如,人 | | |\n| 类按照年龄分可以分为 | | |\n| 老年、中年、青年、少 | | |\n| 年、儿童;按性别分分 | | |\n| 为男性和女性;按职业 | | |\n| 分为教师、医生、工程 | | |\n| 师等等。同样的道理, | | |\n| 化学物质从不同角度有 | | |\n| 很多不同的分类方法。 | | |\n| | | |\n| [板书]一、 | | |\n| 简单分类法及其应用 | | |\n| | | |\n| /[思考与交流/]请尝 | | |\n| 试对HCl、SO~2~、CaO | | |\n| 、KOH、Na~2~SO~4~、H | | |\n| ~2~SO~3~进行分类。 | | |\n| | | |\n| (氧化物SO~2~、CaO | | |\n| 酸HCl、H~2~SO~3~ | | |\n| 碱 KOH | | |\n| 盐Na~2~SO~4~ ) | | |\n| | | |\n| (固体: | | |\n| CaO、KOH、Na~2~SO~4~ | | |\n| 气体HCl 、SO~2~ | | |\n| 液体H~2~SO~3~ ) | | |\n| | | |\n| [讲 | | |\n| ]在分类的标准确定 | | |\n| 之后,同类中的事物在 | | |\n| 某些方面的相似性可以 | | |\n| 帮助我们做到举一反三 | | |\n| ;对于不同事物的了解 | | |\n| 使我们有可能做到由此 | | |\n| 及彼。所以,分类法是 | | |\n| 一种行之有效、简单易 | | |\n| 行的科学方法。运用分 | | |\n| 类的方法不仅能使有关 | | |\n| 化学物质及其变化的知 | | |\n| 识系统化,还可以通过 | | |\n| 分门别类的研究,发现 | | |\n| 物质及其变化的规律。 | | |\n| | | |\n| [问] | | |\n| 对于Na~2~CO~3~,如 | | |\n| 果从其阳离子来看,它 | | |\n| 属于什么盐?从阴离子 | | |\n| 来看,又属于什么盐? | | |\n| | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2b3a3ac002ba182c2e1fce45c7fe8609", "__created_at__": 1754897909, "content": "物质及其变化的规律。 | | |\n| | | |\n| [问] | | |\n| 对于Na~2~CO~3~,如 | | |\n| 果从其阳离子来看,它 | | |\n| 属于什么盐?从阴离子 | | |\n| 来看,又属于什么盐? | | |\n| | | |\n| ( | | |\n| 从阳离子来看 | | |\n| ,属于钠盐,从阴离子 | | |\n| 来看,属于碳酸盐。) | | |\n| | | |\n| [讲] | | |\n| 由于一种分类方法所 | | |\n| 依据的标准有一定局限 | | |\n| ,所能提供的信息较少 | | |\n| ,因此,人们在认识事 | | |\n| 物的时候往往采取多种 | | |\n| 分类方法,比如交叉分 | | |\n| 类法,就像我们刚才举 | | |\n| 的Na~2~CO~3~的例子。 | | |\n| | | |\n| /[板书/] | | |\n| 1交叉分类法 | | |\n| | | |\n| Na~2~CO~3~ 钠盐 | | |\n| | | |\n| Na~2~SO~4~ 钾盐 | | |\n| | | |\n| K~2~SO~4~ 硫酸盐 | | |\n| | | |\n| K~2~CO~3~ 碳酸盐 | | |\n| | | |\n| [讲]交 | | |\n| 叉分类法可以弥补单一 | | |\n| 分类方法的不足,那么 | | |\n| 对同类事物可以通过树 | | |\n| 状分类法进行再分类。 | | |\n| | | |\n| /[板书/] | | |\n| 2、树状分类法 | | |\n| | | |\n| [问] | | |\n| 如果我们再继续分类 | | |\n| 的话,还可以怎么分? | | |\n| | | |\n| (单质可 | | |\n| 以分为金属和非金属, | | |\n| 氧化物可以分为酸性氧 | | |\n| 化物、碱性氧化物和两 | | |\n| 性氧化物,酸可以分为 | | |\n| 一元酸、二元酸和多元 | | |\n| 酸,碱可以分为强碱和 | | |\n| 弱碱,盐可以分为正盐 | | |\n| 、酸式盐和碱式盐。) | | |\n| | | |\n| (氧化物还可以 | | |\n| 分成金属氧化物和非金 | | |\n| 属氧化物,酸还可以分 | | |\n| 成含氧酸和无氧酸。) | | |\n| | | |\n| (碱可以分成可 | | |\n| 溶性碱和不溶性碱。) | | |\n| | | |\n| (盐可以分成含氧酸 | | |\n| 盐和无氧酸盐......) | | |\n| | | |\n| [投影] | | |\n| | | |\n| ![](stati | | |\n| c/Images/a91144fda2c | | |\n| 741b0b9694ebcfa9d1de | | |\n| b/media/image35.png) | | |\n| | | |\n| [问] | | |\n| 很好,那我们发现树状 | | |\n| 分类法有什么优点吗? | | |\n| | | |\n| (树状 | | |\n| 分类法可以清楚地表示 | | |\n| 物质间的从属关系。) | | |\n| | | |\n| [小结]学习了分 | | |\n| 类的方法以后,大家应 | | |\n| 学会对以前和将要学的 | | |\n| 化学知识进行及时的归 | | |\n| 纳和整理,学会对物质 | | |\n| 及其变化进行分类,并 | | |\n| 通过对各类物质的代表 | | |\n| 物质的研究来了解这类 | | |\n| 物质的性质,从而提高 | | |\n| 我们化学学习的效率。 | | |\n| | | |\n| /[点击试题", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-5d5e0e8246baba9c761f61c254c6f448", "__created_at__": 1754897909, "content": "|\n| 纳和整理,学会对物质 | | |\n| 及其变化进行分类,并 | | |\n| 通过对各类物质的代表 | | |\n| 物质的研究来了解这类 | | |\n| 物质的性质,从而提高 | | |\n| 我们化学学习的效率。 | | |\n| | | |\n| /[点击试题/]下列 | | |\n| 物质中①Na~2~SO~4~ | | |\n| ②Ba(OH)~2~ ③NaHCO~3~ | | |\n| ④NaBr ⑤Fe~3~O~4~ | | |\n| ⑥H~2~O ⑦HNO~3~ | | |\n| ⑧AgNO~3~ | | |\n| ⑨H~2~SO~4~中, | | |\n| | | |\n| 其中属于氧化物的是 | | |\n| ;属于碱的是 | | |\n| ;属于酸的是 | | |\n| ;属于盐的是 . | | |\n| | | |\n| [过] | | |\n| 化学物质世界中,与 | | |\n| 生活接触最密切的是混 | | |\n| 合物,象空气、溶液、 | | |\n| 合金等等。在今后的学 | | |\n| 习过程中,我们还要接 | | |\n| 触更多的混合物。今天 | | |\n| 要与我们见面的是什么 | | |\n| 样的混合物呢?请大家 | | |\n| 阅读课本P25最后一段 | | |\n| 。理解分散系的概念。 | | |\n| | | |\n| /[板书/] | | |\n| 二、分散系( | | |\n| dispersion | | |\n| system)及其分类 | | |\n| | | |\n| 1、分散系 | | |\n| | | |\n| (1) | | |\n| 分 | | |\n| 散系:将一种或几种物 | | |\n| 质以粒子形式分散到另 | | |\n| 一种物质里所形成的混 | | |\n| 合物,称为分散系。 | | |\n| | | |\n| (2) | | |\n| 分散质和分散剂: | | |\n| 分散系中分散成粒子的 | | |\n| 物质叫做分散质,另一 | | |\n| 种物质叫做分散剂。 | | |\n| | | |\n| [讲 | | |\n| ]对溶液来说,溶质 | | |\n| 是分散质,溶剂是分散 | | |\n| 剂;对悬浊液和乳浊液 | | |\n| 来说,其中的固体小颗 | | |\n| 粒或小液滴是分散质, | | |\n| 所用的溶剂是分散剂。 | | |\n| | | |\n| /[ | | |\n| 思考与交流/]按照分散 | | |\n| 剂和分散质所处的状态 | | |\n| (气态、液态、固态) | | |\n| ,他们之间可以有几种 | | |\n| 组合方式?并举例。 | | |\n| | | |\n| /[投影/]分散 | | |\n| 系按照分散质或分散剂 | | |\n| 聚集状态不同分类,有 | | |\n| 9种类型。对比如下 | | |\n| | | |\n| -------- | | |\n| -- ---------- ------ | | |\n| -------------------- | | |\n| 分 散 质 | | |\n| 分 散 剂 实  例 | | |\n| 气 | | |\n| 气 空气 | | |\n| 液 | | |\n| 气 云、雾 | | |\n| 固 | | |\n| 气 烟灰尘 | | |\n| 气 | | |\n| 液 泡沫 | | |\n| | | |\n| 液 液 | | |\n| 牛奶、酒精的水溶液 | | |\n| 固 液 | | |\n| 糖水、油漆 | | |\n| 气 | | |\n| 固 泡沫塑", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-48b4968c9c77e29d2304867c5a9d6223", "__created_at__": 1754897909, "content": "| |\n| 液 泡沫 | | |\n| | | |\n| 液 液 | | |\n| 牛奶、酒精的水溶液 | | |\n| 固 液 | | |\n| 糖水、油漆 | | |\n| 气 | | |\n| 固 泡沫塑料 | | |\n| 液 | | |\n| 固 珍珠 | | |\n| (包藏着水的碳酸钙) | | |\n| 固 固 | | |\n| 有色玻璃、合金 | | |\n| -------- | | |\n| -- ---------- ------ | | |\n| -------------------- | | |\n| | | |\n| [问]按照 | | |\n| 分散质粒子的大小,能 | | |\n| 对分散系进行分类吗? | | |\n| | | |\n| > [讲]如果 | | |\n| 分散介质是液态的,叫 | | |\n| 液态分散体系,在化学 | | |\n| 反应中此类分散体系最 | | |\n| 为常见和重要,水溶液 | | |\n| 、悬浊液和乳浊液都属 | | |\n| 液态分散体系。溶液、 | | |\n| 悬浊液和乳浊液分散质 | | |\n| 粒子的大小(近似其直 | | |\n| 径大小)来分类。一般 | | |\n| 地说,溶液分散质粒子 | | |\n| 小于1nm浊液中离子 | | |\n| 通常大于100nm介于 | | |\n| 1nm100nm的为胶体。 | | |\n| 在分散体系中,分散相 | | |\n| 的颗粒大小有所不同, | | |\n| 分散体系的性质也随之 | | |\n| 改变,溶液、胶体和浊 | | |\n| 液各具有不同的特性。 | | |\n| | | |\n| /[板书/] | | |\n| (3)、分类: | | |\n| | | |\n| 常见的 | | |\n| 分散系有溶液、悬浊液 | | |\n| 、乳浊液、胶体等。 | | |\n| | | |\n| > 一般地 | | |\n| 说,溶液分散质粒子小 | | |\n| 于1nm浊液中离子通 | | |\n| 常大于100nm介于1n | | |\n| m100nm的为胶体。 | | |\n| | | |\n| [小结]那么不同的分 | | |\n| 散系有什么区别呢?胶 | | |\n| 体又有些什么性质呢? | | |\n| 欲之这些问题,请等下 | | |\n| 节课我们再继续学习。 | | |\n+----------------------+----------------------+----------------------+\n| | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 第一节 | | |\n| 物质的分类(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、了解胶 |\n| | | 体的重要性质和应用。 |\n| 学 | 与 | |\n| | | 2、 |\n| 目 | 技能 | 能用物质的分散系的概 |\n| | | 念解释一些实际问题。 |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1 |\n| | | 、重视联系生活实际, |\n| | 与 | 学习运用观察、实验、 |\n| | | 交流等多种手段获取信 |\n| | 方法 | 息,并运用比较、分类 |\n| | | |\n| | | 2、归纳、概 |\n| | | 括等方法进行加工,通 |\n| | | 过在开放的问题情景中 |\n| | | 自由讨论、自主形成结 |\n| | | 论,形成探究、自主、 |\n| | | 合作的科学学习方式。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 充分 |\n| | | 发挥学生的自主性,让 |\n| | 态度 | 学", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-8b8cc27f164d5cd6d48b173cbe887c7e", "__created_at__": 1754897909, "content": "加工,通 |\n| | | 过在开放的问题情景中 |\n| | | 自由讨论、自主形成结 |\n| | | 论,形成探究、自主、 |\n| | | 合作的科学学习方式。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 充分 |\n| | | 发挥学生的自主性,让 |\n| | 态度 | 学生在实验探究过程中 |\n| | | ,培养参与化学科技活 |\n| | 价值观 | 动的热情和将化学知识 |\n| | | 应用于生产、生活实践 |\n| | | 的意识,培养学生学习 |\n| | | 化学的兴趣,激发学生 |\n| | | 积极自主学习的热情, |\n| | | 赞赏化学科学对个人生 |\n| | | 活和社会发展的贡献。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 胶体的重要性质和应用 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 制备胶体的实验 | |\n+----------------------+----------------------+----------------------+\n| 知 | 三、胶体( colloid | |\n| | ) | |\n| 识 | | |\n| | 1、胶体的分类 | |\n| 结 | | |\n| | 2、胶 | |\n| 构 | 体的制备FeCl~3~+3 | |\n| | H~2~OFe(OH)~3~(胶体) | |\n| 与 | +3HCl | |\n| | | |\n| 板 | 四、胶体的性质 | |\n| | | |\n| 书 | 1.丁达 | |\n| | 尔效应:光束通过胶体 | |\n| 设 | ,形成光亮的\"通路\"的 | |\n| | 现象叫丁达尔效应。 | |\n| 计 | | |\n| | 2.布朗运动:胶 | |\n| | 体分散质粒子作不停的 | |\n| | 、无秩序的运动,这种 | |\n| | 现象叫做布朗运动。 | |\n| | | |\n| | 3.电泳: | |\n| | 在外加电场作用下,胶 | |\n| | 体粒子在分散剂里向电 | |\n| | 极作定向移动的现象 | |\n| | | |\n| | 4.胶 | |\n| | 体的聚沉:分散质粒子 | |\n| | 相互聚集而下沉的现象 | |\n| | ,称为胶体的聚沉。 | |\n| | | |\n| | 方 | |\n| | 法:加电解质溶液;加 | |\n| | 带相反电荷的胶粒。 | |\n| | | |\n| | 5、胶体的应用 | |\n| | | |\n| | 1工业 | |\n| | 除杂、除尘    ( | |\n| | 2.土壤的保肥作用 | |\n| | | |\n| | 5豆腐的制作原 | |\n| | 理    4江河 | |\n| | 入海口处形成三角洲 | |\n| | | |\n| | 3 | |\n| | )明矾的净水作用。 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [复习提 | 请同学们阅读教 | |\n| 问]上节课我们学习 | 材P28上的科学视野 | |\n| 了分类方法,并且简单 | 了解胶体的其它性质。 | |\n| 了解了分散系的相关知 | | |\n| 识,那么我们最学见的 | 1.许多 | |\n| 分散系溶液、胶体、浊 | 聚集的Fe(OH)~3~分子 | |\n| 液又是按什么分的呢? | 无规则 | |\n| | | |\n| (分 | 2.无规则 定向运动 | |\n| 散质离子的直径大小。 | 阴 阳 | |\n| 溶液:分散质直径/<1 | | |\n| 纳米 即10^-9^m | 思路: | |\n| | | |\n| 胶体1 | 胶粒聚集变大沉淀\" | |\n| 纳米", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-fd905ddd54f913dff25080f4c92f72ed", "__created_at__": 1754897909, "content": "无规则 定向运动 | |\n| 散质离子的直径大小。 | 阴 阳 | |\n| 溶液:分散质直径/<1 | | |\n| 纳米 即10^-9^m | 思路: | |\n| | | |\n| 胶体1 | 胶粒聚集变大沉淀\" | |\n| 纳米 | | |\n| ≤分散质直径≤100纳米 | 解析1使 | |\n| | 用高压电,即利用外加 | |\n| 浊液: | 电场,使气溶胶胶粒向 | |\n| 分散质直径/>100纳米) | 电极移动而聚集,从而 | |\n| | 除去烟尘。答案A | |\n| [讲]如 | | |\n| 果将溶液、胶体、浊液 | [解 | |\n| 这三类物质长期存放, | 析2土壤胶粒带负电 | |\n| 我们会发现溶液是最稳 | 荷则对含N的NO有排 | |\n| 定的。不论存放的时间 | 斥作用这样NO将不被 | |\n| 有多长,在一般情况下 | 土壤吸附,而随水流失 | |\n| 溶质都不会自动与溶剂 | 而其他肥料中的含N | |\n| 分离;而浊液很不稳定 | 的离子全是阳离子,易 | |\n| ,分散质将在重力的作 | 被土壤胶粒吸附故NH | |\n| 用下沉降下来,如河水 | 4NO3肥效相对较低。 | |\n| 中夹带泥沙会逐渐沉降 | | |\n| ;胶体则介于二者之间 | 答案C | |\n| ,在一定条件下能稳定 | | |\n| 存在,属于介稳体系。 | 解析4河水中 | |\n| | 粘土等胶粒,遇海水中 | |\n| [过]生活 | 电解质而发生凝聚作用 | |\n| 中,我们将淀粉溶解在 | ,逐渐沉降为三角洲 | |\n| 热水中,然后加热煮沸 | | |\n| ,就熬成了汤,可以较 | 解析5盐卤或 | |\n| 长时间稳定地存在;而 | 石膏为电解质,可使豆 | |\n| 向豆浆里加入石膏,就 | 浆里的蛋白质胶粒凝聚 | |\n| 变成了豆腐,是什么原 | 并和水等物质一起聚沉 | |\n| 因呢?黄河里的水奔腾 | 而成凝胶(豆腐)。 | |\n| 不息,为什么泥水就不 | | |\n| 变清呢?在灯光下,有 | | |\n| 雾的夜晚,为何显得更 | | |\n| 加明亮。今天我们重点 | | |\n| 先来研究胶体的性质。 | | |\n| | | |\n| [板书]三、胶体( | | |\n| colloid ) | | |\n| | | |\n| 1、胶体的分类 | | |\n| | | |\n| [投 | | |\n| 1、根据分散 | | |\n| 质微粒组成的状况分类 | | |\n| ![index_clip_imag | | |\n| e002](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage37.png){width=\"0 | | |\n| .6152777777777778in\" | | |\n| height=\"0. | | |\n| 4166666666666667in\"} | | |\n| | | |\n| [讲] | | |\n| 如Fe(OH)~3~ 胶 | | |\n| 体胶粒是由许多Fe(OH | | |\n| )~3~ 等小分子聚集一 | | |\n| 起形成的微粒,其直径 | | |\n| 在1nm100nm之间这 | | |\n| 样的胶体叫粒子胶体。 | | |\n| | | |\n| 又如: | | |\n| 淀粉属高分子化合物, | | |\n| 其单个分子的直径在1n | | |\n| m100nm范围之内这 | | |\n| 样的胶体叫分子胶体。 | | |\n| | | |\n| <20>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ff06904b0219b22a45af4a184d95dbc5", "__created_at__": 1754897909, "content": "子胶体。 | | |\n| | | |\n| 又如: | | |\n| 淀粉属高分子化合物, | | |\n| 其单个分子的直径在1n | | |\n| m100nm范围之内这 | | |\n| 样的胶体叫分子胶体。 | | |\n| | | |\n| 2、 | | |\n| 根据分散剂的状态划分 | | |\n| ![index_clip_imag | | |\n| e004](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage38.png){width=\"0 | | |\n| .5006944444444444in\" | | |\n| height=\"0. | | |\n| 6243055555555556in\"} | | |\n| | | |\n| [讲]如 | | |\n| :烟、云、雾等的分散 | | |\n| 剂为气体,这样的胶体 | | |\n| 叫做气溶胶AgI溶胶 | | |\n| 、Fe(OH)~3~ 溶胶、 | | |\n| Al(OH)~3~  溶胶, | | |\n| 其分散剂为水,分散剂 | | |\n| 为液体的胶体叫做液溶 | | |\n| 胶;有色玻璃、烟水晶 | | |\n| 均以固体为分散剂,这 | | |\n| 样的胶体叫做固溶胶。 | | |\n| | | |\n| [板 | | |\n| 书2、胶体的制备 | | |\n| | | |\n| [实验探究 | | |\n| :胶体的制备]{.ul} | | |\n| | | |\n| 步骤: | | |\n| | | |\n| 1、取烧杯盛25 | | |\n| mL蒸馏水(不用 | | |\n| 自来水,是因为自来水 | | |\n| 中有电解质,会使胶体 | | |\n| 聚沉),加热至沸腾; | | |\n| | | |\n| 2、向沸水 | | |\n| 中逐滴加入5-6滴FeCl | | |\n| ~3~饱和溶液(一般不用 | | |\n| 稀溶液,因稀溶液水解 | | |\n| 程度大,可能会浑浊, | | |\n| 且滴加速度不能过快, | | |\n| 更不能将FeCl~3~溶液 | | |\n| 加到蒸馏水中以后再煮 | | |\n| 沸,否则会生成沉淀) | | |\n| | | |\n| 3、继续煮沸至溶液 | | |\n| 呈红褐色,观察所得红 | | |\n| 褐色液体是Fe(OH)~3~ | | |\n| 胶体。 | | |\n| | | |\n| [板书](1) | | |\n| 化学分散法: | | |\n| | | |\n| FeCl~3~+3 | | |\n| H~2~OFe(OH)~3~(胶体) | | |\n| +3HCl | | |\n| | | |\n| [讲]除此之外还 | | |\n| 可以用物理分散法,即 | | |\n| 类似于家里调制淀粉, | | |\n| | | |\n| [转 | | |\n| 问]胶体和溶液的外 | | |\n| 观特征相同(透明澄清 | | |\n| 如NaCl溶液和淀粉 | | |\n| 溶液,那么可用怎样的 | | |\n| 物理方法加以鉴别呢? | | |\n| | | |\n| [学生活动 | | |\n| ]一代表上台演示。 | | |\n| | | |\n| [操作:]{ | | |\n| .ul}将分别盛有等量 | | |\n| 硫酸铜溶液和Fe(OH)~ | | |\n| 3~胶体的两烧杯并排置 | | |\n| 于桌面上用激光教<E58589>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2c5c289f4c33af76c26c7b6aea620b53", "__created_at__": 1754897909, "content": "|\n| ]一代表上台演示。 | | |\n| | | |\n| [操作:]{ | | |\n| .ul}将分别盛有等量 | | |\n| 硫酸铜溶液和Fe(OH)~ | | |\n| 3~胶体的两烧杯并排置 | | |\n| 于桌面上,用激光教鞭 | | |\n| 从一侧(光、两烧杯在 | | |\n| 一条线上)进行照射, | | |\n| 同时于垂直方向观察。 | | |\n| | | |\n| * | | |\n| *[现象与结论]{.ul} | | |\n| :当光束通过形成一条 | | |\n| 光亮红色通路的液体为 | | |\n| Fe(OH)~3~胶体,无此 | | |\n| 现象的为硫酸铜溶液。 | | |\n| | | |\n| | | |\n| 讲述]当一束强光照 | | |\n| 射胶体时,在入射光垂 | | |\n| 直方向,可以看到一道 | | |\n| 光亮的通路,这种现象 | | |\n| 早在19世纪由英国物理 | | |\n| 学家丁达尔研究发现。 | | |\n| 故称其为\"丁达尔效应\" | | |\n| 。而溶液无此现象。因 | | |\n| 此丁达尔效应可以区别 | | |\n| 溶液和胶体。那么,造 | | |\n| 成胶体和溶液这种性质 | | |\n| 差异的原因是什么呢? | | |\n| | | |\n| [投影比较] | | |\n| | | |\n| | | |\n| [多媒体动画模拟] | | |\n| 胶粒对光的散射作用。 | | |\n| | | |\n| [旁白 | | |\n| ]图中红色箭头(粗 | | |\n| )代表入射光线,黄色 | | |\n| 箭头(细)代表散射光 | | |\n| 。当光线照射到胶体粒 | | |\n| 子上时,有一部分光发 | | |\n| 生了散射作用,另一部 | | |\n| 分光透过了胶体,无数 | | |\n| 个胶粒发生光散射,如 | | |\n| 同有无数个光源存在, | | |\n| 我们便可发现当一束光 | | |\n| 线通过胶体时从侧面可 | | |\n| 以看到一条光亮的通路 | | |\n| ,这就是丁达尔效应。 | | |\n| | | |\n| [设问]胶 | | |\n| 体除具有丁达尔效应外 | | |\n| ,还有何其他性质呢? | | |\n| | | |\n| [板 | | |\n| 书]四、胶体的性质 | | |\n| | | |\n| 1.丁达 | | |\n| 尔效应:光束通过胶体 | | |\n| ,形成光亮的\"通路\"的 | | |\n| 现象叫丁达尔效应。 | | |\n| | | |\n| [过渡] | | |\n| 由于胶体分散质粒子比 | | |\n| 溶质粒子大得多,以致 | | |\n| 使光波传播改变了原来 | | |\n| 的方向。尽管如此,我 | | |\n| 们的肉眼仍看不到它的 | | |\n| 存在。超显微镜可帮助 | | |\n| 我们了解胶粒的情况。 | | |\n| | | |\n| [多媒体动画模拟 | | |\n| ]胶粒的布朗运动。 | | |\n| | | |\n| | | |\n| 旁白]用一黑色小球 | | |\n| 代表胶体粒子,用动画 | | |\n| 模拟胶粒的无规则运动 | | |\n| 。胶粒的运动情况如同 | | |\n| 花粉颗粒在水里作不停 | | |\n| 的、无秩序的运动。这 | | |\n| 种现象叫做布朗运动。 | | |\n| | | |\n| | | |\n| 板书2.布朗运动:胶 | | |\n| 体分散质粒子作不停的 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-861a8267d2e9a0b0fd88e7113958e1f1", "__created_at__": 1754897909, "content": "运动情况如同 | | |\n| 花粉颗粒在水里作不停 | | |\n| 的、无秩序的运动。这 | | |\n| 种现象叫做布朗运动。 | | |\n| | | |\n| | | |\n| 板书2.布朗运动:胶 | | |\n| 体分散质粒子作不停的 | | |\n| 、无秩序的运动,这种 | | |\n| 现象叫做布朗运动。 | | |\n| | | |\n| [设问] | | |\n| 为什么胶粒的运动是 | | |\n| 不停的、无秩序的呢? | | |\n| | | |\n| [讲述 | | |\n| ]胶粒作布朗运动, | | |\n| 是因胶粒受水分子来自 | | |\n| 各方面的撞击、推动, | | |\n| 而每一瞬间在不同方向 | | |\n| 上所受合力的大小不同 | | |\n| ,所以每一瞬间胶粒运 | | |\n| 动速率和方向都在改变 | | |\n| ,因而形成不停的、无 | | |\n| 秩序的运动。布朗运动 | | |\n| 使胶粒难于静止沉降, | | |\n| 这是胶体稳定的一个因 | | |\n| 素。相比之下,浊液却 | | |\n| 无此性质,为什么呢? | | |\n| | | |\n| [投影比较] | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 1、Fe(OH | | |\n| )~3~胶体中,分散质是 | | |\n| ___,作____定 | | |\n| 向或不规则)运动。 | | |\n| | | |\n| 2. | | |\n| NaCl溶液中Na^^和 | | |\n| Cl^―^作____运动 | | |\n| 。通直流电后作___ | | |\n| 运动Na^ | | |\n| ^向___极移动Cl^ | | |\n| ―^向___极移动。 | | |\n| | | |\n| | | |\n| 设疑若给Fe(OH)~ | | |\n| 3~胶体通直流电,胶体 | | |\n| 粒子的运动会怎样呢? | | |\n| | | |\n| [播放录 | | |\n| 像Fe(OH)~3~胶体 | | |\n| 的电泳实验,请观察: | | |\n| | | |\n| [现 | | |\n| 象]{.ul}:通电后, | | |\n| U型管里阴极附近的红 | | |\n| 褐色逐渐变深,阳极附 | | |\n| 近的红褐色逐渐变浅。 | | |\n| | | |\n| [讲述] | | |\n| 从现象可看出,阴极附 | | |\n| 近Fe(OH)~3~胶粒增多 | | |\n| 了,说明在电场作用下 | | |\n| ,胶粒作了定向移动。 | | |\n| | | |\n| [设问]通电后, | | |\n| Fe(OH)~3~胶粒移向阴 | | |\n| 极说明Fe(OH)~3~胶 | | |\n| 粒具有什么样的电性? | | |\n| | | |\n| 回答F | | |\n| e(OH)~3~胶粒带正电。 | | |\n| | | |\n| 小结像F | | |\n| e(OH)~3~胶体,在外加 | | |\n| 电场作用下,胶粒在分 | | |\n| 散剂里向电极作定向移 | | |\n| 动的现象,叫做电泳。 | | |\n| | | |\n| [板书] | | |\n| 3.电泳:在外加电场作 | | |\n| 用下,胶体粒子在分散 | | |\n| 剂里向电极作定向移动 | | |\n| 的现象,叫做电泳。 | | |\n| | | |\n| [设疑]为 | | |\n| 何胶", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-214bf35c1c62773bfadec9079fb138af", "__created_at__": 1754897909, "content": "[板书] | | |\n| 3.电泳:在外加电场作 | | |\n| 用下,胶体粒子在分散 | | |\n| 剂里向电极作定向移动 | | |\n| 的现象,叫做电泳。 | | |\n| | | |\n| [设疑]为 | | |\n| 何胶体粒子会带电呢? | | |\n| 胶体是否带电Fe(OH | | |\n| )~3~胶粒为何带正电? | | |\n| | | |\n| | | |\n| [分析]胶体粒子小 | | |\n| 表面积大吸附能力强可 | | |\n| 吸附溶液中的离子Fe( | | |\n| OH)~3~胶粒只吸附阳离 | | |\n| 子,带正电向阴极移动 | | |\n| 阴极区液体颜色变深。 | | |\n| | | |\n| [投影归纳] | | |\n| 胶体粒子小表面积大带 | | |\n| 电向电极作定向移动。 | | |\n| | | |\n| [多媒体动 | | |\n| 画模拟]电泳现象。 | | |\n| | | |\n| [旁白] | | |\n| 图中大球表示胶粒,表 | | |\n| 示被胶粒吸附的离子的 | | |\n| 种类。胶粒因吸附阳离 | | |\n| 子或阴离子而带电荷, | | |\n| 在外加电场作用下向阴 | | |\n| 极或阳极作定向移动。 | | |\n| | | |\n| | | |\n| [讲述]一般来说, | | |\n| 在同一胶体中,由于胶 | | |\n| 粒吸附相同的离子因而 | | |\n| 带同种电荷如Fe(OH | | |\n| )~3~胶粒带正电荷。但 | | |\n| 胶体本身不带电,我们 | | |\n| 不能说Fe(OH)~3~胶体 | | |\n| 带正电。那么,哪些胶 | | |\n| 体粒子带正电荷,哪些 | | |\n| 胶体粒子带负电荷呢? | | |\n| | | |\n| | | |\n| 投影归纳]一般来说 | | |\n| :金属氢氧化物、金属 | | |\n| 氧化物的胶体粒子带正 | | |\n| 电荷。非金属氧化物、 | | |\n| 金属硫化物、土壤的胶 | | |\n| 体粒子带负电荷。但并 | | |\n| 非所有胶粒都带电荷。 | | |\n| | | |\n| [讨论] | | |\n| 同一胶体中胶粒带同 | | |\n| 种电荷,会产生怎样的 | | |\n| 作用力?这种作用力对 | | |\n| 胶体的性质有何影响? | | |\n| | | |\n| [讲述]由于同 | | |\n| 种胶粒带同种电荷,它 | | |\n| 们之间相互排斥而不易 | | |\n| 聚集沉降,这就是胶体 | | |\n| 一般稳定的主要原因。 | | |\n| | | |\n| [投影小结] | | |\n| 胶体分散系稳定的原因 | | |\n| :同种胶粒带同种电荷 | | |\n| ,相互排斥而不易聚集 | | |\n| ;布朗运动能克服重力 | | |\n| 作用,胶粒不易沉积。 | | |\n| | | |\n| [过 | | |\n| 渡]方才,我们分析 | | |\n| 了胶体稳定的原因,其 | | |\n| 中胶体粒子带电是重要 | | |\n| 的因素。那么,能否想 | | |\n| 出针对性的办法破坏胶 | | |\n| 体的稳定性,使胶粒彼 | | |\n| 此聚集长大而沉降呢? | | |\n| | | |\n| [归纳投 | | |\n| 影1.加电解质2. | | |\n| 加带相反电荷的胶粒。 | | |\n| | | |\n| [演示] |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6e72f2ff7b96faca520d818cb70022b6", "__created_at__": 1754897909, "content": "|\n| 体的稳定性,使胶粒彼 | | |\n| 此聚集长大而沉降呢? | | |\n| | | |\n| [归纳投 | | |\n| 影1.加电解质2. | | |\n| 加带相反电荷的胶粒。 | | |\n| | | |\n| [演示] | | |\n| 向盛有Fe(OH)~3~胶 | | |\n| 体的试管中滴入MgSO~ | | |\n| 4~溶液,振荡。观察。 | | |\n| | | |\n| [现象 | | |\n| ]{.ul}:产生浑浊。 | | |\n| | | |\n| 板书4.胶 | | |\n| 体的聚沉:分散质粒子 | | |\n| 相互聚集而下沉的现象 | | |\n| ,称为胶体的聚沉。 | | |\n| | | |\n| 方 | | |\n| 法:加电解质溶液;加 | | |\n| 带相反电荷的胶粒。 | | |\n| | | |\n| [过渡]以上我们 | | |\n| 紧紧围绕胶体粒子大小 | | |\n| 的特征,研究了胶体所 | | |\n| 具备的重要性质。借此 | | |\n| ,可以认识和解释生活 | | |\n| 中的一些现象和问题。 | | |\n| | | |\n| [板 | | |\n| 书5、胶体的应用 | | |\n| | | |\n| 点击试题1 | | |\n| 在水泥和冶金工厂常用 | | |\n| 高压电对气溶胶作用, | | |\n| 除去大量烟尘,以减少 | | |\n| 对空气的污染。这种做 | | |\n| 法应用的主要原理是 | | |\n| | | |\n| A.电泳 | | |\n| B.渗析   C.凝聚 | | |\n| D.丁达尔现象 | | |\n| | | |\n| [讲述 | | |\n| ]以上一例是胶体电泳 | | |\n| 性质在冶金工业中的应 | | |\n| 用。电泳原理还可用于 | | |\n| 医学诊断(如血清纸上 | | |\n| 电泳)和电镀工业上。 | | |\n| | | |\n| 板书1 | | |\n| )工业除杂、除尘。 | | |\n| | | |\n| | | |\n| 点击试题2已知土壤 | | |\n| 胶粒带负电,在土壤里 | | |\n| 施用含氮量相等的下列 | | |\n| 肥料,肥效较差的是 | | |\n| | | |\n| A.NH~4~~2~SO~4 | | |\n| ~ B. NH~4~HCO~3~  | | |\n| C NH~4~NO~3~   | | |\n| D.NH~4~Cl | | |\n| | | |\n| [板书]( | | |\n| 2.土壤的保肥作用 | | |\n| | | |\n| [点击试 | | |\n| 题3自来水厂曾用绿 | | |\n| 矾和氯水一起净水,请 | | |\n| 用离子方程式和简要文 | | |\n| 字叙述有关的原理。 | | |\n| | | |\n| 答案2Fe^2 | | |\n| ^+Cl~2~===2Fe^3+^+2C | | |\n| l^^Fe^3+^+3H~2~O | | |\n| FeOH~3~+3H^^ | | |\n| Cl~2~+H~2~O H^^+C | | |\n| l^^+HClOHClO起杀 | | |\n| 菌、消毒作用Fe(OH | | |\n| )~3~ 有胶体性质,其 | | |\n| 带正电的Fe(OH)~3~胶 | | |\n| 粒吸附带负电的水中悬 | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-4aeebe66be2195092cd1ea66b0996152", "__created_at__": 1754897909, "content": "^+C | | |\n| l^^+HClOHClO起杀 | | |\n| 菌、消毒作用Fe(OH | | |\n| )~3~ 有胶体性质,其 | | |\n| 带正电的Fe(OH)~3~胶 | | |\n| 粒吸附带负电的水中悬 | | |\n| 浮物、泥沙等而造成聚 | | |\n| 沉而达到净水目的。 | | |\n| | | |\n| 板书3 | | |\n| )明矾的净水作用。 | | |\n| | | |\n| [点击试 | | |\n| 题4为什么河流入海 | | |\n| 处,易形成三角洲? | | |\n| | | |\n| 板书4江河 | | |\n| 入海口处形成三角洲 | | |\n| | | |\n| 点击试题5豆 | | |\n| 浆里放入盐卤或石膏, | | |\n| 为什么可制成豆腐? | | |\n| | | |\n| [板书]( | | |\n| 5豆腐的制作原理 | | |\n| | | |\n| | | |\n| 小结]胶体的应用很广 | | |\n| ,随着技术进步,其应 | | |\n| 用领域还将不断扩大。 | | |\n| | | |\n| | | |\n| 设问]通过本节的学习 | | |\n| ,我们了解了多少?你 | | |\n| 认为本课重点是什么? | | |\n| | | |\n| [总结]本 | | |\n| 节我们主要学习了胶体 | | |\n| 的性质,并了解了胶体 | | |\n| 性质在实际中的应用。 | | |\n| 那么胶体性质与胶体粒 | | |\n| 子大小的关系是什么? | | |\n| | | |\n| [投影归纳] | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 第二节 | | |\n| 离子反应(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、知道酸、碱、盐 |\n| | | 在溶液中能发生电离, |\n| 学 | 与 | |\n| | | 2、了解电 |\n| 目 | 技能 | 解质和非电解质的概念 |\n| | | |\n| 的 | | 3、培养学生 |\n| | | 通过实验现象分析、探 |\n| | | 究化学反应实质的能力 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过 |\n| | | 对比实验\"几组物质的 |\n| | 与 | 导电实验\",初步学会 |\n| | | 形成概念的分析方法; |\n| | 方法 | |\n| | | 2、 |\n| | | 引导学生自主学习,从 |\n| | | 电离的角度得出酸、碱 |\n| | | 、盐定义,通过独立思 |\n| | | 考探究碱与盐的定义。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1 |\n| | | 、通过实验激发学生学 |\n| | 态度 | 习化学的兴趣和情感; |\n| | | |\n| | 价值观 | 2 |\n| | | 、培养学生严谨求实、 |\n| | | 勇于探索的科学态度; |\n| | | |\n| | | 3、对 |\n| | | 学生进行透过现象看本 |\n| | | 质的辩证唯物主义教育 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 电解质的概念 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 电解质的概 | |\n| | 念;探究碱和盐的定义 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第二节 离子反应 | |\n| | | |\n| 识 | [Flash演示NaCl | |\n| | 的溶解和电离]{.ul} | |\n| 结 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2941f17980206b27936144e82ab56841", "__created_at__": 1754897909, "content": "<22> 点 | 电解质的概 | |\n| | 念;探究碱和盐的定义 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第二节 离子反应 | |\n| | | |\n| 识 | [Flash演示NaCl | |\n| | 的溶解和电离]{.ul} | |\n| 结 | | |\n| | 一、酸、碱、 | |\n| 构 | 盐在水溶液中的电离( | |\n| | ionization) | |\n| 与 | | |\n| | 1、电离 ( | |\n| 板 | ionization ) | |\n| | | |\n| 书 | | |\n| | 酸、碱、盐导电的条件 | |\n| 设 | :水溶液或熔融状态 | |\n| | | |\n| 计 | 2、、电解质( | |\n| | electrolyte | |\n| | ) | |\n| | :在水溶液里或熔化状 | |\n| | 态下能够导电的化合物 | |\n| | ,如酸、碱、盐等。 | |\n| | | |\n| | 非电解质 | |\n| | :在水溶液里和熔融状 | |\n| | 态下都不导电的化合物 | |\n| | ,如蔗糖、酒精等。 | |\n| | | |\n| | 3、电离方程式 | |\n| | | |\n| | KCl == K^^ + | |\n| | Cl^―^ Na~2~SO~4~ == | |\n| | 2 Na^^ | |\n| | +SO~4~^2―^ | |\n| | | |\n| | AgNO~3~ ==Ag^^ + | |\n| | NO~3~^―^ BaCl~2~ == | |\n| | Ba^2^ + 2Cl^―^ | |\n| | | |\n| | NaHSO~4~ == Na^^ | |\n| | + H^^ +SO~4~^2―^ | |\n| | NaHCO~3~ == Na^^ + | |\n| | HCO~3~^―^ | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| | * | |\n| [引言]按照物质的 | *石墨、铜、盐酸、NaO | |\n| 分类,我们可以把纯净 | H溶液、K~2~SO~4~溶液 | |\n| 物分为单质和化合物。 | 和NaCl溶液能导电。 | |\n| 按照化合物种类的划分 | | |\n| ,我们又可以把化合物 | 培养学生的阅 | |\n| 分为酸、碱、盐、氧化 | 读能力,让学生通过图 | |\n| 物。在化学反应中我们 | 片或录像或电脑动画, | |\n| 还有一种重要的分类方 | 从实体中抽象出概念。 | |\n| 法,将有离子参加的反 | | |\n| 应统称为离子反应,没 | B、C、 | |\n| 有离子参加的反应叫做 | | |\n| 非离子反应。下面,我 | 通过练习引 | |\n| 们就来学习离子反应。 | 发学生讨论,加深对概 | |\n| | 念的理解,理解电解质 | |\n| [板书]第二节 | 、非电解质概念时应注 | |\n| 离子反应 | 意些什么?请结合问题 | |\n| | 加以讨论、分析、归纳 | |\n| [投影 | | |\n| ]据初中所学判断, | 学生板书 | |\n| 下列物质中能导电吗? | 练习并改正,强化定义 | |\n| 为什么?请大家思考。 | | |\n| | | |\n| 盐 | | |\n| 酸、NaOH溶液、NaCl固 | | |\n| 体、石墨、蔗糖溶液、 | | |\n| K~2~SO~4~溶液、酒精 | | |\n| 溶液、CuNaCl溶液。 | | |\n| | | |\n| [讲] | | |\n| 石墨、铜", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-d32b54740698226126a593738113d383", "__created_at__": 1754897909, "content": "| 酸、NaOH溶液、NaCl固 | | |\n| 体、石墨、蔗糖溶液、 | | |\n| K~2~SO~4~溶液、酒精 | | |\n| 溶液、CuNaCl溶液。 | | |\n| | | |\n| [讲] | | |\n| 石墨、铜能导电,是因 | | |\n| 为其中有自由移动的电 | | |\n| 子存在。盐酸、NaOH溶 | | |\n| 液、K~2~SO~4~溶液和 | | |\n| NaCl溶液能导电是因 | | |\n| 为其中有自由移动的离 | | |\n| 子存在。这些自由的离 | | |\n| 子是如何产生的呢?为 | | |\n| 什么氯化钠固体不导电 | | |\n| ,而氯化钠溶液可以? | | |\n| 让我们一起进入微观世 | | |\n| 界,了解氯化钠溶解的 | | |\n| 过程发生了什么变化。 | | |\n| | | |\n| [Flash演示NaCl | | |\n| 的溶解和电离]{.ul} | | |\n| | | |\n| | | |\n| 讲]当氯化钠固体还 | | |\n| 没有进入水溶液的时候 | | |\n| ,水分子在不停的做无 | | |\n| 规则的运动。加入氯化 | | |\n| 钠固体之后,水分子包 | | |\n| 围固体溶质并分布在固 | | |\n| 体表面。水分子的作用 | | |\n| 减弱了氯化钠晶体中钠 | | |\n| 离子和氯离子的静电作 | | |\n| 用力,使氯化钠电离出 | | |\n| 钠离子和氯离子,这个 | | |\n| 时候吸收了一定的热量 | | |\n| ,请大家注意温度计温 | | |\n| 度的变化,钠离子和氯 | | |\n| 离子继而在水分子的作 | | |\n| 用下发生水合,生成了 | | |\n| 能够自由移动的水合钠 | | |\n| 离子和水合氯离子。我 | | |\n| 们把这种产生自由移动 | | |\n| 离子的过程称为电离。 | | |\n| | | |\n| | | |\n| /[板书/]一、酸、碱、 | | |\n| 盐在水溶液中的电离( | | |\n| ionization) | | |\n| | | |\n| 1、电离 ( | | |\n| ionization ) | | |\n| | | |\n| [讲] | | |\n| 把氯化钠投入水中,我 | | |\n| 们观察到的是氯化钠溶 | | |\n| 解的现象,这个现象本 | | |\n| 质上是氯化钠在水分子 | | |\n| 的作用下电离出了钠离 | | |\n| 子和氯离子并结合生成 | | |\n| 水合离子。这些自由移 | | |\n| 动的离子在电场的作用 | | |\n| 下定向移动,就是他们 | | |\n| 能够导电的本质原因。 | | |\n| | | |\n| | | |\n| /[过渡/]现在我们不 | | |\n| 仅知道溶液里面自由移 | | |\n| 动的离子是怎么产生的 | | |\n| ,也知道了溶液导电的 | | |\n| 原因。一个问题的解决 | | |\n| 是另一个问题的产生。 | | |\n| | | |\n| [追问]那么大家 | | |\n| 知道什么样的物质在什 | | |\n| 么条件下可以电离产生 | | |\n| 自由移动的离子?也就 | | |\n| 是说那些物质在什么样 | | |\n| 的情况下可以导电呢? | | |\n| | | |\n| /[板书/] | | |\n| 酸、碱、盐导电的条件 | | |\n| :水溶液或熔融状态 | | |\n| | | |\n| [讲]很好,酸、 | | |\n| <20>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-68c4c3efaeca5b73f3ee2406808fe3f7", "__created_at__": 1754897909, "content": "那些物质在什么样 | | |\n| 的情况下可以导电呢? | | |\n| | | |\n| /[板书/] | | |\n| 酸、碱、盐导电的条件 | | |\n| :水溶液或熔融状态 | | |\n| | | |\n| [讲]很好,酸、 | | |\n| 碱、盐的水溶液可以导 | | |\n| 电,说明他们可以电离 | | |\n| 出自由移动的离子。不 | | |\n| 仅如此,酸、碱、盐等 | | |\n| 在熔融状态下也能电离 | | |\n| 而导电,于是我们依据 | | |\n| 这个性质把能够在水溶 | | |\n| 液里[或]{.ul}熔融状 | | |\n| 态下能导电的[化合物 | | |\n| ]{.ul}统称为电解质。 | | |\n| | | |\n| | | |\n| 板书2、、电解质( | | |\n| electrolyte | | |\n| ) | | |\n| :在水溶液里或熔化状 | | |\n| 态下能够导电的化合物 | | |\n| ,如酸、碱、盐等。 | | |\n| | | |\n| 非电解质 | | |\n| :在水溶液里和熔融状 | | |\n| 态下都不导电的化合物 | | |\n| ,如蔗糖、酒精等。 | | |\n| | | |\n| [点击试题] | | |\n| | | |\n| 下面叙述正确的是( | | |\n| ) | | |\n| | | |\n| A、NaCl | | |\n| 溶液能导电所以NaCl | | |\n| 溶液是电解质 | | |\n| | | |\n| B、固态NaCl | | |\n| 不导电但NaCl | | |\n| 是电解质 | | |\n| | | |\n| C、HCl水 | | |\n| 溶液能导电所以HCl | | |\n| 是电解质 | | |\n| | | |\n| D、 | | |\n| SO~3~溶于水能导电, | | |\n| 所以SO~3~是电解质 | | |\n| | | |\n| E、Cu | | |\n| 能 | | |\n| 导电,所以是电解质 | | |\n| | | |\n| F、BaSO~4~的 | | |\n| 水溶液不能导电,所以 | | |\n| BaSO~4~是非电解质 | | |\n| | | |\n| [投 | | |\n| 影小结]注意事项: | | |\n| | | |\n| ③ | | |\n| 酸、碱、盐、金属氧 | | |\n| 化物、水是电解质,蔗 | | |\n| 糖、酒精为非电解质。 | | |\n| | | |\n| ① | | |\n| 电解质和 | | |\n| 非电解质是对化合物的 | | |\n| 分类,单质既不是电解 | | |\n| 质也不是非电解质。电 | | |\n| 解质应是化合物(属于 | | |\n| 纯净物。而Cu则是单 | | |\n| 质(能导电的物质不一 | | |\n| 定是电解质,如石墨或 | | |\n| 金属K~2~SO~4~与 | | |\n| NaCl溶液都是混合物。 | | |\n| | | |\n| ② | | |\n| 电解质应 | | |\n| 是一定条件下本身电离 | | |\n| 而导电的化合物。有些 | | |\n| 化合物的水溶液能导电 | | |\n| ,但溶液中离子不是它 | | |\n| 本身电离出来的,而是 | | |\n| 与水反应后生成的,因 | | |\n| 此也不是电解质。例如 | | |\n| CO~2~能导电是因CO~2 | | |\n| ~与H~2~O反应生成了H~ | | |\n| 2", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-25330ed9d0e3610b69c664201abe4b56", "__created_at__": 1754897909, "content": "|\n| ,但溶液中离子不是它 | | |\n| 本身电离出来的,而是 | | |\n| 与水反应后生成的,因 | | |\n| 此也不是电解质。例如 | | |\n| CO~2~能导电是因CO~2 | | |\n| ~与H~2~O反应生成了H~ | | |\n| 2~CO~3~H~2~CO~3~能 | | |\n| 够电离而非CO~2~本身 | | |\n| 电离。所以CO~2~不是 | | |\n| 电解质,是非电解质( | | |\n| 如氨气、二氧化硫、三 | | |\n| 氧化硫。H~2~CO~3~ | | |\n| H~2~SO~3~NH~3~. | | |\n| H~2~O 是电解质 | | |\n| | | |\n| ④ BaSO~4~ AgCl | | |\n| 难溶 | | |\n| 于水,导电性差,但由 | | |\n| 于它们的溶解度太小, | | |\n| 测不出(或难测)其水 | | |\n| 溶液的导电性,但它们 | | |\n| 溶解的部分是完全电离 | | |\n| 的,所以他们是电解质 | | |\n| | | |\n| ⑤ | | |\n| 化合物在水溶 | | |\n| 液中或受热熔化时本身 | | |\n| 能否发生电离是区别电 | | |\n| 解质与非电解质的理论 | | |\n| 依据,能否导电则是实 | | |\n| 验依据。能导电的物质 | | |\n| 不一定是电解质,如石 | | |\n| 墨;电解质本身不一定 | | |\n| 能导电如NaCl晶体。 | | |\n| | | |\n| ⑥ | | |\n| 电解质包括离子 | | |\n| 化合物和共价化合物。 | | |\n| 离子化合物是水溶液还 | | |\n| 是熔融状态下均可导电 | | |\n| ,如盐和强碱。共价化 | | |\n| 合物是只有在水溶液中 | | |\n| 能导电的物质如HCl | | |\n| | | |\n| [过渡]明确 | | |\n| 了什么是电解质,我们 | | |\n| 回头想想,刚才氯化钠 | | |\n| 的溶解,其根本的原因 | | |\n| 是氯化钠在水中发生电 | | |\n| 离,由于水分子作用减 | | |\n| 弱了钠离子与氯离子之 | | |\n| 间的静电作用使NaCl | | |\n| 发生电离 | | |\n| 并形成能够自由移动的 | | |\n| 水合钠离子与水合氯离 | | |\n| 子,为了方便,仍用离 | | |\n| 子符号表示水合离子。 | | |\n| | | |\n| 副板书NaCl == | | |\n| Na^^ + Cl^―^ | | |\n| | | |\n| [讲] | | |\n| 电解质在水中发生电 | | |\n| 离的这个过程,我们可 | | |\n| 以电离方程式来表示。 | | |\n| | | |\n| /[板 | | |\n| 书/]3、电离方程式 | | |\n| | | |\n| /[投影并分析/] | | |\n| H~2~SO~4~ = 2H^+^ + | | |\n| SO~4~^2-^ HCl = H^+^ | | |\n| + Cl^-^ | | |\n| | | |\n| HNO~3~ = H^+^ + | | |\n| NO~3~^-^ | | |\n| | | |\n| [讲 | | |\n| ]硫酸在水中电离生 | | |\n| 成了两个氢离子和一个 | | |\n| 硫酸根离子。盐酸,电 | | |\n| 离出一个氢离子和一个 | | |\n| 氯离子。硝酸则", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-e1a06463ef60e1f5887adaa772805041", "__created_at__": 1754897909, "content": "^ | | |\n| | | |\n| [讲 | | |\n| ]硫酸在水中电离生 | | |\n| 成了两个氢离子和一个 | | |\n| 硫酸根离子。盐酸,电 | | |\n| 离出一个氢离子和一个 | | |\n| 氯离子。硝酸则电离出 | | |\n| 一个氢离子和一个硝酸 | | |\n| 根离子。电离时生成的 | | |\n| 阳离子全部都是氢离子 | | |\n| 的化合物我们就称之为 | | |\n| 酸。从电离的角度,我 | | |\n| 们可以对酸的本质有一 | | |\n| 个新的认识。那碱还有 | | |\n| 盐又应怎么来定义呢? | | |\n| 大家能不能一起回答? | | |\n| | | |\n| /[投影/] | | |\n| 电离时生成的 | | |\n| 阴离子全部都是氢氧根 | | |\n| 离子的化合物叫做碱。 | | |\n| | | |\n| 电离 | | |\n| 时生成的金属阳离子( | | |\n| 或NH~4~^+^)和酸根阴 | | |\n| 离子的化合物叫做盐。 | | |\n| | | |\n| | | |\n| [讲]非常好,现在 | | |\n| 大家动手练一下:写出 | | |\n| 以下物质的电离方程式 | | |\n| | | |\n| /[投影试题/] | | |\n| 书 | | |\n| 写下列物质的电离方程 | | |\n| 式KCl、Na~2~SO~4~ | | |\n| 、AgNO~3~、BaCl~2~、 | | |\n| NaHSO~4~、NaHCO~3~ | | |\n| | | |\n| KCl == K^^ + | | |\n| Cl^―^ Na~2~SO~4~ == | | |\n| 2 Na^^ | | |\n| +SO~4~^2―^ | | |\n| | | |\n| AgNO~3~ ==Ag^^ + | | |\n| NO~3~^―^ BaCl~2~ == | | |\n| Ba^2^ + 2Cl^―^ | | |\n| | | |\n| NaHSO~4~ == Na^^ | | |\n| + H^^ +SO~4~^2―^ | | |\n| NaHCO~3~ == Na^^ + | | |\n| HCO~3~^―^ | | |\n| | | |\n| [讲 | | |\n| ]这里大家要特别注 | | |\n| 意,碳酸是一种弱酸, | | |\n| 弱酸的酸式盐如碳酸氢 | | |\n| 钠在水溶液中主要是电 | | |\n| 离出钠离子还有碳酸氢 | | |\n| 根离子;而硫酸是强酸 | | |\n| ,其酸式盐就在水中则 | | |\n| 完全电离出钠离子,氢 | | |\n| 离子还有硫酸根离子。 | | |\n| | | |\n| | | |\n| [投影小结]注意: | | |\n| | | |\n| 1、 | | |\n| HCO | | |\n| ~3~^-^、OH^-^、SO~4~ | | |\n| ^2-^等原子团不能拆开 | | |\n| | | |\n| 2、HSO~4~^―^ | | |\n| 在水溶液中拆开写,在 | | |\n| 熔融状态下不拆开写。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 第二节 | | |\n| 离子反应(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1 |\n| | | 、让学生理解离子反应 |\n| 学 | 与 | 的概念,掌握复分解型 |\n| | | 离子反", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ad27ea0ab5ab7712a09f1589e1288d28", "__created_at__": 1754897909, "content": "| | |\n| 离子反应(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1 |\n| | | 、让学生理解离子反应 |\n| 学 | 与 | 的概念,掌握复分解型 |\n| | | 离子反应发生的条件; |\n| 目 | 技能 | |\n| | | 2、在学生掌握复分 |\n| 的 | | 解型离子反应发生条件 |\n| | | 的基础上,能够分析溶 |\n| | | 液中离子的共存问题; |\n| | | |\n| | | 3、培养学生科学 |\n| | | 探究的思维方式和能力 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过组织学生实 |\n| | | 验探究的方法,掌握复 |\n| | 与 | 分解型离子反应发生的 |\n| | | 条件,并在此基础上掌 |\n| | 方法 | 握溶液中离子共存问题 |\n| | | |\n| | | 2 |\n| | | 、学会运用观察、实验 |\n| | | 、查阅资料等多种手段 |\n| | | 获取信息,并运用比较 |\n| | | 、分类、归纳、概括等 |\n| | | 方法对信息进行加工。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通过学生自主探 |\n| | | 究获得知识,让学生体 |\n| | 态度 | 验科学知识获得和形成 |\n| | | 的过程与方法,体会成 |\n| | 价值观 | 功的获得知识的乐趣。 |\n| | | |\n| | | 2、通 |\n| | | 过实验激发学生学习化 |\n| | | 学的兴趣和情感,对学 |\n| | | 生进行透过现象看本质 |\n| | | 的辩证唯物主义教育; |\n+----------------------+----------------------+----------------------+\n| 重 点 | 离子反应发生的条 | |\n| | 件的探究和提出问题、 | |\n| | 解决问题的方法与能力 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 引导学生设计离子反应 | |\n| | 发生的条件的探究方案 | |\n+----------------------+----------------------+----------------------+\n| 知 | 二、离 | |\n| | 子反应及其发生条件 | |\n| 识 | | |\n| | 1离子反应( ionic | |\n| 结 | reaction | |\n| | ) | |\n| 构 | 有离子参加的反应。 | |\n| | | |\n| 与 | 2.离 | |\n| | 子方程式:用实际参与 | |\n| 板 | 反应的离子符号来表示 | |\n| | 离子间反应的过程。 | |\n| 书 | | |\n| | 3.离子方程 | |\n| 设 | 式的书写:\"写、拆、 | |\n| | 删、查\"四个步骤。 | |\n| 计 | | |\n| | | |\n| | 4.离子方程式的意义: | |\n| | ①揭示反应的实质。 | |\n| | | |\n| | ②不 | |\n| | 仅表示一定物质间的某 | |\n| | 一个反应,而且表示所 | |\n| | 有同一类型的反应。 | |\n| | | |\n| | 5.离子反应发生的 | |\n| | 条件:生成难溶物、难 | |\n| | 电离物质(弱酸、弱碱 | |\n| | 、水)或挥发性物质( | |\n| | 气体)。因此,复分解 | |\n| | 反应均为离子反应。 | |\n| | | |\n| | 6、注意事项 | |\n| | | |\n| | 7、判断离 | |\n| | 子方程式正误的方法 | |\n| | | |\n| | 三 | |\n| | 、离子共存问题/-/-- | |\n| | 复分解反应 | |\n| | | |\n| | 1在溶液中某此 | |\n| | 离子间能互相反应生成 | |\n| | <20>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-dcef6f4ad3cb325016c52802410d0126", "__created_at__": 1754897909, "content": "| 子方程式正误的方法 | |\n| | | |\n| | 三 | |\n| | 、离子共存问题/-/-- | |\n| | 复分解反应 | |\n| | | |\n| | 1在溶液中某此 | |\n| | 离子间能互相反应生成 | |\n| | 难溶性物质时,这些离 | |\n| | 子就不能大量共存。 | |\n| | | |\n| | 2 | |\n| | )离子间能结合生成难 | |\n| | 电离的物质时,则这些 | |\n| | 离子不能大量共存。 | |\n| | | |\n| | | |\n| | 3离子间能结合生成 | |\n| | 挥发性物质时,则这些 | |\n| | 离子不能大量共存。 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [复习 | 由离子参加或生 | |\n| 提问]上节课我们学 | 成的反应,叫离子反应 | |\n| 习了离子反应,请同学 | | |\n| 回忆什么是离子反应? | 填写教材实验报告 | |\n| | | |\n| [问]电解质在水 | 先通过投影,启发学 | |\n| 溶液中的反应属于离子 | 生用\"四步曲\"完成Cu | |\n| 反应,是否任意两种或 | SO~4~ 和BaCl~2~ | |\n| 多种电解质溶液混合都 | 反应的离子方 | |\n| 能够发生离子反应呢? | 程式,然后适当地引导 | |\n| | 学生进行合作交流,感 | |\n| (不是) | 悟离子反应方程式的意 | |\n| | 义和书写规律,感悟形 | |\n| [过]在什 | 成分解反应中离子反应 | |\n| 么的情况下,两种电解 | 条件,从而达到培养学 | |\n| 质溶液混合就能够发生 | 生严谨求实、勇于探索 | |\n| 离子反应呢?这就是这 | 的科学态度,进而培养 | |\n| 节课我们要的问题/-/ | 学生的综合分析能力和 | |\n| -/-/-/--探究复分解型 | 学好化学的情感意志。 | |\n| 离子反应发生的条件。 | | |\n| | 让学 | |\n| [板书]二、离 | 生根据已掌握的相关反 | |\n| 子反应及其发生条件 | 应,提出设想,讨论交 | |\n| | 流得出若干的实验方法 | |\n| 1离子反应( ionic | | |\n| reaction | 充分利用和开发教材 | |\n| ) | 资源,让学生释放思想 | |\n| 有离子参加的反应。 | ,大胆猜想;放开手脚 | |\n| | ,大胆动手实验,发现 | |\n| 演示实验2-1 | 问题并在组内或小组间 | |\n| | 讨论解决,增强同学间 | |\n| 1、CuSO~ | 的科学合作意识,挖掘 | |\n| 4~溶液中滴加NaCl溶液 | 全体学生的聪明才智。 | |\n| | | |\n| 2、CuSO~4~溶 | | |\n| 液中滴加BaCl~2~溶液 | | |\n| | | |\n| | | |\n| 设问实验1无明显 | | |\n| 现象,原因是什么呢? | | |\n| | | |\n| 回答只是C | | |\n| uSO~4~溶液电离出的Cu | | |\n| ^2^和SO~4~^2―^与Na | | |\n| Cl溶液电离出的Na^^ | | |\n| Cl^―^的简单混合 | | |\n| | | |\n| [问]实验 | | |\n| 2中反应说明了什么 | | |\n| | | |\n| [结论]实 | | |\n| 验2说明了CuSO~4~溶液 | | |\n| 电离出的SO~4~^2―^和", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-26036eab9bc0b961e46632e517c3dd45", "__created_at__": 1754897909, "content": "―^的简单混合 | | |\n| | | |\n| [问]实验 | | |\n| 2中反应说明了什么 | | |\n| | | |\n| [结论]实 | | |\n| 验2说明了CuSO~4~溶液 | | |\n| 电离出的SO~4~^2―^和 | | |\n| BaCl~2~溶液电离出的 | | |\n| Ba^2^发生了化学反 | | |\n| 应生成了BaSO~4~白色 | | |\n| 沉淀。而CuSO~4~溶液 | | |\n| 电离出的Cu^2^与Ba | | |\n| Cl~2~电离出的Cl^―^并 | | |\n| 没有发生化学反应,在 | | |\n| 溶液中仍以Cu^2^和C | | |\n| l^―^的离子形式存在。 | | |\n| | | |\n| [总结 | | |\n| 由实验2可以看出 | | |\n| ,电解质在水溶液中所 | | |\n| 电离出的离子并没有全 | | |\n| 部发生了化学反应,而 | | |\n| 只有部分离子发生了化 | | |\n| 学反应生成其他物质。 | | |\n| | | |\n| [分析]上述 | | |\n| 实验\"2\"的反应本质: | | |\n| | | |\n| ②BaCl~2~溶液与 | | |\n| CuSO~4~溶液混合反应 | | |\n| 本质B^2^SO^2 | | |\n| ^~4~=====BSO~4~↓ | | |\n| | | |\n| [小结]上 | | |\n| 述用实际参加反应的离 | | |\n| 子符号表示离子反应的 | | |\n| 式子叫做离子方程式。 | | |\n| | | |\n| 板书2.离 | | |\n| 子方程式:用实际参与 | | |\n| 反应的离子符号来表示 | | |\n| 离子间反应的过程。 | | |\n| | | |\n| 3.离子方程 | | |\n| 式的书写:\"写、拆、 | | |\n| 删、查\"四个步骤。 | | |\n| | | |\n| [讲解] | | |\n| 以BaCl~2~ 溶液与CuS | | |\n| O~4~溶液为例来研究一 | | |\n| 下离子方程式的书写。 | | |\n| | | |\n| ①\"写\" | | |\n| ――根据客观事实,正确 | | |\n| 书写化学方程式,例: | | |\n| | | |\n| BaCl~2~CuSO~4~== | | |\n| ===BaSO~4~↓CuCl~2~ | | |\n| | | |\n| ②\"拆\" | | |\n| ――将易溶于水、易电离 | | |\n| 的物质(强电解质)拆 | | |\n| 成离子形式,把难于水 | | |\n| 的物质或难电离的物质 | | |\n| 以及气体、单质、氧化 | | |\n| 物仍用分子形式表示。 | | |\n| | | |\n| Ba^2^ | | |\n| 2Cl^^Cu^2^S | | |\n| O^2^~4~=====BaSO~4 | | |\n| ~↓Cu^2^2Cl^^ | | |\n| | | |\n| ③\"删 | | |\n| \"――对方程式两边都有 | | |\n| 的相同离子,把其中不 | | |\n| 参加反应的离子,应按 | | |\n| 数消掉。Ba^2^SO^ | | |\n| 2^~4~=====BaSO~4~↓ | | |\n| | | |\n| ④\"查\"――检 | | |\n| 查方程式两边各元素、 | | |\n| 原子个数和电荷数是否 | | |\n| 守恒,离子方", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-432638ec67b39d3a532ca0ebdbabd68d", "__created_at__": 1754897909, "content": "| |\n| 数消掉。Ba^2^SO^ | | |\n| 2^~4~=====BaSO~4~↓ | | |\n| | | |\n| ④\"查\"――检 | | |\n| 查方程式两边各元素、 | | |\n| 原子个数和电荷数是否 | | |\n| 守恒,离子方程式两边 | | |\n| 的系数是否为最简比。 | | |\n| | | |\n| [小结]四步中, | | |\n| \"写\"是基础,\"拆\"是关 | | |\n| 键,\"删\"是途径,\"查 | | |\n| \"是保证。既然拆是关 | | |\n| 键,拆时应注意作出准 | | |\n| 确判断,易溶、易电离 | | |\n| 物质应拆,难溶、难电 | | |\n| 离物质仍保留化学式。 | | |\n| | | |\n| | | |\n| [点击试题]完成下列 | | |\n| 反应的离子方程式。 | | |\n| | | |\n| ①HClNaOH ② | | |\n| HCl+KOH ③ NaOH + | | |\n| H~2~SO~4~ ④ | | |\n| H~2~SO~4~KOH | | |\n| | | |\n| [投影小结] | | |\n| | | |\n| +-------+-------+ | | |\n| | 化 | 离 | | | |\n| | 学方 | 子方 | | | |\n| | 程式 | 程式 | | | |\n| +-------+-------+ | | |\n| | NaOH | H^^ | | | |\n| | +HCl | + | | | |\n| | = | OH^―^ | | | |\n| | =NaCl | == | | | |\n| | + | H~2~O | | | |\n| | H~2~O | | | | |\n| | | H^^ | | | |\n| | KOH | + | | | |\n| | +HCl | OH^―^ | | | |\n| | ==KCl | == | | | |\n| | + | H~2~O | | | |\n| | H~2~O | | | | |\n| | | H^^ | | | |\n| | 2NaOH | + | | | |\n| | + | OH^―^ | | | |\n| | H~2~ | == | | | |\n| | SO~4~ | H~2~O | | | |\n| | == | | | | |\n| | Na~2~ | H^^ | | | |\n| | SO~4~ | + | | | |\n| | +2 | OH^―^ | | | |\n| | H~2~O | == | | | |\n| | | H~2~O | | | |\n| | 2KOH | | | | |\n| | + | | | | |\n| | H~2~ | | | | |\n| | SO~4~ | | | | |\n| | = | | | | |\n| | =K~2~ | | | | |\n| | SO~4~ | | | | |\n| | +2 | | | | |\n| | H~2~O | | | | |\n| +-------+-------+ | | |\n| | | |\n| | | |\n| 问]通过这些离子方 | | |\n| 程式你们发现了什么? | | |\n| | | |\n| [分析] | | |\n| 反应物不同,却都可用 | | |\n| 同一离子方程式表示。 | | |\n| | | |\n| [小结]可见离子 | | |\n| 方程式与化学方程式的 | | |\n| 意义不一样,化学方程 | | |\n| 式仅代表某一个反应的 | | |\n| 情况,而离子方程式不 | | |\n| 仅可表示一定物质间的 | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-37db43f139b64995c43c1fe53fc01670", "__created_at__": 1754897909, "content": "|\n| | | |\n| [小结]可见离子 | | |\n| 方程式与化学方程式的 | | |\n| 意义不一样,化学方程 | | |\n| 式仅代表某一个反应的 | | |\n| 情况,而离子方程式不 | | |\n| 仅可表示一定物质间的 | | |\n| 某一个反应,而且表示 | | |\n| 所有同一类型的反应。 | | |\n| | | |\n| [板书] | | |\n| 4.离子方程式的意义 | | |\n| | | |\n| * | | |\n| *①揭示反应的实质。 | | |\n| | | |\n| ②不 | | |\n| 仅表示一定物质间的某 | | |\n| 一个反应,而且表示所 | | |\n| 有同一类型的反应。 | | |\n| | | |\n| [设问]是否所 | | |\n| 有的中和反应的离子方 | | |\n| 程式都可表示为H^ | | |\n| ^OH^^=====H~2~O | | |\n| | | |\n| | | |\n| [点击试题]完成下列 | | |\n| 反应的离子方程式: | | |\n| | | |\n| ①Cu(OH)~2~HCl | | |\n| ②CH~3~COOHKOH | | |\n| ③Ba | | |\n| (OH)~2~H~2~SO~4~ | | |\n| | | |\n| | | |\n| 讲述]上述三个反应 | | |\n| 的离子方程式分别为: | | |\n| | | |\n| C(OH)~2~2H^^= | | |\n| ====C^2^2H~2~O | | |\n| Cu( | | |\n| OH)~2~------难溶碱) | | |\n| | | |\n| C | | |\n| H~3~COOHOH^^==== | | |\n| =CH~3~COO^^H~2~O | | |\n| CH~3~ | | |\n| COOH------难电离物) | | |\n| | | |\n| Ba^2^2OH^ | | |\n| ^2H^^SO~4~^2―^ | | |\n| = | | |\n| ====BaSO~4~↓2H~2~O | | |\n| | | |\n| [引导]通 | | |\n| 过上述比较可知H^ | | |\n| ^OH^^=====H~2~O | | |\n| 这一离子方程式表示的 | | |\n| 是什么样的中和反应? | | |\n| | | |\n| | | |\n| 小结H^^OH^ | | |\n| ^=====H~2~O表示强酸 | | |\n| +强碱生成可溶性盐+ | | |\n| 水的这一类反应的本质 | | |\n| | | |\n| [[学生实 | | |\n| 验实验2-3]{.ul} | | |\n| | | |\n| +-------+-------+ | | |\n| | | 现象 | | | |\n| | | 及离 | | | |\n| | | 子方 | | | |\n| | | 程式 | | | |\n| +-------+-------+ | | |\n| | 1、向 | 有 | | | |\n| | 盛有2 | 白色 | | | |\n| | mL | 沉淀 | | | |\n| | Na~2~ | | | | |\n| | SO~4~ | SO~4 | | | |\n| | 溶液 | ~^2―^ | | | |\n| | 的试 | + | | | |\n| | 管里 | Ba | | | |\n| | 加入2 | ^2^ | | | |\n| | mL | ==Ba | | | |\n| | Ba | SO~4~ | | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-cb3cf2975a4c176eccd4101ea598cf76", "__created_at__": 1754897909, "content": "|\n| | 溶液 | ~^2―^ | | | |\n| | 的试 | + | | | |\n| | 管里 | Ba | | | |\n| | 加入2 | ^2^ | | | |\n| | mL | ==Ba | | | |\n| | Ba | SO~4~ | | | |\n| | Cl~2~ | ↓ | | | |\n| | 溶液 | | | | |\n| +-------+-------+ | | |\n| | 2、向 | 溶液 | | | |\n| | 盛有2 | 变红 | | | |\n| | mL | ,又 | | | |\n| | NaOH | 逐渐 | | | |\n| | 稀 | 褪去 | | | |\n| | 溶液 | | | | |\n| | 的试 | H^^ | | | |\n| | 管里 | + | | | |\n| | 滴入 | OH^―^ | | | |\n| | 几滴 | == | | | |\n| | 酚酞 | H~2~O | | | |\n| | 溶液 | | | | |\n| | ,再 | | | | |\n| | 用滴 | | | | |\n| | 管向 | | | | |\n| | 试管 | | | | |\n| | 里慢 | | | | |\n| | 慢滴 | | | | |\n| | 入稀 | | | | |\n| | 盐酸 | | | | |\n| | ,至 | | | | |\n| | 溶液 | | | | |\n| | 恰好 | | | | |\n| | 变色 | | | | |\n| | 为止 | | | | |\n| +-------+-------+ | | |\n| | 3、向 | 有 | | | |\n| | 盛有2 | 气泡 | | | |\n| | mL | 产生 | | | |\n| | Na~2~ | | | | |\n| | CO~3~ | CO | | | |\n| | 溶液 | ~3~^2 | | | |\n| | 的试 | ―^2 | | | |\n| | 管里 | H^^ | | | |\n| | 加入2 | == | | | |\n| | mL  | H~2~O | | | |\n| | 盐酸 | + | | | |\n| | | CO~2~ | | | |\n| +-------+-------+ | | |\n| | | |\n| [提问]上述 | | |\n| 离子反应发生后,溶液 | | |\n| 中各离子的数目有何变 | | |\n| 化?(总有离子的减少) | | |\n| | | |\n| [归纳] | | |\n| 离子反应的实质就是 | | |\n| 通过反应使某些离子的 | | |\n| 数目明显减少的过程。 | | |\n| | | |\n| | | |\n| 讨论]哪些因素可以 | | |\n| 使离子数目明显减少? | | |\n| | | |\n| 板书5.离 | | |\n| 子反应发生的条件: | | |\n| | | |\n| 生成难溶物、难 | | |\n| 电离物质(弱酸、弱碱 | | |\n| 、水)或挥发性物质( | | |\n| 气体)。因此,复分解 | | |\n| 反应均为离子反应。 | | |\n| | | |\n| /[投影总结/] | | |\n| | | |\n| 1常见酸、 | | |\n| 碱、盐的溶解性规律 | | |\n| | | |\n| 酸: | | |\n| 除硅酸外一般均可溶; | | |\n| | | |\n| 碱除NaOH、KOH | | |\n| 、BaOH~2~、NH~3~ | | |\n| H~2~O溶Ca", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-495f7c4f405225a327807b0340ec75b1", "__created_at__": 1754897909, "content": "盐的溶解性规律 | | |\n| | | |\n| 酸: | | |\n| 除硅酸外一般均可溶; | | |\n| | | |\n| 碱除NaOH、KOH | | |\n| 、BaOH~2~、NH~3~ | | |\n| H~2~O溶CaOH~ | | |\n| 2~微溶,其余均难溶; | | |\n| | | |\n| 盐:钾 | | |\n| 、钠、铵、硝酸盐均可 | | |\n| 溶氯化物中AgClHg | | |\n| ~2~Cl~2~不溶。硫酸盐 | | |\n| 中BaSO~4~、PbSO~4~、 | | |\n| CaSO~4~、Ag~2~SO~4~ | | |\n| | | |\n| 2 | | |\n| )常见的弱酸、弱碱 | | |\n| | | |\n| 弱酸H | | |\n| F、CH~3~COOH、HClO、 | | |\n| H~2~S、H~2~SO~3~、H | | |\n| ~3~PO~4~、H~2~SiO~3~ | | |\n| | | |\n| 弱碱NH~3~ | | |\n| H~2~O、难溶碱 | | |\n| | | |\n| /[过/] | | |\n| 在现阶段,我们就研究 | | |\n| 复分解型的离子反应。 | | |\n| | | |\n| [板 | | |\n| 书6、注意事项 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| /(1/) | | |\n| 注 | | |\n| 意哪些物质是难溶于水 | | |\n| 的物质,哪些物质是易 | | |\n| 溶于水的,哪些物质是 | | |\n| 微溶于水的。在写离子 | | |\n| 方程式时难溶于水的物 | | |\n| 质必须用分子式写,如 | | |\n| BaSO~4~,AgCl,CaCO~3~ | | |\n| 等。 | | |\n| | | |\n| 对于微溶物的处 | | |\n| 理,有以上三种情况: | | |\n| | | |\n| ①当反应物中有 | | |\n| 微溶物并且处于澄清状 | | |\n| 态时,应将微溶物写成 | | |\n| 离子形式。如在澄清石 | | |\n| 灰水中通入适量CO~2~ | | |\n| ,其离 | | |\n| 子方程式为Ca^2^ | | |\n| +2OH^―^ +CO~2~ | | |\n| ==CaCO~3~ ↓+H~2~O | | |\n| | | |\n| ②当反应物中 | | |\n| 有微溶物,且处于悬浊 | | |\n| 液或固态时,应将微溶 | | |\n| 物写成分子式。如在石 | | |\n| 灰乳中加入Na~2~CO~3~ | | |\n| 浓溶液,其离子 | | |\n| 方程式为Ca(OH)~2~ | | |\n| +CO~3~^2―^ ==CaCO~3~ | | |\n| ↓+2OH^―^ | | |\n| | | |\n| ③在生成物中有微溶物 | | |\n| 析出时,应用分子式表 | | |\n| 示。向澄清石灰水中加 | | |\n| 入稀硫酸,其离子方程 | | |\n| 式为Ca^2^2OH^ | | |\n| ―^2H^^SO~4~^2― | | |\n| ^CaSO~4~↓+2H~2~O | | |\n| | | |\n| 2注 | | |\n| 意反应是否在溶液中进 | | |\n| 行。离子方程式只能用 | | |\n| 来表示电解质在<E8B4A8>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-e1be88c49790be4ab05ce043c78d0472", "__created_at__": 1754897909, "content": "| ―^2H^^SO~4~^2― | | |\n| ^CaSO~4~↓+2H~2~O | | |\n| | | |\n| 2注 | | |\n| 意反应是否在溶液中进 | | |\n| 行。离子方程式只能用 | | |\n| 来表示电解质在溶液中 | | |\n| 进行的反应,不是在溶 | | |\n| 液中进行的反应,一般 | | |\n| 不用离子方程式表示。 | | |\n| | | |\n| 例如,氯化铵固体与 | | |\n| 熟石灰固体之间经加热 | | |\n| 生成氨气的反应,尽管 | | |\n| 是复分解反应,但不是 | | |\n| 以自由移动的离子形式 | | |\n| 参与反应的,就不能用 | | |\n| 离子反应表示,只能用 | | |\n| 化学反应方程式表示: | | |\n| 2NH~4~ClCa(OH)~2~ | | |\n| ==CaCl~2~ | | |\n| +2NH~3~↑+2H~2~O | | |\n| | | |\n| (3)多元强酸酸式 | | |\n| 酸根离子在离子方程中 | | |\n| 拆开写;多元弱酸酸式 | | |\n| 酸根离子则不拆开写。 | | |\n| | | |\n| 例如NaHSO~4~ | | |\n| 与NaOH的反应 | | |\n| 离子方程式为H^^ | | |\n| OH^―^ H~2~O  | | |\n| | | |\n|   NaHCO~3~与NaOH的 | | |\n| 反应,离子方程式为: | | |\n| HCO~3~^―^OH^―^  | | |\n| H~2~OCO~3~^2―^  | | |\n| | | |\n| /(4/) | | |\n| 单质、氧化 | | |\n| 物、沉淀、气体在离子 | | |\n| 方程式一律写成化学式 | | |\n| | | |\n| 板书7、判断离 | | |\n| 子方程式正误的方法 | | |\n| | | |\n| [投影并讲结] | | |\n| | | |\n| 1看该反应是否能 | | |\n| 写出离子反应方程式。 | | |\n| | | |\n| 2看像 | | |\n| == ↑ ↓及必要的反应 | | |\n| 条件是否正确、齐全。 | | |\n| | | |\n| 3看表示各物质 | | |\n| 的化学式是否正确,该 | | |\n| 用离子表示的是否拆成 | | |\n| 了离子,该用分子表示 | | |\n| 的是否写成了分子式。 | | |\n| | | |\n| 4 | | |\n| )必须满足守恒原则( | | |\n| 元素守恒、电荷守恒) | | |\n| | | |\n| 5不可 | | |\n| 以局部约分。注意溶液 | | |\n| 中溶质电离出的阴离子 | | |\n| 和阳离子配数比是否正 | | |\n| 确。某些离子方程式离 | | |\n| 子数不能任意约减,例 | | |\n| 如H~2~SO~4~与Ba(OH | | |\n| )~2~溶液反应的离子方 | | |\n| 程式应当是Ba^2^ | | |\n| 2OH^―^2H^^  | | |\n| SO~4~^2―^ BaSO | | |\n| ~4~↓2H~2~O 而不能 | | |\n| 写成Ba^2^OH^―^ | | |\n| BaSO~4~↓H~2~O  | | |\n| | | |\n| [过渡]前面 | | |\n| 我们学习了离子反应及 | | |\n| 离", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2c06fddc4950c8ea377f1b61fa0b4fef", "__created_at__": 1754897909, "content": "|\n| ~4~↓2H~2~O 而不能 | | |\n| 写成Ba^2^OH^―^ | | |\n| BaSO~4~↓H~2~O  | | |\n| | | |\n| [过渡]前面 | | |\n| 我们学习了离子反应及 | | |\n| 离子反应方程式,接下 | | |\n| 来我们来讨论本节最后 | | |\n| 一个问题,有关溶液中 | | |\n| 的离子能否大量共存? | | |\n| | | |\n| [板书 | | |\n| ]三、离子共存问题 | | |\n| | | |\n| /[ | | |\n| 讲述/]离子反应是向着 | | |\n| 离子减弱的方向进行。 | | |\n| 离子共存是指离子之间 | | |\n| 不能发生离子反应。反 | | |\n| 之如离子间能发生反应 | | |\n| ,则离子间不能共存。 | | |\n| | | |\n| 造 | | |\n| 成离子不能共存的原因 | | |\n| 主要由以下几个方面: | | |\n| | | |\n| 板书1 | | |\n| 复分解反应 | | |\n| | | |\n| 1在溶液中某此 | | |\n| 离子间能互相反应生成 | | |\n| 难溶性物质时,这些离 | | |\n| 子就不能大量共存。 | | |\n| | | |\n| * | | |\n| *如SO~4~^2^与Ba^2+ | | |\n| ^、Pb^2+^、Ag^+^ | | |\n| | | |\n| OH^^与Cu^ | | |\n| 2+^、Fe^3+^、Mg^2^ | | |\n| 、Al^3+^、Zn^2+^ | | |\n| | | |\n| Ag^+ | | |\n| ^与Cl^^、Br^^、I | | |\n| ^^、CO~3~^2^、SO | | |\n| ~3~^2^、S^2^ | | |\n| | | |\n| Mg^2+^ | | |\n| 、Ca^2+^、Ba^2+^与CO | | |\n| ~3~^2^、SO~3~^2^ | | |\n| 、PO~4~^3^S^2^ | | |\n| 与Cu^2+^、Pb^2+^等 | | |\n| | | |\n| 2 | | |\n| )离子间能结合生成难 | | |\n| 电离的物质时,则这些 | | |\n| 离子不能大量共存。 | | |\n| | | |\n| 如H^+ ^与OH^ | | |\n| ^、ClO^^、CH~3~CO | | |\n| O^^、HPO~4~^2^、 | | |\n| H~2~PO~4~^^、F^―^ | | |\n| 、S^2―^ | | |\n| | | |\n| OH^^与HC | | |\n| O~3~^^、HS^^、HS | | |\n| O~3~^^、H~2~PO~4~^ | | |\n| ^、HPO~4~^2^、H^ | | |\n| +^等不能大量共存。 | | |\n| | | |\n| | | |\n| 3离子间能结合生成 | | |\n| 挥发性物质时,则这些 | | |\n| 离子不能大量共存。 | | |\n| | | |\n| 如: | | |\n| H^+^与CO~3~^2-^.SO~ | | |\n| 3~^2-^.S^2-^.HCO~3~^ | | |\n| -^,HSO~3~^-^,HS^-^ | | |\n| | | |\n|   | | |\n|  OH^―^ 与NH~4~^^ | | |\n|  等不能大量共存。 | | |\n| | | |\n| ", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-8d28e1578f7c59d7637d96c507a08b2f", "__created_at__": 1754897909, "content": "2-^.S^2-^.HCO~3~^ | | |\n| -^,HSO~3~^-^,HS^-^ | | |\n| | | |\n|   | | |\n|  OH^―^ 与NH~4~^^ | | |\n|  等不能大量共存。 | | |\n| | | |\n| | | |\n| 小结]强酸与弱酸的 | | |\n| 阴离子和弱酸的酸式酸 | | |\n| 根离子不能大量共存。 | | |\n| | | |\n|     强碱与弱碱的 | | |\n| 阳离子和弱酸的酸式酸 | | |\n| 根离子不能大量共存。 | | |\n| | | |\n| [讲] | | |\n| 注意题目是否给出附 | | |\n| 加条件,例如酸碱性, | | |\n| 在酸性溶液中除题给离 | | |\n| 子外还应有大量H^ | | |\n| ^,在碱性溶液中除题 | | |\n| 给离子外,还应有大量 | | |\n| OH^―^ ;是否给定溶 | | |\n| 液无色,若给定无色时 | | |\n| 则应排除Cu^2+^(蓝 | | |\n| 色、Fe^3+^(黄棕色 | | |\n| 、Fe^2+^(浅绿色) | | |\n| 、MnO~4~^-^(紫色) | | |\n| | | |\n| | | |\n| [总结]本节学习了 | | |\n| 离子反应及其表示形式 | | |\n| ,离子方程式的书写、 | | |\n| 意义,还有离子反应发 | | |\n| 生的条件,离子共存问 | | |\n| 题,其中离子方程式的 | | |\n| 书写是一难点,又是重 | | |\n| 要的化学用语,能够正 | | |\n| 确书写离子方程式,将 | | |\n| 为化学学习带来众多方 | | |\n| 便。希望同学们多练。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 第三节 | | |\n| 氧化还原反应(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、学会用化合价 |\n| | | 的变化和电子转移的观 |\n| 学 | 与 | 点判断氧化还原反应; |\n| | | |\n| 目 | 技能 | 2、初步 |\n| | | 掌握根据化合价的变化 |\n| 的 | | 和电子转移的观点分析 |\n| | | 氧化还原反应的方法; |\n| | | |\n| | | 3、理 |\n| | | 解氧化还原反应的本质 |\n| | | 就是发生了电子转移; |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、、复习巩固初 |\n| | | 中四种基本反应类型以 |\n| | 与 | 及从得氧、失氧角度划 |\n| | | 分氧化反应和还原反应 |\n| | 方法 | ,进一步了解化学反应 |\n| | | 的多种分类方法,并由 |\n| | | 此得出划分的依据不同 |\n| | | 而有不同的使用范围的 |\n| | | |\n| | | 2、培养学生思考及 |\n| | | 分析,解决问题的能力 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、理解 |\n| | | 氧化跟还原的相互依存 |\n| | 态度 | 和对立统一的辩证关系 |\n| | | |\n| | 价值观 | |\n+----------------------+----------------------+----------------------+\n| 重 点 | 用化 | |\n| | 合价升降和电子转移的 | |\n| | 观点理解氧化还原反应 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 理 | |\n| | 解氧化还原反应的本质 | |\n| | 就是发生了电子转移; | |\n+----------------------+----------------------+----------------------+\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-9671a12fdf9de58379222b13762322ce", "__created_at__": 1754897909, "content": "+\n| 重 点 | 用化 | |\n| | 合价升降和电子转移的 | |\n| | 观点理解氧化还原反应 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 理 | |\n| | 解氧化还原反应的本质 | |\n| | 就是发生了电子转移; | |\n+----------------------+----------------------+----------------------+\n| 知 | 第三节 | |\n| | 氧化还原反应 | |\n| 识 | | |\n| | 一、氧化还原反应 | |\n| 结 | | |\n| | 1、氧化反应( | |\n| 构 | oxidation | |\n| | reaction):元 | |\n| 与 | 素化合价升高的反应 | |\n| | | |\n| 板 | 还原反应( | |\n| | reduction | |\n| 书 | reaction):元 | |\n| | 素化合价降低的反应 | |\n| 设 | | |\n| | 氧化还原 | |\n| 计 | 反应:凡有元素化合价 | |\n| | 升降的化学反应就是 | |\n| | | |\n| | 2、氧化还原反 | |\n| | 应的判断依据/-/-/-/ | |\n| | --有元素化合价变化 | |\n| | | |\n| | 失电子总数=化合价 | |\n| | 升高总数==得电子总数 | |\n| | ==化合价降低总数。 | |\n| | | |\n| | 3、氧化还原反应 | |\n| | 的实质/-/-/-/-/--电 | |\n| | 子的转移(电子的得失 | |\n| | 或共用电子对的偏移 | |\n| | | |\n| | 口诀:化合价升高 | |\n| | ,失电子,被氧化; | |\n| | | |\n| | 化合价降 | |\n| | 低,得电子,被还原 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [复习 | 通 | |\n| ]化学反应可以从不 | 过回忆旧知识发现问题 | |\n| 同的角度进行分类,其 | ,引起学生思考,将学 | |\n| 目的在于了解各类反应 | 生的注意力引入课堂。 | |\n| 的本质。回忆一下,我 | 并遵循由旧入新、由浅 | |\n| 们初中学过哪些基本反 | 入深的课堂教学规律。 | |\n| 应类型?并举例说明。 | | |\n| | 学生板书方程式 | |\n| [投影小结] | | |\n| | 1、2Cu +O~2~==2CuO | |\n| 四种基本类型的反应 | 化合反应 | |\n| | | |\n| ---------- | 2、CuO+H~2~ ==H~2~O | |\n| -- ----------------- | +Cu置换反应 | |\n| -------------------- | | |\n| - ------------------ | 3、Fe + CuSO~4~ | |\n| 反应类型 举例 | =FeSO~4~ +Cu | |\n| | 置换反应 | |\n| 表示式 | | |\n| 化 | 4、NaCl + AgNO~3~ | |\n| 合反应 CO~2~ C | ==AgCl↓+NaNO~3~ | |\n| O~2~ | 复分解反应 | |\n| AB====AB | | |\n| 分 | 5、CaCO~3~ ==CaO | |\n| 解反应 CaCO~3~ C | +CO~2~ | |\n| aOCO~2~↑ | | |\n| AB====AB | 分解反应 | |\n| 置换反 | | |\n| 应 C2CuO 2Cu | 通过及时到位的练习 | |\n| CO~2~↑ | 更好的巩固氧化还原反 | |\n| ABC====ACB | 应的判断依据和应用。 | |\n| 复分解反 | | |\n| 应 CaCO~3~+2HCl=== | 在 | |\n| =CaCl~2~+H~2~", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-5d3259031371bda6d42f34ec9dd00c8a", "__created_at__": 1754897909, "content": "Cu | 通过及时到位的练习 | |\n| CO~2~↑ | 更好的巩固氧化还原反 | |\n| ABC====ACB | 应的判断依据和应用。 | |\n| 复分解反 | | |\n| 应 CaCO~3~+2HCl=== | 在 | |\n| =CaCl~2~+H~2~O+CO~2~ | 讲电子数目时巧妙的带 | |\n| ↑ ABCD====ADCB | 出四者相等的结果,为 | |\n| ---------- | 讲得失电子守衡和化合 | |\n| -- ----------------- | 价变化分析埋下伏笔。 | |\n| -------------------- | | |\n| - ------------------ | 通过对NaCl 和HCl | |\n| | 形成过程的 | |\n| [引 | 分析引导学生寻找氧化 | |\n| ]初中阶段我们学习 | 还原反应的本质,深入 | |\n| 过许多化学反应,根据 | 理解\"电子转移\"的意义 | |\n| 反应物和生成物的类别 | ,并向学生渗透从结构 | |\n| 以及反应前后物质的种 | 入手探究化学反应这一 | |\n| 类的多少可以把他们分 | 化学学习的重要理想。 | |\n| 为四个基本反应类型, | | |\n| 但是有一些反应,比如 | | |\n| Fe~2~O~3~ + 3CO | | |\n| ==2Fe +3CO~2~ | | |\n| ,经过分析,它 | | |\n| 不属于四个基本反应类 | | |\n| 型的任何一个,说明上 | | |\n| 述分类方法不能包括所 | | |\n| 有反应,所以我们需要 | | |\n| 制定一个新的分类方法 | | |\n| ,这节课我们就来共同 | | |\n| 探讨解决一下这个问题 | | |\n| | | |\n| [板书]第三节 | | |\n| 氧化还原反应 | | |\n| | | |\n| [过]化 | | |\n| 学学习和日常生活中, | | |\n| 我们认识了许多化学反 | | |\n| 应,现在请你写出屏幕 | | |\n| 上几个反应的化学方程 | | |\n| 式,并讨论并交流这类 | | |\n| 化学反应的分类标准。 | | |\n| | | |\n| [投影 | | |\n| ]写出下列化学反应 | | |\n| | | |\n| 1、铜和氧气的反应 | | |\n| | | |\n| 2 | | |\n| 、氧化铜与氢气的反应 | | |\n| | | |\n| 3、 | | |\n| 铁与硫酸铜溶液的反应 | | |\n| | | |\n| 4、氯化钠溶 | | |\n| 液与硝酸银溶液的反应 | | |\n| | | |\n| 5、碳酸钙的分解反应 | | |\n| | | |\n| 反应2Cu | | |\n| +O~2~==2CuO | | |\n| 除属化合反应外 | | |\n| 还属于什么反应类型? | | |\n| | | |\n| (氧化反应) | | |\n| | | |\n| [问 | | |\n| ]什么叫氧化反应? | | |\n| | | |\n| (物质跟氧发生的化 | | |\n| 学反应称为氧化反应) | | |\n| | | |\n| [问] | | |\n| 请判断下列反应中H~2~ | | |\n| 发生 | | |\n| 了什么反应CuO+H~2~ | | |\n| ==H~2~O +Cu | | |\n| | | |\n| (H~2~ 夺取了CuO | | |\n| 中的氧并 | | |\n| 与氧结合生成了H~2~O | | |\n| ,发生了氧化反应) | | |\n| | | |\n| 那么CuO | | |\n| 发生了什么反应? | | |\n| | | |\n| (CuO | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-15de98f51f6f8bc764daa4734e89bbd9", "__created_at__": 1754897909, "content": "| |\n| 中的氧并 | | |\n| 与氧结合生成了H~2~O | | |\n| ,发生了氧化反应) | | |\n| | | |\n| 那么CuO | | |\n| 发生了什么反应? | | |\n| | | |\n| (CuO | | |\n| 失去了氧 | | |\n| ,发生的是还原反应) | | |\n| | | |\n| [讲]在这个 | | |\n| 反应中,氧化铜失去氧 | | |\n| 变成单质铜,发生了还 | | |\n| 原反应;碳得到了氧变 | | |\n| 成了二氧化碳,发生了 | | |\n| 氧化反应。也就是说, | | |\n| 氧化反应和还原反应是 | | |\n| 同时发生的,这样的反 | | |\n| 应称为氧化还原反应。 | | |\n| | | |\n| [思考 | | |\n| 与交流请分析下列3 | | |\n| 个氧化还原反应中各种 | | |\n| 元素的化合价在反应前 | | |\n| 后有无变化,讨论氧化 | | |\n| 还原反应与元素化合价 | | |\n| 的升降有什么关系。 | | |\n| | | |\n| 1、2CuO +C===2Cu | | |\n| +CO~2~ ↑ | | |\n| | | |\n| 2、H~2~O +C==H~2~ | | |\n| +CO | | |\n| | | |\n| 3、CuO +H~2~ ===Cu | | |\n| +H~2~O | | |\n| | | |\n| (在反 | | |\n| 应1中铜元素化合价 | | |\n| 降低,碳元素化合价升 | | |\n| 高在反应2中氢元 | | |\n| 素化合价降低,碳元素 | | |\n| 化合价升高在反应3 | | |\n| 中铜元素化合价降低, | | |\n| 氢元素化合价升高,) | | |\n| | | |\n| [讲]由此可知, | | |\n| 有元素化合价升高的反 | | |\n| 应是氧化反应,有元素 | | |\n| 化合价降低的反应是还 | | |\n| 原反应,氧化与还原这 | | |\n| 两个对立的过程相互依 | | |\n| 存而统一于一个氧化还 | | |\n| 原反应之中,同时发生 | | |\n| 而且不可以分离。总的 | | |\n| 来说,在化学反应中, | | |\n| 物质的某些元素的化合 | | |\n| 价在反应前后发生了变 | | |\n| 化就是氧化还原反应。 | | |\n| | | |\n| [板书 | | |\n| ]一、氧化还原反应 | | |\n| | | |\n| 1、氧化反应( | | |\n| oxidation | | |\n| reaction):元 | | |\n| 素化合价升高的反应 | | |\n| | | |\n| 还原反应( | | |\n| reduction | | |\n| reaction):元 | | |\n| 素化合价降低的反应 | | |\n| | | |\n| 氧化还原 | | |\n| 反应:凡有元素化合价 | | |\n| 升降的化学反应就是 | | |\n| | | |\n| 2、氧化还原反 | | |\n| 应的判断依据/-/-/-/ | | |\n| --有元素化合价变化 | | |\n| | | |\n| [问]请 | | |\n| 判断投影的五个反应都 | | |\n| 是否是氧化还原反应? | | |\n| | | |\n| (1、2、3反应中元素 | | |\n| 化合价发生了变化,所 | | |\n| 以他们是氧化还原反应 | | |\n| 4、5反应中元素化合 | | |\n| 价没有发生变化,所以 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ceb060a2e0f9accdb09f37333384b521", "__created_at__": 1754897909, "content": "| |\n| 是否是氧化还原反应? | | |\n| | | |\n| (1、2、3反应中元素 | | |\n| 化合价发生了变化,所 | | |\n| 以他们是氧化还原反应 | | |\n| 4、5反应中元素化合 | | |\n| 价没有发生变化,所以 | | |\n| 是非氧化还原反应。) | | |\n| | | |\n| [过]为什 | | |\n| 么氧化还原反应前后元 | | |\n| 素的化合价发生变化? | | |\n| 其本质原因是什么呢? | | |\n| | | |\n| 以2Na | | |\n| +Cl~2~==2NaCl 为例 | | |\n| | | |\n| [投影] | | |\n| | | |\n| 2Na | | |\n| +Cl~2~= | | |\n| =2NaCl 反应前后化 | | |\n| 合价发生了变化,是个 | | |\n| 氧化还原反应。钠原子 | | |\n| 最外层有一个电子,在 | | |\n| 反应中易失去一个电子 | | |\n| ,成为稳定的钠离子; | | |\n| 而氯原子最外层有7个 | | |\n| 电子,反应中易得到一 | | |\n| 个电子,成为稳定的氯 | | |\n| 离子,钠离子和氯离子 | | |\n| 通过静电作用形成离子 | | |\n| 化合物氯化钠。这个过 | | |\n| 程中电子通过失与得由 | | |\n| 钠原子转移到氯原子。 | | |\n| | | |\n| [讲]在 | | |\n| 形成离子化合物时,某 | | |\n| 元素的原子失去电子, | | |\n| 则使元素化合价升高, | | |\n| 某元素的原子得到电子 | | |\n| ,则此元素化合价最低 | | |\n| 。那么得失电子会使元 | | |\n| 素化合价发生了变化。 | | |\n| | | |\n| 电 | | |\n| 子由一种元素的原子转 | | |\n| 移到另一种元素的原子 | | |\n| ,带负电荷电子的移动 | | |\n| 使电路中产生了电流, | | |\n| 电流计指针发生了偏转 | | |\n| ,有关它的原理我们将 | | |\n| 在必修2中继续学习。 | | |\n| | | |\n| | | |\n| 问]由上述可知,形 | | |\n| 成离子化合物时,化合 | | |\n| 价变化的原因是什么? | | |\n| | | |\n| (Na | | |\n| 元素原子失电子,则化 | | |\n| 合价升高Cl元素原子 | | |\n| 得电子,则化合价降低 | | |\n| 。即化合价的变化在形 | | |\n| 成离子化合物时是由于 | | |\n| 元素得失电子引起的) | | |\n| | | |\n| [板书] | | |\n| | | |\n| 失电子总数=化合价 | | |\n| 升高总数==得电子总数 | | |\n| ==化合价降低总数。 | | |\n| | | |\n| [讲]同 | | |\n| 样我们再来分析H~2~ | | |\n| +Cl~2~===2HCl | | |\n| 。在氢气和氯气反 | | |\n| 应中,由于生成物氯化 | | |\n| 氢是共价化合物,在反 | | |\n| 应过程中,哪一种元素 | | |\n| 的原子都没有失去或完 | | |\n| 全得到电子,它们之间 | | |\n| 只有共用电子对的偏移 | | |\n| ,且共用电子对偏离于 | | |\n| 氢原子,而偏向于氯原 | | |\n| 子因此氢原子由0价 | | |\n| 升高到+1价被氧化氯 | | |\n| 元素从0价", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-49ef6c432601cb678368e0ec468fb4f4", "__created_at__": 1754897909, "content": "| 全得到电子,它们之间 | | |\n| 只有共用电子对的偏移 | | |\n| ,且共用电子对偏离于 | | |\n| 氢原子,而偏向于氯原 | | |\n| 子因此氢原子由0价 | | |\n| 升高到+1价被氧化氯 | | |\n| 元素从0价降低到-1价 | | |\n| ,被还原。所以,共用 | | |\n| 电子对的偏移也可以使 | | |\n| 元素化合价发生变化。 | | |\n| | | |\n| [板 | | |\n| 书3、氧化还原反应 | | |\n| 的实质/-/-/-/-/--电 | | |\n| 子的转移(电子的得失 | | |\n| 或共用电子对的偏移 | | |\n| | | |\n| | | |\n| [总结]让学生总结 | | |\n| 本节课所学主要内容。 | | |\n| | | |\n| --------------- | | |\n| - ------------------ | | |\n| ------------------- | | |\n| ------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| 得氧失氧观点 | | |\n| 化合价升降观 | | |\n| 点 | | |\n| 电子转移观点 | | |\n| 氧化反应 | | |\n| 得到氧的反应 | | |\n| 化合价升高的反 | | |\n| 应 | | |\n| 失去电子的反应 | | |\n| 还原反应 | | |\n| 失去氧的反应 | | |\n| 化合价降低的反 | | |\n| 应 | | |\n| 得到电子的反应 | | |\n| 氧化还原的关系 | | |\n| 得氧失氧同时发生 | | |\n| 化合价升降同时发生 | | |\n| (且升降总数相等) | | |\n| 得失电子同时发生( | | |\n| 且得失电子总数相等) | | |\n| 氧化还原反应 | | |\n| 有氧得失的反应 | | |\n| 有化合价升降的反 | | |\n| 应 | | |\n| 有电子转移的反应 | | |\n| --------------- | | |\n| - ------------------ | | |\n| ------------------- | | |\n| ------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| [板 | | |\n| 书]口诀:化合价升高 | | |\n| ,失电子,被氧化; | | |\n| | | |\n| 化合价降 | | |\n| 低,得电子,被还原 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 第三节 | | |\n| 氧化还原反应(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、掌握四种基 |\n| | | 本反应类型和氧化还原 |\n| 学 | 与 | 反应间的关系,理解氧 |\n| | | 化剂和还原剂的概念; |\n| 目 | 技能 | |\n| | | 2、了 |\n| 的 | | 解氧化还原反应在日常 |\n| | | 生活、生产中的应用; |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过 |\n| | | 氧化还原反应概念的教 |\n| | 与 | 学,培养学生准确描述 |\n| | | 概念、深刻理解概念、 |\n| | 方法 | 比较辨析概念的能力; |\n| | | |\n| | | 2、通过对氧化还原反 |\n| | | 应概念认识的过程,体 |\n| | | 会科学探究的基本方法 |\n| | | ,提高科学探究能力。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通 |\n| | | 过氧化还原反应概念的 |\n| | 态度 | <20>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-4402b11b4d50d5a01f29c97c7c8d216c", "__created_at__": 1754897909, "content": "| 2、通过对氧化还原反 |\n| | | 应概念认识的过程,体 |\n| | | 会科学探究的基本方法 |\n| | | ,提高科学探究能力。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通 |\n| | | 过氧化还原反应概念的 |\n| | 态度 | 演变,培养学生用发展 |\n| | | 的观点、科学的态度、 |\n| | 价值观 | 探索的精神学习化学; |\n| | | |\n| | | 2、通过创设问 |\n| | | 题情景,引导学生积极 |\n| | | 思维,激发学生学习化 |\n| | | 学的兴趣和求知欲望。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 氧化还原反应的本质 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 氧化 | |\n| | 还原反应的概念的应用 | |\n+----------------------+----------------------+----------------------+\n| 知 | 4 | |\n| | 、氧化还原反应与四种 | |\n| 识 | 基本反应类型的关系 | |\n| | | |\n| 结 | | |\n| | 二、氧化剂和还原剂 | |\n| 构 | | |\n| | 1、氧化 | |\n| 与 | 剂和还原剂(反应物) | |\n| | | |\n| 板 | 氧化剂:得电子 | |\n| | (或电子对偏向)的物质 | |\n| 书 | /-/-/-/-/--氧化性 | |\n| | | |\n| 设 | 还原剂:失电子 | |\n| | (或电子对偏离)的物质 | |\n| 计 | /-/-/-/-/--还原性 | |\n| | | |\n| | 氧化产 | |\n| | 物:氧化后的生成物 | |\n| | | |\n| | 还原产物 | |\n| | :还原后的生成物。 | |\n| | | |\n| | 氧化剂 + 还原剂 == | |\n| | 还原产物 + | |\n| | 氧化产物 | |\n| | | |\n| | 2、氧化还原反应中 | |\n| | 电子转移的表示方法 | |\n| | | |\n| | (1) | |\n| | 双线桥法/-/ | |\n| | --表示电子得失结果 | |\n| | | |\n| | (2) | |\n| | 单线桥---- | |\n| | --表示电子转移情况 | |\n| | | |\n| | ![ | |\n| | E://二附中//教学资源 | |\n| | //高一//氧化还原反应 | |\n| | 之四.files//Image121 | |\n| | .gif](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage58.png){width=\"2 | |\n| | .4993055555555554in\" | |\n| | height=\"0. | |\n| | 6027777777777777in\"} | |\n| | | |\n| | ![](s | |\n| | tatic/Images/a91144f | |\n| | da2c741b0b9694ebcfa9 | |\n| | d1deb/media/image59. | |\n| | png){width=\"2.625in\" | |\n| | height=\"0.8229166 | |\n| | 666666666in\"}3、常 | |\n| | 见的氧化剂与还原剂 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [课前小练 | 属于氧化还原 | |\n| ]判断下列反应属于 | 反应的有1、2、3、4、 | |\n| 哪种基本反应类型?是 | 6非氧化还原反应有 | |\n| 否属于氧化还原反应? | 5、7、8化合反应 | |\n| | 1、5、6分解反应 | |\n| 1、2 | 3、4、8置换反", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-0d7ae0ff20b2252b7b0255d9fb22071d", "__created_at__": 1754897909, "content": "的有1、2、3、4、 | |\n| 哪种基本反应类型?是 | 6非氧化还原反应有 | |\n| 否属于氧化还原反应? | 5、7、8化合反应 | |\n| | 1、5、6分解反应 | |\n| 1、2 | 3、4、8置换反应 | |\n| Na +Cl~2~==2NaCl | 2复分解反应7 | |\n| | | |\n| 2、Fe +CuSO~4~ | 学生讨论后并小结 | |\n| ==FeSO~4~ +Cu | | |\n| | 1、正确 | |\n| 3、2 HgO ==2Hg +O~2~ | | |\n| ↑ | 2、不正确 | |\n| | | |\n| 4、NH~4~NO~3~ | | |\n| ==N~2~O ↑+2H~2~O | 只有最后一个不是氯化 | |\n| | 还原反应。其它都是 | |\n| 5、CaO +H~2~O | | |\n| ==CaCO~3~ | 带着问题去阅 | |\n| | 读教材37页上的内容。 | |\n| 6、3 Fe +2O~2~ | | |\n| ==Fe~3~O~4~ | 通过例题引出表 | |\n| | 示方法,并通过讲解和 | |\n| 7、BaCl~2~ | 练习最大限度的加深学 | |\n| +H~2~SO~4~ ==BaSO~4~ | 生对此表示法的理解。 | |\n| ↓+2HCl | | |\n| | 通过讲解和 | |\n| 8、CaCO~3~ ==CaO | 练习最大限度的加深学 | |\n| +CO~2~ ↑ | 生对此表示法的理解。 | |\n| | | |\n| [师]请大 | | |\n| 家根据以上的练习,总 | | |\n| 结四种基本反应类型与 | | |\n| 氧化还原反应的关系。 | | |\n| | | |\n| 板书4 | | |\n| 、氧化还原反应与四种 | | |\n| 基本反应类型的关系 | | |\n| | | |\n| [讲]置换反应 | | |\n| 一定属于氧化还原反应 | | |\n| ,复分解反应一定不属 | | |\n| 于氧化还原反应,化合 | | |\n| 反应和分解反应有些属 | | |\n| 于氧化还原反应,有些 | | |\n| 不属于氧化还原反应。 | | |\n| | | |\n| [投影] | | |\n| | | |\n| ![6](sta | | |\n| tic/Images/a91144fda | | |\n| 2c741b0b9694ebcfa9d1 | | |\n| deb/media/image60.jp | | |\n| eg){width=\"2.9375in\" | | |\n| height=\"1. | | |\n| 4694444444444446in\"} | | |\n| | | |\n| ![6](sta | | |\n| tic/Images/a91144fda | | |\n| 2c741b0b9694ebcfa9d1 | | |\n| deb/media/image60.jp | | |\n| eg){width=\"2.9375in\" | | |\n| height=\"1. | | |\n| 6881944444444446in\"} | | |\n| | | |\n| 点击试题1、判 | | |\n| 断下列说法正确与否 | | |\n| | | |\n| 、有单 | | |\n| 质参加的化合反应和有 | | |\n| 单质生成的分解反应一 | | |\n| 定是氯化还原反应。 | | |\n| | | |\n| 、没有单质参 | | |\n| 加的化合反应和没有单 | | |\n| 质生成的分解反应一定 | | |\n| 不是氯化还原反应。 | | |\n| | | |\n| 2、判断下列反是否 | | |\n| 属于氧化还原反应? | | |\n| | | |\n| 、2CuOH | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-1ea048718db1de74956957ec1c22013d", "__created_at__": 1754897909, "content": "化合反应和没有单 | | |\n| 质生成的分解反应一定 | | |\n| 不是氯化还原反应。 | | |\n| | | |\n| 2、判断下列反是否 | | |\n| 属于氧化还原反应? | | |\n| | | |\n| 、2CuOH | | |\n| ~2~=====CH~2~O | | |\n| | | |\n| 、MnO~2~ | | |\n| 4HCl(浓)======MnCl | | |\n| ~2~H~2~OCl~2~↑ | | |\n| | | |\n| 、3NO~2~H~2~ | | |\n| O======2HNO~3~NO | | |\n| | | |\n| 、2H~2~O~2~= | | |\n| =====2H~2~OO~2~↑ | | |\n| | | |\n| 、CaCO~3~ | | |\n| H~2~OCO~2~====== | | |\n| Ca(HCO~3~)~2~ | | |\n| | | |\n| [过]在 | | |\n| 反应中H~2~――H~2~O | | |\n|  的变化实质是失去了 | | |\n| 电子被氧化而CuO | | |\n| /-/--Cu | | |\n| 的 | | |\n| 变化实质是得到了电子 | | |\n| 被还原。其中H~2~ | | |\n| 为CuO | | |\n| 的 | | |\n| 还原提供了电子CuO | | |\n| 为H~2~ | | |\n| 的氧化接受了电子,从 | | |\n| 而使双方完成了氧化还 | | |\n| 原反应。在这里H~2~ | | |\n| 起还原 | | |\n| 作用称为还原剂CuO | | |\n| 起 | | |\n| 氧化作用称为氧化剂。 | | |\n| | | |\n| [板书] | | |\n| 二、氧化剂和还原剂 | | |\n| | | |\n| * | | |\n| *1、从电子转 | | |\n| 移的角度分析什么是氧 | | |\n| 化剂?什么是还原剂? | | |\n| | | |\n| 2、氧 | | |\n| 化剂和还原剂在氧化还 | | |\n| 原反应中本身所发生的 | | |\n| 反应是什么?所含元素 | | |\n| 的化合价的情况如何? | | |\n| | | |\n| 3 | | |\n| 、氧化剂和还原剂在氧 | | |\n| 化还原反应中分别表现 | | |\n| 什么性质?起何作用? | | |\n| | | |\n| [讨论并 | | |\n| 小结]得电子(或电 | | |\n| 子对偏向)的物质为氧 | | |\n| 化剂。失电子(或电子 | | |\n| 对偏离物质)的物质为 | | |\n| 还原剂。在氧化还原反 | | |\n| 应中,氧化剂得到了电 | | |\n| 子,所含元素化合价降 | | |\n| 低,发生了还原反应; | | |\n| 还原剂失去了电子,所 | | |\n| 含元素化合价升高,发 | | |\n| 生了氧化反应。氧化剂 | | |\n| 具有氧化性,得电子的 | | |\n| 性质;还原剂具有还原 | | |\n| 性,即失电子的性质。 | | |\n| | | |\n| 板书1、氧化 | | |\n| 剂和还原剂(反应物) | | |\n| | | |\n| 氧化剂:得电子 | | |\n| (或电子对偏向)的物质 | | |\n| /-/-/-/-/--氧化性 | | |\n| | | |\n| 还原剂:失电子 | | |\n| (或电子对偏离)的物质 | | |\n| /-/-/-/-/--还原性 | | |\n| | | |\n| ", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-87eb52807c1b55f08c71256c87ea601f", "__created_at__": 1754897909, "content": "| |\n| (或电子对偏向)的物质 | | |\n| /-/-/-/-/--氧化性 | | |\n| | | |\n| 还原剂:失电子 | | |\n| (或电子对偏离)的物质 | | |\n| /-/-/-/-/--还原性 | | |\n| | | |\n| [讲] | | |\n| 在氧化还原反应中,氧 | | |\n| 化剂得电子具有氧化性 | | |\n| ,起氧化作用,本身被 | | |\n| 还原后的生成物叫还原 | | |\n| 产物。还原剂失电子具 | | |\n| 有还原性,起还原作用 | | |\n| ,本身被氧化,氧化后 | | |\n| 的生成物叫氧化产物。 | | |\n| | | |\n| [板书]氧化产 | | |\n| 物:氧化后的生成物 | | |\n| | | |\n| 还原产物 | | |\n| :还原后的生成物。 | | |\n| | | |\n| | | |\n| [总结]氧化还原反 | | |\n| 应中各概念间的关系为 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 氧化剂 + 还原剂 == | | |\n| 还原产物 + | | |\n| 氧化产物 | | |\n| | | |\n| [过]氧化还原反 | | |\n| 应的实质是电子的转移 | | |\n| ,下面我们学习如何在 | | |\n| 方程式上简单地表示反 | | |\n| 应中电子的转移情况。 | | |\n| | | |\n| [板书 | | |\n| 2、氧化还原反应中 | | |\n| 电子转移的表示方法 | | |\n| | | |\n| (1) | | |\n| 双线桥法/-/ | | |\n| --表示电子得失结果 | | |\n| | | |\n| ![E://二附 | | |\n| 中//教学资源//高一/ | | |\n| /氧化还原反应之四.fi | | |\n| les//Image118.gif](s | | |\n| tatic/Images/a91144f | | |\n| da2c741b0b9694ebcfa9 | | |\n| d1deb/media/image59. | | |\n| png){width=\"2.625in\" | | |\n| height=\"0. | | |\n| 8222222222222222in\"} | | |\n| | | |\n| | | |\n| [投影小结]步骤: | | |\n| | | |\n| 1、先标化合价 | | |\n| 双线桥从左指向右连接 | | |\n| 不同价态的同种元素。 | | |\n| | | |\n| 2、 | | |\n| 线上标明电子得失数。 | | |\n| | | |\n| [点击 | | |\n| 试题]用双线桥表示下 | | |\n| 列氧化还原反应,并指 | | |\n| 出氧化剂和还原剂。 | | |\n| | | |\n| (1) 3 H~2~ + | | |\n| Fe~2~O~3~ === 3H~2~O | | |\n| + 2Fe | | |\n| | | |\n| (2) 2KClO~3~ === | | |\n| 2KCl + 3 O~2/ ~ | | |\n| | | |\n| (3) 2H~2~S +SO~2~ | | |\n| == 3 S+2H~2~O | | |\n| | | |\n| [板书](2) | | |\n| 单线桥---- | | |\n| --表示电子转移情况 | | |\n| | | |\n| ![ | | |\n| E://二附中//教学资源 | | |\n| //高一//氧化还原反应 | | |\n| 之四.files//Image121 | | |\n| .gif](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-63d29937111f0cbfcc547f09cdeaf5af", "__created_at__": 1754897909, "content": "| | |\n| ![ | | |\n| E://二附中//教学资源 | | |\n| //高一//氧化还原反应 | | |\n| 之四.files//Image121 | | |\n| .gif](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage58.png){width=\"2 | | |\n| .4993055555555554in\" | | |\n| height=\"0. | | |\n| 6027777777777777in\"} | | |\n| | | |\n| [投影 | | |\n| 小结]步骤:重点: | | |\n| | | |\n| 1单箭 | | |\n| 号(在反应物之间); | | |\n| | | |\n| 2 | | |\n| 箭号起点为被氧化(失 | | |\n| 电子)元素,终点为被 | | |\n| 还原(得电子)元素; | | |\n| | | |\n| 3只标转移 | | |\n| 电子总数,不标得与失 | | |\n| (氧化剂得电总数等于 | | |\n| 还原剂失电子总数)。 | | |\n| | | |\n| | | |\n| 过]下面根据我们已 | | |\n| 有的经验,总结一下常 | | |\n| 见的氧化剂和还原剂。 | | |\n| | | |\n| 板书3、常 | | |\n| 见的氧化剂与还原剂 | | |\n| | | |\n| [投影小结] | | |\n| | | |\n| 1、常见的氧化剂 | | |\n| | | |\n| /(1/) | | |\n| 活泼的非金属单质 | | |\n| O~2~、Cl~2~、Br~2~ | | |\n| | | |\n| /(2/) | | |\n| 含高价金属阳离 | | |\n| 子的化合物FeCl~3~ | | |\n| | | |\n| /(3/) | | |\n| 含 | | |\n| 某些较高化合价元素的 | | |\n| 化合物浓H~2~SO~4~ | | |\n| 、HNO | | |\n| ~3~、KMnO~4~、MnO~2~ | | |\n| | | |\n| 2、常见的还原剂 | | |\n| | | |\n| /(1/) | | |\n| 活泼 | | |\n| 或或较活泼的金属K | | |\n| 、Ca、Na、Al、Mg、Zn | | |\n| (按金属活动 | | |\n| 性顺序,还原性递减) | | |\n| | | |\n| /(2/) | | |\n| 含低价金属阳离 | | |\n| 子的化合物Fe^2^ | | |\n| | | |\n| /(3/) | | |\n| 某些 | | |\n| 非金属单质C、H~2~ | | |\n| | | |\n| /(4/) | | |\n| 含有较低化合 | | |\n| 价元素的化合物HCl | | |\n| 、H~2~S、HI、KI | | |\n| | | |\n| [结束语]氧 | | |\n| 化还原反应是和工农业 | | |\n| 生产、科学技术、日常 | | |\n| 生活密切相关的重要反 | | |\n| 应。它对我们人类既有 | | |\n| 贡献又有害处,比如我 | | |\n| 们酿酒、燃料燃烧都是 | | |\n| 利用氧还反应,但是铁 | | |\n| 生锈,易燃物自然等等 | | |\n| 也同样是氧还反应。我 | | |\n| 们在学习了化学之后就 | | |\n| 可以充分去避免氧还反 | | |\n| 应的危害,最大限度的 | | |\n| 利用它来为人类服务。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-cfea3a58d6516b6f76f674fb22073995", "__created_at__": 1754897909, "content": "等等 | | |\n| 也同样是氧还反应。我 | | |\n| 们在学习了化学之后就 | | |\n| 可以充分去避免氧还反 | | |\n| 应的危害,最大限度的 | | |\n| 利用它来为人类服务。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第二章 | 授课班级 | |\n| 化学物质及其变化 | | |\n| 专题复习 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、巩 |\n| | | 固物质的分类及方法, |\n| 学 | 与 | 了解胶体的主要性质; |\n| | | |\n| 目 | 技能 | 2、进 |\n| | | 一步了解离子反应的本 |\n| 的 | | 质及离子方程式的书写 |\n| | | |\n| | | 3 |\n| | | 、进一步了解氧化还原 |\n| | | 反应的实质及有关概念 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 通过 |\n| | | 知识归纳总结的教学, |\n| | 与方法 | 让学生学会对所学知识 |\n| | | 进行归纳总结,引起学 |\n| | | 生对学习方法的重视。 |\n+----------------------+----------------------+----------------------+\n| | 情感态度 | 通过本次课的学 |\n| | | 习,让学生找到学习的 |\n| | 价值观 | 感觉,重视轻松学习的 |\n| | | 方法,感受学习的快乐 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 离子方程式的本质 | |\n| | 及离子方程式的书写; | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 氧化还原反应的实质 | |\n| | 及有关基本概念的应用 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第二章 | |\n| | 化学物质及其变化 | |\n| 识 | 专题复习 | |\n| | | |\n| 结 | 一 | |\n| | 、本章知识结构梳理 | |\n| 构 | | |\n| | 1、物质的分类 | |\n| 与 | | |\n| | * | |\n| 板 | *2、物质的化学变化 | |\n| | | |\n| 书 | | |\n| | 二、本章典型题剖析 | |\n| 设 | | |\n| | 三、 | |\n| 计 | 本章专题讲座――-氧化 | |\n| | 还原反应的基本规律 | |\n| | | |\n| | 1、守恒律 | |\n| | | |\n| | 化合价有升必 | |\n| | 有降,电子有得必有失 | |\n| | ,对于一个完整的氧化 | |\n| | 还原反应,化合价升高 | |\n| | 总数==降低总数==失电 | |\n| | 子总数==得电子总数 | |\n| | | |\n| | 2、价态律 | |\n| | | |\n| | (1) | |\n| | 元素处于最高价,只 | |\n| | 有氧化性;元素处于最 | |\n| | 低价,只有还原性,元 | |\n| | 素处于中间价,既有氧 | |\n| | 化性,又有还原性。 | |\n| | | |\n| | (2) | |\n| | 同种元 | |\n| | 素不同价态之间发生反 | |\n| | 应,元素化合价只靠近 | |\n| | 不交叉,相邻价态间不 | |\n| | 发生氧化还原反应。 | |\n| | | |\n| | 注意: | |\n| | | |\n| | 元素处于最 | |\n| | 高价,具有氧化性,但 | |\n| | 不一定氧化性最强, | |\n| | | |\n| | 金属 | |\n| | 元素只有正价无负价, | |\n| | F、O只有负价无正价 | |\n| | | |\n| | 含同一元素的", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-245db1059de608643b8ea84cbcf756d9", "__created_at__": 1754897909, "content": "元素处于最 | |\n| | 高价,具有氧化性,但 | |\n| | 不一定氧化性最强, | |\n| | | |\n| | 金属 | |\n| | 元素只有正价无负价, | |\n| | F、O只有负价无正价 | |\n| | | |\n| | 含同一元素的 | |\n| | 不同物质,若价态相邻 | |\n| | ,则不发生氧化还原 | |\n| | | |\n| | 3、强弱律 | |\n| | | |\n| | 氧化剂 + 还原剂 == | |\n| | 还原产物 + | |\n| | 氧化产物 | |\n| | | |\n| | 氧化性:氧化剂 /> | |\n| | 氧化产物 | |\n| | | |\n| | 还原性:还原剂 /> | |\n| | 还原产物 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [板书]一 | 投影主干知识, | |\n| 、本章知识结构梳理 | 让学生回忆细节知识。 | |\n| | | |\n| [讲] | A | |\n| 分类是学习和研究化学 | | |\n| 物质及其变化的一种常 | B | |\n| 用方法。分类要有一定 | | |\n| 的标准,根据不同的标 | C | |\n| 准可以对化学物质及其 | | |\n| 变化进行不同的分类。 | C | |\n| 常用的分类方法有交叉 | | |\n| 分类法和树状分类法。 | +516 | |\n| | | |\n| [板 | +3 | |\n| 书1、物质的分类 | | |\n| | | |\n| [投影](1) | | |\n| 以分散质粒 | | |\n| 子大小对分散系分类 | | |\n| | | |\n| (2) | | |\n| 以组成为 | | |\n| 标准对物质进行分类 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td><p>物</p> | | |\n| <p>质</p></td> | | |\n| <td>纯净物</td> | | |\n| <td>单质</td> | | |\n| <td>金属 | | |\n| Na 、Mg 、Al</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>非金属 | | |\n| S、N<sub>2</sub> | | |\n| 、O<sub>2</sub></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>化合物</td> | | |\n| <td>氧化物</td> | | |\n| < | | |\n| td>酸性氧化物SO<su | | |\n| b>2</sub>、SO<sub>3< | | |\n| /sub>、P<sub>2</sub> | | |\n| O<sub>5</sub>、</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>碱性氧 | | |\n| 化物Na<sub>2</sub> | | |\n| O、CaO、Fe<sub>2</su | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2c91ff3d5db639b69475817c9f4adc24", "__created_at__": 1754897909, "content": "| |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>碱性氧 | | |\n| 化物Na<sub>2</sub> | | |\n| O、CaO、Fe<sub>2</su | | |\n| b>O<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>两性 | | |\n| 氧化物Al<sub>2</su | | |\n| b>O<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>不成盐 | | |\n| 氧化物CO、NO</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>酸</td> | | |\n| <td>按酸根分</td> | | |\n| < | | |\n| td>含氧酸HNO<sub>3 | | |\n| </sub>、H<sub>2</sub | | |\n| >SO<sub>4</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>无氧酸HCl</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>按电离出的H<su | | |\n| p></sup> 数分</td> | | |\n| <td>一元酸HCl、 | | |\n| HNO<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>二元酸H | | |\n| <sub>2</sub>SO<sub>4 | | |\n| </sub>、H<sub>2</sub | | |\n| >SO<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td> | | |\n| 多元酸H<sub>3</sub | | |\n| >PO<sub>4</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>碱</td> | | |\n| <td>按强弱分</td> | | |\n| <td>强碱NaOH、Ba( | | |\n| OH)<sub>2</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2152dc0ea5107ab40a052dbcfa7bbae1", "__created_at__": 1754897909, "content": "|\n| <td>碱</td> | | |\n| <td>按强弱分</td> | | |\n| <td>强碱NaOH、Ba( | | |\n| OH)<sub>2</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>弱 | | |\n| 碱NH<sub>3</sub>· | | |\n| H<sub>2</sub>O 、Fe( | | |\n| OH)<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>按电离出OH<s | | |\n| up>―</sup> 数分</td> | | |\n| < | | |\n| td>一元碱NaOH</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>二元碱Ba( | | |\n| OH)<sub>2</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>多元碱Fe( | | |\n| OH)<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>盐</td> | | |\n| <td | | |\n| >正盐Na<sub>2</sub | | |\n| >CO<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td>酸式盐Na | | |\n| HCO<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| < | | |\n| td>碱式盐Cu<sub>2< | | |\n| /sub>(OH)<sub>2</sub | | |\n| >CO<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td>混合物</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [板书] | | |\n| 2、物质的化学变化 | | |\n| | | |\n| - | | |\n| --------- ---------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -- ----------------- | | |\n| --------- ---------- | | |\n| -------------------- | | |\n| -------------------- |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-79b14a00434bc5b16f83c00aaa5f8931", "__created_at__": 1754897909, "content": "|\n| [板书] | | |\n| 2、物质的化学变化 | | |\n| | | |\n| - | | |\n| --------- ---------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -- ----------------- | | |\n| --------- ---------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ------ ------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| --------------- ---- | | |\n| -------------------- | | |\n| -------------------- | | |\n| 化学反应 根据反 | | |\n| 应物和生成物的类别以 | | |\n| 及反应前后物质种类的 | | |\n| 多少 化合反应A+B | | |\n| ==AB | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 分解反应AB= | | |\n| =A+B | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 置换反应A+ | | |\n| BC==AC+B | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 复分解反应A | | |\n| B+CD==AD+CB | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 根据反应 | | |\n| 中是否有电子转移 | | |\n| | | |\n| 氧化还原反应 | | |\n| 实质:有 | | |\n| 电子转移(得失或偏移 | | |\n| ) | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 特征: | | |\n| 反应前后元素的化合价 | | |\n| 有变化 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 基本概念 | | |\n| 相互关系 | | |\n| | | |\n| | | |\n| 氧化剂-有 | | |\n| 氧化性-得电子-化合 | | |\n| 价降低-发生还原反应 | | |\n| -还原产物 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 还原剂-有 | | |\n| 还原性-失电子-化合 | | |\n| 价升高-发生氧化反应 | | |\n| -氧化产物 | | |\n| | | |\n| | | |\n| | | |\n| 非氧化还原反应 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 根据反 | | |\n| 应中是否有离子参加 | | |\n| | | |\n| 离子反应 | | |\n| 定义: | | |\n| 有离子参加的一类反应 | | |\n| ,主要包括复分解", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-344bf6f040f508e0e132bb48842c6e49", "__created_at__": 1754897909, "content": "| |\n| | | |\n| | | |\n| | | |\n| 根据反 | | |\n| 应中是否有离子参加 | | |\n| | | |\n| 离子反应 | | |\n| 定义: | | |\n| 有离子参加的一类反应 | | |\n| ,主要包括复分解反应 | | |\n| 、有离子参加的氧化还 | | |\n| 原反应。 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 离子方程 | | |\n| 式 | | |\n| | | |\n| | | |\n| 定义:用实 | | |\n| 际参加反应的离子符号 | | |\n| 来表示离子反应的式子 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 书写方法 | | |\n| | | |\n| | | |\n| 写: | | |\n| 写出反应的化学方程式 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 拆 | | |\n| :把易溶于水、易电离 | | |\n| 的物质拆写成离子形式 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 删:将不参加反应的 | | |\n| 离子从方程式两端删去 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 查:查方程式两端原子 | | |\n| 个数和电荷数是否相等 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 意义:不仅 | | |\n| 表示一定物质间的某个 | | |\n| 反应,而且表示所有同 | | |\n| 一类型的离子反应 | | |\n| | | |\n| | | |\n| | | |\n| 分子反应 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| - | | |\n| --------- ---------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -- ----------------- | | |\n| --------- ---------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ------ ------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| --------------- ---- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| [板书] | | |\n| 二、本章典型题剖析 | | |\n| | | |\n| 1、下列离子反应方 | | |\n| 程式,书写正确的是( | | |\n| | | |\n| | | |\n| A、向碳酸钠溶液中加 | | |\n| 盐酸CO~3~^2^2 | | |\n| H^", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-773960eb4a10efe64eb40085887e15f0", "__created_at__": 1754897909, "content": "| |\n| | | |\n| 1、下列离子反应方 | | |\n| 程式,书写正确的是( | | |\n| | | |\n| | | |\n| A、向碳酸钠溶液中加 | | |\n| 盐酸CO~3~^2^2 | | |\n| H^^H~2~OCO~2~↑ | | |\n| | | |\n| B、向稀硫酸溶液中 | | |\n| 投入铁粉2Fe6H^ | | |\n| ^2Fe^3^3H~2~↑ | | |\n| | | |\n| C、向盐酸中投入碳 | | |\n| 酸钙CO~3~^2^2 | | |\n| H^^H~2~OCO~2~↑ | | |\n| | | |\n| D、氢氧 | | |\n| 化钡溶液中加入硫酸: | | |\n| H^^OH^^H~2~O | | |\n| | | |\n| 2、能用 | | |\n| 离子方程式H^^OH^ | | |\n| ^H~2~O表示的是 | | |\n| | | |\n| | | |\n| A.Ba(OH)~2~溶液 | | |\n| 和H~2~SO~4~溶液混合 | | |\n| B.NaOH溶液和盐酸混合 | | |\n| | | |\n| C.Cu(OH) | | |\n| ~2~和稀H~2~SO~4~反应 | | |\n| D | | |\n| .CO~2~通入NaOH溶液中 | | |\n| | | |\n| 3、在 | | |\n| 水溶液中能大量共存, | | |\n| 且加入过量稀硫酸溶液 | | |\n| 时,有气体生成的是( | | |\n| | | |\n| | | |\n| A. | | |\n| Na^^、Ag^^ | | |\n| 、CO~3~^2^、Cl^^ | | |\n| B. | | |\n| K^^、 | | |\n| Ba^2^、SO~4~^2^ | | |\n| 、 Cl^^ | | |\n| | | |\n| C. | | |\n| Na^^、K^^ | | |\n| 、CO~3~^2^、Cl^^ | | |\n| D. | | |\n| Na^^、K^^、 | | |\n| Cl^^、SO~4~^2---^ | | |\n| | | |\n| 4、在强 | | |\n| 酸溶液中,下列各组离 | | |\n| 子能够大量共存的是( | | |\n| | | |\n| | | |\n| A. | | |\n| Mg^2^、Ca^2^ | | |\n| 、HCO~3~^^、CI^^ | | |\n| B. | | |\n| Na^^、CO~3~^2―^ | | |\n| 、Cl^^、SO~4~^2^ | | |\n| | | |\n| C. | | |\n| K^^、Fe^2^ | | |\n| 、SO~4~^2^、Br^^ | | |\n| D. | | |\n| Fe^2^、Ca^2 | | |\n| ^、Cl^^、NO~3~^^ | | |\n| | | |\n| [板书]三、 | | |\n| 本章专题讲座――-氧化 | | |\n| 还原反应的基本规律 | | |\n| | | |\n| [讲]电子守恒 | | |\n| 在氧化还原反应中具有 | | |\n| 重要的作用。在氧化还 | | |\n| 原反应中有物质失电子 | | |\n| 必有物质得电子,且得 | | |\n| 电子总数等于失电子总 | | |\n| 数。或者说氧化还原反 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ad7991504edbfc7585312d358187f10a", "__created_at__": 1754897909, "content": "|\n| [讲]电子守恒 | | |\n| 在氧化还原反应中具有 | | |\n| 重要的作用。在氧化还 | | |\n| 原反应中有物质失电子 | | |\n| 必有物质得电子,且得 | | |\n| 电子总数等于失电子总 | | |\n| 数。或者说氧化还原反 | | |\n| 应中,有物质元素化合 | | |\n| 价上升必有物质元素化 | | |\n| 合价降低,且化合价降 | | |\n| 低总值必等于升高总值 | | |\n| 。有关电子守恒的规律 | | |\n| 有如下应用: 求某一 | | |\n| 反应中被氧化与被还原 | | |\n| 的原子数之比,或氧化 | | |\n| 剂与还原剂分子数之比 | | |\n| 及氧化产物瑟还原产物 | | |\n| 分子数之比。 进行氧 | | |\n| 化还原反应的有关计算 | | |\n| | | |\n| 板书1、 | | |\n| 守恒律:化合价有升必 | | |\n| 有降,电子有得必有失 | | |\n| ,对于一个完整的氧化 | | |\n| 还原反应,化合价升高 | | |\n| 总数==降低总数==失电 | | |\n| 子总数==得电子总数 | | |\n| | | |\n| [投影 | | |\n| 例1、RO~3~^n-^+ | | |\n| 6I^―^ +6H^^ | | |\n| ==R^-^+3I~2~ +3H~2~O | | |\n| 中, | | |\n| | | |\n| /(1/) | | |\n| RO | | |\n| ~3~^n-^中R元素的化合 | | |\n| 价为/_/_/_/_/_/_n | | |\n| 的数值为/_/_/_/_/_/_ | | |\n| | | |\n| /(2/) | | |\n| RO~3 | | |\n| ~^n-^中R元素得电子总 | | |\n| 数为/_/_/_/_/_/_/_/_ | | |\n| | | |\n| 点击试题24 | | |\n| mL浓度为0.05 | | |\n| mol/L的Na~2~SO~3~ | | |\n| 溶液恰好与20 | | |\n| mL浓度为0.02 | | |\n| mol/L的K~2~Cr~2~O~7~ | | |\n| 溶液完全反应则Cr | | |\n| 元素在被还 | | |\n| 原的产物中的化合价是 | | |\n| /_/_/_/_/_/_/_/_/_ | | |\n| | | |\n| [讲]化合价与 | | |\n| 氧化还原反应有着重要 | | |\n| 的关系。首先我们看一 | | |\n| 下价态与氧化性、还原 | | |\n| 性的关系。当元素处于 | | |\n| 最高价,只有氧化性; | | |\n| 元素处于最低价,只有 | | |\n| 还原性;元素处于中间 | | |\n| 价态,既有氧化性又有 | | |\n| 还原性,但主要呈现一 | | |\n| 种性质。物质若含有多 | | |\n| 种元素,其性质是这些 | | |\n| 元素性质的综合体现。 | | |\n| 重要的应用是判断元素 | | |\n| 或物质氧化性是还原性 | | |\n| 的有无。另外,价态也 | | |\n| 具有变化规律。氧化还 | | |\n| 原反应中,以元素相邻 | | |\n| 价态间的转化最容易; | | |\n| 同种元素不同价态之间 | | |\n| 若发生反应,元素的化 | | |\n| 合价只靠近不交叉;同 | | |\n| 种元素,相邻价态间不 | | |\n| 发生氧化还原反应。重 | | |\n| 要的应用是分析判断氧 | | |\n| 化还原反应能否发生。 | | |\n| | | |\n| | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-374b0c5b2927be9114a21ebe99e85337", "__created_at__": 1754897909, "content": ",元素的化 | | |\n| 合价只靠近不交叉;同 | | |\n| 种元素,相邻价态间不 | | |\n| 发生氧化还原反应。重 | | |\n| 要的应用是分析判断氧 | | |\n| 化还原反应能否发生。 | | |\n| | | |\n| | | |\n| 板书2、价态律 | | |\n| | | |\n| (1) | | |\n| 元素处于最高价,只 | | |\n| 有氧化性;元素处于最 | | |\n| 低价,只有还原性,元 | | |\n| 素处于中间价,既有氧 | | |\n| 化性,又有还原性。 | | |\n| | | |\n| (2) | | |\n| 同种元 | | |\n| 素不同价态之间发生反 | | |\n| 应,元素化合价只靠近 | | |\n| 不交叉,相邻价态间不 | | |\n| 发生氧化还原反应。 | | |\n| | | |\n| 注意: | | |\n| 元素处于最 | | |\n| 高价,具有氧化性,但 | | |\n| 不一定氧化性最强, | | |\n| | | |\n| 金属 | | |\n| 元素只有正价无负价, | | |\n| F、O只有负价无正价 | | |\n| | | |\n| 含同一元素的 | | |\n| 不同物质,若价态相邻 | | |\n| ,则不发生氧化还原 | | |\n| | | |\n| [投 | | |\n| 影例2、在KClO~3~ | | |\n| +6HCl (浓) ==KCl | | |\n| +3Cl~2~↑+3H~2~O | | |\n| 的反应中 | | |\n| ,被氧化的氯与被还原 | | |\n| 的氯的原子个数比为( | | |\n| ) | | |\n| | | |\n| A、16 B、61 | | |\n| C、15 D、51 | | |\n| | | |\n| * | | |\n| *板书3、强弱律 | | |\n| | | |\n| 氧化剂 + 还原剂 == | | |\n| 还原产物 + | | |\n| 氧化产物 | | |\n| | | |\n| 氧化性:氧化剂 /> | | |\n| 氧化产物 | | |\n| | | |\n| 还原性:还原剂 /> | | |\n| 还原产物 | | |\n| | | |\n| [投影] | | |\n| 例3、根据反应式 | | |\n| 2Fe^3^ +2I^―^ | | |\n| ==2Fe^2^ +I~2~ | | |\n| Br~2~ +2Fe^2^ | | |\n| ==2Br^―^ +2Fe^3+^ | | |\n| 可判断离子的还 | | |\n| 原性由强到弱的顺序( | | |\n| ) | | |\n| | | |\n| A、Br^―^ 、Fe^2^ | | |\n| 、I^―^ | | |\n| B、 | | |\n| I^―^、Fe^2^、Br^―^ | | |\n| | | |\n| C、Br^―^ 、I^―^ | | |\n| 、 | | |\n| Fe^2^   D、Fe^2 | | |\n| ^ 、I^―^、Br^―^  | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第三 | 授课班级 | |\n| 章 金属及其化合物 | | |\n| | | |\n| 第一节 金 | | |\n| 属的化学性质(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、用实验的方 |\n| | | 法探索和认识钠的性质 |\n| 学 | 与 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-e0889e0a8ac74a41fb0d4f255bd32451", "__created_at__": 1754897909, "content": "| |\n| | | |\n| 第一节 金 | | |\n| 属的化学性质(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、用实验的方 |\n| | | 法探索和认识钠的性质 |\n| 学 | 与 | |\n| | | 2、通过 |\n| 目 | 技能 | 实验了解活泼金属钠、 |\n| | | 铝与氧气的反应,归纳 |\n| 的 | | 出活泼金属易与氧气发 |\n| | | 生反应的知识,了解金 |\n| | | 属氧化膜在生活生产中 |\n| | | 的运用,培养学生习惯 |\n| | | 用化学的视角去观察身 |\n| | | 边的物质和发生的事情 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过经历实验探究 |\n| | | 和问题讨论的过程,了 |\n| | 与 | 解实验研究化学物质的 |\n| | | 一般方法,初步形成推 |\n| | 方法 | 理、综合归纳的能力。 |\n| | | |\n| | | 2、学习以实验 |\n| | | 为基础的实验研究方法 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、 |\n| | | 通过实验研究的方法培 |\n| | 态度 | 养学生严谨的、认真的 |\n| | | 学习态度和科学方法观 |\n| | 价值观 | |\n| | | 2、通过研究性 |\n| | | 学习的方式培养学生的 |\n| | | 操作能力、观察能力、 |\n| | | 思维能力及学生团结协 |\n| | | 作能力和语言表达能力 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 钠的 | |\n| | 物理性质和钠的氧化  | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 对 | |\n| | 实验现象的观察和分析 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第 | |\n| | 三章 金属及其化合物 | |\n| 识 |  第一 | |\n| | 节 金属的化学性质 | |\n| 结 | | |\n| | 一、 | |\n| 构 | 金属与非金属的反应 | |\n| | | |\n| 与 | 1、钠( | |\n| | sodium) | |\n| 板 | 的物理性质:银白色、 | |\n| | 有金属光泽的固体,是 | |\n| 书 | 热和电的良导体,质软 | |\n| | ,密度小,熔点低。 | |\n| 设 | | |\n| | 2 | |\n| 计 | 、钠与氧气的反应: | |\n| | | |\n| | (1) 缓慢氧化4 | |\n| | N | |\n| | aO~2~2Na~2~O | |\n| | | |\n| | [探究实验3-2 | |\n| | 钠在空气中加热]{.ul} | |\n| | (2) 2Na +O~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage61.emf){width=\"0 | |\n| | .3333333333333333in\" | |\n| | hei | |\n| | ght=\"0.3541666666666 | |\n| | 667in\"}Na~2~O~2~ | |\n| | | |\n| | [[科学探究] | |\n| | 铝的性质探究]{.ul} | |\n| | | |\n| | 3、其它常见 | |\n| | 金属与非金属的反应 | |\n| | | |\n| | 2Mg+O~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | height=\"0. | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-942f7271ccc19e56b7f571f0704034ec", "__created_at__": 1754897909, "content": "2Mg+O~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | height=\"0. | |\n| | 3333333333333333in\"} | |\n| | 2MgO 4 Al3O~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | height=\"0. | |\n| | 3333333333333333in\"} | |\n| | 2 Al~2~O~3~ | |\n| | | |\n| | 3Fe + 2O~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | hei | |\n| | ght=\"0.3333333333333 | |\n| | 333in\"}Fe~3~O~4~ | |\n| | | |\n| | 规律 | |\n| | 小结:一般金属+O~2~ | |\n| | 金属氧化物 3Fe + | |\n| | 2O~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | hei | |\n| | ght=\"0.3333333333333 | |\n| | 333in\"}Fe~3~O~4~ | |\n| | | |\n| | 金属+C | |\n| | l~2~最高价金属氯化物 | |\n| | 2Fe | |\n| | +3Cl~2~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | he | |\n| | ight=\"0.333333333333 | |\n| | 3333in\"}2FeCl~3~ | |\n| | | |\n| | 金属+S | |\n| | 低价金属硫化物 Fe | |\n| | +S | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage62.emf){width=\"0 | |\n| | .4479166666666667in\" | |\n| | height=\"0.3333333 | |\n| | 333333333in\"}FeS | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方 | |\n| | 法、手段、师生活动 | |\n+----------------------+----------------------+----------------------+\n| [引言]五千年 | 由日常生活入 | |\n| 前人类进入青铜时代, | 手,激发学生求知欲。 | |\n| 三千年前进入铁器时代 | | |\n| 20世纪铝合金成为仅 | 培养学生 | |\n| 次于铁的金属材料。金 | 的实验观察能力,体验 | |\n| 属在人类社会发展,改 | 钠的性质的研究过程。 | |\n| 善人类生活方面起重要 | | |\n| 作用。金属和它的化合 | 根据现 | |\n| 物有着截然不同的性质 | 象思考并推理性质,培 | |\n| ,例如,铝是一种常见 | 养学生逻辑推理能力。 | |\n| 的金属,具有金属的通 | | |\n| 性(导电性、导热性、 | 培养学生的实验动手 | |\n| 延展性),高温可以", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b858dca73b377ce45283c183af2e5ed0", "__created_at__": 1754897909, "content": "根据现 | |\n| 物有着截然不同的性质 | 象思考并推理性质,培 | |\n| ,例如,铝是一种常见 | 养学生逻辑推理能力。 | |\n| 的金属,具有金属的通 | | |\n| 性(导电性、导热性、 | 培养学生的实验动手 | |\n| 延展性),高温可以燃 | 能力、观察能力、探索 | |\n| 烧,而氧化铝却耐高温 | 能力和描述现象的能力 | |\n| ,为什么呢?本章我们 | ,并培养学生合作精神 | |\n| 就来讨论它们的性质。 | | |\n| | | |\n| [板书]第三 | | |\n| 章 金属及其化合物 | | |\n| | | |\n|  第一 | | |\n| 节 金属的化学性质 | | |\n| | | |\n| [讲]人类已经 | | |\n| 发现的一百多种元素中 | | |\n| 大约4/5是金属元素 | | |\n| 。多数金属的化学性质 | | |\n| 比较活泼,因此,地球 | | |\n| 上绝大多数金属的元素 | | |\n| 是以化合态形式存在。 | | |\n| 地壳中含量最多的金属 | | |\n| 元素是Al最多的非金 | | |\n| 属元素是O。不同的金 | | |\n| 属的化学活动性相差很 | | |\n| 大,我们在学习金属化 | | |\n| 学性质的时候,既要注 | | |\n| 意它们的共性,同时也 | | |\n| 要注意它们的差异性。 | | |\n| | | |\n| [思考与 | | |\n| 交流]举例说明金属能 | | |\n| 发生哪些化学反应。 | | |\n| | | |\n| (与非金属反应2 Na | | |\n| +Cl~2~== 2NaCl2Mg | | |\n| +O2==2MgO | | |\n| | | |\n| 与酸反应Zn | | |\n| +H~2~SO~4~ == | | |\n| ZnSO~4~ +H~2~ ↑ | | |\n| | | |\n| 与盐反应 Fe + | | |\n| CuCl~2~ ==FeCl~2~ | | |\n| +Cu ) | | |\n| | | |\n| * | | |\n| *思考与交流图3-2 | | |\n| 是金属发生化学的一些 | | |\n| 照片,请分析这些反应 | | |\n| ,并写出化学方程式 | | |\n| | | |\n| 2Al+3CuSO~4~ | | |\n| ===Al~2~(SO4)~3~+3Cu | | |\n| | | |\n| 2Mg+O~2~=====2MgO | | |\n| | | |\n| Cu+2AgNO~3 | | |\n| ~===Cu(NO~3~)~2~+2Ag | | |\n| | | |\n| Mg+2 | | |\n| HCl====MgCl~2~+H~2~↑ | | |\n| | | |\n| [思 | | |\n| 考与交流画出Na、Mg | | |\n| 、Al的原子结构示意图 | | |\n| ,分析它们的原子结构 | | |\n| 有什么特点,与金属的 | | |\n| 化学性质有什么联系 | | |\n| | | |\n| Na Mg Al | | |\n| | | |\n| Na | | |\n| 最外层有一个 | | |\n| 电子,易失去,表现还 | | |\n| 原性,常表现为+1价 | | |\n| | | |\n| Mg | | |\n| 最外层有两个 | | |\n| 电子,易失去,表现还 | | |\n| 原性,常表现为+2价 | | |\n| | | |\n| Al | | |\n| 最外层有三个 | | |\n| 电子,易失去,表现还 | | |\n| 原性,常表现为+3价 | | |\n| | | |\n| [讲 | | |\n| ]今天我们就先来讨 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ecc2c23cde4ced6eddb8ac16690ba3bb", "__created_at__": 1754897909, "content": "原性,常表现为+2价 | | |\n| | | |\n| Al | | |\n| 最外层有三个 | | |\n| 电子,易失去,表现还 | | |\n| 原性,常表现为+3价 | | |\n| | | |\n| [讲 | | |\n| ]今天我们就先来讨 | | |\n| 论金属与非金属的反应 | | |\n| | | |\n| [板书]一、 | | |\n| 金属与非金属的反应 | | |\n| | | |\n| [引言]提起钠 | | |\n| ,可能大家觉得并不陌 | | |\n| 生,因为我们天天吃的 | | |\n| 食盐就是NaCl但NaCl | | |\n| 中的钠是钠 | | |\n| 离子,与我们要研究的 | | |\n| 钠单质性质截然不同。 | | |\n| | | |\n| [问]下面请大 | | |\n| 家用镊子从桌上盛放钠 | | |\n| 的试剂瓶里取出一小块 | | |\n| 钠,并用滤纸吸干表面 | | |\n| 液体(注意,不可用手 | | |\n| 接触),放在表面皿上 | | |\n| ,用小刀切割,请仔细 | | |\n| 观察其断面处的变化。 | | |\n| | | |\n| [师]描 | | |\n| 述你们所看到的现象。 | | |\n| | | |\n| (钠很软 | | |\n| ,刚切开时,其断面呈 | | |\n| 银白色,后逐渐变暗) | | |\n| | | |\n| [师] | | |\n| 回答得很好,请把刚 | | |\n| 才切割的钠块用镊子放 | | |\n| 回原试剂瓶中。请大家 | | |\n| 根据 | | |\n| 上述实验现象并结合课 | | |\n| 文总结出钠的物理性质 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 1、钠( | | |\n| sodium) | | |\n| 的物理性质:银白色、 | | |\n| 有金属光泽的固体,是 | | |\n| 热和电的良导体,质软 | | |\n| ,密度小,熔点低。 | | |\n| | | |\n| | | |\n| 问]为什么在密封的 | | |\n| 玻璃管内的钠能保持光 | | |\n| 亮的银白色,而我们刚 | | |\n| 才切割的钠却不能呢? | | |\n| | | |\n| (玻璃管内 | | |\n| 的钠是与空气隔绝的, | | |\n| 而刚才切割的钠却与空 | | |\n| 气充分接触,说明钠与 | | |\n| 空气中的物质发生了化 | | |\n| 学反应,以致变暗。) | | |\n| | | |\n| | | |\n| [讲]好,事实上, | | |\n| 是由于空气中的氧气在 | | |\n| 常温下与钠反应生成了 | | |\n| 氧化钠,从而使金属钠 | | |\n| 失去了光泽,纯净的氧 | | |\n| 化钠是一种白色粉末。 | | |\n| | | |\n| 板书2 | | |\n| 、钠与氧气的反应: | | |\n| | | |\n| (1) 缓慢氧化4 | | |\n| N | | |\n| aO~2~2Na~2~O | | |\n| | | |\n| [讲]常温下, | | |\n| 金属钠在空气中就会发 | | |\n| 生变化,这说明钠比铁 | | |\n| 、铝、镁等金属活泼得 | | |\n| 多。因此,在实验室中 | | |\n| ,要把钠保存在石蜡油 | | |\n| 或煤油中,以隔绝空气 | | |\n| 。那么,如果加热,钠 | | |\n| 又会发生什么变化", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-39b082ab2d2dcc9d073d083fd848e968", "__created_at__": 1754897909, "content": "| |\n| 生变化,这说明钠比铁 | | |\n| 、铝、镁等金属活泼得 | | |\n| 多。因此,在实验室中 | | |\n| ,要把钠保存在石蜡油 | | |\n| 或煤油中,以隔绝空气 | | |\n| 。那么,如果加热,钠 | | |\n| 又会发生什么变化呢? | | |\n| | | |\n| [探究实验3-2钠 | | |\n| 在空气中加热]{.ul} | | |\n| | | |\n| 实验现象:可观察 | | |\n| 到钠先熔化后燃烧,燃 | | |\n| 烧时火焰呈黄色,最后 | | |\n| 留下的固体呈淡黄色。 | | |\n| | | |\n| [讲] | | |\n| 实验时应注意,钠开始 | | |\n| 燃烧后立即撤掉酒精灯 | | |\n| | | |\n| [板书](2) 2Na | | |\n| +O~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| hei | | |\n| ght=\"0.3541666666666 | | |\n| 667in\"}Na~2~O~2~ | | |\n| | | |\n| [讲]除了金属 | | |\n| 钠易与空气中的氧气反 | | |\n| 应,在金属表面生成一 | | |\n| 层氧化物,有的氧化膜 | | |\n| 疏松,不能保护内层金 | | |\n| 属,如铁表面的铁锈; | | |\n| 有的氧化膜致密,可以 | | |\n| 保护内层金属不被继续 | | |\n| 氧化,如镁、铝表面的 | | |\n| 氧化层。所以,在点燃 | | |\n| 镁条前,常用砂纸打磨 | | |\n| ,这样点燃起来更容易 | | |\n| 些。铝的情况如何呢? | | |\n| | | |\n| [[科学探究] | | |\n| 铝的性质探究]{.ul} | | |\n| | | |\n| 实验步骤:用 | | |\n| 手撕一小块铝箔,用坩 | | |\n| 埚夹住,在酒精灯上加 | | |\n| 热至熔化,轻轻晃动。 | | |\n| 观察现象,另取一小块 | | |\n| 铝箔,用砂纸打磨,除 | | |\n| 去表面的保护膜,再加 | | |\n| 热至熔化,观察现象。 | | |\n| | | |\n| 实验现象 | | |\n| :铝箔熔化,失去光 | | |\n| 泽,熔化的铝并不滴落 | | |\n| | | |\n| 实 | | |\n| 验结论:在常温下, | | |\n| 铝能与空气里的氧气反 | | |\n| 应,生成一层致密而坚 | | |\n| 固的氧化物薄膜。加热 | | |\n| 时反应加剧,生成白色 | | |\n| 固体,放出大量的热。 | | |\n| | | |\n| [讲]铝表面 | | |\n| 的氧化膜保护了铝,即 | | |\n| 使是未打磨的铝箔,在 | | |\n| 空气中也很快生成了新 | | |\n| 的氧化膜,构成的薄膜 | | |\n| Al2O3的熔点为2050℃ | | |\n| 高于铝的熔点660℃包 | | |\n| 在铝的外面,所以熔化 | | |\n| 了的液态铝不会滴落。 | | |\n| | | |\n| * | | |\n| *板书3、其它常见 | | |\n| 金属与非金属的反应 | | |\n| | | |\n| 2Mg+O~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-d2f072f3aef9ab1bce4eb328bb13d39f", "__created_at__": 1754897909, "content": "<22>不会滴落。 | | |\n| | | |\n| * | | |\n| *板书3、其它常见 | | |\n| 金属与非金属的反应 | | |\n| | | |\n| 2Mg+O~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| height=\"0. | | |\n| 3333333333333333in\"} | | |\n| 2MgO | | |\n| | | |\n| 4 Al3O~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| height=\"0. | | |\n| 3333333333333333in\"} | | |\n| 2 Al~2~O~3~ | | |\n| | | |\n| 3Fe + 2O~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| hei | | |\n| ght=\"0.3333333333333 | | |\n| 333in\"}Fe~3~O~4~ | | |\n| | | |\n| [讲]除了能被氧 | | |\n| 气氧化外,金属还能被 | | |\n| 氯气、硫等具有氧化性 | | |\n| 的物质所氧化,生成相 | | |\n| 应的氯化物或硫化物。 | | |\n| | | |\n| | | |\n| [板书]规律小结: | | |\n| | | |\n| 一般金属+O~2~ | | |\n| 金属氧化物 | | |\n| | | |\n| 金属+Cl~ | | |\n| 2~最高价金属氯化物 | | |\n| | | |\n| 金属+S | | |\n| 低价金属硫化物 | | |\n| | | |\n| 例如3Fe + | | |\n| 2O~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| hei | | |\n| ght=\"0.3333333333333 | | |\n| 333in\"}Fe~3~O~4~ | | |\n| | | |\n| 2Fe | | |\n| +3Cl~2~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| he | | |\n| ight=\"0.333333333333 | | |\n| 3333in\"}2FeCl~3~ | | |\n| | | |\n| Fe +S | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| height=\"0.3333333 | | |\n| 333333333in\"}FeS | | |\n| | | |\n| [小结]本节课 | | |\n| 我们主要学习了金属钠 | | |\n| 与氧气在不同条件下与 | | |\n| 氧气反应和铝箔在空气 | | |\n| 中加热的反应情况。同 | | |\n| 时我们利用", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-7ea7923f0a42728c6e03c7ff3e830507", "__created_at__": 1754897909, "content": "333333333in\"}FeS | | |\n| | | |\n| [小结]本节课 | | |\n| 我们主要学习了金属钠 | | |\n| 与氧气在不同条件下与 | | |\n| 氧气反应和铝箔在空气 | | |\n| 中加热的反应情况。同 | | |\n| 时我们利用铝在空气中 | | |\n| 的化学特性,可以把铝 | | |\n| 制成日常用的铝制品。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第一节 金 | 授课班级 | |\n| 属的化学性质(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、根据生产 |\n| | | 、生活中的应用实例或 |\n| 学 | 与 | 通过实验探究,掌握铁 |\n| | | 与水蒸汽的反应原理。 |\n| 目 | 技能 | |\n| | | |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过研究 |\n| | | 性学习的方式让学生初 |\n| | 与 | 步掌握研究性学习的学 |\n| | | 习方法,为在高一学生 |\n| | 方法 | 中开展化学研究性学习 |\n| | | 课题的研究打下基础。 |\n| | | |\n| | | 2、注意 |\n| | | 实验现象的讨论、培养 |\n| | | 观察和分析问题的能力 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通过 |\n| | | 介绍铝的冶炼,培养学 |\n| | 态度 | 生通于探索的科学精神 |\n| | | 和严格求实的科学态度 |\n| | 价值观 | |\n| | | 2、通过动 |\n| | | 手实验体验化学的奥秘 |\n| | | ,激发学生学习兴趣。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 铁的化学性质、 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | Fe 与水反应原理 | |\n+----------------------+----------------------+----------------------+\n| 知 | 二、 | |\n| | 金属与酸和水的反应 | |\n| 识 | | |\n| | [投影实验3-3 | |\n| 结 | ]钠与水反应]{.ul} | |\n| | | |\n| 构 | 1、钠与水的反应2 | |\n| | Na +2H~2~O ==2NaOH | |\n| 与 | +H~2~ ↑ | |\n| | | |\n| 板 | 2 Na +2H~2~O | |\n| | ==2NaOH +H~2~ ↑ | |\n| 书 | | |\n| | 离子方程式2Na | |\n| 设 | +2H~2~O==2Na^^ | |\n| | +2OH^―^ +H~2~ ↑ | |\n| 计 | | |\n| | 2、金 | |\n| | 属铁与水的反应3Fe | |\n| | +4H~2~O | |\n| | (g) | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage61.emf){width=\"0 | |\n| | .3333333333333333in\" | |\n| | h | |\n| | eight=\"0.35416666666 | |\n| | 66667in\"}Fe~3~O~4~ | |\n| | +4H~2~ | |\n| | | |\n| | 3、 | |\n| | 钠与酸和盐溶液反应 | |\n| | | |\n| | (1) 2Na | |\n| | +2HCl==2NaCl +H~2~ | |\n| | ↑ | |\n| | | |\n| | (2) 投入CuSO~4~ | |\n| | 溶液中 | |\n| | 2Na+2H~2~O+CuSO~4~ | |\n| | ==Cu(OH) | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b8e8f3588f99f722b1ab4050d6897a4f", "__created_at__": 1754897909, "content": "|\n| | +2HCl==2NaCl +H~2~ | |\n| | ↑ | |\n| | | |\n| | (2) 投入CuSO~4~ | |\n| | 溶液中 | |\n| | 2Na+2H~2~O+CuSO~4~ | |\n| | ==Cu(OH) | |\n| | ~2~↓+Na~2~SO~4~+H~2~ | |\n| | ↑ | |\n| | | |\n| | 4 | |\n| | 、镁、铝与酸的反应 | |\n| | | |\n| | 与非氧化性酸Mg | |\n| | +2H^^ ==Mg^2^ | |\n| | +H~2~ ↑ | |\n| | | |\n| | 2Al+ 6H^^ | |\n| | ==2Al^3^ +3H~2~ | |\n| | ↑ | |\n| | | |\n| | 5、Fe与酸的反应 | |\n| | | |\n| | 与非氧化性酸的反应 | |\n| | Fe +2H^^ ==Fe^2^ | |\n| | +H~2~ ↑ | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [引入 | 结合多媒体开拓 | |\n| ]现代社会是金属的 | 视野明确学习内容,引 | |\n| 世界,金属的世界是丰 | 起兴趣,激发学习热情 | |\n| 富多彩的,从坚硬无比 | | |\n| 的铜墙铁壁,到柔弱无 | 观察现象并猜测原因 | |\n| 骨的水银,以\"不怕火 | ,培养学生的观察能力 | |\n| 炼\"而为人类痴迷的贵 | ,激发发现问题兴趣。 | |\n| 族金属金和铂,到见光 | | |\n| 就能放出电子以\"娇柔 | 揭示反应的本质, | |\n| 美丽\"著称于世的铷和 | 培养学生逻辑思维能力 | |\n| 铯,你会感到不同的金 | | |\n| 属在性质上有天壤之别 | 通过回 | |\n| ,你们想更多了解关于 | 忆,指导学生掌握正确 | |\n| 金属的知识吗?那么, | 的分类方法,进一步加 | |\n| 这节课就让我们一起走 | 强对该反应本质的理解 | |\n| 进金属的世界,共同来 | | |\n| 探索它们的化学性质。 | 根据钠与水反 | |\n| | 应的产物预测铁与水蒸 | |\n| [板书]二、 | 气反应的产物可能是氢 | |\n| 金属与酸和水的反应 | 氧化铁与氢气。指导学 | |\n| | 生运用对比学习的方法 | |\n| | ,激发学生的求知欲。 | |\n| 实验导入]滴水点灯 | | |\n| | 培养学 | |\n| [问] | 生探索精神、培养分析 | |\n| 为什么水能点燃酒精灯 | 解决问题的能力和综合 | |\n| | 运用所学知识的能力。 | |\n| [问]使物质燃烧 | | |\n| 需要满足哪两个条件? | 培养 | |\n| | 学生自主学习的能力。 | |\n| | | |\n| [讲]可能是水与某 | 分析 | |\n| 物质发生了化学反应, | 装置中每一部分的作用 | |\n| 而且该反应还放出了大 | ,培养学生创新能力。 | |\n| 量的热。事实上,我事 | | |\n| 先在酒精灯焰心上放了 | 学生评 | |\n| 一小颗金属钠。金属钠 | 价实验装置的优缺点。 | |\n| 可以与水反应并放热。 | | |\n| | 培养学生尊重实验结 | |\n| [问]从日 | 果,实事求是的精神。 | |\n| 常生活经验我们知道, | | |\n| 像铁、铝等金属不仅常 | 聆听、领悟、对该 | |\n| 温下与水不反应,即使 | 反应进一步形成正确的 | |\n| 加", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-7195e996ba4cda6eb26a0fe86eb53b39", "__created_at__": 1754897909, "content": "|\n| | 培养学生尊重实验结 | |\n| [问]从日 | 果,实事求是的精神。 | |\n| 常生活经验我们知道, | | |\n| 像铁、铝等金属不仅常 | 聆听、领悟、对该 | |\n| 温下与水不反应,即使 | 反应进一步形成正确的 | |\n| 加热条件也很难反应, | 认识,树立化学反应与 | |\n| 但金属钠却能与冷水反 | 生产、生活的联系观。 | |\n| 应,解释这一实验事实 | | |\n| 的唯一理由是什么呢? | 培养学生 | |\n| | 的推理能力和运用规律 | |\n| (可能是因为钠比 | 解决实际问题的能力。 | |\n| 其他两种金属都活泼) | | |\n| | 学会总结,将知识和方 | |\n| [讲]金属 | 法及时总结成规律,便 | |\n| 钠与水究竟是怎么反应 | 于识记和今后的学习。 | |\n| 的,下面就请同学们来 | | |\n| 亲自感受一下该反应。 | A | |\n| | | |\n| [投影实验3-3 | /(1/) | |\n| ]钠与水反应]{.ul} | 金属Na表面变暗 4Na | |\n| | +O~2~ ==2 Na~2~O | |\n| 实验步骤: | | |\n| | /(2/) | |\n| 1、 | 过 | |\n| 用镊子取一小块钠置于 | 一段时间后又逐渐变潮 | |\n| 滤纸上,吸干表面的煤 | | |\n| 油,用小刀切绿豆大的 | Na~2~O+H~2~O ==2NaOH | |\n| 一粒,其余放回原瓶。 | | |\n| | /(3/) | |\n| 2、在 | 再过一段 | |\n| 小烧杯中加一小半水, | 时间,又转为白色固体 | |\n| 并将切下的钠粒投入小 | 2 NaOH+CO~2~ | |\n| 烧杯中,观察实验现象 | ==Na~2~CO~3~ +H~2~O | |\n| | | |\n| 3、反应结束后向烧 | Na~2~CO~3~+10H~2~O | |\n| 杯中滴入1-2滴酚酞试 | =Na~2~CO~3~·10H~2~O | |\n| 剂,观察溶液的变化。 | | |\n| | /(4/) | |\n| [投影]实验现象 | 又过一段时间后, | |\n| | 白色固体变成白色粉末 | |\n| ----- | Na~2~CO~3~·10H~2~O | |\n| -------------------- | == Na~2~CO~3~ | |\n| --- ---------------- | +10H~2~O | |\n| -------------------- | | |\n| 现象 | | |\n| 解释 | | |\n| 浮在 | | |\n| 水面上 | | |\n| 钠的密度比水小 | | |\n| 熔成 | | |\n| 银白色小球 | | |\n| 钠是银白色金属 | | |\n| ,熔点低,且反应放热 | | |\n| 小球 | | |\n| 四处游动并发出嘶嘶响 | | |\n| 声 生成气体推动小 | | |\n| 球游动反应剧烈且放热 | | |\n| 滴入 | | |\n| 酚酞溶液变红色 | | |\n| 有碱性物质生成 | | |\n| ----- | | |\n| -------------------- | | |\n| --- ---------------- | | |\n| -------------------- | | |\n| | | |\n| [板书 | | |\n| 1、钠与水的反应 | | |\n| | | |\n| 2 Na +2H~2~O | | |\n| ==2NaOH +H~2~ ↑ | | |\n| | | |\n| [问]从 | | |\n| 氧化还原角度分析反应 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 2", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-bb5ee80ff4052fc3548682c31338dcdc", "__created_at__": 1754897909, "content": "|\n| 2 Na +2H~2~O | | |\n| ==2NaOH +H~2~ ↑ | | |\n| | | |\n| [问]从 | | |\n| 氧化还原角度分析反应 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 2 Na +2H~2~O | | |\n| ==2NaOH +H~2~ ↑ | | |\n| | | |\n| [问] | | |\n| 从分类的角度说说该反 | | |\n| 应分别属于什么反应? | | |\n| | | |\n| [投影]置换反 | | |\n| 应、离子反应、氧化还 | | |\n| 原反应、放热反应Na | | |\n| 是还原剂H~2~O | | |\n| 是还原剂NaOH是氧化 | | |\n| 产物H~2~是还原产物 | | |\n| | | |\n| [板 | | |\n| 书离子方程式2Na | | |\n| +2H~2~O==2Na^^ | | |\n| +2OH^―^ +H~2~ ↑ | | |\n| | | |\n| [过] | | |\n| 了解了活泼金属与水 | | |\n| 的反应再回过头来看看 | | |\n| 我们熟悉的金属铁,根 | | |\n| 据金属活动性表,我们 | | |\n| 知道铁没有钠活泼,所 | | |\n| 以根据日常经验我们也 | | |\n| 知道铁与冷水、热水均 | | |\n| 不反应,那如果我们再 | | |\n| 把条件创造得更好一些 | | |\n| ,该反应是否能进行呢 | | |\n| ?例如,让高温的铁与 | | |\n| 炽热的水蒸汽接触呢? | | |\n| 如果可以,请大家预测 | | |\n| 这一反应可能的产物。 | | |\n| | | |\n| 板书2 | | |\n| 、金属铁与水的反应 | | |\n| | | |\n| [问]我们必须尊 | | |\n| 重实验事实,那么如何 | | |\n| 设计这一反应的装置? | | |\n| | | |\n| [引]设计 | | |\n| 反应装置的依据是什么 | | |\n| | | |\n| (反应物状态、反 | | |\n| 应条件和生成物性质) | | |\n| | | |\n| [问]该反应的 | | |\n| 特点是固体与气体,需 | | |\n| 要加热且生成气体的反 | | |\n| 应,装置类似于初中学 | | |\n| 过的哪一套实验装置? | | |\n| | | |\n| (类似于CO | | |\n| 还原CuO 的实验装置) | | |\n| | | |\n| [投影] | | |\n| | | |\n| ![](sta | | |\n| tic/Images/a91144fda | | |\n| 2c741b0b9694ebcfa9d1 | | |\n| deb/media/image64.pn | | |\n| g){width=\"2.90625in\" | | |\n| height=\"2.1875in | | |\n| \"}![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage65.png){width=\"3 | | |\n| .1354166666666665in\" | | |\n| height=\"2.35 | | |\n| 41666666666665in\"} | | |\n| [投影]注意事项: | | |\n| | | |\n| 1、 | | |\n| 剂的作用是吸收水蒸汽 | | |\n| ,使收集的氢气易点燃 | | |\n| | | |\n| 2、管中石绵绒的作 | | |\n| 用是铁粉的载体,增大 | | |\n| 铁粉与水蒸汽的接触面 | | |\n| | | |\n| 实", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ee802bce9286f39abdd914894d14d66a", "__created_at__": 1754897909, "content": "<22>的作用是吸收水蒸汽 | | |\n| ,使收集的氢气易点燃 | | |\n| | | |\n| 2、管中石绵绒的作 | | |\n| 用是铁粉的载体,增大 | | |\n| 铁粉与水蒸汽的接触面 | | |\n| | | |\n| 实验现象:加 | | |\n| 热时试管内铁粉红热, | | |\n| 点燃气体可听到爆鸣声 | | |\n| | | |\n| [讲] | | |\n| 教科书中介绍的是用一 | | |\n| 支试管完成铁粉与水蒸 | | |\n| 气反应的实验,试管底 | | |\n| 部塞有一团潮湿的棉花 | | |\n| ,在湿棉花左边放有铁 | | |\n| 粉,蒸发皿中放肥皂水 | | |\n| (或在水中加几滴洗涤 | | |\n| 剂)。整套装置试管口 | | |\n| 应低于试管底。铁粉与 | | |\n| 湿棉花的距离可近一些 | | |\n| ,加热时用一盏酒精灯 | | |\n| 先后加热两处。反应产 | | |\n| 生的气体导入到肥皂水 | | |\n| 中吹成氢气泡,再用燃 | | |\n| 着的火柴去点燃,可发 | | |\n| 出爆鸣声。这一实验所 | | |\n| 用的时间短且很安全。 | | |\n| | | |\n| [投影] | | |\n| 演示该实验要注意: | | |\n| | | |\n| 1铁粉 | | |\n| 不需要与石棉绒混合, | | |\n| 因改用酒精灯加热,温 | | |\n| 度比用喷灯加热时低。 | | |\n| | | |\n| 2酒精灯应先在放 | | |\n| 湿棉花的位置上加热一 | | |\n| 会儿,待试管底部温度 | | |\n| 略高,且有部分水形成 | | |\n| 蒸气时,再将酒精灯移 | | |\n| 至放铁粉的位置加热, | | |\n| 可防止发生倒吸现象。 | | |\n| | | |\n| 3加热 | | |\n| 一会儿后再将导管插入 | | |\n| 到肥皂水中,最初插入 | | |\n| 时吹起的是空气泡。肥 | | |\n| 皂水不宜太稀,否则吹 | | |\n| 起的氢气泡太小,点燃 | | |\n| 时难以有较大的爆鸣声 | | |\n| | | |\n| | | |\n| 4实验结束时应先 | | |\n| 从肥皂水中撤出导管, | | |\n| 再移去燃着的酒精灯。 | | |\n| | | |\n| 现象:加热时 | | |\n| 试管内铁粉红热,点燃 | | |\n| 肥皂泡可听到爆鸣声。 | | |\n| | | |\n| 板书3Fe | | |\n| +4H~2~O | | |\n| (g) | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| h | | |\n| eight=\"0.35416666666 | | |\n| 66667in\"}Fe~3~O~4~ | | |\n| +4H~2~ | | |\n| | | |\n| [讲] | | |\n| 一天,英国一家炼铁厂 | | |\n| 的熔铁炉底部产生了裂 | | |\n| 缝,顿时炽热的铁水从 | | |\n| 裂口夺路而出。当温度 | | |\n| 高达摄氏一千多度的铁 | | |\n| 水碰上炉旁一条水沟里 | | |\n| 的不时,刹那间,\"轰 | | |\n| \"", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-071c9b1e8372e75a497f548b6587f795", "__created_at__": 1754897909, "content": "<22>铁炉底部产生了裂 | | |\n| 缝,顿时炽热的铁水从 | | |\n| 裂口夺路而出。当温度 | | |\n| 高达摄氏一千多度的铁 | | |\n| 水碰上炉旁一条水沟里 | | |\n| 的不时,刹那间,\"轰 | | |\n| \"的一声震天动地的巨 | | |\n| 响,整个车间被掀掉了 | | |\n| | | |\n| [问]水为什 | | |\n| 么会产生这么大的相当 | | |\n| 于TNT炸药的威力呢 | | |\n| | | |\n| ( | | |\n| 这是因为高温下发生了 | | |\n| 上述反应,当摄氏一千 | | |\n| 多度的铁水流入水沟时 | | |\n| ,在极短的时间内产生 | | |\n| 了大量易燃易爆气体, | | |\n| 并且被铁水的高温点燃 | | |\n| ,所以轻而易举地把巨 | | |\n| 大的生产车间给炸掉了 | | |\n| | | |\n| [问]在生 | | |\n| 产实践中,高温操作铁 | | |\n| 水的注意事项是什么? | | |\n| | | |\n| (所以钢铁厂里 | | |\n| 的铁水包,在注入炽热 | | |\n| 的铁水与钢水之前,必 | | |\n| 须进行充分的干燥处理 | | |\n| ,不让包中留下水,以 | | |\n| 防止爆炸事故的发生) | | |\n| | | |\n| | | |\n| 讲]以上介绍了两种 | | |\n| 不同的金属与水的反应 | | |\n| ,从条件和产物都不相 | | |\n| 同,最本质的原因还是 | | |\n| 金属的活动性不同。其 | | |\n| 实,我们也可以根据金 | | |\n| 属与水、酸反应的情况 | | |\n| 来推测金属的活动性。 | | |\n| | | |\n| 金属Al | | |\n| ,它 | | |\n| 能与沸水反应生成对应 | | |\n| 的氢氧化物和氢气,请 | | |\n| 估计它的活动性范围。 | | |\n| | | |\n| (Al | | |\n| 的活动性介于 | | |\n| 金属钠和铁之间,因为 | | |\n| 其反应条件的苛刻程度 | | |\n| 介于这两种金属之间) | | |\n| | | |\n| Na 与H~2~O | | |\n| 和酸反应的实 | | |\n| 质都是与H^^ 反应 | | |\n| 而酸电离出的H^^ | | |\n| 比水电离出的H^^要 | | |\n| 大得多,故先与酸反应 | | |\n| ,现象与水反应相似, | | |\n| 但更剧烈而且只有Na | | |\n| 过量时Na | | |\n| 才与原酸中的H~2~O | | |\n| 反应。 | | |\n| | | |\n| 板书3、 | | |\n| 钠与酸和盐溶液反应 | | |\n| | | |\n| (1) 2Na | | |\n| +2HCl==2NaCl +H~2~ | | |\n| ↑ | | |\n| | | |\n| (2) 投入CuSO~4~ | | |\n| 溶液中: | | |\n| | | |\n| 2Na +2H~2~O | | |\n| +CuSO~4~ ==Cu(OH)~2~ | | |\n| ↓+Na~2~SO~4~ +H~2~ | | |\n| ↑ | | |\n| | | |\n| [讲] | | |\n| 镁、铝、铁按照金属 | | |\n| 活动性顺序产生H~2~ | | |\n| 的能力逐渐减弱。 | | |\n| | | |\n| 板书4 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-bd7cd9f796e44db43a4cb79946b439c0", "__created_at__": 1754897909, "content": "H~2~ | | |\n| ↑ | | |\n| | | |\n| [讲] | | |\n| 镁、铝、铁按照金属 | | |\n| 活动性顺序产生H~2~ | | |\n| 的能力逐渐减弱。 | | |\n| | | |\n| 板书4 | | |\n| 、镁、铝与酸的反应 | | |\n| | | |\n| 与非氧化性酸Mg | | |\n| +2H^^ ==Mg^2^ | | |\n| +H~2~ ↑ | | |\n| | | |\n| 2Al+ 6H^^ | | |\n| ==2Al^3^ +3H~2~ | | |\n| ↑ | | |\n| | | |\n| [讲 | | |\n| 与氧化性酸Mg与 | | |\n| 浓H~2~SO~4~、HNO~3~ | | |\n| 反应不产生H~2~ | | |\n| | | |\n| Al | | |\n| 在冷的浓H~2~SO~4~ | | |\n| 或冷的浓HNO~3~中,表 | | |\n| 面会钝化,生成坚固的 | | |\n| 氧化膜,因此可用铝制 | | |\n| 容器装运浓H~2~SO~4~ | | |\n| | | |\n| [讲]同 | | |\n| 样,铁也可以与非氧化 | | |\n| 性酸的反应请写出Fe | | |\n| 与稀盐 | | |\n| 酸、稀硫酸反应方程式 | | |\n| | | |\n| [板书 | | |\n| 5、Fe与酸的反应 | | |\n| | | |\n| 与非氧化性酸的反应 | | |\n| Fe +2H^^ ==Fe^2^ | | |\n| +H~2~ ↑ | | |\n| | | |\n| Fe | | |\n| 在常温下可遇浓 | | |\n| H~2~SO~4~、浓HNO~3~ | | |\n| 会发生钝化即在Fe | | |\n| 表面 | | |\n| 生成致密的氧化物膜, | | |\n| 阻止内部的金属进一步 | | |\n| 氧化。但加热条件下, | | |\n| 可反应生成Fe^3^ | | |\n| | | |\n| [总 | | |\n| 结]在这节课中,我 | | |\n| 们利用实验探究的方法 | | |\n| 了解到金属的化学性质 | | |\n| /-/-/-/-/--金属与水 | | |\n| 的反应,又用对比的方 | | |\n| 法了解到不同活动性的 | | |\n| 金属与同一种物质反应 | | |\n| 的条件、现象和产物的 | | |\n| 差异。实验法和对比法 | | |\n| 这两种方法也将成为我 | | |\n| 们今后学习其他元素化 | | |\n| 合物知识的重要方法。 | | |\n| | | |\n| *[自我评价]* | | |\n| | | |\n| 往烧杯 | | |\n| 内注入煤油和水各100 | | |\n| mL | | |\n| ,静 | | |\n| 置后将一小块钠投入烧 | | |\n| 杯内,发生的现象是( | | |\n| ) | | |\n| | | |\n| A、 | | |\n| 钠沉到液柱1/2处钠 | | |\n| 块下部有许多气泡,附 | | |\n| 有气泡的钠块徐徐上升 | | |\n| 到液体上部,一会儿又 | | |\n| 沉到液柱1/2处如此 | | |\n| 反复多次,最后消失。 | | |\n| | | |\n| B、钠块一直沉到烧 | | |\n| 杯底部,并停留在杯底 | | |\n| ,放出气泡,最后消失 | | |\n| | | |\n| C", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-48df7452f9a2a87c69c0fed7a0a2b08e", "__created_at__": 1754897909, "content": "| |\n| 沉到液柱1/2处如此 | | |\n| 反复多次,最后消失。 | | |\n| | | |\n| B、钠块一直沉到烧 | | |\n| 杯底部,并停留在杯底 | | |\n| ,放出气泡,最后消失 | | |\n| | | |\n| C、钠块浮 | | |\n| 在液柱表面上,很快熔 | | |\n| 成一个闪亮的小球,小 | | |\n| 球四处游动,最后消失 | | |\n| | | |\n| D、钠块沉到液柱 | | |\n| 1/2处很快熔成一个 | | |\n| 闪亮的小球,小球在液 | | |\n| 柱1/2处沿水平方向迅 | | |\n| 速游来游去,最后消失 | | |\n+----------------------+----------------------+----------------------+\n| | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第一节 金 | 授课班级 | |\n| 属的化学性质(三) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、了解 |\n| | | 铝与碱溶液的反应原理 |\n| 学 | 与 | |\n| | | 2、了解 |\n| 目 | 技能 | 两性氢氧化物及氧化物 |\n| | | |\n| 的 | | 3、掌 |\n| | | 握物质的量应用于化学 |\n| | | 方程式计算方法和格式 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、培养学 |\n| | | 生发现问题、分析问题 |\n| | 与 | 、解决问题的综合能力 |\n| | | |\n| | 方法 | 2 |\n| | | 、加深对基本的理解和 |\n| | | 对化学反应规律的认识 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 培养学生 |\n| | | 综合运用知识的能力  |\n| | 态度 | |\n| | | |\n| | 价值观 | |\n+----------------------+----------------------+----------------------+\n| 重 点 | 铝和强碱的反应 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 计算中的解题技巧 | |\n+----------------------+----------------------+----------------------+\n| 知 | 三、铝与 | |\n| | 氢氧化钠溶液的反应 | |\n| 识 | | |\n| | [投影实验3 | |\n| 结 | -4铝与盐酸、氢氧化 | |\n| | 钠溶液的反应]{.ul} | |\n| 构 | | |\n| | 2 Al +2NaOH | |\n| 与 | +2H~2~O ==2NaAlO­~2~ | |\n| | +3H~2~ ↑ | |\n| 板 | | |\n| | 2Al +6 NaOH+6H~2~O | |\n| 书 | ==2NaAlO­~2~ | |\n| | +3H~2~↑+4H~2~O | |\n| 设 | | |\n| | 四、物质的量在化学 | |\n| 计 | 方程式计算中的应用 | |\n| | | |\n| | 1、计算原理 2Na | |\n| | + 2H~2~O = 2NaOH + | |\n| | H~2~↑ | |\n| | | |\n| | 化学计量数之比 2 : | |\n| | 2 : 2 : 1 | |\n| | | |\n| | 扩大N~A~倍 2×N~A~: | |\n| | 2×N~A~ 2×N~A~ | |\n| | N~A~ | |\n| | | |\n| | 物质的量之比 2mol | |\n| | : 2mol : 2mol : | |\n| | 1mol | |\n| | | |\n| | 相对质量之比 2×23 | |\n| | : 2×18 : 2×40 : 2 | |\n| | | |\n| | > 标况下体积 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b15ef96e840760fe52ff3b1c4cfe5b79", "__created_at__": 1754897909, "content": "的量之比 2mol | |\n| | : 2mol : 2mol : | |\n| | 1mol | |\n| | | |\n| | 相对质量之比 2×23 | |\n| | : 2×18 : 2×40 : 2 | |\n| | | |\n| | > 标况下体积 | |\n| | > 22.4L | |\n| | | |\n| | 2、化学方程式中各 | |\n| | 物质的化学计量数之比 | |\n| | ,等于组成各物质的粒 | |\n| | 子数之比,也等于各物 | |\n| | 质的物质的量之比。 | |\n| | | |\n| | 例1、把6.5 g Zn | |\n| | 放入足量盐酸中,锌 | |\n| | 完全反应,计算:(1) | |\n| | 6.5g Zn | |\n| | 的物质的量(2) | |\n| | 参加反应的HCl | |\n| | 的物质的量(3) | |\n| | 生成H~2~ | |\n| | 的体积(标准状况) | |\n| | | |\n| | 解 | |\n| | 1n(Zn)=m/M=6.5 | |\n| | g/65g.mol-1=0.1mol | |\n| | | |\n| | Zn + 2HCl = | |\n| | ZnCl~2~ + H2↑ | |\n| | | |\n| | 1mol 2mol 22.4L | |\n| | | |\n| | 0.1mol n(HCl) | |\n| | V(H~2~ ) | |\n| | | |\n| | 2n( | |\n| | HCl)=0.1mol×2=0.2mol | |\n| | 3V(H~2~ | |\n| | )=0.1×22.4L=2.24L | |\n| | | |\n| | 例2、将0.65g | |\n| | 锌加到50 mL 1 mol | |\n| | /L盐酸中计算(1) | |\n| | 标准状况下生成H~2~ | |\n| | 的体积(2) | |\n| | 若反应完 | |\n| | 成后溶液体积仍为50 | |\n| | mL这时溶 | |\n| | 液中的Zn^2+^和H^^ | |\n| | 的物 | |\n| | 质的量浓度是多少? | |\n| | | |\n| | 解: | |\n| | n(Zn)==0.65/65==0.01 | |\n| | mol | |\n| | n | |\n| | (HCl)==0.05/*1==0.05 | |\n| | mol | |\n| | | |\n| | ∵ Zn +2HCl | |\n| | ==ZnCl~2~ +H~2~ ↑ ∴ | |\n| | HCl 过量 | |\n| | | |\n| | ∴ 设生成 H~2~ x | |\n| | mol , ZnCl~2~ y mol | |\n| | , HCl z mol | |\n| | | |\n| | Zn +2HCl ==ZnCl~2~ | |\n| | +H~2~ ↑ | |\n| | | |\n| | 1 2 1 1 | |\n| | | |\n| | 0.01 z y x | |\n| | ∴x==0.01 mol y==0.01 | |\n| | mol z==0.02 mol | |\n| | | |\n| | (1) | |\n| | 标准状况下生成H~2~ | |\n| | 体积 | |\n| | V(H~2~)== | |\n| | 0.04/*22.4==0.224L | |\n| | | |\n| | (2) | |\n| | c(Zn^2+^)====0.2 | |\n| | mol/L | |\n| | | |\n| | * | |\n| | *n(H^^)==n(HCl)--- | |\n| | z==0.05---", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-784f8792640dd547daa398bc3254db94", "__created_at__": 1754897909, "content": ".04/*22.4==0.224L | |\n| | | |\n| | (2) | |\n| | c(Zn^2+^)====0.2 | |\n| | mol/L | |\n| | | |\n| | * | |\n| | *n(H^^)==n(HCl)--- | |\n| | z==0.05---0.02==0.03 | |\n| | mol | |\n| | | |\n| | c (H^^)====0.6 | |\n| | mol/L | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | | |\n+----------------------+----------------------+----------------------+\n| [过]能与酸反应 | 不能,因为 | |\n| 是活泼和较活泼金属的 | 酸、碱、盐均能腐蚀Al | |\n| 通性,但有些金属例如 | 制品 | |\n| 铝还有特殊的性质,是 | | |\n| 什么呢?这节课我们就 | | |\n| 来研究一下铝的特性。 | | |\n| | | |\n| [板书]三、铝与 | | |\n| 氢氧化钠溶液的反应 | | |\n| | | |\n| [投影实验3 | | |\n| -4铝与盐酸、氢氧化 | | |\n| 钠溶液的反应]{.ul} | | |\n| | | |\n| 实验步骤: | | |\n| 在2支试管里分别加入5 | | |\n| mL 盐酸和5 mL NaOH | | |\n| 溶液,再 | | |\n| 分别放入一小段铝片。 | | |\n| 过一段时间后,将点燃 | | |\n| 的木条分别放在2支试 | | |\n| 管口,观察实验现象。 | | |\n| | | |\n| 实验现象: | | |\n| 铝分别放入盐酸、NaOH | | |\n| 溶液中有气泡产生,将 | | |\n| 点燃的木条放在试管口 | | |\n| ,可观察到蓝色火焰。 | | |\n| | | |\n| [讲]通过实验我 | | |\n| 们可以看到,铝既能与 | | |\n| 盐酸反应又能与NaOH | | |\n| 溶液反应 | | |\n| ,反应可放出一种可燃 | | |\n| 性的气体/-/--氢气。 | | |\n| | | |\n| 板书2 Al | | |\n| +2NaOH +2H~2~O | | |\n| ==2NaAlO­~2~ +3H~2~ | | |\n| ↑ | | |\n| | | |\n| Al | | |\n| 只能与强碱(NaOH | | |\n| 、KOH)反应 | | |\n| ,不与弱碱(NH~3~·H~ | | |\n| 2~O)反应。Al 与碱溶 | | |\n| 液反应其实质是Al被 | | |\n| 氧化溶液中的H^^ | | |\n| 被还原A | | |\n| l与H~2~O反应生成H~2~ | | |\n| ,同时又生 | | |\n| 成难溶液的Al(OH)~3~ | | |\n| 覆盖在Al表面阻 | | |\n| 止反应的进一步进行, | | |\n| 所以Al在常温下或加 | | |\n| 热条件下很难与H~2~O | | |\n| 反应,而在碱 | | |\n| 性溶液中Al(OH)~3~ | | |\n| +OH^―^ ==AlO~2~^―^ | | |\n| +2H~2~O 从而使Al | | |\n| 与H~2~O | | |\n| 的反应不断 | | |\n| 进行。请标出电子转移 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 2Al +6 NaOH+6H~2~O | | |\n| ==2NaAlO­~2~ | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b2369b6bdd340a477b481d2d8876203b", "__created_at__": 1754897909, "content": "|\n| 与H~2~O | | |\n| 的反应不断 | | |\n| 进行。请标出电子转移 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 2Al +6 NaOH+6H~2~O | | |\n| ==2NaAlO­~2~ | | |\n| +3H~2~↑+4H~2~O | | |\n| | | |\n| [点击试题]剩余 | | |\n| 的饭菜能否长时间保存 | | |\n| 在铝锅中?为什么? | | |\n| | | |\n| [过 | | |\n| ]有关化学方程式的 | | |\n| 计算,我们在初中就已 | | |\n| 经很熟悉知道化学反应 | | |\n| 中各反应物和生成物的 | | |\n| 质量之间符合一定的关 | | |\n| 系呢?能不能把物质的 | | |\n| 量也应用于化学方程式 | | |\n| 的计算呢?这就是我们 | | |\n| 下面所要学习的内容。 | | |\n| | | |\n| [板书 | | |\n| ]四、物质的量在化学 | | |\n| 方程式计算中的应用 | | |\n| | | |\n| [讲] | | |\n| 我们知道,物质是由原 | | |\n| 子、分子或离子等粒子 | | |\n| 组成的,物质之间的化 | | |\n| 学反应也是这些粒子按 | | |\n| 一定数目进行的,化学 | | |\n| 方程式可以明确地表示 | | |\n| 出化学反应中这些粒子 | | |\n| 间的数目关系,这些粒 | | |\n| 子间的数目关系,又叫 | | |\n| 做化学计算数的关系。 | | |\n| | | |\n| [板 | | |\n| 书1、计算原理 | | |\n| | | |\n| - 2Na + 2H~2~O = | | |\n| 2NaOH + H~2~↑ | | |\n| | | |\n| 化学计量数之比 2 : | | |\n| 2 : 2 : 1 | | |\n| | | |\n| 扩大N~A~倍 2×N~A~: | | |\n| 2×N~A~ 2×N~A~ | | |\n| N~A~ | | |\n| | | |\n| 物质的量之比 2mol | | |\n| : 2mol : 2mol : | | |\n| 1mol | | |\n| | | |\n| 相对质量之比 2×23 | | |\n| : 2×18 : 2×40 : 2 | | |\n| | | |\n| > 标况下体积 | | |\n| > 22.4L | | |\n| | | |\n| | | |\n| 讲]由以上的分析可 | | |\n| 知,化学方程式中各物 | | |\n| 质的化学计算数之比等 | | |\n| 于组成各物质的粒子数 | | |\n| 之比。因而也等于各物 | | |\n| 质的物质的量之比。在 | | |\n| 计算时,应用的比例项 | | |\n| 必须性质相同,即上下 | | |\n| 单位统一。一般,所用 | | |\n| 的项与题给条件相同。 | | |\n| | | |\n| [板书 | | |\n| 2、化学方程式中各 | | |\n| 物质的化学计量数之比 | | |\n| ,等于组成各物质的粒 | | |\n| 子数之比,也等于各物 | | |\n| 质的物质的量之比。 | | |\n| | | |\n| [讲]有了上述 | | |\n| 结论,我们即可根据化 | | |\n| 学方程式对有物质的物 | | |\n| 质的量进行定量计算。 | | |\n| | | |\n| [投 | | |\n| 影]进行物质的量应 | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-2e38107b74cf3982290fe39547d5467b", "__created_at__": 1754897909, "content": "|\n| | | |\n| [讲]有了上述 | | |\n| 结论,我们即可根据化 | | |\n| 学方程式对有物质的物 | | |\n| 质的量进行定量计算。 | | |\n| | | |\n| [投 | | |\n| 影]进行物质的量应 | | |\n| 用于化学方程式的计算 | | |\n| ,须按以下步骤进行: | | |\n| | | |\n| 1 | | |\n| 、写出有关反应方程式 | | |\n| | | |\n| 2、找出 | | |\n| 相关物质的计量数之比 | | |\n| | | |\n| 3、对应计量数找 | | |\n| 出相关物质的物质的量 | | |\n| | | |\n| 4、进行计算。 | | |\n| | | |\n| | | |\n| 过]下面我们就在掌 | | |\n| 握上述各物理量间关系 | | |\n| 的基础上,来系统、全 | | |\n| 面地学习物质的量应用 | | |\n| 于化学方程式的计算。 | | |\n| | | |\n| 板书例1、把6.5 | | |\n| g Zn | | |\n| 放入足量盐酸中, | | |\n| 锌完全反应,计算: | | |\n| | | |\n| (1) 6.5g Zn | | |\n| 的物质的量 | | |\n| | | |\n| (2) 参加反应的HCl | | |\n| 的物质的量 | | |\n| | | |\n| (3) 生成H~2~ | | |\n| 的体积(标准状况) | | |\n| | | |\n| 解 | | |\n| 1n(Zn)=m/M=6.5 | | |\n| g/65g.mol-1=0.1mol | | |\n| | | |\n| Zn + 2HCl = | | |\n| ZnCl~2~ + H2↑ | | |\n| | | |\n| 1mol 2mol 22.4L | | |\n| | | |\n| 0.1mol n(HCl) | | |\n| V(H~2~ ) | | |\n| | | |\n| 2n(HC | | |\n| l)=0.1mol×2=0.2mol | | |\n| | | |\n| 3V(H~2~ | | |\n| )=0.1×22.4L=2.24L | | |\n| | | |\n| | | |\n| [讲]在化学反应中 | | |\n| ,反应物间是按化学方 | | |\n| 程式所确定的质量比或 | | |\n| 物质的量比进行反应的 | | |\n| 。如果某一反应中两种 | | |\n| 反应物的量都已给出。 | | |\n| 此时存在两种可能,一 | | |\n| 种是两种反应物恰好完 | | |\n| 全反应;二是两种反应 | | |\n| 物不是恰好完全反应。 | | |\n| 而是一种反应物过量, | | |\n| 这时就首先确定哪种反 | | |\n| 应物的量是过量的,然 | | |\n| 而根据不足量的物质, | | |\n| 即完全反应的物质的量 | | |\n| 进行有关计算。下面我 | | |\n| 们按以上思路来解答。 | | |\n| | | |\n| | | |\n| 板书例2、将0.65g | | |\n| 锌加到50 mL 1 mol | | |\n| /L盐酸中计算 | | |\n| | | |\n| (1) | | |\n| 标准状况下生成H~2~ | | |\n| 的体积 | | |\n| | | |\n| (2) | | |\n| 若反应完 | | |\n| 成后溶液体积仍为50 | | |\n| mL这时溶 | | |\n| 液中的Zn^2+^和", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-da2f30637d121acfa2f087c9ef7caaa7", "__created_at__": 1754897909, "content": "| | |\n| 标准状况下生成H~2~ | | |\n| 的体积 | | |\n| | | |\n| (2) | | |\n| 若反应完 | | |\n| 成后溶液体积仍为50 | | |\n| mL这时溶 | | |\n| 液中的Zn^2+^和H^^ | | |\n| 的物 | | |\n| 质的量浓度是多少? | | |\n| | | |\n| 解: | | |\n| n(Zn)==0.65/65==0.01 | | |\n| mol | | |\n| | | |\n| n | | |\n| (HCl)==0.05/*1==0.05 | | |\n| mol | | |\n| | | |\n| ∵ Zn +2HCl | | |\n| ==ZnCl~2~ +H~2~ ↑ | | |\n| | | |\n| ∴ HCl 过量 | | |\n| | | |\n| ∴ 设生成 H~2~ x | | |\n| mol , ZnCl~2~ y mol | | |\n| , HCl z mol | | |\n| | | |\n| Zn +2HCl ==ZnCl~2~ | | |\n| +H~2~ ↑ | | |\n| | | |\n| 1 2 1 1 | | |\n| | | |\n| 0.01 z y x | | |\n| | | |\n| ∴x==0.01 mol | | |\n| y==0.01 mol z==0.02 | | |\n| mol | | |\n| | | |\n| (1) | | |\n| 标准状况下生成H~2~ | | |\n| 体积 | | |\n| V(H~2~)== | | |\n| 0.04/*22.4==0.224L | | |\n| | | |\n| (2) | | |\n| c(Zn^2+^)====0.2 | | |\n| mol/L | | |\n| | | |\n| * | | |\n| *n(H^^)==n(HCl)--- | | |\n| z==0.05---0.02==0.03 | | |\n| mol | | |\n| | | |\n| c (H^^)====0.6 | | |\n| mol/L | | |\n| | | |\n| [总结]综合 | | |\n| 以上计算,物质的量应 | | |\n| 用于化学方程式的计算 | | |\n| 时,须注意以下几点: | | |\n| | | |\n| 1、化学方程式 | | |\n| 中各物质的化学计算数 | | |\n| 之比等于各物质的物质 | | |\n| 的量之比,这是进行各 | | |\n| 项计算的最根本依据。 | | |\n| | | |\n| 2、计算时要注意物 | | |\n| 质的量与其他各物理量 | | |\n| (如质量、气体体积、 | | |\n| 浓度等)之间的关系。 | | |\n| | | |\n| 3、存在过量 | | |\n| 问题时,要根据不过量 | | |\n| 的物理量来进行计算。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第三章 | 授课班级 | |\n| 第二节 | | |\n| 几种重 | | |\n| 要的金属化合物(一) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、掌握Na~2~O~2~和Na |\n| | | ~2~O、Na~2~CO~3~和Na |\n| 学 | 与 | HCO~3~的共性和差异性 |\n| | | |\n| 目 | 技能 | 2、掌握检验金属离 |\n| | | 子的实验方法/-/-/-/ |\n| 的 | | -/--试剂法和焰色反应 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、利用\"结构决定 |\n| | | 性质\"的思维理念,采 |\n| |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-c9009f1a246261843ea5fdbce75f1ae8", "__created_at__": 1754897909, "content": "|\n| 目 | 技能 | 2、掌握检验金属离 |\n| | | 子的实验方法/-/-/-/ |\n| 的 | | -/--试剂法和焰色反应 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、利用\"结构决定 |\n| | | 性质\"的思维理念,采 |\n| | 与 | 用对比的方法,学会从 |\n| | | 同类化合物找出性质的 |\n| | 方法 | 差异性、相似性,形成 |\n| | | 规律性的知识的方法, |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、帮助学生主动构 |\n| | | 成建自身发展所需的化 |\n| | 态度 | 学基础知识和基础技能 |\n| | | |\n| | 价值观 | |\n+----------------------+----------------------+----------------------+\n| 重 点 | Na~2~O~2~和 | |\n| | Na~2~O、Na~2~CO~3~和 | |\n| | NaHCO~3~性质的差异性 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | Na~2~CO~3~、NaHCO~ | |\n| | 3~溶液反应现象的差异 | |\n+----------------------+----------------------+----------------------+\n| 知 | 第二节  | |\n| | 几 | |\n| 识 | 种重要的金属化合物 | |\n| | | |\n| 结 | | |\n| | 一、钠的重要化合物 | |\n| 构 | | |\n| | 1、N | |\n| 与 | a~2~O与Na~2~O~2~  | |\n| | | |\n| 板 | (1) 与水反应: | |\n| | | |\n| 书 | Na~2~O+H~2~O | |\n| | ==2NaOH 2 | |\n| 设 | Na~2~O~2~+2H~2~O==4 | |\n| | NaOH +O~2~↑ | |\n| 计 | | |\n| | 2 | |\n| | Na~2~O~2~+2H~2~O==4 | |\n| | NaOH +O~2~↑ | |\n| | | |\n| | Na~2~O~2~ | |\n| | 既 | |\n| | 是氧化剂又是还原剂 | |\n| | | |\n| | (2) 与CO~2~ | |\n| | 反应: | |\n| | | |\n| | 2 Na~2~O~2~+2CO~2~ | |\n| | ==2 Na~2~CO~3~ +O~2~ | |\n| | Na~2~O | |\n| | +CO~2~==Na~2~CO~3~ | |\n| | | |\n| | 2、Na | |\n| | ~2~CO~3~与NaHCO~3~ | |\n| | | |\n| | [科学探究]碳酸 | |\n| | 钠与碳酸氢钠的性质 | |\n| | | |\n| | 1与盐酸反应 | |\n| | | |\n| |   | |\n| | Na~2~ | |\n| | CO~3~2HCl2NaCl | |\n| | +H | |\n| | ~2~OCO~2~↑(慢) | |\n| | | |\n| | CO~3~^2―^ 2H^^ | |\n| | H~2~O CO~2~ | |\n| | ↑ | |\n| | | |\n| | NaHCO~3~+H | |\n| | Cl==NaCl+H~2~O+CO~2~ | |\n| | ↑(快) | |\n| | | |\n| | HCO~3~^― | |\n| | ^+H^^==H~2~O+CO~2~ | |\n| | ↑ | |\n| | | |\n| | (2) 与BaCl~2~ | |\n| | 溶液反应: Ba^2^ | |\n| | +CO~3~^2―^==BaCO~3~ | |\n| | ↓ | |\n| | | |\n| | ", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6d5b577013e524a0416f3a61604139b8", "__created_at__": 1754897909, "content": "+CO~2~ | |\n| | ↑ | |\n| | | |\n| | (2) 与BaCl~2~ | |\n| | 溶液反应: Ba^2^ | |\n| | +CO~3~^2―^==BaCO~3~ | |\n| | ↓ | |\n| | | |\n| | [科 | |\n| | 学探究Na~2~CO~3~和 | |\n| | NaHCO~3~的热稳定性 | |\n| | | |\n| | (3) 热稳定性: | |\n| | | |\n| | Na~2~CO~3~ | |\n| | 稳定   | |\n| | NaHCO~3~受热易分解 | |\n| | | |\n| | 2NaHCO~3~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage61.emf){width=\"0 | |\n| | .3333333333333333in\" | |\n| | he | |\n| | ight=\"0.354166666666 | |\n| | 6667in\"}Na~2~CO~3~ | |\n| | +H~2~O +CO~2~ ↑ | |\n| | | |\n| | (4) 制取Na~2~CO~3~ | |\n| | 的方法/-/ | |\n| | -/-/-/--侯氏制碱法 | |\n| | | |\n| | 3、焰色反应 | |\n| | | |\n| | 1定义 | |\n| | 很多金属或它们的化合 | |\n| | 物在灼烧时都会使火焰 | |\n| | 发出特殊的颜色,在化 | |\n| | 学上称为焰色反应。 | |\n| | | |\n| | 2操 | |\n| | 作:洗――烧――蘸――烧 | |\n| | | |\n| | 钠盐:黄色 | |\n| |     钾盐:透过蓝 | |\n| | 色的钴玻璃呈紫色。 | |\n| | | |\n| | 3用途  | |\n| |      离子检验  | |\n| |      焰色材料 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [回顾]* | NaOH | |\n| *1、初中时学过的NaOH | 俗称 | |\n| 有哪些性质? | 是烧碱、火碱、苛性钠 | |\n| | 、白色固体,有强吸水 | |\n| 2、Na 与H~2~O | 性,易潮解,可用做干 | |\n| 反 | 燥剂。是强碱,具有碱 | |\n| 应的实验现象及原因? | 的通性,密封保存,用 | |\n| | 橡皮塞,不用玻璃塞。 | |\n| 3 | | |\n| 、请同学们回忆一下Na | 学生活动:观 | |\n| 在不同条件下与O2反 | 察所展示的Na~2~CO~3~ | |\n| 应的现象和产物差异。 | 和NaHCO~3~ | |\n| | 的颜色、状态,并通过 | |\n| [导入] | 自学教材了解它的俗名 | |\n| Na~2~O与Na~2~O~2~ | ,溶解性,物理性质。 | |\n| 以及我们初中接触过 | | |\n| 的NaOH、NaCl、Na~2~C | 学生活动:自 | |\n| O~3~、NaHCO~3~都是Na | 学教材相关内容,并总 | |\n| 的重要化合物,今天我 | 结、归纳并整理表格。 | |\n| 们就来系统地学习一下 | | |\n| | 由实际生活引发疑问 | |\n| [板书]第二节  | | |\n| 几 | 学生 | |\n| 种重要的金属化合物 | 活动,自学,分析,并 | |\n| | 总结焰色反应的操作。 | |\n| | | |\n| 一、钠的重要化合物 | 增", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6f10a00bc0adae5a833bc25c23fb0a35", "__created_at__": 1754897909, "content": "| |\n| | 由实际生活引发疑问 | |\n| [板书]第二节  | | |\n| 几 | 学生 | |\n| 种重要的金属化合物 | 活动,自学,分析,并 | |\n| | 总结焰色反应的操作。 | |\n| | | |\n| 一、钠的重要化合物 | 增强学生的动 | |\n| | 手能力,加强课堂互动 | |\n| 1、N | | |\n| a~2~O与Na~2~O~2~  | 黄色 | |\n| | | |\n| [讲] | 紫色 | |\n| Na~2~O与Na~2~O~2~ | | |\n| 都 | 学生活动, | |\n| 是Na的氧化物都只含 | 总结归纳焰色反应用途 | |\n| 有Na和O两种元素那 | | |\n| 么,它们的化学性质是 | | |\n| 否相同?让我们一起动 | | |\n| 手做实验来探究一下。 | | |\n| | | |\n| [[演 | | |\n| 示实验3-5Na~2~O~2~ | | |\n| 与水反应]{.ul} | | |\n| | | |\n| 实验步骤:把水 | | |\n| 滴入盛有少量过氧化钠 | | |\n| 固体的试管中,立即把 | | |\n| 带火星的木条放在试管 | | |\n| 口,检验生成的气体。 | | |\n| | | |\n| | | |\n| 实验现象:反应生成 | | |\n| 的气体能使木条复燃。 | | |\n| | | |\n| 实 | | |\n| 验结论Na~2~O~2~ | | |\n| 与H~2~O | | |\n| 反应放热,生成物助燃 | | |\n| | | |\n| [板书](1) | | |\n| 与水反应: | | |\n| | | |\n| Na~2~O+H~2~O | | |\n| ==2NaOH | | |\n| | | |\n| 2 | | |\n| Na~2~O~2~+2H~2~O==4 | | |\n| NaOH +O~2~↑ | | |\n| | | |\n| [师]请同学们动 | | |\n| 手写方程式,并判断是 | | |\n| 否属于氧化还原反应, | | |\n| 若是,请标出电子得失 | | |\n| ,判断氧化剂与还原剂 | | |\n| | | |\n| [板书] | | |\n| | | |\n| 2 | | |\n| Na~2~O~2~+2H~2~O==4 | | |\n| NaOH +O~2~↑ | | |\n| | | |\n| Na~2~O~2~ | | |\n| 既 | | |\n| 是氧化剂又是还原剂 | | |\n| | | |\n| [讲]* | | |\n| *碱性氧化物是与H~2~O | | |\n| 化合生成 | | |\n| 碱由此可知Na~2~O | | |\n| 是碱 | | |\n| 性氧化物Na~2~O~2~ | | |\n| 是过氧化物。 | | |\n| | | |\n| | | |\n| [演示实验]分别装 | | |\n| 入Na~2~O和Na~2~O~2~ | | |\n| 的试管中滴入适量的水 | | |\n| 充分反应后滴入2 | | |\n| 滴酚酞试剂。 | | |\n| | | |\n| 实验现 | | |\n| 象Na~2~O加入水无 | | |\n| 明显现象,滴酚酞变红 | | |\n| | | |\n| Na~2~O~2~ | | |\n| 加入 | | |\n| 水,剧烈反应,有汽泡 | | |\n| 变出,溶液变红后褪色 | | |\n| | | |\n| [讲]由", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-6cad8213c6d2f6ea2333108d4f59c8bb", "__created_at__": 1754897909, "content": "| |\n| 明显现象,滴酚酞变红 | | |\n| | | |\n| Na~2~O~2~ | | |\n| 加入 | | |\n| 水,剧烈反应,有汽泡 | | |\n| 变出,溶液变红后褪色 | | |\n| | | |\n| [讲]由 | | |\n| 此可知Na~2~O~2~是 | | |\n| 强氧化剂,有漂白性。 | | |\n| | | |\n| [过]我们刚做 | | |\n| 了与水的实验,下面我 | | |\n| 们再来看一下与CO~2~ | | |\n| 的反应。 | | |\n| | | |\n| [板书](2) | | |\n| 与CO~2~ 反应: | | |\n| | | |\n| 2 Na~2~O~2~+2CO~2~ | | |\n| ==2 Na~2~CO~3~ | | |\n| +O~2~ | | |\n| | | |\n| Na~2~O | | |\n| +CO~2~==Na~2~CO~3~ | | |\n| | | |\n| [讲]人进行呼 | | |\n| 吸时需要呼出CO~2~ | | |\n| 吸进O2而CO~2~ | | |\n| 与Na~2~O~2~ | | |\n| 正好可以反 | | |\n| 应生成O2以保证人体 | | |\n| 正常呼吸。Na~2~O~2~ | | |\n| 可 | | |\n| 用做呼吸面具和潜水艇 | | |\n| 里的供氧剂。请大家根 | | |\n| 据Na~2~O和Na~2~O~2~ | | |\n| 的性质填写表格 | | |\n| | | |\n| [投影总结 | | |\n| Na~2~O和Na~2~O~2~ | | |\n| 的性质比较 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td>名称</td> | | |\n| <td>氧化钠</td> | | |\n| <td>过氧化钠</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>化学式</td> | | |\n| <td> | | |\n| Na<sub>2</sub>O</td> | | |\n| <td>Na<sub>2</su | | |\n| b>O<sub>2</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>色态</td> | | |\n| <td>白色固体</td> | | |\n| <td>淡黄色固体</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>与H<s | | |\n| ub>2</sub>O反应</td> | | |\n| <td>Na< | | |\n| sub>2</sub>O+H<sub>2 | | |\n| </sub>O ==2NaOH</td> | | |\n| <td>2Na<sub>2< | | |\n| /sub>O<sub>2</sub>+2 | | |\n| H<sub>2</sub>O=4NaOH | | |\n| +O<sub>2</sub>↑</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>与CO<s | | |\n| ub>2</sub> 反应</td> | | |\n| <td>Na<sub | | |\n| >2</sub>O+CO<sub>2</ | | |\n| sub> ==Na<sub>2</sub | | |\n| >CO<sub>3</sub></td> | | |\n| <td>2Na<sub>2</sub>O | | |\n| <sub>2</sub> +2CO<su | | |\n| b>2</sub> ==2Na<sub> | | |\n| 2</sub>CO<", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-3dff1f40cd3d748d33f38b9c0a289cfe", "__created_at__": 1754897909, "content": "| |\n| sub> ==Na<sub>2</sub | | |\n| >CO<sub>3</sub></td> | | |\n| <td>2Na<sub>2</sub>O | | |\n| <sub>2</sub> +2CO<su | | |\n| b>2</sub> ==2Na<sub> | | |\n| 2</sub>CO<sub>3</sub | | |\n| >+O<sub>2</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>类别</td> | | |\n| <td>碱性氧化物</td> | | |\n| <td>过氧化物</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>生成条件</td> | | |\n| <td>Na在 | | |\n| 空气中缓慢氧化</td> | | |\n| <td> | | |\n| Na 在空气中燃烧</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>稳定性</td> | | |\n| <td><p>不稳定</p> | | |\n| <p>2Na<su | | |\n| b>2</sub>O+O<sub>2</ | | |\n| sub><img src=\"static | | |\n| /Images/a91144fda2c7 | | |\n| 41b0b9694ebcfa9d1deb | | |\n| /media/image61.emf\" | | |\n| style=\"width:0.23958 | | |\n| in;height:0.35417in\" | | |\n| />2Na<sub>2</sub>O< | | |\n| sub>2</sub></p></td> | | |\n| <td>相对稳定</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>用途</td> | | |\n| <td></td> | | |\n| <td>供氧剂、强 | | |\n| 氧化剂、漂白剂</td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| 讨论N | | |\n| a、Na~2~O、Na~2~O~2~ | | |\n| 、NaOH | | |\n| 在 | | |\n| 空气中放置一段就会变 | | |\n| 质,最后产物是什么? | | |\n| | | |\n| (Na~2~CO~3~ ) | | |\n| | | |\n| Na~2~CO~3~ | | |\n| 往 | | |\n| 往含有结晶水,就是我 | | |\n| 们日常生活中常用的苏 | | |\n| 打,它还有一个分子量 | | |\n| 比它小的弟弟/-/-/-/ | | |\n| -/--小苏打,它们的性 | | |\n| 质既相似又不同,下面 | | |\n| 我们就学习它们的性质 | | |\n| | | |\n| 板书2、Na | | |\n| ~2~CO~3~与NaHCO~3~ | | |\n| | | |\n| Na~2~CO~3~ | | |\n| 与Na~2~CO~3~·10H~2~O | | |\n| 是否为同一物质? | | |\n| | | |\n| (不是) | | |\n| | | |\n| [科学探究]碳酸 | | |\n| 钠与碳酸氢钠的性质 | | |\n| | | |\n| /(1/) | | |\n| 在2支试管里分 | | |\n| 别加入少量Na~2~CO~3~ | | |\n| 和NaHCO~3~ (各约1克) | | |\n| | | |\n| 观察二者外观上 | | |\n| 的细小差别,分别滴入 | | |\n| 几滴水,振荡试管,观 | | |\n| 察现象,用手摸一摸试 | | |\n| 管底部,有什么感觉? | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-382b61875a9f290bddfba59c623bcb29", "__created_at__": 1754897909, "content": "和NaHCO~3~ (各约1克) | | |\n| | | |\n| 观察二者外观上 | | |\n| 的细小差别,分别滴入 | | |\n| 几滴水,振荡试管,观 | | |\n| 察现象,用手摸一摸试 | | |\n| 管底部,有什么感觉? | | |\n| | | |\n| 继续向试管内加入10 | | |\n| mL水用 | | |\n| 力振荡,有什么现象? | | |\n| | | |\n| 向 | | |\n| 试管内滴入1-2滴酚酞 | | |\n| 溶液,各有什么现象? | | |\n| | | |\n| 在下表中记录实 | | |\n| 验现象并得出初步结论 | | |\n| | | |\n| | | |\n| ---------- -------- | | |\n| -------------------- | | |\n| -------- ----------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| 步骤 Na~2~ | | |\n| CO~3~ | | |\n| NaHCO~3~ | | |\n| | | |\n| 白色粉末 | | |\n| 加H~2~O 结块成晶体 | | |\n| ,放热 细小白色粉 | | |\n| 末加H~2~O部分溶 | | |\n| 解,没有明显放热感觉 | | |\n| | | |\n| 振荡长时间 | | |\n| 后可溶解 | | |\n| 仍有固体残余 | | |\n| 溶 | | |\n| 液变红 | | |\n| 微红 | | |\n| 初步结论 加水变 | | |\n| 成含结晶水的晶体 | | |\n| 部分溶解 | | |\n| 碱性比Na~2~CO~3~弱 | | |\n| | | |\n| ---------- -------- | | |\n| -------------------- | | |\n| -------- ----------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| Na~2~CO~3~ | | |\n| 与Na~2~CO~3~·10H~2~O | | |\n| 是两 | | |\n| 种不同的纯净物Na~2 | | |\n| ~CO~3~·10H~2~O在空气 | | |\n| 中易被风化而变成粉末 | | |\n| | | |\n| [问] | | |\n| 根据初中所学的知识 | | |\n| 回答,检验某一物质是 | | |\n| 否含有碳酸根CO~3~ | | |\n| ^2―^),用什么方法? | | |\n| | | |\n| 加HCl看是否有 | | |\n| 气体生成,将生成气体 | | |\n| 通入澄清石灰水,溶液 | | |\n| 变浑浊,有沉淀产生) | | |\n| | | |\n| [讲] | | |\n| 如此看来在Na~2~CO~ | | |\n| 3~中滴加稀盐酸,必定 | | |\n| 有气体生成那么在Na | | |\n| HCO~3~ 中滴加稀盐酸 | | |\n| ,现象又如何呢?是否 | | |\n| 和Na~2~CO~3~ 与HCl | | |\n| 的反应一样吗?让我们 | | |\n| 通过实验来得出结论。 | | |\n| | | |\n| [板书 | | |\n| 1与盐酸反应 | | |\n| | | |\n|   | | |\n| Na~2~ | | |\n| CO~3~2HCl2NaCl | | |\n| +H | | |\n| ~2~OCO~2~↑(慢) | | |\n| | | |\n| CO~3~^2―^ 2H^^ | | |\n| H~2~O CO~2~ | | |\n| ↑ | | |\n| | | |\n| NaHCO~3~+H | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-0445da44bff77a1afedc1fdc69dd340d", "__created_at__": 1754897909, "content": "| |\n| ~2~OCO~2~↑(慢) | | |\n| | | |\n| CO~3~^2―^ 2H^^ | | |\n| H~2~O CO~2~ | | |\n| ↑ | | |\n| | | |\n| NaHCO~3~+H | | |\n| Cl==NaCl+H~2~O+CO~2~ | | |\n| ↑(快) | | |\n| | | |\n| HCO~3~^― | | |\n| ^+H^^==H~2~O+CO~2~ | | |\n| ↑ | | |\n| | | |\n| [讲]慢的原因是 | | |\n| 因为先生成HCO~3~^―^ | | |\n| ,再 | | |\n| 进一步反应生成H~2~O | | |\n| 和CO~2~ | | |\n| | | |\n| | | |\n| 问那么滴加HCl | | |\n| 产生 | | |\n| 无色无味气体的物质中 | | |\n| 是否一定有CO~3~^2―^ | | |\n| | | |\n| | | |\n| (不一定, | | |\n| 还可能含有HCO~3~^―^ | | |\n| ) | | |\n| | | |\n| [问] | | |\n| 怎样来区别Na~2~CO~3~ | | |\n| 与NaHCO~3~呢?让我 | | |\n| 们来做实验研究一下, | | |\n| | | |\n| [演示实验] | | |\n| | | |\n| 实验步 | | |\n| 骤分别向装有Na~2 | | |\n| ~CO~3~和NaHCO~3~的溶 | | |\n| 液中分别加入BaCl~2~ | | |\n| 溶液 | | |\n| | | |\n| 实 | | |\n| 验现象Na~2~CO~3~ | | |\n| 有白色沉淀NaHCO~3~ | | |\n| 没有现象 | | |\n| | | |\n| [板书](2) | | |\n| 与BaCl~2~ | | |\n| 溶液反应: | | |\n| | | |\n| Ba^2^ | | |\n| +CO~3~^2―^==BaCO~3~ | | |\n| ↓ | | |\n| | | |\n| [讲]碳酸 | | |\n| 盐的正盐除了K^^、N | | |\n| a^^、NH~4~^^外都 | | |\n| 不溶于水,而酸式盐却 | | |\n| 都溶于水,因此,鉴别 | | |\n| Na~2~CO~3~和NaHCO~3~ | | |\n| 溶液 | | |\n| 我们常用BaCl~2~或 | | |\n| CaCl2做试剂来鉴别。 | | |\n| | | |\n| Na~2~CO~3~ | | |\n| 与NaHCO~3~ | | |\n| 的另一个不 | | |\n| 同点是热稳定性不同。 | | |\n| | | |\n| [科 | | |\n| 学探究Na~2~CO~3~和 | | |\n| NaHCO~3~的热稳定性 | | |\n| | | |\n| ------ | | |\n| ------ ------------- | | |\n| - ------------------ | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ------- ------------ | | |\n| 现象 | | |\n| 发生反应的 | | |\n| 化学方程式 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 结论 | | |\n| Na~2~ | | |\n| CO~3~ 石灰", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-75fc34e8ce4ec76292173634f4b55dde", "__created_at__": 1754897909, "content": "| |\n| 发生反应的 | | |\n| 化学方程式 | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 结论 | | |\n| Na~2~ | | |\n| CO~3~ 石灰水无变化 | | |\n| /-/-/-/-/-/-/-/- | | |\n| /-/-- | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| | | |\n| 受热不分解 | | |\n| N | | |\n| aHCO~3~ 石灰不变 | | |\n| 浑浊 2NaHCO~3~![] | | |\n| (static/Images/a9114 | | |\n| 4fda2c741b0b9694ebcf | | |\n| a9d1deb/media/image6 | | |\n| 1.emf){width=\"0.3333 | | |\n| 333333333333in\" heig | | |\n| ht=\"0.35416666666666 | | |\n| 67in\"}Na~2~CO~3~ +H~ | | |\n| 2~O+CO~2~ ↑ 易分解 | | |\n| ------ | | |\n| ------ ------------- | | |\n| - ------------------ | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ------- ------------ | | |\n| | | |\n| [板书](3) | | |\n| 热稳定性: | | |\n| | | |\n| Na~2~CO~3~ | | |\n| 稳定, | | |\n| NaHCO~3~受热易分解 | | |\n| | | |\n| 2NaHCO~3~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| he | | |\n| ight=\"0.354166666666 | | |\n| 6667in\"}Na~2~CO~3~ | | |\n| +H~2~O +CO~2~ ↑ | | |\n| | | |\n| [讲] | | |\n| 正盐比酸式盐稳定。 | | |\n| | | |\n| [问]根据 | | |\n| Na~2~CO~3~与NaHCO~3~ | | |\n| 各自不同的性 | | |\n| 质,二者有什么用途? | | |\n| | | |\n| | | |\n| 投影总结Na~2~CO~3~ | | |\n| 和NaHCO~3~ | | |\n| 性质比较 | | |\n| | | |\n| ------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| 物质 | | |\n| 碳酸钠 | | |\n| | | |\n| | | |\n| 碳酸氢钠 | | |\n| 化学式 | | |\n| Na~2~CO~ | | |\n| 3~ | | |\n| | | |\n| NaHCO~3~ | | |\n| 俗名 | | |\n| 纯碱、 | | |\n| 苏打 | | |\n| | | |\n| 小苏打 | | |\n| 色态 | | |\n| 白色粉末( | | |\n| Na~2~CO~3~·10H~2~O为 | | |\n| 晶体) | | |\n| 白色晶体 | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-580a0343904f65b391f9d28352309ecf", "__created_at__": 1754897909, "content": "碱、 | | |\n| 苏打 | | |\n| | | |\n| 小苏打 | | |\n| 色态 | | |\n| 白色粉末( | | |\n| Na~2~CO~3~·10H~2~O为 | | |\n| 晶体) | | |\n| 白色晶体 | | |\n| 溶解性 | | |\n| 易溶于水 | | |\n| | | |\n| | | |\n| 溶解度相对小 | | |\n| 与H^^ 反应 | | |\n| 慢CO~3~^2―^ | | |\n| +2H^^ ==H~2~O +CO | | |\n| ~2~ ↑ | | |\n| 快HCO~3~^―^ | | |\n| +H^^==H~2~O+CO~2~↑ | | |\n| 与可溶 | | |\n| 性钡、钙盐 Ba^2 | | |\n| ^ +CO~3~^2―^==BaCO~3 | | |\n| ~ ↓Ca^2^+CO~3~^2―^ | | |\n| ==CaCO~3~ ↓ 不反应 | | |\n| 热稳定性 | | |\n| 稳定,受热, | | |\n| 难分解Na~2~CO~3~ · | | |\n| 10H~2~O 易风化 | | |\n| 不稳定2NaH | | |\n| CO~3~ ![](static/Ima | | |\n| ges/a91144fda2c741b0 | | |\n| b9694ebcfa9d1deb/med | | |\n| ia/image61.emf){widt | | |\n| h=\"0.333333333333333 | | |\n| 3in\" height=\"0.35416 | | |\n| 66666666667in\"}Na~2~ | | |\n| CO~3~ +H~2~O+CO~2~ ↑ | | |\n| 用途 | | |\n| 玻璃,制皂, | | |\n| 造纸,纺织 | | |\n| | | |\n| 发酵粉,制药 | | |\n| ------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| -------------------- | | |\n| | | |\n| 思考1 | | |\n| Na~2~CO~3~和NaHCO~3~ | | |\n| 混合时的提纯方法? | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| Na~2~CO~3~粉末中混 | | |\n| 有NaHCO~3~,用加热法 | | |\n| | | |\n| 2NaHCO~3~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| height=\"0.3541666666 | | |\n| 666667in\"}Na~2~CO~3~ | | |\n| +H~2~O+CO~2~ ↑ | | |\n| | | |\n| Na | | |\n| ~2~CO~3~溶液中混有Na | | |\n| HCO~3~滴加适量NaOH | | |\n| | | |\n| NaHCO~3~+Na | | |\n| OH==Na~2~CO~3~+H~2~O | | |\n| | | |\n| NaHCO~3~ | | |\n| 溶液中混有Na~2~CO~3~ | | |\n| 通入过量CO~2~ | | |\n| | | |\n| Na~2~CO~3~+CO | | |\n| ~2~+H~2~O==2NaHCO~3~ | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-1758dd9a4fc78f0e36181cb242245292", "__created_at__": 1754897909, "content": "|\n| NaHCO~3~ | | |\n| 溶液中混有Na~2~CO~3~ | | |\n| 通入过量CO~2~ | | |\n| | | |\n| Na~2~CO~3~+CO | | |\n| ~2~+H~2~O==2NaHCO~3~ | | |\n| | | |\n| * | | |\n| *思考2Na~2~CO~3~ | | |\n| 与HCl | | |\n| 反应时加入的顺 | | |\n| 序不同,现象如何? | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 在盐酸 | | |\n| 中逐滴加入Na~2~CO~3~ | | |\n| 溶液,立即产生气泡 | | |\n| | | |\n| 2H^^ +CO~3~^2―^ | | |\n| ==H~2~O +CO~2~ ↑ | | |\n| | | |\n| 在Na~2~CO~3~ | | |\n| 溶 | | |\n| 液中加入稀盐酸时,滴 | | |\n| 加一定量后才产生气泡 | | |\n| | | |\n| CO~3~^2―^ | | |\n| +H^^==HCO~3~^―^ | | |\n| | | |\n| HC | | |\n| O~3~^―^+H^^==H~2~O | | |\n| +CO~2~ ↑ | | |\n| | | |\n| 思考3 | | |\n| 如何鉴别Na~2~CO~3~ | | |\n| 与NaHCO~3~ | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 利用热稳定性不同 | | |\n| | | |\n| 与酸反应速率不同 | | |\n| | | |\n| 阴离子 | | |\n| 不同分别加CaCl~2~ | | |\n| 和BaCl~2~ 溶液 | | |\n| | | |\n| Na~2 | | |\n| ~CO~3~用途非常广泛, | | |\n| 是工业生产的重要生产 | | |\n| 资料,之前一直被西方 | | |\n| 世界的\"索尔维制碱法\" | | |\n| 垄断。1926年侯德榜 | | |\n| 针对氨碱法的不足,研 | | |\n| 究成功了联合制碱法/ | | |\n| -/-/-/-/--侯氏制碱法 | | |\n| | | |\n| [板书](4) | | |\n| 制取Na~2~CO~3~ | | |\n| 的方法/-/ | | |\n| -/-/-/--侯氏制碱法 | | |\n| | | |\n| [投影 | | |\n| ]侯氏制碱法的过程 | | |\n| | | |\n| 向饱和食盐水中依次通 | | |\n| 入足量的NH~3~、CO~2~ | | |\n| | | |\n| NH~3~ | | |\n| +H~2~ | | |\n| O+CO~2~==NH~4~HCO~3~ | | |\n| | | |\n| 依据NaHCO~3~ | | |\n| 溶解 | | |\n| 度小,会从溶液中析出 | | |\n| | | |\n| NaCl+N | | |\n| H~4~HCO~3~==NaHCO~3~ | | |\n| ↓+NH~4~Cl | | |\n| | | |\n| ∴ | | |\n| NaClNH~ | | |\n| 3~H~2~OCO~2~ | | |\n| NaHCO~3~↓NH~4~Cl  | | |\n| | | |\n|   将NaHCO~3~ | | |\n| 晶体滤 | | |\n| 出NH~4~Cl可作氮肥 | | |\n| | | |\n| 2NaHCO~", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b8516d459cc4d19f3549811c052779d1", "__created_at__": 1754897909, "content": "2~OCO~2~ | | |\n| NaHCO~3~↓NH~4~Cl  | | |\n| | | |\n|   将NaHCO~3~ | | |\n| 晶体滤 | | |\n| 出NH~4~Cl可作氮肥 | | |\n| | | |\n| 2NaHCO~3~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| height=\"0.3541666666 | | |\n| 666667in\"}Na~2~CO~3~ | | |\n| +H~2~O+CO~2~ ↑ | | |\n| | | |\n| [过]根据 | | |\n| 之前的学习知道K、 | | |\n| Na的化学性质非常相似 | | |\n| ,初中学习物质的溶解 | | |\n| 性我们知道Na^^、 | | |\n| K^^盐全溶,用离子 | | |\n| 反应是不可能把Na^ | | |\n| ^、K^^鉴别出来,怎 | | |\n| 样鉴别钠盐和钾盐呢? | | |\n| | | |\n| 同学们, | | |\n| 有没有注意到平时我们 | | |\n| 炒菜时,如果不小心把 | | |\n| 汤洒在炉火上,火焰会 | | |\n| 变成黄色,酒精燃烧的 | | |\n| 火焰本身是淡蓝色,使 | | |\n| 我们使用酒精灯时发现 | | |\n| 酒精灯的火焰实际上也 | | |\n| 是黄色的这是为什么? | | |\n| | | |\n| (可能存在一些物 | | |\n| 质改变了火焰的颜色) | | |\n| | | |\n| [讲 | | |\n| ]这种假设合不合理 | | |\n| 吗?我们用实验来验证 | | |\n| 。同学们认真观察实验 | | |\n| 时,火焰颜色的变化。 | | |\n| | | |\n| [演示实 | | |\n| 验NaCl、NaOH、Na~2 | | |\n| ~SO~4~ 的焰色反应 | | |\n| | | |\n| (有钠的化合物在灼 | | |\n| 烧时火焰都是黄色的) | | |\n| | | |\n| | | |\n| 演示实验K~2~CO~3~ | | |\n| 、CuSO~4~、BaCl~2~、 | | |\n| CaCl~2~的焰色反应 | | |\n| | | |\n| 实验现象: | | |\n| K~2~CO~3~-黄紫色  | | |\n|  CuSO~4~-绿色   | | |\n| | | |\n| BaCl~2~-黄绿色 | | |\n|   CaCl~2~-砖红色 | | |\n| | | |\n| [讲] | | |\n| 很多金属或它们的化合 | | |\n| 物在灼烧时都会使火焰 | | |\n| 呈现出的特殊的,这在 | | |\n| 化学上叫做焰色反应。 | | |\n| | | |\n| | | |\n| 板书3、焰色反应 | | |\n| | | |\n| 1定义 | | |\n| 很多金属或它们的化合 | | |\n| 物在灼烧时都会使火焰 | | |\n| 发出特殊的颜色,在化 | | |\n| 学上称为焰色反应。 | | |\n| | | |\n| [讲]要注意 | | |\n| 的是,焰色反应不是化 | | |\n| 学反应是物理变化,检 | | |\n| 验的是元素的性质,主 | | |\n| 要用来检验金属元素。 | | |\n| | | |\n| | | |\n| 问]那么,应如何操 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-4fabda9fd2db5f00a1f5ac8a00cd38d3", "__created_at__": 1754897909, "content": "| [讲]要注意 | | |\n| 的是,焰色反应不是化 | | |\n| 学反应是物理变化,检 | | |\n| 验的是元素的性质,主 | | |\n| 要用来检验金属元素。 | | |\n| | | |\n| | | |\n| 问]那么,应如何操 | | |\n| 作焰色反应的实验呢? | | |\n| | | |\n| 板书2操 | | |\n| 作:洗――烧――蘸――烧 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 洗/-/--用稀盐 | | |\n| 酸洗铂丝。(用稀盐酸 | | |\n| 将其表面的氧化物反应 | | |\n| 掉,生成的氯化物灼烧 | | |\n| 时易汽化而挥发,以除 | | |\n| 去干扰焰色反应的杂质 | | |\n| 不能用稀H~2~SO~4~ | | |\n| 洗,因 | | |\n| 生成的硫酸盐沸点高) | | |\n| | | |\n| 烧/-/-- | | |\n| 用盐酸洗涤过的铂丝在 | | |\n| 火焰上烧到与原来颜色 | | |\n| 相同为止。(除去杂质) | | |\n| | | |\n| 蘸 | | |\n| /-/--用灼烧合格的Pt | | |\n| 丝蘸取被灼烧的物质 | | |\n| | | |\n| 烧/-/--将沾 | | |\n| 在铂丝的物质在火焰上 | | |\n| 灼烧,并观察其现象。 | | |\n| | | |\n| [讲]值得注 | | |\n| 意的是,选用火焰颜色 | | |\n| 较浅的煤气灯和酒精灯 | | |\n| ;金属丝本身在火焰上 | | |\n| 燃烧应无颜色,同时熔 | | |\n| 点要高,不易被氧化, | | |\n| 用Pt丝效果较好也可 | | |\n| 用Fe、Ni、W来代替。 | | |\n| | | |\n| | | |\n| 师]下面,请两们同 | | |\n| 学分别来做NaCl、KCl | | |\n| 的焰色反应 | | |\n| 实验,请同学们注意观 | | |\n| 察他们的操作是否正确 | | |\n| ?注意观察火焰颜色。 | | |\n| | | |\n| [师]现在 | | |\n| 我再来做一次KCl的 | | |\n| 实验,请一位同学透过 | | |\n| 蓝色的钴玻璃看颜色。 | | |\n| | | |\n| [板书]钠盐:黄色 | | |\n|     钾盐:透过蓝 | | |\n| 色的钴玻璃呈紫色。 | | |\n| | | |\n| | | |\n| [讲]焰色反应很灵 | | |\n| 敏,微量的金属都被检 | | |\n| 验出来,一般的溶液中 | | |\n| 都有少量Na^^,由于 | | |\n| K^^ 焰色反应非常 | | |\n| 浅容易被Na 干扰。 | | |\n| | | |\n| [板书]( | | |\n| 3用途  离子检 | | |\n| 验    焰色材料 | | |\n| | | |\n| [知 | | |\n| 识拓展]――漫话焰火 | | |\n| | | |\n| \"火树银花不夜天\"的 | | |\n| 节日之夜,天空中五彩 | | |\n| 缤纷、瑰丽多姿的焰火 | | |\n| ,给节日增添了欢乐的 | | |\n| 气氛,而这美丽的夜景 | | |\n| 的创造都归功于化学。 | | |\n| | | |\n| 1、火焰是靠内装的 | | |\n| 火药的引燃", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-22ee5df32ab2a628ad5a5f9c772f99f0", "__created_at__": 1754897909, "content": "| |\n| 缤纷、瑰丽多姿的焰火 | | |\n| ,给节日增添了欢乐的 | | |\n| 气氛,而这美丽的夜景 | | |\n| 的创造都归功于化学。 | | |\n| | | |\n| 1、火焰是靠内装的 | | |\n| 火药的引燃、发射的。 | | |\n| | | |\n| 常用的黑火药用KN | | |\n| O~3~、S、C按一定的比 | | |\n| 例混合成,主要反应为 | | |\n| | | |\n| S2KNO~3~3CK | | |\n| ~2~S3CO~2~↑N~2~↑ | | |\n| | | |\n| 反应中放出大量的热, | | |\n| 使生成的气体在高温下 | | |\n| 有限空间产生较强的压 | | |\n| 力,将焰色射送出去。 | | |\n| | | |\n| 2、五光十 | | |\n| 色的焰色――火焰发色剂 | | |\n| | | |\n| Sr(NO~3~)~2~――红色  | | |\n|  NaNO~3~――黄色   | | |\n| Ba(NO~3~)~2~ ――绿色 | | |\n| | | |\n| LiNO~3~――紫红色 | | |\n| | | |\n| Mg、Al、Zn粉等在 | | |\n| 烧灼则产生耀眼的白光 | | |\n| | | |\n| 火花 | | |\n| ――Al、Fe燃烧爆炸时 | | |\n| 以散开的白色或黄色熔 | | |\n| 融粒子喷射而形成的。 | | |\n| | | |\n| 浓烟――/@及未反 | | |\n| 应的木炭粉等形成的。 | | |\n| | | |\n| 燃放焰火虽可以给人 | | |\n| 带来欢乐,但引起的环 | | |\n| 境污染是相当严重的。 | | |\n| | | |\n| [小结]以上我 | | |\n| 们学习钠的化合物的知 | | |\n| 识以及一种科学检验元 | | |\n| 素的方法――焰色反应。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第三章 | 授课班级 | |\n| 第二节 | | |\n| 几种重 | | |\n| 要的金属化合物(二) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、以Al~2~O~3~ |\n| | | 、Al(OH)~3~ |\n| 学 | 与 | 为代 |\n| | | 表,了解两性物质的特 |\n| 目 | 技能 | 点。以KAl(SO~4~)~2~ |\n| | | 为代表,使学生 |\n| 的 | | 掌握复盐的组成特点。 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、通过列表 |\n| | | 比较,了解各类金属化 |\n| | 与 | 合物的性质,同时掌握 |\n| | | 学习元素化合物的方法 |\n| | 方法 | /-/-/-/-/--比较法。 |\n| | | |\n| | | 2、通过对几个实验 |\n| | | 的探究,体会实验方法 |\n| | | 在化学研究中的作用, |\n| | | 并认识到实验过程中控 |\n| | | 制实验条件的重要性。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、通过实验、 |\n| | | 图表分析、联系生活等 |\n| | 态度 | 多渠道的科学探究,发 |\n| | | 展学习化学的兴趣,乐 |\n| | 价值观 | 于探究物质变化的奥秘 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 氢氧化铝的性质 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 两性 | |\n| | 氢氧化物概念的形成。 | |\n+----------------------+----------------------+----------------------+\n| 知 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-902060400cb0f3b0c1ea58a5cb18474c", "__created_at__": 1754897909, "content": "学的兴趣,乐 |\n| | 价值观 | 于探究物质变化的奥秘 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 氢氧化铝的性质 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 两性 | |\n| | 氢氧化物概念的形成。 | |\n+----------------------+----------------------+----------------------+\n| 知 | | |\n| | 二、铝的重要化合物 | |\n| 识 | | |\n| | 1、氧化铝( | |\n| 结 | aluninum oxide) | |\n| | | |\n| 构 | * | |\n| | *Al~2~O~3~是典型的两 | |\n| 与 | 性氧化物amphoteric | |\n| | oxide | |\n| 板 | | |\n| | * | |\n| 书 | *Al~2~O~3~6H^^ | |\n| | 2Al^3^3H~2~O | |\n| 设 | | |\n| | Al | |\n| 计 | ~2~O~3~6OH^―^2 | |\n| | AlO~2~^―^H~2~O  | |\n| | | |\n| | 2 | |\n| | 、氢氧化铝aluninum | |\n| | hydroxide | |\n| | | |\n| | A | |\n| | l(OH)~3~是典型的两性 | |\n| | 氢氧化物amphoteric | |\n| | hydroxide | |\n| | | |\n| | 1化学性质 | |\n| | | |\n| | A | |\n| | l(OH)~3~3H^^ | |\n| | Al^3^3H~2~O  | |\n| | | |\n| | A | |\n| | l(OH)~3~OH^―^A | |\n| | lO~2~^―^2H~2~O  | |\n| | | |\n| | H^ | |\n| | ^AlO~2~^―^H~2~O* | |\n| | *![](static/Images/a | |\n| | 91144fda2c741b0b9694 | |\n| | ebcfa9d1deb/media/im | |\n| | age69.emf){width=\"0. | |\n| | 42569444444444443in\" | |\n| | he | |\n| | ight=\"0.333333333333 | |\n| | 3333in\"}Al(OH)~3~* | |\n| | *![](static/Images/a | |\n| | 91144fda2c741b0b9694 | |\n| | ebcfa9d1deb/media/im | |\n| | age69.emf){width=\"0. | |\n| | 42569444444444443in\" | |\n| | height=\"0.3 | |\n| | 333333333333333in\"}* | |\n| | *Al^3^3OH^―^  | |\n| | | |\n| |      | |\n| | 酸式电离       | |\n| |      碱式电离 | |\n| | | |\n| | 2 | |\n| | Al(OH)~3~ 的制备 | |\n| | | |\n| | [ | |\n| | 投影实验3-7Al(OH | |\n| | )~3~ 的制备]{.ul} | |\n| | | |\n| | Al^3^+3NH~3~ | |\n| | ·H~2~O == Al(OH)~3~ | |\n| | ↓+ 3NH~4~^^ | |\n| | | |\n| | Al | |\n| | ~2~(SO~4~)~3~+6NH~3~ | |\n| | ·H~2~O | |\n| | ==2Al(OH)~3~↓+3 | |\n| | (NH~4~)~2~SO~4~ | |\n| | | |\n| | 2Al(OH)~3~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-e8b206bf406a4c6b9ba4fe184cf9a203", "__created_at__": 1754897909, "content": "2Al(OH)~3~↓+3 | |\n| | (NH~4~)~2~SO~4~ | |\n| | | |\n| | 2Al(OH)~3~ | |\n| | ![](static/Images/ | |\n| | a91144fda2c741b0b969 | |\n| | 4ebcfa9d1deb/media/i | |\n| | mage61.emf){width=\"0 | |\n| | .3333333333333333in\" | |\n| | height=\"0. | |\n| | 3541666666666667in\"} | |\n| | Al~2~O~3~+3H~2~O | |\n| | | |\n| | 3、硫酸铝钾 | |\n| | KAl(SO~4~)~2~ | |\n| | | |\n| | 复盐K | |\n| | Al(SO~4~)~2~==K^^+ | |\n| | Al^3^+2SO~4~^2―^ | |\n| | | |\n| | Al^3^+3H~2~O* | |\n| | *![](static/Images/a | |\n| | 91144fda2c741b0b9694 | |\n| | ebcfa9d1deb/media/im | |\n| | age69.emf){width=\"0. | |\n| | 32430555555555557in\" | |\n| | height=\"0. | |\n| | 3333333333333333in\"} | |\n| | Al(OH)~3~+3H^^ | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | | |\n+----------------------+----------------------+----------------------+\n| 引入19世 | 展示样品 | |\n| 纪,法国王宫一次宴会 | | |\n| 上,法国皇帝拿破仑三 | 展示明矾晶体 | |\n| 世独自用一种比金、银 | | |\n| 轻得多的金属制成的刀 | Al^3^ 水解 | |\n| 叉,而其他人都用黄金 | | |\n| 或白银制的餐具,以体 | | |\n| 现其王者的风范。大家 | | |\n| 猜猜看,拿破仑的刀叉 | | |\n| 是用什么金属制成的? | | |\n| | | |\n| 这种金属就是铝, | | |\n| 由于当时冶炼铝很难, | | |\n| 铝十分珍贵,据说泰国 | | |\n| 当时的国王曾用过铝制 | | |\n| 的表链1855年巴黎万 | | |\n| 国博览会上,展出了一 | | |\n| 小块铝,标签上写到: | | |\n| \"来自黏土的白银\",并 | | |\n| 将它放在最珍贵的珠宝 | | |\n| 旁边直到1889年伦 | | |\n| 敦化学会还把铝合金制 | | |\n| 的花瓶和杯子作为贵重 | | |\n| 的礼物送给门捷列夫。 | | |\n| | | |\n| 随着科学技术的发展, | | |\n| 铝的冶炼变得很简单, | | |\n| 现在铝和铝制品在生活 | | |\n| 中,可以说无处不在。 | | |\n| | | |\n| | | |\n| 问Al是较活泼的金 | | |\n| 属,那么,它们都以何 | | |\n| 种形态存在自然界中? | | |\n| | | |\n|    (在 | | |\n| 自然界中仅有化合态) | | |\n| | | |\n| [板书] | | |\n| 二、铝的重要化合物 | | |\n| | | |\n| Al占 | | |\n| 地壳总质量的7.7%,在 | | |\n| 所有元素中是第3位 | | |\n| 在金属中为第1位主 | | |\n| 要存在的形式为:铝土 | | |\n| 矿Al~2~O~3~)、明 | | |\n| 矾石、长石、云母等。 | | |\n| | | |\n| Al的最", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-bafc7d463fafbbe3b700bbfab6d2e6ea", "__created_at__": 1754897909, "content": "有元素中是第3位 | | |\n| 在金属中为第1位主 | | |\n| 要存在的形式为:铝土 | | |\n| 矿Al~2~O~3~)、明 | | |\n| 矾石、长石、云母等。 | | |\n| | | |\n| Al的最常 | | |\n| 见的重要化合物有Al~ | | |\n| 2~O~3~、Al(OH)~3~、K | | |\n| Al(SO~4~)~2~等,它们 | | |\n| 有哪些性质呢?下面我 | | |\n| 们就来学习这几种重要 | | |\n| 的Al的化合物的性质。 | | |\n| | | |\n| 板书1、氧化铝( | | |\n| aluninum oxide) | | |\n| | | |\n| | | |\n| 讲Al~2~O~3~为白 | | |\n| 色粉末,不溶于,熔点 | | |\n| 2050℃用作耐火材料 | | |\n| 自然界中纯净的Al~ | | |\n| 2~O~3~为无色晶体,俗 | | |\n| 称刚玉。硬度仅次于金 | | |\n| 刚石,通常所说的是红 | | |\n| 蓝宝石是混有少量不同 | | |\n| 氧化物杂质的刚玉。我 | | |\n| 们曾介绍过Al~2~O~3~ | | |\n| 是典型的两性氧化物。 | | |\n| | | |\n| [板书] | | |\n| Al~2~O~3~是典型的两 | | |\n| 性氧化物amphoteric | | |\n| oxide | | |\n| | | |\n| * | | |\n| *Al~2~O~3~6H^^ | | |\n| 2Al^3^3H~2~O | | |\n| | | |\n| Al | | |\n| ~2~O~3~6OH^―^2 | | |\n| AlO~2~^―^H~2~O  | | |\n| | | |\n| Al~2~ | | |\n| O~3~呈两性,那么它对 | | |\n| 应的水化物――Al(OH)~ | | |\n| 3~的性质又怎么样呢? | | |\n| | | |\n| 板书2 | | |\n| 、氢氧化铝aluninum | | |\n| hydroxide | | |\n| | | |\n| [讲] | | |\n| 我们曾提到过Al(OH | | |\n| )~3~ 是典型的两性氢 | | |\n| 氧化物,既能跟酸起反 | | |\n| 应,又能跟碱起反应。 | | |\n| | | |\n| [板书] | | |\n| | | |\n| A | | |\n| l(OH)~3~是典型的两性 | | |\n| 氢氧化物amphoteric | | |\n| hydroxide | | |\n| | | |\n| [讲]实验表明 | | |\n| Al(OH)~3~在HCl和Na | | |\n| OH溶液里都能溶解这 | | |\n| 就说明它既能跟酸起反 | | |\n| 应,又能跟碱起反应。 | | |\n| | | |\n| [板书 | | |\n| 1化学性质 | | |\n| | | |\n| A | | |\n| l(OH)~3~3H^^ | | |\n| Al^3^3H~2~O  | | |\n| | | |\n| A | | |\n| l(OH)~3~OH^―^A | | |\n| lO~2~^―^2H~2~O  | | |\n| | | |\n| [思 | | |\n| 考Al(OH)~3~能与 | | |\n| 所有碱液发生反应呢? | | |\n| | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-a0274dacaaa9ea214a9b97f6bae87fd9", "__created_at__": 1754897909, "content": "| l(OH)~3~OH^―^A | | |\n| lO~2~^―^2H~2~O  | | |\n| | | |\n| [思 | | |\n| 考Al(OH)~3~能与 | | |\n| 所有碱液发生反应呢? | | |\n| | | |\n|    (不能, | | |\n| 只能强碱溶液起反应) | | |\n| | | |\n| 为什么A | | |\n| l(OH)~3~具有两性呢? | | |\n| | | |\n| | | |\n| 根据其性质推测Al( | | |\n| OH)~3~既可电离出H^ | | |\n| ^也可电离也OH^―^ | | |\n| | | |\n| [讲] | | |\n| Al(OH)~3~ 在水溶 | | |\n| 液中有两种电离方式。 | | |\n| | | |\n| 板书H^ | | |\n| ^AlO~2~^―^H~2~O* | | |\n| *![](static/Images/a | | |\n| 91144fda2c741b0b9694 | | |\n| ebcfa9d1deb/media/im | | |\n| age69.emf){width=\"0. | | |\n| 42569444444444443in\" | | |\n| he | | |\n| ight=\"0.333333333333 | | |\n| 3333in\"}Al(OH)~3~* | | |\n| *![](static/Images/a | | |\n| 91144fda2c741b0b9694 | | |\n| ebcfa9d1deb/media/im | | |\n| age69.emf){width=\"0. | | |\n| 42569444444444443in\" | | |\n| height=\"0.3 | | |\n| 333333333333333in\"}* | | |\n| *Al^3^3OH^―^  | | |\n| | | |\n|      | | |\n| 酸式电离       | | |\n|      碱式电离 | | |\n| | | |\n| * | | |\n| *当向Al(OH)~ | | |\n| 3~溶液中加酸时,抑制 | | |\n| 酸式电离,促进碱式电 | | |\n| 离,若加入足量的酸, | | |\n| 则Al(OH)~3~将完全以 | | |\n| 碱的形式电离即Al(O | | |\n| H)~3~溶于酸中当向A | | |\n| l(OH)~3~溶液加入碱时 | | |\n| ,抑制碱式电离,促进 | | |\n| 酸式电离,若加入足量 | | |\n| 的碱则Al(OH)~3~完 | | |\n| 全以酸的形式电离,即 | | |\n| Al(OH)~3~溶于碱中。 | | |\n| | | |\n| 但是Al(OH | | |\n| )~3~不与弱酸反应,如 | | |\n| 向Al(OH)~3~浊液通入 | | |\n| CO~2~不反应;也不与 | | |\n| 碱反应如NH~3~·H~2 | | |\n| ~O故实验室用NH~3~· | | |\n| H~2~O制备Al(OH)~3~  | | |\n| | | |\n| 板书2 | | |\n| Al(OH)~3~ 的制备 | | |\n| | | |\n| [ | | |\n| 投影实验3-7Al(OH | | |\n| )~3~ 的制备]{.ul} | | |\n| | | |\n| 实验步 | | |\n| 骤在试管里另入10 | | |\n| mL 0.5 mol/L | | |\n| Al~2~(SO~4~)~3~ | | |\n| 溶液,滴加氨 | | |\n| 水,生成白色胶状物质 | | |\n| ,继续滴加氨水,直到 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-d4b5a53fca37aa7fc2f3c361d64cf300", "__created_at__": 1754897909, "content": "| |\n| 骤在试管里另入10 | | |\n| mL 0.5 mol/L | | |\n| Al~2~(SO~4~)~3~ | | |\n| 溶液,滴加氨 | | |\n| 水,生成白色胶状物质 | | |\n| ,继续滴加氨水,直到 | | |\n| 不再产生沉淀为止。当 | | |\n| 氨水过量时,沉淀不溶 | | |\n| 解,沉淀放在蒸发皿中 | | |\n| 加热,生成白色粉末。 | | |\n| | | |\n| [板书] | | |\n| | | |\n| Al | | |\n| ~2~(SO~4~)~3~+6NH~3~ | | |\n| ·H~2~O | | |\n| ==2Al(OH)~3~↓+3 | | |\n| (NH~4~)~2~SO~4~ | | |\n| | | |\n| 2Al(OH)~3~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| height=\"0. | | |\n| 3541666666666667in\"} | | |\n| Al~2~O~3~+3H~2~O | | |\n| | | |\n| [讲]在实验室可 | | |\n| 以用铝盐溶液与NH~3~ | | |\n| ·H~2~O | | |\n| 反应来制取Al(OH)~3~ | | |\n| | | |\n| | | |\n| 板书Al^3^+3NH~3~ | | |\n| ·H~2~O == Al(OH)~3~ | | |\n| ↓+ 3NH~4~^^ | | |\n| | | |\n| | | |\n| 投影总结Mg(OH)~2~ | | |\n| 、Al(OH)~3~ | | |\n| 性质比较 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>Mg( | | |\n| OH)<sub>2</sub></td> | | |\n| <td>Al( | | |\n| OH)<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>物理性质</td> | | |\n| <td>白色粉末、难溶于 | | |\n| H<sub>2</sub>O</td> | | |\n| <td>白色胶 | | |\n| 状物,难溶于水</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td><p>化</p> | | |\n| <p>学</p> | | |\n| <p>性</p> | | |\n| <p>质</p></td> | | |\n| <td>电离</td> | | |\n| <td><p>中强碱,</p> | | |\n| <p>Mg(O | | |\n| H)<sub>2</sub> == Mg | | |\n| <sup>2</sup> +2OH< | | |\n| sup>―</sup></p></td> | | |\n| <td>两性氢氧化物 | | |\n| H<sup></sup>A | | |\n| lO<sub>2</sub><sup>― | | |\n| </sup>H<sub>2</sub | | |\n| >O <img src=\"static/ | | |\n| Images/a91144fda2c74 | | |\n| 1b0b9694ebcfa9d1deb/ | | |\n| media/image69.emf\" s | | |\n| tyle=\"width:0.42569i | | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-a52851b2104cf1f42f564d8e377ba235", "__created_at__": 1754897909, "content": "― | | |\n| </sup>H<sub>2</sub | | |\n| >O <img src=\"static/ | | |\n| Images/a91144fda2c74 | | |\n| 1b0b9694ebcfa9d1deb/ | | |\n| media/image69.emf\" s | | |\n| tyle=\"width:0.42569i | | |\n| n;height:0.33333in\" | | |\n| /> Al(OH)<sub>3</sub | | |\n| > <img src=\"static/I | | |\n| mages/a91144fda2c741 | | |\n| b0b9694ebcfa9d1deb/m | | |\n| edia/image69.emf\" st | | |\n| yle=\"width:0.42569in | | |\n| ;height:0.33333in\" / | | |\n| > Al<sup>3</sup> | | |\n| 3OH<sup>―</sup></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td>跟酸</td> | | |\n| <td><p>Mg | | |\n| (OH)<sub>2</sub> +2H | | |\n| <sup></sup> ==</p> | | |\n| <p>Mg | | |\n| <sup>2</sup> +2H<s | | |\n| ub>2</sub>O</p></td> | | |\n| <td><p> | | |\n| Al(OH)<sub>3</sub>+3 | | |\n| H<sup></sup>==</p> | | |\n| <p>A | | |\n| l<sup>3</sup>+3H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>跟碱</td> | | |\n| <td>不反应</td> | | |\n| <td><p>A | | |\n| l(OH)<sub>3</sub> +O | | |\n| H<sup>―</sup> ==</p> | | |\n| <p>AlO<sub>2</su | | |\n| b><sup>―</sup> +2H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td>分解</td> | | |\n| <td> | | |\n| Mg(OH)<sub>2</sub><i | | |\n| mg src=\"static/Image | | |\n| s/a91144fda2c741b0b9 | | |\n| 694ebcfa9d1deb/media | | |\n| /image61.emf\" style= | | |\n| \"width:0.22778in;hei | | |\n| ght:0.35417in\" />MgO | | |\n| +H<sub>2</sub>O</td> | | |\n| <td><p>2A | | |\n| l(OH)<sub>3</sub><im | | |\n| g src=\"static/Images | | |\n| /a91144fda2c741b0b96 | | |\n| 94ebcfa9d1deb/media/ | | |\n| image61.emf\" style=\" | | |\n| width:0.33333in;heig | | |\n| ht:0.35417in\" /></p> | | |\n| <p>Al<sub>2</su | | |\n| b>O<sub>3</sub>+3H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td><p>实验室</p> | | |\n| <p>制法</p></td> | | |\n| < | | |\n| td>Mg<sup>2</sup>+ | | |\n| 2OH<sup>―</sup>=Mg(O | | |\n| H)<sub>2</sub>↓</td> | | |\n| <td>Al<sup> | | |\n| 3</sup>+3NH<sub>3< | | |\n| /sub> ·H<sub>2</", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-e470e91e7753edb763448f170e3eb0cf", "__created_at__": 1754897909, "content": "|\n| td>Mg<sup>2</sup>+ | | |\n| 2OH<sup>―</sup>=Mg(O | | |\n| H)<sub>2</sub>↓</td> | | |\n| <td>Al<sup> | | |\n| 3</sup>+3NH<sub>3< | | |\n| /sub> ·H<sub>2</sub> | | |\n| O == Al(OH)<sub>3</s | | |\n| ub> ↓+ 3NH<sub>4</su | | |\n| b><sup></sup></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [过 | | |\n| ]下面我们再介绍一 | | |\n| 种常见的Al的化合物。 | | |\n| | | |\n| 板书3、硫酸铝 | | |\n| 钾(KAl(SO~4~)~2~) | | |\n| | | |\n| [讲]明矾就是 | | |\n| 带12个结晶水的硫酸铝 | | |\n| 钾即KAl(SO~4~)~2~ | | |\n| ·12H~2~O | | |\n| | | |\n| | | |\n| 讲KAl(SO~4~)~2~ | | |\n| 是 | | |\n| 由两种不同的金属离子 | | |\n| 和一种酸根离子组成的 | | |\n| 化合物,是一种复盐。 | | |\n| | | |\n| 板书复盐K | | |\n| Al(SO~4~)~2~==K^^+ | | |\n| Al^3^+2SO~4~^2―^ | | |\n| | | |\n| [讲] | | |\n| 明矾溶液中滴入石蕊 | | |\n| 试液,变红,为什么? | | |\n| | | |\n| [板 | | |\n| 书Al^3^+3H~2~O* | | |\n| *![](static/Images/a | | |\n| 91144fda2c741b0b9694 | | |\n| ebcfa9d1deb/media/im | | |\n| age69.emf){width=\"0. | | |\n| 32430555555555557in\" | | |\n| height=\"0. | | |\n| 3333333333333333in\"} | | |\n| Al(OH)~3~+3H^^ | | |\n| | | |\n| [小结] | | |\n| 明矾水解所产生的胶 | | |\n| 状物Al(OH)~3~吸附能 | | |\n| 力强,可以吸附水里的 | | |\n| 杂质,并形成沉淀使水 | | |\n| 澄清。所以,明矾常作 | | |\n| 净水剂,但广泛使用铝 | | |\n| 盐净化水,可能导致脑 | | |\n| 损伤,造成严重的记忆 | | |\n| 力丧失,这是老年痴呆 | | |\n| 症特有的症状。使用时 | | |\n| 要切实注意,尽量扬长 | | |\n| 避短才能使Al及其化 | | |\n| 合物对人类社会发展发 | | |\n| 挥出更为重要的作用。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第三章 | 授课班级 | |\n| 第二节 | | |\n| 几种重 | | |\n| 要的金属化合物(三) | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、掌握Fe^3^ |\n| | | 的氧化性 |\n| 学 | 与 | 及检验方法Fe^3^ |\n| | | 与Fe^2^的转变, |\n| 目 | 技能 | |\n| | | 2、掌握Fe(OH)~2~ |\n| 的 | | 氧 |\n| | | 化成Fe(OH)~3~的过程 |\n+", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-a70ce67478bc979d7cf07afdc2def37f", "__created_at__": 1754897909, "content": "化性 |\n| 学 | 与 | 及检验方法Fe^3^ |\n| | | 与Fe^2^的转变, |\n| 目 | 技能 | |\n| | | 2、掌握Fe(OH)~2~ |\n| 的 | | 氧 |\n| | | 化成Fe(OH)~3~的过程 |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、教学 |\n| | | 中通过实验和探究,让 |\n| | 与 | 学生对探究的方法有一 |\n| | | 些了解,在实验和探究 |\n| | 方法 | 过程中,积累一些科学 |\n| | | 假设和对比实验方法。 |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1 |\n| | | 、通过实验探究,让学 |\n| | 态度 | 生体会科学研究的乐趣 |\n| | | ,体验合作和动手的整 |\n| | 价值观 | 个过程的积极的情绪。 |\n+----------------------+----------------------+----------------------+\n| 重 点 | Fe^3^与Fe^2^ | |\n| | 的之间转变 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 运用氧化还原反 | |\n| | 应的理论分析Fe^3^ | |\n| | 与Fe^2^ | |\n| | 的转变并 | |\n| | 进行实验设计和验证。 | |\n+----------------------+----------------------+----------------------+\n| 知 | | |\n| | 三、铁的重要化合物 | |\n| 识 | | |\n| | 1、铁的氧化物 | |\n| 结 | | |\n| | 2、铁的氢氧化物 | |\n| 构 | | |\n| | 氢氧化铁 ( iron(Ⅲ) | |\n| 与 | hydroxide) | |\n| | | |\n| 板 | 氢氧化亚铁 ( | |\n| | iron(Ⅱ) hydroxide) | |\n| 书 | | |\n| | 3、铁盐和亚铁盐 | |\n| 设 | | |\n| | (1) | |\n| 计 | 常 | |\n| | 见的亚铁盐(绿色) | |\n| | | |\n| | FeCl~2~ | |\n| | 、FeSO~4~ 具有强还 | |\n| | 原性,必须现制现用 | |\n| | | |\n| | 保存方 | |\n| | 法:加入少量铁粉  | |\n| | | |\n| | 常 | |\n| | 见的铁盐(黄色): | |\n| | | |\n| | FeCl~3~、Fe~2~(SO~ | |\n| | 4~)~3~具有强氧化性 | |\n| | | |\n| | | |\n| | 2Fe^3^ 的检验 | |\n| | | |\n| |   Fe^3^ | |\n| | 3SCN^^FeSC | |\n| | N~3~ (血红色) | |\n| | | |\n| | Fe^2^ | |\n| | 2OH^―^Fe(OH)~2~ | |\n| |  (白色絮状沉淀) | |\n| | | |\n| | | |\n| | 4Fe(OH)~2~↓O22H~ | |\n| | 2~O4Fe(OH)~3~↓ | |\n| | | |\n| | 白 | |\n| | 色――灰绿色――红褐色 | |\n| | | |\n| | Fe^3^ | |\n| | 3OH^―^ Fe(OH)~3 | |\n| | ~ ↓(红褐色沉淀) | |\n| | | |\n| | (3) | |\n| | Fe^3^ | |\n| | 的氧化性:亚铁盐和铁 | |\n| | 盐之间可以相互转化 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | | |\n+----------------------+----------------------+----------------------+\n| | 创设学习情景 | |\n| 引入人类早在6000 | | |\n| 年前就开始利用铁20 | 阅读", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-a88e09355e06685288e545a35487cefe", "__created_at__": 1754897909, "content": "|\n| | 盐之间可以相互转化 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | | |\n+----------------------+----------------------+----------------------+\n| | 创设学习情景 | |\n| 引入人类早在6000 | | |\n| 年前就开始利用铁20 | 阅读教材,填写表格 | |\n| 00年前人类发明了从矿 | | |\n| 石里冶铁的方法。我国 | 总结归纳,填写表格 | |\n| 在春秋时期就开始冶铁 | | |\n| 、战国时期就开始炼钢 | | |\n| 。钢铁一直广泛地应用 | | |\n| 人类生活的方方面面。 | | |\n| | | |\n| 新中国成立以前, | | |\n| 我国的钢铁工业非常落 | | |\n| 后,生产的钢铁远不能 | | |\n| 满足生产和生活的需要 | | |\n| ,大量依靠进口,所以 | | |\n| 当时把铁钉称为\"洋钉\" | | |\n| ,把铁皮称为\"洋铁皮\" | | |\n| 。新中国成立后,我国 | | |\n| 的钢铁工业得到突飞猛 | | |\n| 进地发展1996年我国 | | |\n| 的钢产量突破一亿吨。 | | |\n| | | |\n| [引]上一节我 | | |\n| 们学习了铁的化学性质 | | |\n| 。我们知道Fe在O2中 | | |\n| 燃烧生成黑色的Fe~3~ | | |\n| O~4~,除此之外,铁的 | | |\n| 氧化物还有两种/-/-/ | | |\n| -/-/--FeO、Fe~2~O~3~ | | |\n| 这些铁的氧化物 | | |\n| 。有什么样的性质呢? | | |\n| | | |\n| [板书] | | |\n| 三、铁的重要化合物 | | |\n| | | |\n| 1、铁的氧化物 | | |\n| | | |\n| [投影总结]铁的 | | |\n| 氧化物的性质比较。 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>FeO</td> | | |\n| <td>Fe<sub>2</su | | |\n| b>O<sub>3</sub></td> | | |\n| <td>Fe<sub>3</su | | |\n| b>O<sub>4</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>俗名</td> | | |\n| <td></td> | | |\n| <td>铁红</td> | | |\n| <td>磁性氧化铁</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>色态</td> | | |\n| <td>黑色粉末</td> | | |\n| <td>红棕色粉末</td> | | |\n| <td>黑色晶体</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>价态</td> | | |\n| <td>+2价</td> | | |\n| <td>+3价</td> | | |\n| <td>+3+2价</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>水溶性</td> | | |\n| <td>不溶</td> | | |\n| <td>不溶</td> | | |\n| <td>不溶</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>稳定性</td> | | |\n| <td>不稳定,在空气里 | | |\n| 加热迅速被氧化</td> | | |\n| <td>稳定</td> | | |\n| <td>稳定</td> | | |\n| </tr>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-426b070778e50c034595de92fc10b7a2", "__created_at__": 1754897909, "content": "tr> | | |\n| <tr class=\"even\"> | | |\n| <td>稳定性</td> | | |\n| <td>不稳定,在空气里 | | |\n| 加热迅速被氧化</td> | | |\n| <td>稳定</td> | | |\n| <td>稳定</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| < | | |\n| td>非氧化性反应</td> | | |\n| <td>碱性氧化 | | |\n| 物FeO+2H<sup></su | | |\n| p>==Fe<sup>2</sup> | | |\n| +H<sub>2</sub>O</td> | | |\n| < | | |\n| td><p>碱性氧化物</p> | | |\n| <p>Fe<sub>2</sub | | |\n| >O<sub>3</sub> + 6H< | | |\n| sup></sup> == 2Fe< | | |\n| sup>3</sup> + 3H<s | | |\n| ub>2</sub>O</p></td> | | |\n| <t | | |\n| d>复杂氧化物Fe<sub | | |\n| >3</sub>O<sub>4</sub | | |\n| > +8H<sup></sup> = | | |\n| = Fe<sup>2</sup> + | | |\n| 2Fe<sup>3</sup> + | | |\n| 4H<sub>2</sub>O</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td | | |\n| >与氧化性酸反应</td> | | |\n| <td>3FeO + | | |\n| 10HNO<sub>3</sub> == | | |\n| 3Fe(NO<sub>3</sub>)< | | |\n| sub>3</sub> + NO↑ + | | |\n| 5H<sub>2</sub>O</td> | | |\n| <td>Fe<sub>2< | | |\n| /sub>O<sub>3</sub> + | | |\n| 6H<sup></sup> == | | |\n| 2Fe<sup>3</sup> + | | |\n| 3H<sub>2</sub>O</td> | | |\n| <td>3 Fe<sub>3</s | | |\n| ub>O<sub>4</sub> + 2 | | |\n| 8 HNO<sub>3</sub> == | | |\n| 9Fe(NO<sub>3</sub>) | | |\n| <sub>3</sub> +NO↑+14 | | |\n| H<sub>2</sub>O</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>共性</td> | | |\n| <td>高温时,都能 | | |\n| 被C、CO、H<sub>2</su | | |\n| b>、Al等还原剂还原 | | |\n| 还原过程中Fe的价态降 | | |\n| 低最终生成Fe</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [板书 | | |\n| 2、铁的氢氧化物 | | |\n| | | |\n| 氢氧化铁( iron(Ⅲ) | | |\n| hydroxide) | | |\n| | | |\n| 氢氧化亚铁( | | |\n| iron(Ⅱ) hydroxide) | | |\n| | | |\n| * | | |\n| *实验3-9Fe(OH)~2 | | |\n| ~和Fe(OH)~3~的制备 | | |\n| | | |\n| 实验步骤在2支试 | | |\n| 管晨分别加入少量FeCl | | |\n| ~3~和FeSO~4~ 溶液, | | |\n| 然后滴入NaOH溶液观 | | |\n| 察并描述发生的现象。", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-7bb0892093bf67b02553c9b3cdb55950", "__created_at__": 1754897909, "content": "~和Fe(OH)~3~的制备 | | |\n| | | |\n| 实验步骤在2支试 | | |\n| 管晨分别加入少量FeCl | | |\n| ~3~和FeSO~4~ 溶液, | | |\n| 然后滴入NaOH溶液观 | | |\n| 察并描述发生的现象。 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>FeCl<su | | |\n| b>3</sub> 溶液</td> | | |\n| <td>FeSO<s | | |\n| ub>4</sub> 溶液</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td><p>加</p> | | |\n| <p>NaOH</p> | | |\n| <p>溶液</p></td> | | |\n| <td>立即 | | |\n| 产生红褐色沉淀</td> | | |\n| <td> | | |\n| 开始时生成白色絮状沉 | | |\n| 淀,迅速变成灰绿色, | | |\n| 最后变成红褐色</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td><p>离子</p> | | |\n| <p>方程式</p></td> | | |\n| <t | | |\n| d>Fe<sup>3</sup>+3 | | |\n| OH<sup>―</sup>==Fe(O | | |\n| H)<sub>3</sub>↓</td> | | |\n| <td>< | | |\n| p>Fe<sup>2</sup>+2 | | |\n| OH<sup>―</sup>==Fe(O | | |\n| H)<sub>2</sub> ↓</p> | | |\n| <p>4Fe(O | | |\n| H)<sub>2</sub> + O<s | | |\n| ub>2</sub> + 2H<sub> | | |\n| 2</sub>O == 4Fe(OH)< | | |\n| sub>3</sub></p></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| | | |\n| 讲生成Fe(OH)~2~ | | |\n| 时,开始生成白色絮状 | | |\n| 沉淀是Fe(OH)~2~,最 | | |\n| 后生成的红褐色沉淀是 | | |\n| Fe(OH)~3~从Fe的化 | | |\n| 合价来看Fe(OH)~2~ | | |\n| 被什么氧化了? | | |\n| | | |\n| (被空气中O~2~氧化) | | |\n| | | |\n| [讲]* | | |\n| *由此可知Fe(OH)~2~ | | |\n| 极易被氧化,所以在配 | | |\n| 制反应时要用沸水,尽 | | |\n| 量降低O~2~的溶解度。 | | |\n| | | |\n| 思考1实验 | | |\n| 中为什么要用新制的Fe | | |\n| SO~4~ 溶液? | | |\n| | | |\n| (Fe SO~4~ | | |\n| 易被空气中O2氧化) | | |\n| | | |\n| 思考2 | | |\n| 怎样才能使Fe^2^ | | |\n| 溶 | | |\n| 液能能长时间保存呢? | | |\n| | | |\n| (在配 | | |\n| 制溶液时要加少量Fe | | |\n| 防止氧化, | | |\n| 加少量酸抑制其水解) | | |\n| | | |\n| 思考3 | | |\n| 实验中为什么要将滴 | | |\n| 管尖端插入试管底部, | | |\n| 且慢慢挤出", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-443fdd84cb4be2e98d3efa8c89d339c1", "__created_at__": 1754897909, "content": "<22>液时要加少量Fe | | |\n| 防止氧化, | | |\n| 加少量酸抑制其水解) | | |\n| | | |\n| 思考3 | | |\n| 实验中为什么要将滴 | | |\n| 管尖端插入试管底部, | | |\n| 且慢慢挤出NaOH溶液 | | |\n| | | |\n| (Fe(OH)~2~ | | |\n| 极易被 | | |\n| 氧化,预防带入空气) | | |\n| | | |\n| Fe(O | | |\n| H)~2~、Fe(OH)~3~均为 | | |\n| 弱碱,具有碱的通性。 | | |\n| | | |\n| | | |\n| 投影Fe(OH)~2~和F | | |\n| e(OH)~3~的性质比较 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>Fe( | | |\n| OH)<sub>2</sub></td> | | |\n| <td>Fe( | | |\n| OH)<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>色态</td> | | |\n| <td>白色固体</td> | | |\n| <td>红褐色固体</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>溶解性</td> | | |\n| <td>难溶于水</td> | | |\n| <td>难溶于水</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>类别</td> | | |\n| <td>二元弱碱</td> | | |\n| <td>三元弱碱</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| < | | |\n| td>与非氧化性酸</td> | | |\n| <td><p>Fe | | |\n| (OH)<sub>2</sub> +2H | | |\n| <sup></sup> ==</p> | | |\n| <p>F | | |\n| e<sup>2</sup>+2H<s | | |\n| ub>2</sub>O</p></td> | | |\n| <td><p>Fe | | |\n| (OH)<sub>3</sub> +3H | | |\n| <sup></sup> ==</p> | | |\n| <p>F | | |\n| e<sup>3</sup>+3H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>与氧化性酸</td> | | |\n| <t | | |\n| d>3Fe(OH)<sub>2</sub | | |\n| >+10HNO<sub>3</sub> | | |\n| == 3Fe(NO<sub>3</sub | | |\n| >)<sub>3</sub> +NO↑+ | | |\n| 8H<sub>2</sub>O</td> | | |\n| <td><p>Fe | | |\n| (OH)<sub>3</sub> +3H | | |\n| <sup></sup> ==</p> | | |\n| <p>F | | |\n| e<sup>3</sup>+3H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>稳定性</td> | | |\n| <td | | |\n| >分解产生很复杂</td> | | |\n| <td>2Fe(OH) | | |\n| <sub>3</sub><img src | | |\n| =\"static/Images/a911 | | |\n| 44fda2c741b0b9694ebc | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-7759979eef56f718ea0183cccaace70d", "__created_at__": 1754897909, "content": "|\n| <td>稳定性</td> | | |\n| <td | | |\n| >分解产生很复杂</td> | | |\n| <td>2Fe(OH) | | |\n| <sub>3</sub><img src | | |\n| =\"static/Images/a911 | | |\n| 44fda2c741b0b9694ebc | | |\n| fa9d1deb/media/image | | |\n| 61.emf\" style=\"width | | |\n| :0.21875in;height:0. | | |\n| 35417in\" /> Fe<sub>2 | | |\n| </sub>O<sub>3</sub>+ | | |\n| 3H<sub>2</sub>O</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>制法</td> | | |\n| <td | | |\n| >Fe<sup>2</sup>+2O | | |\n| H<sup>―</sup>==Fe(OH | | |\n| )<sub>2</sub> ↓</td> | | |\n| <td | | |\n| >Fe<sup>3</sup>+3O | | |\n| H<sup>―</sup>==Fe(OH | | |\n| )<sub>3</sub> ↓</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>转化关系</td> | | |\n| <td>4Fe(OH)<sub>2</s | | |\n| ub>+O<sub>2</sub>+2H | | |\n| <sub>2</sub>O== 4Fe( | | |\n| OH)<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [板书 | | |\n| 3、铁盐和亚铁盐 | | |\n| | | |\n| (1) | | |\n| 常见的亚铁盐(绿色) | | |\n| FeCl~2~ | | |\n| 、FeSO~4~  | | |\n| | | |\n| 具有强还 | | |\n| 原性,必须现制现用 | | |\n| | | |\n| 保存 | | |\n| 方法:加入少量铁粉 | | |\n| | | |\n| 常见的 | | |\n| 铁盐黄色FeCl~3 | | |\n| ~、Fe~2~(SO~4~)~3~ | | |\n| | | |\n| 具有强氧化性 | | |\n| | | |\n| 实验3 | | |\n| -10Fe^3^的检验 | | |\n| | | |\n| 实验步骤: | | |\n| 在2支试管里分别加入5 | | |\n| mL FeCl~2~ 溶液和5 | | |\n| mL | | |\n| FeCl~3~ | | |\n| 溶液各滴入几滴KSCN | | |\n| 溶液。观察现象并记录 | | |\n| | | |\n| -------- | | |\n| ----- -------------- | | |\n| | | |\n| 滴入KSCN溶液 | | |\n| Fe | | |\n| Cl~3~溶液 呈血红色 | | |\n| | | |\n| FeCl~2~溶液 无变化 | | |\n| -------- | | |\n| ----- -------------- | | |\n| | | |\n| [板书]( | | |\n| 2Fe^3^ 的检验 | | |\n| | | |\n|   Fe^3^ | | |\n| 3SCN^^FeSC | | |\n| N~3~ (血红色) | | |\n| | | |\n| [讲]我们利用 | | |\n| 这一特别现象来检验F | | |\n| e^3^,险些之外,还 | | |\n| 可用与NaOH溶液反应。 | | |\n| | | |\n| 板书Fe^2^ | | |\n| 2OH^", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-8479a8c6e83655aa3e842b2db0d5828e", "__created_at__": 1754897909, "content": "|\n| | | |\n| [讲]我们利用 | | |\n| 这一特别现象来检验F | | |\n| e^3^,险些之外,还 | | |\n| 可用与NaOH溶液反应。 | | |\n| | | |\n| 板书Fe^2^ | | |\n| 2OH^―^Fe(OH)~2~ | | |\n|  (白色絮状沉淀) | | |\n| | | |\n| | | |\n| 4Fe(OH)~2~↓O22H~ | | |\n| 2~O4Fe(OH)~3~↓ | | |\n| | | |\n| 白 | | |\n| 色――灰绿色――红褐色 | | |\n| | | |\n| Fe^3^ | | |\n| 3OH^―^ Fe(OH)~3 | | |\n| ~ ↓(红褐色沉淀) | | |\n| | | |\n| * | | |\n| *科学探究Fe^3^ | | |\n| 的氧化性 | | |\n| | | |\n| * | | |\n| *实验步骤在盛有2 | | |\n| mL FeCl~3~ | | |\n| 溶液的试管中,加入 | | |\n| 少量铁粉,振荡试管, | | |\n| 充分反应后,滴入几滴 | | |\n| KSCN溶液观察并记录 | | |\n| 现象。再加入几滴氯水 | | |\n| ,又发生了什么变化? | | |\n| | | |\n| ------- | | |\n| ------------ ------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| FeCl~3~溶 | | |\n| 液中加入 现象 | | |\n| 反应的离子方程式 | | |\n| 铁粉KSCN溶液 | | |\n| 不显血红色 2 | | |\n| Fe^3^+Fe==3Fe^2^ | | |\n| 氯水, | | |\n| 振荡 显血红 | | |\n| 色 2Fe^2^ +Cl | | |\n| ~2~==2Fe^3^+2Cl^―^ | | |\n| ------- | | |\n| ------------ ------- | | |\n| ----- -------------- | | |\n| -------------------- | | |\n| | | |\n| [板书](3) | | |\n| Fe^3^的氧化性 | | |\n| | | |\n| Fe^3 | | |\n| ^遇到较强的还原剂时 | | |\n| 会被还原成Fe^2^ | | |\n| 而Fe^2^ | | |\n| 在较强的氧化剂的作用 | | |\n| 下会被氧化成Fe^3^ | | |\n| | | |\n| [板书]亚铁盐和铁 | | |\n| 盐之间可以相互转化 | | |\n| | | |\n| [小结 | | |\n| Fe^3^和Fe^2 | | |\n| ^结构不同,所带电荷 | | |\n| 不同,性质差异就很大 | | |\n| ,通过这节课的学习, | | |\n| 我们应该知道结构相似 | | |\n| ,性质必然相似;结构 | | |\n| 不同,性质必然不同。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课 | 授课班级 | |\n| 题:第三章 第三节  | | |\n| 用途广泛的金属材料 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 1 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、明确合金 |\n| | | 的概念以及合金的性质 |\n| 学 | 与 | |\n| | | 2、 |\n| 目 | 技能 | 了解常见的合金的主要 |\n| | | 组成、机械性能和用途 |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、 |\n| |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-bc7aea55a25fede4474e6129de789b1e", "__created_at__": 1754897909, "content": "合金 |\n| | | 的概念以及合金的性质 |\n| 学 | 与 | |\n| | | 2、 |\n| 目 | 技能 | 了解常见的合金的主要 |\n| | | 组成、机械性能和用途 |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 1、 |\n| | | 学会正确选用金属材料 |\n| | 与 | |\n| | | 2、通过日 |\n| | 方法 | 常生活中广泛使用金属 |\n| | | 材料等具体事例,认识 |\n| | | 金属材料与人类生活和 |\n| | | 社会发展的密切关系。 |\n+----------------------+----------------------+----------------------+\n| | 情感 |   |\n| | |  了解金属材料的发展 |\n| | 态度 | 历史、重要作用和面临 |\n| | | 的挑战,通过激发学生 |\n| | 价值观 | 的爱国热情和社会责任 |\n| | | 感来提高学生的求知欲 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 常 | |\n| | 见的合金的性质及应用 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 通过金属材 | |\n| | 料的性质、应用及资源 | |\n| | 现状的认识这种拓展性 | |\n| | 内容的学习,开展有效 | |\n| | 的、积极探究、合作交 | |\n| | 流的自主学习活动,学 | |\n| | 会正确选用金属材料  | |\n+----------------------+----------------------+----------------------+\n| 知 | 第三章 第三节  | |\n| | 用途广泛的金属材料 | |\n| 识 | | |\n| | 一、 | |\n| 结 | 用途广泛的金属材料 | |\n| | | |\n| 构与板书设计 | 1、铜合金 | |\n| | | |\n| | 2、钢 | |\n| | | |\n| | 二 | |\n| | 、正确使用金属材料 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [引入]金属材 | 使学生学会站在 | |\n| 料对推动社会文明的发 | 他人的立场思考问题, | |\n| 展做出了巨大贡献,青 | 对于培养学生倾听别人 | |\n| 铜时代和铁器时代曾在 | 的意见,尊重、和爱护 | |\n| 人类历史上留下光辉的 | 他人的情感是有利的。 | |\n| 篇章,钢铁的大规模应 | | |\n| 用则成为工业时代的基 | | |\n| 础。现在,新型金属材 | | |\n| 料层出不穷,在工业、 | | |\n| 农业、国防,科学技术 | | |\n| 以及人类生活等方面发 | | |\n| 挥着日益重要的作用。 | | |\n| | | |\n| [问] | | |\n| 什么叫合金?合金有哪 | | |\n| 些特性?有哪些用途? | | |\n| | | |\n| [讲]合金是在金属 | | |\n| 加热熔合某些金属或非 | | |\n| 金属制得的具有金属特 | | |\n| 征的金属材料。不同的 | | |\n| 合金具有不同的性能, | | |\n| 主要表现在机械强度、 | | |\n| 韧性、强度、可塑性、 | | |\n| 制腐蚀性等方面。例如 | | |\n| ,不锈钢抗腐蚀性好, | | |\n| 用来做医疗器械、炊具 | | |\n| 等;硬铝强度和硬度好 | | |\n| ,用来制门窗,也用于 | | |\n| 制火箭、飞机、轮船等 | | |\n| ;青铜强度高、可塑性 | | |\n| 好、耐磨、耐腐蚀,用 | | |\n| 于制机器零件,等等。 | | |\n| | | |\n| [讲 | | |\n| ]合金除了具有以上特 | | |\n| 点外还具有以下性质: | | |\n| | | |\n| [投影] | | |\n| 1、合金的硬度一般比 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-e0d1cdd238166bd21e6336e9b0a7aeab", "__created_at__": 1754897909, "content": "耐腐蚀,用 | | |\n| 于制机器零件,等等。 | | |\n| | | |\n| [讲 | | |\n| ]合金除了具有以上特 | | |\n| 点外还具有以下性质: | | |\n| | | |\n| [投影] | | |\n| 1、合金的硬度一般比 | | |\n| 它的各成分金属要大。 | | |\n| | | |\n| 2、多数合金的熔点比 | | |\n| 它的各成分金属要低。 | | |\n| | | |\n| 3、 | | |\n| 改变原料的配比或改变 | | |\n| 生成合金的条件,可以 | | |\n| 得到不同性能的合金。 | | |\n| | | |\n| [引]今 | | |\n| 天我们来介绍几种合金 | | |\n| | | |\n| [板 | | |\n| 书]第三章 第三节  | | |\n| 用途广泛的金属材料 | | |\n| | | |\n| 一、 | | |\n| 用途广泛的金属材料 | | |\n| | | |\n| 1、铜合金 | | |\n| | | |\n| [投影并讲解] | | |\n| | | |\n| 1铜材以纯铜或 | | |\n| 铜合金制成各种形状包 | | |\n| 括棒、线、板、带、条 | | |\n| 、管、箔等统称铜材。 | | |\n| 铜材的加工有轧制、挤 | | |\n| 制及拉制等方法,铜材 | | |\n| 中板材和条材有热轧和 | | |\n| 冷轧的;而带材和箔材 | | |\n| 都是冷轧的,管材和棒 | | |\n| 材则分为挤制品和拉制 | | |\n| 品,线材都是拉制的。 | | |\n| | | |\n| | | |\n| 2黄铜黄铜是铜与 | | |\n| 锌合金。最简单的黄铜 | | |\n| 是铜锌二元合金,称为 | | |\n| 简单黄铜或普通黄铜。 | | |\n| 黄铜中锌的含量较高, | | |\n| 其强度也较高,塑性稍 | | |\n| 低。工业上采用的黄铜 | | |\n| 含锌量不起过45%,含 | | |\n| 锌量再高将会产生脆性 | | |\n| ,使合金性能变坏。为 | | |\n| 了改善黄铜的某种性能 | | |\n| ,在二元黄铜的基础上 | | |\n| 加入其他合金元素的黄 | | |\n| 铜称为特殊黄铜。常用 | | |\n| 的合金元素有硅、铝、 | | |\n| 锡、铅、锰、铁与镍等 | | |\n| 。在黄铜中加铝能提高 | | |\n| 黄铜的屈服强度和抗腐 | | |\n| 蚀性,稍降低塑性。含 | | |\n| 铝小于4%的黄铜具有良 | | |\n| 好的加工、铸造等综合 | | |\n| 性能。在黄铜中加1%的 | | |\n| 锡能显著改善黄铜的抗 | | |\n| 海水和大气腐蚀的能力 | | |\n| ,因此称为\"海军黄铜\" | | |\n| 。锡还能改善黄铜的切 | | |\n| 削加工性能。黄铜加铅 | | |\n| 的主要目的是改善切削 | | |\n| 加工性和提高耐磨性, | | |\n| 铅对黄铜的强度影响不 | | |\n| 大。锰黄铜具有良好的 | | |\n| 机械性能、热稳定性和 | | |\n| 抗蚀性;在锰黄铜中加 | | |\n| 铝,还可以改善它的性 | | |\n| 能,得到表面光洁的铸 | | |\n| 件。黄铜可以分为铸造 | | |\n| 和压力加工两类产品。 | | |\n| | | |\n| | | |\n| 3青铜青铜是历史 | | |\n| 上应用", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-30b74a1ab1e6adda05417eba539cb688", "__created_at__": 1754897909, "content": "加 | | |\n| 铝,还可以改善它的性 | | |\n| 能,得到表面光洁的铸 | | |\n| 件。黄铜可以分为铸造 | | |\n| 和压力加工两类产品。 | | |\n| | | |\n| | | |\n| 3青铜青铜是历史 | | |\n| 上应用最早的一种合金 | | |\n| ,原指铜锡合金,因颜 | | |\n| 色呈青灰色,故称青铜 | | |\n| 。为了改善合金的工艺 | | |\n| 性能和机械性能,大部 | | |\n| 分青铜内还加入其他合 | | |\n| 金元素,如铅、锌、磷 | | |\n| 等。由于锡是一种稀缺 | | |\n| 元素,所以工业上还使 | | |\n| 用许多不含锡的无锡青 | | |\n| 铜,它们不仅价格便宜 | | |\n| ,还具有而需要的特殊 | | |\n| 性能。无锡青铜主要有 | | |\n| 铝青铜、铍青铜、锰青 | | |\n| 铜、硅青铜等。此外还 | | |\n| 有成分较为复杂的三元 | | |\n| 或四元青铜。现在除黄 | | |\n| 铜和白铜(铜镍合金) | | |\n| 以外的铜合金均称为青 | | |\n| 铜。锡青铜有较高的机 | | |\n| 械性能,较好的耐蚀性 | | |\n| 、减摩性和好的铸造性 | | |\n| 能;对过热和气体的敏 | | |\n| 感性小,焊接性能好, | | |\n| 无铁磁性,收缩系数小 | | |\n| 。锡青铜在大气、海水 | | |\n| 、淡水和蒸汽中的抗蚀 | | |\n| 性都比黄铜高。铝青铜 | | |\n| 有比锡青铜高的机械性 | | |\n| 能和耐磨、耐蚀、耐寒 | | |\n| 、耐热、无铁磁性,有 | | |\n| 良好的流动性,无偏析 | | |\n| 倾向,可得到致密的铸 | | |\n| 件。在铝青铜中加入铁 | | |\n| 、镍和锰等元素,可进 | | |\n| 一步改善合金的各种性 | | |\n| 能。青铜也分为压力加 | | |\n| 工和铸造产品两大类。 | | |\n| | | |\n| 4白铜以镍 | | |\n| 为主要添加元素的铜基 | | |\n| 合金呈银白色,称为白 | | |\n| 铜。铜镍二元合金称普 | | |\n| 通白铜,加锰、铁、锌 | | |\n| 和铝等元素的铜镍合金 | | |\n| 称为复杂白铜,纯铜加 | | |\n| 镍能显著提高强度、耐 | | |\n| 蚀性、电阻和热电性。 | | |\n| 工业用白铜根据性能特 | | |\n| 点和用途不同分为结构 | | |\n| 用白铜和电工用白铜两 | | |\n| 种,分别满足各种耐蚀 | | |\n| 和特殊的电、热性能。 | | |\n| | | |\n| 板书2、钢 | | |\n| | | |\n| [讲]钢的分 | | |\n| 类方法较多,按照品种 | | |\n| ,划分为普通碳素钢、 | | |\n| 低合金钢、低硅钢、一 | | |\n| 般碳素结构钢、合金结 | | |\n| 构钢、合金弹簧钢、轴 | | |\n| 承钢等。综合划分为普 | | |\n| 通钢和优质钢两大类。 | | |\n| 按照规格,划分为大、 | | |\n| 中、小三类。我们教材 | | |\n| 按照化学成分分成两类 | | |\n| ,即碳素钢和合金钢。 | | |\n| | | |\n| [问]碳 | | |\n| 素钢按什么分成哪几类 | | |\n| ?各具有哪些性能?合 | | |\n| 金钢中含有哪些元素? | | |\n| | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-86789b0068ceff783a1ed347efa12a9b", "__created_at__": 1754897909, "content": "学成分分成两类 | | |\n| ,即碳素钢和合金钢。 | | |\n| | | |\n| [问]碳 | | |\n| 素钢按什么分成哪几类 | | |\n| ?各具有哪些性能?合 | | |\n| 金钢中含有哪些元素? | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| [讲 | | |\n| ]随着现代工业与科学 | | |\n| 技术的迅速发展,碳钢 | | |\n| 的性能已不能完全满足 | | |\n| 需要,于是人们研制了 | | |\n| 各种合金钢。合金钢是 | | |\n| 在碳钢基础上,有目的 | | |\n| 地加入某些元素(称为 | | |\n| 合金元素,如:铬、锰 | | |\n| 、钨、钼、钴、硅等) | | |\n| 而得到的多元合金。合 | | |\n| 金钢具有优良的性能。 | | |\n| | | |\n| [过]我们了解金属 | | |\n| 合金的性质,那么在实 | | |\n| 际生活中如何使用呢? | | |\n| | | |\n| [板书]二 | | |\n| 、正确使用金属材料 | | |\n| | | |\n| [思考 | | |\n| 与交流]如何选用材料 | | |\n| | | |\n| 案例剖析: | | |\n| | | |\n| 某家庭准备装修窗户, | | |\n| 可使用的材料有:木材 | | |\n| 、钢铁、铝合金等,请 | | |\n| 你调查每种材料的性能 | | |\n| 、价格、制造或安装成 | | |\n| 本、利弊,进行分析。 | | |\n| 你认为选用哪种材料比 | | |\n| 较好?说说你的理由。 | | |\n| | | |\n| 提示:选 | | |\n| 材需要考虑以下几个方 | | |\n| 面1主要用途  | | |\n| 2外观 3物理 | | |\n| 性质(密度、硬度、强 | | |\n| 度、导电性 4 | | |\n| 化学性质(对水的作用 | | |\n| 耐腐蚀性 5 | | |\n| 价格 6加工难度 | | |\n|  7日常维修等。 | | |\n| | | |\n| 可 | | |\n| 以让学生对自己家庭或 | | |\n| 某一单位的装潢根据以 | | |\n| 上提示的几个方面进行 | | |\n| 调查,可写出调查报告 | | |\n| ,再让学生进行比较。 | | |\n| | | |\n| [实践活动 | | |\n| ]针对是否应该停止使 | | |\n| 用铝制饮料罐的问题, | | |\n| 让学生自选扮演角色, | | |\n| 准备好表达自己看法的 | | |\n| 材料,开展一下讨论。 | | |\n| | | |\n| [小结]本 | | |\n| 节讨论了合金的特点、 | | |\n| 组成和性质,通过铜合 | | |\n| 金、合金钢的学习加深 | | |\n| 了学生对合金的认识, | | |\n| 同时通过对我国合金的 | | |\n| 发展和现状的了解培养 | | |\n| 学生的社会责任感,明 | | |\n| 确了自己努力的方向, | | |\n| 可以鼓励学生奋发学习 | | |\n| ,将来去更大的社会责 | | |\n| 任。积极开展社会调查 | | |\n| 活动,提高学生对金属 | | |\n| 材料的认识,增强其社 | | |\n| 会活动能力,开展多种 | | |\n| 形式的交流活动,培养 | | |\n| 学生的互助合作精神。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第 | 授课班级 | |\n| 三章 本章专题总结 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 2 |\n+----------------------+----------------------+----------------------", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-ab61f45bb85567cd2370b9b3bca65edd", "__created_at__": 1754897909, "content": "|\n| 形式的交流活动,培养 | | |\n| 学生的互助合作精神。 | | |\n+----------------------+----------------------+----------------------+\n+----------------------+----------------------+----------------------+\n| 课题:第 | 授课班级 | |\n| 三章 本章专题总结 | | |\n+----------------------+----------------------+----------------------+\n| | 课 时 | 2 |\n+----------------------+----------------------+----------------------+\n| 教 | 知识 | 1、 |\n| | | 掌握金属单质Na、Mg |\n| 学 | 与 | 、Al、Fe的化学性质 |\n| | | |\n| 目 | 技能 | 2、掌握钠、镁、铝、 |\n| | | 铁等金属化合物的性质 |\n| 的 | | |\n+----------------------+----------------------+----------------------+\n| | 过程 | 采用图 |\n| | | 表、比较、讨论、归纳 |\n| | 与 | 、综合的方法进行教学 |\n| | | |\n| | 方法 | |\n+----------------------+----------------------+----------------------+\n| | 情感 | 1、培养学生分 |\n| | | 析、归纳、综合的能力 |\n| | 态度 | |\n| | | 2、通过教学培养学生 |\n| | 价值观 | 的社会责任感、社交活 |\n| | | 动能力和互助合作能力 |\n+----------------------+----------------------+----------------------+\n| 重 点 | 金属单 | |\n| | 质Na、Mg、Al、Fe | |\n| | 及其化合物的化学性质 | |\n+----------------------+----------------------+----------------------+\n| 难 点 | 化合物之间 | |\n| | 的相互转化关系及应用 | |\n+----------------------+----------------------+----------------------+\n| 知 | 一 | |\n| | 、本章知识结构梳理 | |\n| 识 | | |\n| | | |\n| 结 | (一)金属的通用性 | |\n| | | |\n| 构 | | |\n| | 二)钠及钠的化合物 | |\n| 与 | | |\n| | 1、钠 | |\n| 板 | 的性质       | |\n| | | |\n| 书 | 2、钠的氧化物 | |\n| | | |\n| 设 | 3、碱/-/-/-/ | |\n| | -/--氢氧化钠    | |\n| 计 | | |\n| | 4、盐/-/-/-/-/ | |\n| | --碳酸钠和碳酸氢钠 | |\n| | | |\n| | (三 | |\n| | )铝的化合物/-/-/-/-/ | |\n| | --氧化物与氢氧化物 | |\n| | | |\n| | (四)铁的化合物 | |\n| | | |\n| | 1、铁 | |\n| | 的氧化物      | |\n| | | |\n| | 2、铁 | |\n| | 的氢氧化物及Fe^2^ | |\n| | 与Fe^3^的转化 | |\n| | | |\n| | | |\n| | 二、本章典型题剖析 | |\n| | | |\n| | 1、滴加顺序 | |\n| | 不同,实验现象不同 | |\n| | | |\n| | 三、本章专 | |\n| | 题讲座――-有关金属及 | |\n| | 其化合物的有关计算 | |\n| | | |\n| | 1、基本计算方法 | |\n| | | |\n| | (1) | |\n| | 代数方程组 | |\n| | 法/-/-/-/-/--解决混 | |\n| | 合物问题的基本方法 | |\n| | | |\n| | 2、差量法 | |\n| | | |\n| | 数学原理: | |\n| | | |\n| | (3) | |\n| | 假设法/-/-/-/-/--快 | |\n| | 速击破选择型计算题 | |\n| | | |\n| | I 平均值法    | |\n| | | |\n| | Ⅱ 极限讨论法 | |\n| | | |\n| | (4) | |\n| | 分类讨论法/-/-/ | |\n| | -/-/--研究过量问题 | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-95ff469630f179f4b4cb02976e689fb0", "__created_at__": 1754897909, "content": "| |\n| | 速击破选择型计算题 | |\n| | | |\n| | I 平均值法    | |\n| | | |\n| | Ⅱ 极限讨论法 | |\n| | | |\n| | (4) | |\n| | 分类讨论法/-/-/ | |\n| | -/-/--研究过量问题 | |\n| | | |\n| | (5) 守恒法 | |\n| | | |\n| | 2、铝三角 | |\n| | 转化及铝的图像问题 | |\n| | | |\n| | (1) 向Al^3^ | |\n| | 的溶液 | |\n| | 中加入强碱(OH^―^) | |\n| | | |\n| | (2) | |\n| | 向强碱 | |\n| | 溶液中加入Al^3^ | |\n| | | |\n| | (4) | |\n| | 向H^^溶 | |\n| | 液中加入AlO~2~^―^ | |\n| | | |\n| | (3) 向AlO~2~^―^ | |\n| | 溶液中加入H^^  | |\n| | | |\n| | 3、铁的转化关系 | |\n| | | |\n| | (1) 铁三角应用 | |\n| | | |\n| | (2) 铁与稀HNO~3~ | |\n| | 反应规律 | |\n| | | |\n| | 当铁粉过量时3Fe+ | |\n| | 8HNO~3~==3Fe(NO~3~)~ | |\n| | 2~+2NO↑+4H~2~O | |\n| | | |\n| | 当铁粉过量时3Fe+ | |\n| | 8HNO~3~==3Fe(NO~3~)~ | |\n| | 2~+2NO↑+4H~2~O | |\n| | | |\n| | (3) | |\n| | 守恒法在 | |\n| | Fe计算中的综合应用 | |\n| | | |\n| | 质量守恒关系 | |\n| | | |\n| | Ⅱ元素守恒关系 | |\n| | | |\n| | Ⅲ 电荷守恒 | |\n| | | |\n| | Ⅳ 电子守恒关系 | |\n| | | |\n| | 体积守恒关系 | |\n+----------------------+----------------------+----------------------+\n| 教学过程 | | |\n+----------------------+----------------------+----------------------+\n| 教学步骤、内容 | 教学方法 | |\n+----------------------+----------------------+----------------------+\n| [板书]一 | | |\n| 、本章知识结构梳理 | | |\n| | | |\n| | | |\n| (一)金属的通用性 | | |\n| | | |\n| [讲]金属 | | |\n| 的物理通用性:有金属 | | |\n| 光泽、有延展性、导电 | | |\n| 、导热。但不同金属在 | | |\n| 密度、硬度、熔沸点等 | | |\n| 方面差别较大,这也是 | | |\n| 金属单质的一大特点。 | | |\n| | | |\n| 金属 | | |\n| 的化学性质是具有还原 | | |\n| 性,主要表现在金属能 | | |\n| 与非金属、水、酸、某 | | |\n| 些盐发生反应。金属的 | | |\n| 还原性有很大差别,其 | | |\n| 还原性强弱与金属原子 | | |\n| 的结构密切相关,一般 | | |\n| 说来,金属原子的半径 | | |\n| 越大,最外层电子越少 | | |\n| ,金属的还原性越强。 | | |\n| | | |\n| [讲]金属 | | |\n| 活动性顺序表中金属的 | | |\n| 金属性从左到右依次减 | | |\n| 弱,可以判断金属失电 | | |\n| 子的难易;可以判断金 | | |\n| 属离子得到电子的能力 | | |\n| | | |\n| [投影小结 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-be7604bd41a43fd1216f285d235d7e30", "__created_at__": 1754897909, "content": "[讲]金属 | | |\n| 活动性顺序表中金属的 | | |\n| 金属性从左到右依次减 | | |\n| 弱,可以判断金属失电 | | |\n| 子的难易;可以判断金 | | |\n| 属离子得到电子的能力 | | |\n| | | |\n| [投影小结 | | |\n| ]由金属活动性顺序 | | |\n| 表分析金属知识的规律 | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| < | | |\n| td>金属活动顺序</td> | | |\n| <td>K、Ca 、Na</td> | | |\n| <td>Mg</td> | | |\n| <td>Al、Zn</td> | | |\n| <td>Fe、Sn、Pb</td> | | |\n| <td>H</td> | | |\n| <td>Cu、Hg、Ag</td> | | |\n| <td>Pt、Au</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| < | | |\n| td>与非金属反应</td> | | |\n| <td | | |\n| >Cl<sub>2</sub></td> | | |\n| <td>都能直接化 | | |\n| 合,变价金属一般生成 | | |\n| 高价金属氯化物</td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>S</td> | | |\n| <td>与硫蒸气直 | | |\n| 接化合,变价金属生成 | | |\n| 低价金属化合物</td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <t | | |\n| d>O<sub>2</sub></td> | | |\n| <td>常温下易氧化,点 | | |\n| 燃生成过氧化物</td> | | |\n| <td | | |\n| >常温生成氧化膜</td> | | |\n| <td></td> | | |\n| <td>加热化合</td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>与H<s | | |\n| ub>2</sub>O反应</td> | | |\n| <td>常温 | | |\n| 下生成碱和氢气</td> | | |\n| <td><p>与热水</p> | | |\n| <p>反应</p></td> | | |\n| <td>有碱 | | |\n| 存在下与水反应</td> | | |\n| <td>与 | | |\n| 高温水蒸气反应</td> | | |\n| <td></td> | | |\n| <td>不反应</td> | | |\n| <td>不反应</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>与反应</td> | | |\n| < | | |\n| td>生成盐的氢气</td> | | |\n| <td></td> | | |\n| <td>不反应</td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-c0e5e08a20a95e4f07d29df971eff97c", "__created_at__": 1754897909, "content": "| |\n| td>生成盐的氢气</td> | | |\n| <td></td> | | |\n| <td>不反应</td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td | | |\n| >与氧化性酸反应</td> | | |\n| <td>不生成氢 | | |\n| 气,铁、铝钝化</td> | | |\n| <td></td> | | |\n| <td>产生 | | |\n| NO<sub>2</sub>、NO、 | | |\n| SO<sub>2</sub></td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td | | |\n| >与盐溶液的反应</td> | | |\n| <t | | |\n| d>与水反应,不与盐反 | | |\n| 应,碱与盐反应</td> | | |\n| <t | | |\n| d>排在前面的金属能把 | | |\n| 排在后面的金属从其盐 | | |\n| 溶液中置换出来</td> | | |\n| <td>不反应</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>碱的稳定性</td> | | |\n| <td>受热不分解</td> | | |\n| <td>加热分解</td> | | |\n| <td>常温分解</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>自然界存在</td> | | |\n| <td>化合态</td> | | |\n| <td></td> | | |\n| <td>化合态</td> | | |\n| <td>游离态</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>冶炼方法</td> | | |\n| <td>电解 | | |\n| 法(电解熔融的盐、氧 | | |\n| 化物、氢氧化物)</td> | | |\n| <td>热还原法</td> | | |\n| <td></td> | | |\n| <td>热 | | |\n| 分解或其它方法</td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [板书]( | | |\n| 二)钠及钠的化合物 | | |\n| | | |\n| 1、钠的性质  | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 1钠 | | |\n| 的物理性质:银白色、 | | |\n| 质软、比水轻、熔点低 | | |\n| | | |\n| 2钠的化学性质 | | |\n| | | |\n| 与 | | |\n| 非金属反应2NaCl~ | | |\n| 2~![](static/Images/ | | |\n| a91144fda", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-527f4db66041984ecd88d8173d528836", "__created_at__": 1754897909, "content": "| | |\n| 质软、比水轻、熔点低 | | |\n| | | |\n| 2钠的化学性质 | | |\n| | | |\n| 与 | | |\n| 非金属反应2NaCl~ | | |\n| 2~![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage62.emf){width=\"0 | | |\n| .4479166666666667in\" | | |\n| height=\"0. | | |\n| 3333333333333333in\"} | | |\n| 2NaCl (白烟) | | |\n| | | |\n|       | | |\n|   2NaSNa~2~S | | |\n| | | |\n| 与O~2~反应: | | |\n| 缓慢氧化4Na+O~2~== | | |\n| 2Na~2~O (白色固体) | | |\n| | | |\n| 剧烈燃烧2Na+O~2~== | | |\n| Na~2~O~2~ | | |\n| (淡黄色固体) | | |\n| | | |\n| 与H~2~O | | |\n| 反应2Na | | |\n| +2H~2~O==2NaOH+H~2~↑ | | |\n| | | |\n| (2Na+2H~2~O==2 | | |\n| Na^^+2OH^―^+H~2~↑) | | |\n| | | |\n| 与酸反应2Na+2 | | |\n| H^^==2Na^^+H~2~↑ | | |\n| | | |\n| 与 | | |\n| 盐溶液反应:(先与水 | | |\n| 作用生成NaOHNaOH再 | | |\n| 与盐发生复分解反应) | | |\n| | | |\n| 2Na+2H~2~O+CuSO~4~ | | |\n| ==C | | |\n| u(OH)~2~↓+Na~2~SO~4~ | | |\n| +H~2~↑ | | |\n| | | |\n| 6Na+6 | | |\n| H~2~O+2FeCl~3~==2Fe( | | |\n| OH)~3~↓+6NaCl+3H~2~↑ | | |\n| | | |\n| 2Na+2NH~4~Cl== | | |\n| =2NaCl+2NH~3~↑+H~2~↑ | | |\n| | | |\n| 与 | | |\n| 熔融盐4Na+TiCl~4~ | | |\n| ![](static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf){width=\"0 | | |\n| .3333333333333333in\" | | |\n| height=\"0. | | |\n| 3541666666666667in\"} | | |\n| 4NaCl+Ti | | |\n| | | |\n| [板 | | |\n| 书2、钠的氧化物 | | |\n| | | |\n| ------------ | | |\n| ------------ ------ | | |\n| -------------------- | | |\n| ------------------- | | |\n| -------------------- | | |\n| 氧 | | |\n| 化钠 过氧化钠 | | |\n| | | |\n| 化学式 | | |\n| Na~2~O Na~2~O~ | | |\n| 2~ | | |\n| 化合价 | | |\n| O(-2) O(-1) | | |\n| | | |\n| 颜色、状态 白 | | |\n| 色固体 淡黄色粉 | | |\n| 末 | | |\n| 化学性质 O~2~ | | |\n| 2Na~2~O+O~2~ | | |\n| ==Na~2~O~2~ /-/-- | | |\n| | | |\n| CO~2~ Na~", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-be396692aea7870b70823a911d31e081", "__created_at__": 1754897909, "content": "| | |\n| 色固体 淡黄色粉 | | |\n| 末 | | |\n| 化学性质 O~2~ | | |\n| 2Na~2~O+O~2~ | | |\n| ==Na~2~O~2~ /-/-- | | |\n| | | |\n| CO~2~ Na~2 | | |\n| ~O+CO~2~==Na~2~CO~3~ | | |\n| 2Na~2~O~2~+2CO~2~ | | |\n| ==2Na~2~CO~3~+O~2~ ↑ | | |\n| | | |\n| H~2~O | | |\n| Na~2~O+H~2~O==2NaO | | |\n| H 2Na~2~O~2~+ | | |\n| 2H~2~O==4NaOH+O~2~ ↑ | | |\n| | | |\n| HCl Na | | |\n| ~2~O+2HCl==2NaCl+H~2 | | |\n| ~O 2Na~2~O~2~+4HCl | | |\n| ==4NaCl+2H~2~O+O~2~↑ | | |\n| | | |\n| SO~2~ | | |\n| Na~2~O+SO~2~==Na | | |\n| ~2~SO~3~ Na~2~O~2~ | | |\n| +SO~2~ ==Na~2~SO~4~ | | |\n| 类别 碱 | | |\n| 性氧化物 过氧化物 | | |\n| | | |\n| ------------ | | |\n| ------------ ------ | | |\n| -------------------- | | |\n| ------------------- | | |\n| -------------------- | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 板书3、碱/ | | |\n| -/-/-/-/--氢氧化钠 | | |\n| | | |\n| | | |\n| 讲NaOH白色固体 | | |\n| 易潮解,俗名苛性钠, | | |\n| 烧碱,火碱。一元强碱 | | |\n| ,具有碱的通性,即: | | |\n| | | |\n| 能与酸 | | |\n| 反应生成盐和水,例: | | |\n| NaOH+HCl==NaCl+H~2~O | | |\n| | | |\n| 能与 | | |\n| 酸性氧化物反应生成盐 | | |\n| 和水2NaOH+CO~ | | |\n| 2~==Na~2~CO~3~+H~2~O | | |\n| | | |\n| 能 | | |\n| 与某些盐发生复分解反 | | |\n| 应2NaOH+CuCl~ | | |\n| 2~==Cu(OH)~2~↓+2NaCl | | |\n| | | |\n| | | |\n| 板书4、盐/-/-/-/-/ | | |\n| --碳酸钠和碳酸氢钠 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td>物质</td> | | |\n| <td>Na<sub>2</sub | | |\n| >CO<sub>3</sub></td> | | |\n| <td>Na | | |\n| HCO<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>俗名</td> | | |\n| <td>苏打、纯碱</td> | | |\n| <td>小苏打</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>颜色、状态</td> | | |\n| <td>白色固体</td> | | |\n| <td>白色粉末</td> | | |\n| </tr> | | |\n| <tr class", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-a131f5b91f56880d261b301f318475c0", "__created_at__": 1754897909, "content": ">小苏打</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>颜色、状态</td> | | |\n| <td>白色固体</td> | | |\n| <td>白色粉末</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>水溶性</td> | | |\n| <td>易溶于水</td> | | |\n| <td>能溶于水</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>溶解度大小比 | | |\n| 较: Na<sub>2</sub>C | | |\n| O<sub>3</sub> &gt;Na | | |\n| HCO<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>溶液与酚酞</td> | | |\n| <td>变红</td> | | |\n| <td>变红</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>颜色深浅比 | | |\n| 较: Na<sub>2</sub>CO | | |\n| <sub>3</sub> &gt; Na | | |\n| HCO<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>与盐酸反应</td> | | |\n| <t | | |\n| d>Na<sub>2</sub>CO<s | | |\n| ub>3</sub>+2HCl == 2 | | |\n| NaCl+CO<sub>2</sub>↑ | | |\n| +H<sub>2</sub>O</td> | | |\n| <td>NaH | | |\n| CO<sub>3</sub>+HCl== | | |\n| NaCl+H<sub>2</sub>O+ | | |\n| CO<sub>2</sub>↑</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>反应速率: <u | | |\n| >NaHCO<sub>3</sub></ | | |\n| u> &gt;Na<sub>2</sub | | |\n| >CO<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| < | | |\n| td>与氯化钙溶液</td> | | |\n| <t | | |\n| d><p>Na<sub>2</sub>C | | |\n| O<sub>3</sub>+CaCl<s | | |\n| ub>2</sub>==CaCO<sub | | |\n| >3</sub>↓+ 2NaCl</p> | | |\n| <p>(CO<sub>3</sub | | |\n| ><sup>2―</sup>+Ca<su | | |\n| p>2</sup>==CaCO<su | | |\n| b>3</sub>↓)</p></td> | | |\n| <td>-------</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| < | | |\n| td>与澄清石灰水</td> | | |\n| <td> | | |\n| <p>Na<sub>2</sub>CO< | | |\n| sub>3</sub>+Ca(OH)<s | | |\n| ub>2</sub>==CaCO<sub | | |\n| >3</sub> ↓+2NaOH</p> | | |\n| <p>(CO<sub>3</sub | | |\n| ><sup>2―</sup>+Ca<su | | |\n| p>2</sup>==CaCO<su | | |\n| b>3</sub>↓)</p></td> | | |\n| <td><p>Na", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-c74825ebb551f844c570ed402e62ce32", "__created_at__": 1754897909, "content": "| |\n| >3</sub> ↓+2NaOH</p> | | |\n| <p>(CO<sub>3</sub | | |\n| ><sup>2―</sup>+Ca<su | | |\n| p>2</sup>==CaCO<su | | |\n| b>3</sub>↓)</p></td> | | |\n| <td><p>NaH | | |\n| CO<sub>3</sub>+Ca(OH | | |\n| )<sub>2</sub>== NaOH | | |\n| + CaCO<sub>3</sub>↓ | | |\n| +H<sub>2</sub>O</p> | | |\n| <p | | |\n| >(HCO<sub>3</sub><su | | |\n| p>―</sup>+OH<sup>―</ | | |\n| sup>+Ca<sup>2</sup | | |\n| >==CaCO<sub>3</sub>↓ | | |\n| +H<sub>2</sub>O)</p> | | |\n| <p>或NaHCO | | |\n| <sub>3</sub>+Ca(OH)< | | |\n| sub>2</sub>==Na<sub> | | |\n| 2</sub>CO<sub>3</sub | | |\n| > +CaCO<sub>3</sub>↓ | | |\n| +2H<sub>2</sub>O</p> | | |\n| <p>(2HCO<sub>3</sub | | |\n| ><sup>―</sup>+2OH<su | | |\n| p>―</sup>+Ca<sup>2 | | |\n| </sup> =CaCO<sub>3< | | |\n| /sub>↓+2H<sub>2</sub | | |\n| >O+CO<sub>3</sub><su | | |\n| p>2―</sup>)</p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td | | |\n| >与氢氧化钠溶液</td> | | |\n| <td>-----</td> | | |\n| <td><p>NaOH+NaHCO<s | | |\n| ub>3</sub> ==Na<sub> | | |\n| 2</sub>CO<sub>3</sub | | |\n| >+H<sub>2</sub>O</p> | | |\n| <p>(OH<sup>―</sup>+H | | |\n| CO<sub>3</sub><sup>― | | |\n| </sup>==CO<sub>3</su | | |\n| b><sup>2―</sup>+H<su | | |\n| b>2</sub>O)</p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>热稳定性</td> | | |\n| <td>稳定</td> | | |\n| <td>2NaHCO<img | | |\n| src=\"static/Images/ | | |\n| a91144fda2c741b0b969 | | |\n| 4ebcfa9d1deb/media/i | | |\n| mage61.emf\" style=\"w | | |\n| idth:0.33333in;heigh | | |\n| t:0.35417in\" /> Na<s | | |\n| ub>2</sub>CO<sub>3</ | | |\n| sub>+H<sub>2</sub>O+ | | |\n| CO<sub>2</sub>↑</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td><p>相互</p> | | |\n| <p>转化</p></td> | | |\n| <td><p>Na<sub>2</s | | |\n| ub>CO<sub>3</sub> Na | | |\n| HCO<sub>3</sub>:</p> | | |\n| <p>Na | | |\n| <sub>2</sub>CO<sub>3 | | |\n| </sub>+CO<sub>2</sub | | |\n| >+H<sub>2</sub>O==2N | | |\n| aHCO<sub>3</sub></p> | | |\n| <p>NaHCO<sub>3< | | |\n| /sub> Na<sub>2</sub> | | |\n| CO<sub>3</sub>", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-b091a154f274afd6883a8542671f48c0", "__created_at__": 1754897909, "content": "|\n| </sub>+CO<sub>2</sub | | |\n| >+H<sub>2</sub>O==2N | | |\n| aHCO<sub>3</sub></p> | | |\n| <p>NaHCO<sub>3< | | |\n| /sub> Na<sub>2</sub> | | |\n| CO<sub>3</sub> :</p> | | |\n| <p>N | | |\n| aOH+NaHCO<sub>3</sub | | |\n| > ==Na<sub>2</sub>CO | | |\n| <sub>3</sub>+H<sub>2 | | |\n| </sub>O (OH<sup>―</s | | |\n| up>+HCO<sub>3</sub>< | | |\n| sup>―</sup>==CO<sub> | | |\n| 3</sub><sup>2―</sup> | | |\n| +H<sub>2</sub>O)</p> | | |\n| <p>2NaHCO<img src | | |\n| =\"static/Images/a911 | | |\n| 44fda2c741b0b9694ebc | | |\n| fa9d1deb/media/image | | |\n| 61.emf\" style=\"width | | |\n| :0.33333in;height:0. | | |\n| 35417in\" /> Na<sub>2 | | |\n| </sub>CO<sub>3</sub> | | |\n| +H<sub>2</sub>O+CO<s | | |\n| ub>2</sub>↑</p></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [板书](三 | | |\n| )铝的化合物/-/-/-/-/ | | |\n| --氧化物与氢氧化物 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td>物质</td> | | |\n| <td>氧化铝</td> | | |\n| <td>氢氧化铝</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>化学式</td> | | |\n| <td>Al<sub>2</su | | |\n| b>O<sub>3</sub></td> | | |\n| <td>Al( | | |\n| OH)<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>俗名</td> | | |\n| <td>刚玉</td> | | |\n| <td>------</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>物理性质</td> | | |\n| <td>白色粉末,不溶 | | |\n| 于水,熔点高,自然界 | | |\n| 中为无色晶体。</td> | | |\n| <td>白色 | | |\n| 固体,不深于水</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td><p>化</p> | | |\n| <p>学</p> | | |\n| <p>性</p> | | |\n| <p>质</p></td> | | |\n| <td><p>与酸</p> | | |\n| <p>反应</p></td> | | |\n| <td><p>Al<sub>2</su | | |\n| b>O<sub>3</sub> +6HC | | |\n| l==AlCl<sub>3</sub> | | |\n| +3H<sub>2</sub>O</p> | | |\n| <p>(Al<sub> | | |\n| 2</sub>O<sub>3</sub> | | |\n| +6H<sup></sup", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-65f2e85d337ce3cbf07ddb960cbbc0c0", "__created_at__": 1754897909, "content": "| b>O<sub>3</sub> +6HC | | |\n| l==AlCl<sub>3</sub> | | |\n| +3H<sub>2</sub>O</p> | | |\n| <p>(Al<sub> | | |\n| 2</sub>O<sub>3</sub> | | |\n| +6H<sup></sup>==Al | | |\n| <sup>3</sup>+3H<su | | |\n| b>2</sub>O)</p></td> | | |\n| <td><p>A | | |\n| l(OH)<sub>3</sub>+3H | | |\n| Cl==AlCl<sub>3</sub> | | |\n| +3H<sub>2</sub>O</p> | | |\n| <p | | |\n| >(Al(OH)<sub>3</sub> | | |\n| +3H<sup></sup>==Al | | |\n| <sup>3</sup>+3H<su | | |\n| b>2</sub>O)</p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td></td> | | |\n| <td><p>与碱</p> | | |\n| <p>反应</p></td> | | |\n| < | | |\n| td><p>Al<sub>2</sub> | | |\n| O<sub>3</sub>+2NaOH= | | |\n| =2NaAlO­<sub>2</sub> | | |\n| + H<sub>2</sub>O</p> | | |\n| <p | | |\n| >(Al<sub>2</sub>O<su | | |\n| b>3</sub>+2OH<sup>―< | | |\n| /sup>=2AlO<sub>2</su | | |\n| b><sup>―</sup> +H<su | | |\n| b>2</sub>O)</p></td> | | |\n| <td><p>Al( | | |\n| OH)<sub>3</sub>+NaOH | | |\n| =NaAlO­<sub>2</sub>+ | | |\n| 2H<sub>2</sub>O</p> | | |\n| <p>Al(OH) | | |\n| <sub>3</sub>+OH<sup> | | |\n| ―</sup>=AlO<sub>2</s | | |\n| ub><sup>―</sup>+2H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>相互转化</td> | | |\n| <td>----</td> | | |\n| <td>2Al(OH) | | |\n| <sub>3</sub> <img sr | | |\n| c=\"static/Images/a91 | | |\n| 144fda2c741b0b9694eb | | |\n| cfa9d1deb/media/imag | | |\n| e61.emf\" style=\"widt | | |\n| h:0.33333in;height:0 | | |\n| .35417in\" />Al<sub>2 | | |\n| </sub>O<sub>3</sub>+ | | |\n| 3H<sub>2</sub>O</td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| [板 | | |\n| 书](四)铁的化合物 | | |\n| | | |\n| 1、铁的氧化物 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>FeO</td> | | |\n| <td>Fe<sub>2</su | | |\n| b>O<sub>3</sub></td> | | |\n| <td>Fe<sub>3</su | | |\n| b>O<sub>4</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n|", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-27b44c0d8d004c888636d210f9611e4d", "__created_at__": 1754897909, "content": "| | |\n| <td>Fe<sub>2</su | | |\n| b>O<sub>3</sub></td> | | |\n| <td>Fe<sub>3</su | | |\n| b>O<sub>4</sub></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>颜色、状态</td> | | |\n| <td>黑色粉末</td> | | |\n| <td>红棕色粉末</td> | | |\n| <td>黑色晶体</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>俗名</td> | | |\n| <td>---</td> | | |\n| <td>铁红</td> | | |\n| <td>磁性氧化铁</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>水溶性</td> | | |\n| <td>不溶</td> | | |\n| <td>不溶</td> | | |\n| <td>不溶</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>稳定性</td> | | |\n| <t | | |\n| d>不稳定,在空气里加 | | |\n| 热迅速被氧化,</td> | | |\n| <td>稳定</td> | | |\n| <td>稳定</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>氧化物类别</td> | | |\n| <td>碱性氧化物</td> | | |\n| <td>碱性氧化物</td> | | |\n| <td>复杂氧化物</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>与 | | |\n| 非氧化性酸反应</td> | | |\n| <td><p>FeO+2 | | |\n| HCl==FeCl<sub>2</sub | | |\n| >+H<sub>2</sub>O</p> | | |\n| <p>(Fe | | |\n| O+2H<sup></sup>==F | | |\n| e<sup>2</sup>+H<su | | |\n| b>2</sub>O)</p></td> | | |\n| <td>Fe<sub>2</sub>O< | | |\n| sub>3</sub>+6HCl==2F | | |\n| eCl<sub>3</sub> +3H< | | |\n| sub>2</sub>O (Fe<sub | | |\n| >2</sub>O<sub>3</sub | | |\n| >+6H<sup></sup>==2 | | |\n| Fe<sup>3</sup> +3H | | |\n| <sub>2</sub>O )</td> | | |\n| <td><p>Fe<sub>3 | | |\n| </sub>O<sub>4</sub>+ | | |\n| 8HCl==2FeCl<sub>3</s | | |\n| ub>+FeCl<sub>2</sub> | | |\n| +4H<sub>2</sub>O</p> | | |\n| <p>Fe<s | | |\n| ub>3</sub>O<sub>4</s | | |\n| ub>+8H<sup></sup>= | | |\n| =2Fe<sup>3</sup>+F | | |\n| e<sup>2</sup>+4H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| 板书2、铁 | | |\n| 的氢氧化物及Fe^2^ | | |\n| 与Fe^3^的转化 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-520afaefb6513ce92188dacbef58ccc5", "__created_at__": 1754897909, "content": "2、铁 | | |\n| 的氢氧化物及Fe^2^ | | |\n| 与Fe^3^的转化 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| <table> | | |\n| <tbody> | | |\n| <tr class=\"odd\"> | | |\n| <td></td> | | |\n| <td>二价铁</td> | | |\n| <td>三价铁</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>化 学 式</td> | | |\n| <td>F | | |\n| eCl<sub>2</sub></td> | | |\n| <td>F | | |\n| eCl<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>名 称</td> | | |\n| <td>氯化亚铁</td> | | |\n| <td>氯化铁</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>溶液颜色</td> | | |\n| <td>浅绿色</td> | | |\n| <td>黄色</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>与氢氧化钠</td> | | |\n| <td><p>现象: | | |\n| 产生白色沉淀,迅速变 | | |\n| 成灰绿色,最后变成红 | | |\n| 褐色。FeCl<sub>2</su | | |\n| b>+2NaOH ==Fe(OH)<su | | |\n| b>2</sub>↓+2NaCl</p> | | |\n| <p> | | |\n| 4Fe(OH)<sub>2</sub>+ | | |\n| O<sub>2</sub>+2H<sub | | |\n| >2</sub>O ==4Fe(OH)< | | |\n| sub>3</sub></p></td> | | |\n| <td><p>现象 | | |\n| :产生红褐色沉淀</p> | | |\n| <p>F | | |\n| eCl<sub>3</sub>+3NaO | | |\n| H ==Fe(OH)<sub>3</su | | |\n| b> ↓+ 3NaCl</p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>与KSCN溶液</td> | | |\n| <td>无现象</td> | | |\n| < | | |\n| td><p>产生血红色</p> | | |\n| <p>Fe< | | |\n| sup>3</sup>+3SCN<s | | |\n| up>-</sup>==Fe(SCN)< | | |\n| sub>3</sub></p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td | | |\n| >氧化(还原性)</td> | | |\n| <td>< | | |\n| p>主要表现: <u>还原 | | |\n| </u> 性,举例:</p> | | |\n| <p>2 | | |\n| FeCl<sub>2</sub>+Cl< | | |\n| sub>2</sub> ==2FeCl< | | |\n| sub>3</sub></p></td> | | |\n| <td><p>表现 | | |\n| :氧化性,举例:</p> | | |\n| <p>2FeCl<su | | |\n| b>3</sub>+Fe==3FeCl< | | |\n| sub>2</sub></p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>相互转化</td> | | |\n| <td><p | | |\n| >FeCl<sub>2</sub> Fe | | |\n| Cl<sub>3</sub></p> | | |\n| <p>2 | | |\n| FeCl<sub>2</sub>+Cl", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-c27a17878fdb424855d70cc5b928b2b5", "__created_at__": 1754897909, "content": "|\n| <tr class=\"even\"> | | |\n| <td>相互转化</td> | | |\n| <td><p | | |\n| >FeCl<sub>2</sub> Fe | | |\n| Cl<sub>3</sub></p> | | |\n| <p>2 | | |\n| FeCl<sub>2</sub>+Cl< | | |\n| sub>2</sub> ==2FeCl< | | |\n| sub>3</sub></p></td> | | |\n| <td><p | | |\n| >FeCl<sub>3</sub> Fe | | |\n| Cl<sub>2</sub></p> | | |\n| <p>2FeCl<su | | |\n| b>3</sub>+Fe==3FeCl< | | |\n| sub>2</sub></p></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>名 称</td> | | |\n| <td>氢氧化亚铁</td> | | |\n| <td>氢氧化铁</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>化学式</td> | | |\n| <td>Fe( | | |\n| OH)<sub>2</sub></td> | | |\n| <td>Fe( | | |\n| OH)<sub>3</sub></td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>颜色、状态</td> | | |\n| <td>白色固体</td> | | |\n| <td>红褐色固体</td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>水溶性</td> | | |\n| <td>难溶于水</td> | | |\n| <td>难溶于水</td> | | |\n| </tr> | | |\n| <tr class=\"odd\"> | | |\n| <td>与酸反应</td> | | |\n| <td><p>F | | |\n| e(OH)<sub>2</sub>+2H | | |\n| Cl==FeCl<sub>2</sub> | | |\n| +2H<sub>2</sub>O</p> | | |\n| <p>Fe(OH)<sub>2</sub | | |\n| >+2H<sup></sup>==F | | |\n| e<sup>2</sup>+2H<s | | |\n| ub>2</sub>O</p></td> | | |\n| <td><p>F | | |\n| e(OH)<sub>3</sub>+3H | | |\n| Cl==FeCl<sub>3</sub> | | |\n| +3H<sub>2</sub>O</p> | | |\n| <p>Fe(OH)<sub>3</sub | | |\n| >+3H<sup></sup>==F | | |\n| e<sup>3</sup>+3H<s | | |\n| ub>2</sub>O</p></td> | | |\n| </tr> | | |\n| <tr class=\"even\"> | | |\n| <td>氢氧化 | | |\n| 亚铁露置空气中</td> | | |\n| <td>4Fe(OH)<sub>2</s | | |\n| ub>+O<sub>2</sub>+2H | | |\n| <sub>2</sub>O ==4Fe( | | |\n| OH)<sub>3</sub></td> | | |\n| <td></td> | | |\n| </tr> | | |\n| </tbody> | | |\n| </table> | | |\n| | | |\n| * | | |\n| *板书3、铁三角 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| [板书] | | |\n| 二、本章典型题剖析 | | |\n| | | |\n| 1、滴加顺序 | | |\n| 不同,实验现象不同 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 1", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-1101de01c96fdf8d83f83871f3faa0cb", "__created_at__": 1754897909, "content": "|\n| | | |\n| [板书] | | |\n| 二、本章典型题剖析 | | |\n| | | |\n| 1、滴加顺序 | | |\n| 不同,实验现象不同 | | |\n| | | |\n| [投影总结] | | |\n| | | |\n| 1稀Na~2~CO~3~ | | |\n| 溶液与稀盐酸间的反应 | | |\n| | | |\n| 向Na~2~CO~3~ | | |\n| 溶液中逐滴加入稀盐酸 | | |\n| ,开始时无气体产生, | | |\n| 达到一定量后才有气泡 | | |\n| 冒出,由少到多的过程 | | |\n| 中依次发生下列反应: | | |\n| | | |\n| Na~2~CO~3 | | |\n| ~+HCl==NaCl+NaHCO~3~ | | |\n| | | |\n| NaHC | | |\n| O~3~+HCl==NaCl+CO~2~ | | |\n| ↑+H~2~O | | |\n| | | |\n| 向稀盐酸中逐滴 | | |\n| 加入稀Na~2~CO~3~溶液 | | |\n| 立即有气泡冒出,由少 | | |\n| 到多只发生下列反应: | | |\n| | | |\n| 2HCl+Na~ | | |\n| 2~CO~3~==2NaCl+CO~2~ | | |\n| ↑+H~2~O | | |\n| | | |\n| /(2/) | | |\n| 稀AlCl~3~溶液 | | |\n| 与稀NaOH溶液间的反应 | | |\n| | | |\n| 向AlCl~3~溶液中 | | |\n| 滴加NaOH溶液直至过量 | | |\n| 时发生的反应依次为: | | |\n| | | |\n| Al^3^ | | |\n| +3OH^―^==Al(OH)~3~ ↓ | | |\n| Al(OH)~3~+OH^ | | |\n| ―^==AlO~2~^―^+2H~2~O | | |\n| | | |\n| 现象: | | |\n| 白色沉淀逐渐增多,继 | | |\n| 续加NaOH溶液沉淀逐渐 | | |\n| 溶解,直至完全消失。 | | |\n| | | |\n| 向NaOH | | |\n| 溶液中滴 | | |\n| 加AlCl~3~溶液至过量 | | |\n| 时发生的反应依次为: | | |\n| | | |\n| Al^3^+4OH^ | | |\n| ―^==AlO~2~^―^+2H~2~O | | |\n| Al^3 | | |\n| ^+3AlO~2~^―^+6H~2~O | | |\n| ==4Al(OH)~3~ ↓ | | |\n| | | |\n| 现象:开 | | |\n| 始时无沉淀,接着产生 | | |\n| 沉淀继续滴加AlCl~ | | |\n| 3~溶液,沉淀量不变。 | | |\n| | | |\n| /(3/) | | |\n| 稀NaAlO­~2~溶 | | |\n| 液与稀盐酸间的反应: | | |\n| | | |\n| 向盐酸溶液中滴加NaA | | |\n| lO­~2~溶液,直至过量 | | |\n| 时发生的反应依次为: | | |\n| | | |\n| 4H^+^ | | |\n| +AlO~2 | | |\n| ~^―^==Al^3^+2H~2~O | | |\n| Al^3 | | |\n| ^+3AlO~2~^―^+6H~2~O | | |\n| ==4Al(OH)~3~↓ | | |\n| | | |\n| 现象:开始无沉 |", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}, {"__id__": "chunk-525aabf90498ed3aa6b45a28a3c61a27", "__created_at__": 1754897909, "content": "| | |\n| ~^―^==Al^3^+2H~2~O | | |\n| Al^3 | | |\n| ^+3AlO~2~^―^+6H~2~O | | |\n| ==4Al(OH)~3~↓ | | |\n| | | |\n| 现象:开始无沉 | | |\n| 淀,接着产生白色沉淀 | | |\n| ,逐渐增多至达到最大 | | |\n| 值继续加入NaAlO­~ | | |\n| 2~溶液,沉淀量不变。 | | |\n| | | |\n| 向NaAlO­~2~溶 | | |\n| 液中滴加盐酸直至过量 | | |\n| 时发生的反应依次为: | | |\n| | | |\n| AlO~2~^―^+H^^ | | |\n| +H~2~O==Al(OH)~3~↓ | | |\n| Al(OH)~3~+3H | | |\n| ^^==Al^3^+3H~2~O | | |\n| | | |\n| 现象:白色沉 | | |\n| 淀逐渐增多至最大值, | | |\n| 继续加盐酸,沉淀逐渐 | | |\n| 减少,最后完全消失。 | | |\n+----------------------+----------------------+----------------------+", "full_doc_id": "高中化学必修一教案_5312205.docx", "file_path": "高中化学必修一教案_5312205.docx"}], "matrix": "cQeEPNjkwzyD9Pe8fvIzvVFtfbz38hu8bycfO1eoWz2Gxx+9VD8DvPSZ5ry/qjU7/G5SvAglRTzsCTC7DoFgPctgqLx3lhi8qsV/vEPIpDzPdUq9BnjZvBW8Pj3LYKg8/RocPWfZYjzQVI08jkT4vOpvorw9Bpe85BOHvGNwCr1U2RC8G9HgPK/foLsbBfy6V+0QPAg4I70n4Ai7ULKyPGkg3DxW7ZC8YUvwu0fKaLz71EQ8lwuFORBzAb0K5Q69KXs4PK2FSb1ybpi8WEJpuBGnnD1nc/C8BKowPZGLcTyYpZK9NVJovQaLN71S+Su9Rg8evdPw3jxiXs68EWJnvDXLuLzzy708vf1JOtjkwzzK51e7Q7VGvZpzuzxO5Ak99XgpvAIQI72ksF28YJAlOxuwo7yn1hm9AYT0PP8uHDx01k69esozPY4juzze6wa9xwbRO/NEjrtoywO9/AhgPVsjcLx6Q4Q8lrNxvdz55btZVcc7lwsFvKC8eLx0Xf68g9M6vf8unDvO2pq7WCGsvADch7xSgNs8Vu2QPLzJrrx11k68HfecvNsKAL13Hcg7dMNwPa7MwrzKszw9nDMFPeHMDT1UQKU8uQllu+SaNr2DTIu6hTtxvC8q6DwB6mY8KXoWPV3QWz39btK6RZZNvTILb7reuI06Fs+cOrlOmrynXUm9u/uFPQaLt7spzsy82H5RvWS3Az1lcSy9ajM6u8nUeboaSjE9vqmTu07kCb10Xf489r8iPUDnnTbZkS+9WELpPOevWL1iChg8EKccvRWp4DzY5MM8dKKzPB+kCD3cpI08fMx3uxFiZzx3lhi8hLMfPL0PhjzTvEO9qAq1uwaLtzwpezi7uqPyOo5E+Dz3WbA8+PM9PHyrurwCMWA8Llw/vQPwBz1fj4M6j1fWvOlcRL3Ev1e7UNNvvLwvoTwEy209IoUPPdoKgLzXa/O7kAOgvIUtEjwCMeC8WELpvOTOUb1yj1W8Q/sdvYWhY70UD9O8M6V8PMQ4qDziIWa9qj7QPC6Q2ju8LyE8ngCMvAglRT3sggC907zDPPP/WL0YfAg8xmxDPRhJD7zwYwc82ZANvbqCtbzFOCi9UBilvBrjHD2ksF29mGDdPK9mULtPSx68cXx3PKQprrzzd4c9JmaWPOVHIrwPG+66VpV9vAIx4DyD9Hc8LfbMPDd4JLz5Bpw8ApdSu1png7wUqWA8fnnjPGjLgzwxthY9co/VPMC9Ez3CEuy8DZMcO8cG0byJ+7q7DV+BPFVh4jzB3lA7bM3HuhvkPr06JRC9G9Hgu9GpZb0Gi7e8e3cfPR9xjzxM8mi94e3KvO+ERDyV5cg8h2GtvNr3IbwyceE8rjI1vOYC7TxBomg7SO8Cva/tf7uCwFw8Hz6WuoTmGLyyjAw9g0wLPcBEQ71LAwO9lcQLvXnr8LtpMhg8CDijvKZK67x4yRE8Yl7OvKvrO707WSs9o/USPC2iljwwCas9oWnku4v9fjxe4zm8JxMCPXPD8Ltn2eI8GGmqvNPPobzB3lA7rHJrPK9mUD0P+rA89kbSO6HPVj3+PHu8dKIzvIW0QTynPIy7mtktvurVFL3iIWY4y2AovVAYpTyxmus83nK2vKyXBb0sSWG9SyTAPGM9kbzLYKi8YSozvWdz8Dt7qhg9Tp/Uu1rv1Lz8swc8wnheO/KqAL23XPm8gsBcvJJ9kj2ddX+6+02VPLSgDDzku3M9rf4ZO1STubw6JRC90lZRvIP0d70YAzi8esozPSK4iDx4yRE8UhrpPPugqb0nu+48+PM9vFrv1Dy+Y7w8DudSvOhJ5jsd9xy71hYbPGGQJT0U7pU8SvCkvJkfhbzX0WU7IPlgvPPem7ycujQ9d2MfvQWKlbvG83K8MAkrPRvRYD3aKz28DsYVPXIpY71WdMA866IbvTQwibz5OZW8iXSLPD5b7zy4gRM8CuUOvfdZsDzoSea8SVYXPMDwjLzbPhu9U5M5u3oQi7xe0Nu8whJsvIrbn73DrPk8KxVGPCrhqjz1rMQ86MEUvTDE9bsnmjG76m+iPLF5Lj1X7ZA+36ZRPLB5rjxy9Ue9e3cfPURiMjy3O7w7GtHgudUk+jxYISy9GkqxOqty6zzx/RS8X4+DO0fK6LxWUwM9ouI0PJjGTzq8LyE9569YPA2THLvzyz29MRyJPA+UvjzY5EO9Zz9VvIQatLvju3M6I7mqvJRs+Dwq4Sq9MYMdO4foXD2yJpq9qwz5u07kibzSVlE9NLhavJpzu7wYncU7VtoyvVm7ubw4WAk8u8iMvPMRlTzNlEM9FgKWvDVS6LuKL1Y8+jq3vGI9ETxwwSw8JQCkvG8Uwbsy6rG7vFBevKzru7xHZHY7G+Q+O3nKszy4b1c8flgmPOVHoryAOAs94ofYPFBt/bp/a4Q8Wu9UvcBEwzymSuu82is9PU1Y2zzoFcu8IoUPPAkYiDxF/D88VlODPPznojx563A8ngCMPFeo27us6zs8+TkVvP9hlbw/OjI81a8GPYAmT7zih9g8b42RPL52Gjy2Ohq8yfkTPGqZLLwNTUU8qKRCOw6BYDxoy4O8kbALve1PB70g+WC8Ln18POzE+jz9gbA88bjfvCPaZz1Zuzk836bRvL0PhjsYA7i7DxtuPNn3obwNLAg9rpgnuQ3n0jtcewM9lNLqPPGXIrr6wWa6kuOEOC6QWrwYaaq8dx1IPIN/hDymbwW8r9+gO8sbc72RJf88PY1GPKgr8jvTvEM9xwbRPPkn2bwj/4G88R5SPaTCGT18zHe837iNPd7rhjtVQCW9RGIyvE6M9rwqnPW7GZ1FvDryljs/gIk7fvIzPTeZYTxvSNy7GTfTO7AAXjw7WSs96m+iPHZwXD0twrG8k55POnaDurzwyhu81jfYvGhz8Dpkcay7r3gMuVpoJTwbXQ+86CipPUsDAzxybpi88TEwPVbaMj24O7w8rf4ZOtewKD0eTPW7Af1EvCqcdbvvcea8/8eHPEdDub3RIjY9UW19vIMH1rxF24I97uq2O+ZHIj0g+WA9KDS/PJNLO71XIAo8tqGuvChoWj0hhY+84cyNO8cG0T1lpcc8GEmPvNjkQz1aARG7QIGrPRtKsbwRYuc8LwmrvLPhZL3oSWa5dXDcPMg67LxlcSy9GkoxvYnbn7tp7MA8HRhavW7zAz2q6hm9OP9TvHuqmDw9jcY8IQw/vfJ3h7wycWG7jYmtvKzrO7yeAIw7IrgIPHRd/rwW3Xs62SobvIl0C7siQNo8Or+dOwyzt7zNp6G9bHkRvN6m0bta71Q7/8ipvIv9fjvE0ZO8/eciPYZgCz2QarQ8JP8Bu+9x5rwiQFo8i7sEvE8YJTwNLIg93PllvD5bb7o/5x296vbRPFm7OT2n91Y9JmYWPTmsP73ojhu9IPngPJFqtLvRiKg8PGyJPObhr7sEqjC9A6owu8TRk7xvFMG7X0msvIN/BD0xUKS9XwT3vHWCGL26o/I8LcIxPOuQX72MEN28BCOBO+tvIrzO2zy9Q8ikvFL5qzz5FPs6QscCPaxkjDxrzUe91Z3KvCGT7jtVYWI9ZlGRPKikQj2C0zq7AQ8BPf/IKT2uzMI8dwpqvK25ZLoq4ao8XuO5OxkDOD20WrU8d4M6PG2bcL07v508rjK1uV8E9zx5ZMG8zmJsOxpKsTu4b1e8Oaw/vfZGUruEgCY8Ln38vOS78zv1eKm8+BT7uQTeS72PnAs9g+YYu1popTxZVce8ne7PvJTSar2uH1e7/09ZPIlBkrtgXAq9MVCkvN5yNr3ku3O8K1sdPZlymTuRfZK8g0wLvF6vHj3hU728o51/vP2BML2hrhm9v6o1vNGp5byPV9Y8hmCLu2dSMz1HMFu7wyXKPJqU+LyxEzw9rHLrOwnz7TwfcQ89ySyNvPUSt7ykjyA9VcdUPM1ADT0VIrG8r8xCvJ6I3bt+ix89h+hcPEJP1LyOI7u8IQw/PccYjbx1XX68Tms5PZqGGbypHZO7eJaYvMOLvLz0vgA9jkT4vH+MwbzXsCi9+Z8HvbB5rjw2RAk9hi2SvItj8bxixEA8MlAkvCdV/DzEv9c8DV+BPDcRELyLQrS9oxZQvbmBE71CtUa8kSX/vE+yMr1f47k9zi7ROUvQibwO+Y68CfNtvDTKlro9weG8UG39vWdz8DyIlUi8ydT5Ow6TnLyeAAw8xL/XvPH9FL2lj6A7i9xBvQi/Ujybhpk7sEUTPM9BL73sxPo8DoFgPSl7OLynPAy8b40RuzT9DzucQeQ86BVLPCzj7rwx6Y+6nojdO0AI2zrydwe8UExAu+wqbbp2/Aq9LVy/POyjvbrOQS+8i2PxPNJoDTz0Ejc9KvSIPHgwprylSms8iQ6ZPNvXBj2xNPm7AQ8BvfdGUroBhPQ8kSX/PGx5kbwxtha9xTgovTZlRrz6Ore8vMmuPPV4KT14MKY96eNzvBhpqjz1JZW7emRBvNdr8zvcpA09lvgmu+SaNj0toha9PtQ/vNCIKL1+WKY7qwx5vd7rBjz0EZW7SN1GvOGZlLxV2rI8s+Hku9z5ZTz71EQ9emRBPFrv1DzPdcq819FlPHYK6rw7emg9H3GPveC5L70ckAi8LpBaPX5YJr1DT9S5mnO7vIPTOr3NyN48EC5MvFcOTr2104W9rzI1vTXLuL1U2RA7skfXPMd/oTxhS3C8N5nhvG9IXDtFqAk9YrFiPPjzvbyXLEI8nDOFPZXlyDweTPU74HT6PIGfHzxxfHe88VLtvORGAL3j4A29+TkVvQglxTzc+eU8lGz4PPiNyzz2RtI8cggmvSJSFr1ixMC81rAovI4jOzu8lZM8mtktPapRLrycp9Y8DcYVvCT/gbthS3C9O3roPF8E97x9Rcg7Vu2QvHWCGL3KXwa81IpsvT86Mrw5zXy9fd/VO6ABLrxhwx69aZiKPOiOG7ufm7s8u8iMO6Qprrw2Zca8oluFvGfLAzycIKe8YUtwPSaHU7zCEuw8LTuCvNmRrzzzZUs8c+gKPXIp4zvy7Pq8GwX8OnBI3DwsSWG9SIkQPSTtRbwipsy7mpR4vCuOFjxFYjI9aSBcPVuJ4ru0WrW8G+Q+PGwB47tiKjO8sq1JPbPApzuZczu9oEcFPEzRKz2q2N089XipO0e8iTycMwW8CCVFvTxsibnDN4Y9u/uFvBdWzLw8bIm8nlRCPbITPLvN2po807xDPcOs+btUx9Q8tsLrPMKKmrswxHW8Vu2QvD2NRrwWvL68AOrmu28UQbzFWeW7BCOBvbDfoLy454W8MnFhvZWRkrzasuw8KygkPPknWbyFO/G6Z1IzO/WsRD2w3yA9ffGRvZgswjx/jEE9+9REvYiC6rqPAyA8YiozO36+GL2rUa48Mx5NvBLbt7xhkKW8CtIwvMmzPDv/lA68sXkuPQNDHD3xlyI95pz6PB6y5zsckAg8EdqVPEAIW7wiHx0912vzuwR847wcH489UcvvvEcIwLwwm9u84rDru2tC57wBctA84iviuhnfNDxCQ9y8OO/bOyFJD733uY27tQzqOwt3Dr3NY3Q8QfSZPDaWhrx4caW8ar3dvHXMLr2kZOk46ZW8PJeikzyjmwo9LrG1vNuSsrySgwC92zgDPCZzD7yMiFW8jVkAPBzTbTzs1Ra8bQilO/B6jbxyzQi9TTzTvFYrtzm70U085Wu8PG+CQTxQRua8Fr/Hu6jairx4DAm9penyvCkNGTzKvv28UHwtvA4RGDws9mQ9nMGmvJJXTDzBG7s74myWvfq4s7zGRbu98QoEvYh+wrz7Pb081nOfvHSWZ7vf0ow87qniPN03qbyoVYG7fW9xu5nwe72P05w7UgykPCRToryiv3K9r34nvUpTB73DoMS7M+aivG8okjxX0Qc9798pvOeWljyHGoC8dOIIvM+Zu7xzMUs8XvotvZsQaTzvREY8FH9tvPuiWb1ywps7b6KuPMyaFb2DmfE7sxixvGazyrti7ma8tYfgunohiTqiAKc88jj/PHhxpTxumBu97/UDvO2J9byBYAk9FiRkPO6p4jyLRIC80bkoPSXYKz0ADg49zXlOPBjftDq60c28fABCPNuSsry5xzo9cfFwuXyFSz28u3M9N2pSPIwjubwWJGQ8v5axO5pHijmwGYs8oyCUvEwc5jyl/8y854upu5hrcr0dFCI9dEclvdotFjz3E708PRncuxKVxzxjiUq9H44+PNHkAj2qxDC8AYgqvTcFtjzEJU69yhUMPfg+F71wB0u71lLYOtCD4TsPizQ8dNcbPQ5V7bpfzvk8UcvvPIcagDrLpYK88h+EveeWFr1BWTY7tiJEO6YfurxlRJs7VkGRO7enzTx/sCW7o3rDPNhyxb3l8MU8OBCjPERN77x64NS7vhEovAorbbkmAwY9XFU3PQKzBD1AI2+8wJaxvG7nXb3YIwM8W/CavOKw67t1XKW8tiJEOuu1KbyPLcy8gUqvu1d6ebto6ZE7yhWMvbAOHj30Cao8maG5PNkYFr1l+Hk8eHwSPG2jCD2ZBta8UstvvFukeTzxyc87Xl/KPJ5xCr0OHAW9l6ITvSTuBbur7wo7uoILvfzYID1QXEC8NpYGvIPapTzTEv68BOF/PUWZkLxkc/C82qgMPVTr3DyaoTk8W7pTPN6Ga7xETW88Tdc2PVuk+bw3z+66JV01PXngVDxP9yM8V3r5OwUB7TxNUi09TVKtvII01TsFF8e8p4TWOoXZSzwPMYU8WBXdPNkYljzhQTy9gWAJOwINtDyw+EO9tr0nPGdkiDttYtS7W2Akvd8L9bwxu8g8TLfJvD85ybxqWEE7PX74PIl+Qrv3E7081OOovGg41LxOJvm6BXxjuxU6Pjy70U084mGpPNbNzjy8bDG9/F0qvQmm47yjRHw8GpoFPD3VhryQbgC9oguUPI/Ir7yMcvu8SkgaPXTiiDxeSfC7VpDTPQNcdjwCGCE60mkMuwryhDsUf228ru6wO5MICr04ij+78WQzvQTh/zzEwLE7xi/hPBJGBb3v9YM9ucc6vXZRuLxqWMG7i6mcuyrsUb7plby87/UDvPLpvLxffzc8pWTpu0PIZbxAWTa8aCL6vKCGirtE/qy8i54vvbmxYL2gFoE8u+envKDrprwGnFC7LZFIOpKDADwfNA+9WTXKvPaOM7y4x7o9FJ9avGjpET22QjE6XdpAPBhE0bmhv/K8penyvKcfOrwVUJi8FbU0ubSoJz0zgQY9TVItPDAgZT3VMmu9KZ2Puxj1Dr1KUwc9+VMXPRyPGLymbvy6LwD4OjbP7ruclXI8O0UQPPMUF7xQfC08m1wKu0ejozpxdvq8cxHevPo9Pb1VvIe8HG7RPMOKaj2I+Tg9U4ZAu/aOMz01SmW9QkPcPFLLb7z7Pb28cqzBvHj2Lj1MzSM9fSCvu+Ow67yftV88sxgxu2jTt7y9lws79hM9O6kT8zx37Bu9Tyb5vPSZILxVC8q9JkdbPd/SjDtE6NI8Sq22O4QFgLz3Ez290bmovICPXrwjomQ9J4iPPp/rJryzvoE6zv7XvOaLqTydGny8n+smvFz7BzuuBAs9IJjRvFFm0znbkjI9+l6EO6JaVjyr5J28JFOiPHrK+ry1IkS8F3CFPSB4ZLuzGLG8pCuBveJ3g7sGnFA8koMAvfq4M7x4fBK7T8HcO8VblbzY1+E8jqhCveCm2LueMFY90VQMvSes9zvp5P67m8yTvLD4w7yecQo8iASmPP9nvbx9K5y8Alz2PDhq0rwdbtE6x7TqO1nmhzt3wGe8syOevCrW97tNUq28rH+BOs4UMr2vwnw89AkqvSpRbrsJQce8uMe6vKX/TDsyQFI8lR0Ku8d7AjzxyU88UywRPEUpBz2R8wm9pkABPTKlbr2cq0w9k0HyO/PTYjx0Z5I9EHXau0pTh7sM/Bc96n/iPE8m+TwLdw49+6LZPG1i1Ltx8XC8G4+YvFACEb0/Ocm67J9PPDeALD3gplg8RzMaPQ+hjjyvwnw80LkovDiKPzvJOfS89PNPPFprETwWJOS7RSmHO5vMk7wTGtG8mQbWvMXAMTxJKK08jHL7PNpc6zyCSi89EquhPILlEr0A7ca7Dgarux7zWjwS+uO8+VMXPHfWQTob/yG7wYBXvJ5QQ7zwb6A5LZHIu7joAT2UmAA9kjffvHE9kjxTAbc8hT5oO4h+wrzKWeG8fqU4PZatgDxms0o7n1BDPTVK5TxWpi29YATBvMZFuzx8K5w9NcVbvfWZoD3Ljyg9oHAwPEgS07tumJu8hoqJvL92xLz4Phe9j9McvP1oF7yAKkI7U4bAO1lLpLuZrKa82uF0PXKswTyJaGg9NwU2vecmDbzry4O9fwpVvMlPzrxEY0m75Gs8vGYY57vKWWE8KH0ivMEF4T3v9QM9JD3IPO6/vDy8EoI9RZmQPCNej7yR0sK5njBWvEzNo7z3E708O6osvcM7qDxJ/Pi8wDwCPbtsMbtDFIe7i+3xPIMeeznhQTw9+l6EPRa/R7wUtTQ8mUcKPWMOVLz8jH89SxxmvLwHFT0ype493Bc8vIV/HLwOHIU9Tdc2PG39Nz0b6cc6Hlh3PYFKL7y9lwu93TcpPBdwBTwrhzW76sCWvKiOab3JOfS7YM55PKF7Hb0dCTU8HOlHvBpkPrxVsRq925IyPG2jCL1Xenm72xc8vYrtcTwM/Be7SbijvGO/kbx5ARy9xkW7uu9ERr3dN6k89VjsPF9/tzzdhus7gjRVvcqFlbzf0oy7HykivTkwEDz080+7+TMqvDaArDwb/6E8wmp9PH2FSzuJJJO87g7/vArcqjy9QH08ytRXPeoaxrr4guy7piqnu+RrPLy0nTo9i54vPTaLmTwWv8e8PBncvC0srLuDuV48B5zQPP8CITy98bo7cqxBvMZFu7yeUMO7KWfIOyjM5Dv6uLM8aNM3vYueL71IPge8bf23u2r+EbwYqW29IBPIvClnSDws9uS8OGrSvLGTp7vVMmu7lPKvPB0JtTvHtOq7ByFavX8qwrwwTBk9+P1iPeP8DDzN3uo8CNKXOuF3Az0Uf209/30XPce0arzqMCA9a3iuOdrhdDx5ARw9d8BnvLr9gTx1tlS9Ae1GPT5PozvtJNk8iWjovDmgmTw/3xm8aN6kvOJLT72FPug8o5AduWjTN71bpPk8RP6sPKIApzlkT4i99aSNO7gWfbtAqHg7YIokuxI7mDy5xzq9f0uJvIfD8To8fni8mDKKvJJ4E70nrPc6tsiUvJxcCj3wZDO6yE9OvOVV4rx9Ngk9kFimvIcaAD31pA29DmtHvQQ4jjz9R1C9ywofPdqSsjulZGk9KH0ivfY0BLwQizS9RYO2PcpZ4bwJV6E88QoEu/ys7LyCNFU8rXQUPcuPqDu5sWA8EPDQOmHu5rqmhNa8cxFePYcPE7qZ8Pu8Ktb3vLFd4DxDeSO8Qd6/vH0grzwpnY87pWTpPNUy67xYFV07HISrPM4UMrx3DAk8vicCvYCP3rzX7Ts9uwcVPPWkDb0QED69kXgTPJ5mHbxOPNO7a/MkPKhVAT0mR1s7+ydjvZgcsLxNUi29p7odvU/BXDuvc7q8GUTRPKHVzDyI+Tg8j8gvvciQAjsusbW8TsHcvP7tIL5a0C098jj/OakTczrrBGy953VPuwacUDqjekO9ROjSvBxu0byvc7o8qI5pPJHoHD2etd+82ffOu12AET3vREa9neGTvLr9gTzrn8+81rf0O5HonDupP6e8ga/LvK/C/LvCBWG8YZ8kvcqFFbxgGhu86pU8vJxRHT0zgYa8UgykvLanTT3VzU46xIrqPCXYKzweWHe9iJ8JO+ufzzwwNr877/WDPJgcsLvXaDI6CLw9PVIBNz3k5rK8L1cGva35Hb34Phc8ldzVu2RPCD3eNyk79XhZPVOnB72U8q889XhZvSDEBbxgiqQ82SODPaWwirzbOAM9fypCvPvjDbyqagG9DIwOPZfmaL27Nuo7fYXLPG5M+rypxDC9DlXtPIT6ErwVUJi855YWPVu60zsFAe27wWp9OVofcDwLxlC9p7odPc4UMr35zg297+qWO5wQaT3+fZe7ogsUPFQLSrwBclC8UOHJO1NQ+byXohO9iX5CvQwHhbvuWqC9ENr2PNKjzrvhxkU8u9FNvB+OPr3UXh89qRPzPMnqMTpq/pG8SzLAO/gzKj2lsIo8250fvAY3ND3Pmbu7vAeVvLMYsbv1KRe94Av1OuYGoLyZoTk9RP6svMmQAj2JL4A8eUXxOzl0Zb2F2Uu9hT7ou1IXkbs25cg8i56vPPLpvDyzZ3M8CUFHPQsrbTuTvGg8dveIvRAQPrxjDtS61lJYPGx4LrwEOI68fYXLPFq6U72F7yW9hoqJvRY6vjwKd4484eeMvIY+6Lrk0Ni8qs+dPP5H0Dw5ir87UYeavJ5xijyBYIm81s3OvKX/TD1bYCS9dwyJPHPXm7yHdK88sPjDPLOzlD03alI8U6eHvTUGkLxYSyQ6qmqBvU48Uz2HdK+7KOK+up5QQzy7gos7a/OkPM4UsjwPoY68vGyxvDaWBj0XWqs8KBiGPFrQLT2bi988FVCYvLvnJz15W0s9J6z3PJBjkzyK7XG8XgUbPbwSgr3uJNm7PrS/PPJOWbzmi6m8WOYHvJSYgDzx6Ty8+sMgPSK4Pj3QCOs8sn1NPSQ9SLu6seC8LxZSvKx/gbzPg+G5he8lvEg+B704BTa8/MLGOc5j9LzoX/W6SkiaPBhaK73Y7Tu8olrWPGVEGz3Eiuo8bf03vKQVJ7ycUR08whs7Pci0ar0igvc8/2e9PM15TrwQ2va8Gd+0uzN2mbyInwm99imXPIFKr7t2O947suLpuwLXbDzYiJ+7WOYHPYBAnD2hAKc68k7Zum6YGz16Zd485trrPDuqLD0ybAY73tIMPKQrAb2u6uM7J81OPRYIyLwAWCa9zonWOyc3JbxLwbI8QOkhPfzkibvK//k6Ptmeu05nX7sOMhK900ieuhANKj1ALLU8ytOmvBwD5rpSvFC9d/WivKmF77x+F4S8K1crPMUrnzw0Ysw8m7SbPEZOlrwVHwi9/OSJO6fRmru1T9i8gUUyvbHFezzMrr45BA5WOuz6mrtN0bU7Dyl6vSwUmLx/n4U82Q5RPYXPjrymFC68c2tGu+cdqDy76be8BK0XvXfAN71hpr87DLg4vVxoDr0MTuK6ywiSPcyQk7zgIgo9SV6ZvHlmZL2NcNm8k6DivHWwNL1gljy9bXAoPaKhEb1ax3E8psGXugRaATyJUNO8Fj0zPNadj7yBpvC8L+EHPeboPD28Wvm7gPIbvUE8uLtCcaO8CPnwvEcLA729j2Q6jkQGvUNMO7xaZjM9EA2qvMboi7xGg4G9TH4fPFlms7v2Bxc9WiOgOxanCTtPQne9ciZYPBNSmDzxA+G8oBB4PPUj57xndQq9incWvYhnk7lx+oS8vGORvC8NWzsCaCk7I+KzvLNmmLzpjum8AzM+vBzXEjz/c3Y9wl4vvXHFGT3SEzM98hNkO0AejTwhM2+8lHSPvDn8q7tZmx47fEF8PafRmruPgNw84l5gPX8XBDyb6Ya9xM/wO7oeI7yDIMq8PrJbvMELGbx9u1U9Dl7lvMuQE738mF69dntJPJcqv7xvLZU7P8LePFvXdDvOKBg76ghDvW5iAD0QDao84aoLO7LeFr01EZE8tU9YvUbyZzxQd2K8edC6O2CIlDuBRTK7qY6HPNvp6DyeAPU8P/fJOGTdBbxrlZC8pnVsvHFbQ72s2mA7gScHPJ5qy7z6U/C8s5uDu3BLwDw6/Ks8HG28O6nvxTzLaVC9Dl7lPKvxIDyaYQW8J+SOvBf6H7xOMvS7kcXKPPLeeD3OKJg8Z3UKveZSk7ybFVq9gzeKO1M2Kr2XlJW8h0DQvOOTS7ybFVo6TH4fvDld6rzKCBI9VgOaOxDYPr1obHI8+UNtPVhIiDy+c5S8btHmO/58jryJUNM8C90gvTRUpLwrwQE9OTEXPPVYUjxR8Tu8YPf6vDWnOr2VT6e8cwoIPTSXt7zlOXg8JfK2O6YUrjudWkg8RwsDvWbtiD3AuII8VRHCOSwUmDwlvcu7nfkJPYd1uzxbq6E7G08RPG1wKD2qNDS8JdQLvTt2BT3EBNw89X8VPQvdIDzqPS49XAxgPBvO+jscA+Y6cfoEvSXUC7yBJ4c745PLPARDwbtN0bU8tJsDvXzSlbwkeN081eAivY7MBz1e5/c8sS/SvKx5Ir1b4Iy79VjSPBIdrTxrYKW8bxZVPej4Pz00iY+86nKZOwNoqbz1jb286Pi/vHDhaTwrwYE8Rk6WPPJ9Oj2sRDc9q/EgvdgOUTqcPJ28GwNmPBwD5jyseaK8ChIMvbk6czxhRYE6pAQrvd9lHT3EbjI8jP8XPerT1z1CLpA8AO5Puz2y2zofWFc8EEIVvVMBPz1hpj+9q//IvKo0NLweHIG8mW8tPUtunDxvLRW9GK50PeSjTrtzAfC8DE7ivMrTprzRzkS+V1YwvYM3Cjzt49q83t2bPMs0ZbwuWQa75KNOvQMzPr3D9Fg8izSDvGyM+LwomGO9F650PHByAz3YrRK9HkjUusUrnzzzsiU8wK/qvM5U67zK06a8s2aYPfdo1bzZNRQ9UYflvBPaGTxqDQ87Fh+IvPJIT71TzNO76y+GvVvgjLwQdwA90kgePaB6zju+Pik9HyPsvVwM4DxCcaO8TIxHPZt/sDtfABO7D15lO3hWYbwl8rY8NIkPPNeU9zwt/de7bi2VOiZTdTwrwYG6NtwlvRtPEbyFME29cfqEOxcvCz0s7VQ9RSdTPTWnOr3n2hQ9muBuvTFSSTwQ2D692UO8vN9lnbzlbuM80AMwPPJIz7tTzNO8Z7gdPFxojjvAr+q7qLpavEiTBL1aWIs8e0oUvQaIL72gEHi8wa/qvcNQBz2ydEA8t4aePCuDfrtXwAa9FfhEvQMlljxLwTK703TxPKZJmT5Yt+6757PRvJwl3TsuyOw8QCy1PJhRAj1n1sg6UEL3PN6oML354i68zBgVPSQXnzyEiqA8sqkrvL5zFD38zUm5W9d0O91jQj2H3xG7PtkevLbJMb2PS3E8GwNmPD+N87yZpJi8USYnO9nZZTtb4Ay94IPIPP98DjxJfES8hRIiPUIuEL2i5CS7tXabvH+fhTwRQpU8kS8hPAYe2TzX/s28wU6svG8W1Tvc+Wu7H1hXu69GkjyhGZA6IgecvC1nrrswaYm8NFSkvFNi/TslJ6K8FGKbPC93Mbymqle8WEgIveo9rryLlcE7R2zBPH6PArwjeN07+K1Dup35CTz9zUk9+XhYvL8wATzuXTS9GijOPEVcvrxSvFA9k6BiO1SXaLxJsa88g+vePNpTvzuM/5c8f5+FPCpz+zuR3Iq8/JjevNwChLyeNWC870+MO13wjzxLK4k9/91MPEsrCT1N0TW85Q0lPOqebLsF4gK80AMwvMzjqbuX9dO8vtRSu0pHWbwuMsO8bXAovTMtYbz8mF68l4v9PJ3w8Tx8ShS8TLMKPQbyBbueTCA8noGLvFvgDDyRxco8s3RAvUg3VjwdSFS8OfwrvIvKrDxeUU48j0vxOp3EHj2Ua/c86Y7pPC1nrrweHAE9ENi+PCNDcrxEPpO7Kd1RvRRiGz2srg07a2Clu0MX0DxAHg09FC0wvfedwDyWDBQ9aMigPM3VAb2T1c08nzXgPHqbz7xDF1C8NT1kvai6WrwrwQE8m+DuvGds8ro8bW08LCLAPH2GarzRwBw8WCFFu04ydD0yUsk8TCJxPUZOFr1c1/S8gGqavRPambtQrE28uKTJOoS2c7n3/v47RZGpOvjEg7usRLc9eQUmPfN9ujz8Y/M8LiSbPcrTJjwJ+XA7y2lQPMIpxLzATiy8i8osPAGNEb2ZOsK76I5pvVbc1jwxh7S7pGXpuqCRDj3RmVk8Zws0PbNmmD27f2E89VhSvM4oGD1lZYe8iSSAPbmWobzb6Wg8fEH8PYKviDxbdra8ALlkPUaDAT0QQpU9lbDluxk/Dj1Bpg68vPk6vfNIT7xHC4M8RSfTvNoe1Lxza0a97LeHvOdJ+zyvtfi8h0DQPMyuPr0hfxq9O6LYPNnZZbyegQu9OfwrvJGQ37wCFRO6scV7PO7HCrz1WFI9qjQ0vdlDPDyxL1K9TdE1PDMBDj3G6Is8w79tvMv/eb0fsio6XRzjuxanCb23ybG8p36EvGqxYLxNO4y6epvPPPEDYTybf7A8pASru4ZluLw9UR281e5KvPnUhj30wig7/nP2PCI8h71Zmx498V8PPS0yQz0rVys90W0GvSy4abwkeF063ZgtvLJ0QLxDF1A8D17lu4X74byTCrk6Fh+IvFrHcTziMo28Mh1ePYDyG73OXYO9xWCKvJlvrbwbKM67BdlqvWjIoLzRwJw7FPhEvEv2nbxcMyM7jGBWuwNagTnd+es8HKInPBYIyLwxvB+83z7aPPJITz00iY88QQdNPeXYObzBQAS8d8A3PYvKLLuNpUS8MHexupOg4rtaZjM8xrMgPdADMDzdigU9WliLvQyDzTsv2G+8X8snPdMFC73tTbE687KlvNitkryT1c28uEOLux59PzyoWRy9tyrwu7aURjycSsU7bmIAvRYIyDw13KU8bdHmOhY9szxDTDs8/nwOvXV7SbtAHo08SF4ZvNyYLb0Ok9A7lU+nvMg7orw7dgU9ALlkPMhZzbyDtvO8XNf0PG6c+7vms9G7VCgCvU7Djb0Jioq8ZLbCvNpTv7suyOw7LdGEPRLowTnEo5259bQAveXKkT0MZaK8aGzyPCrd0Tztru+8qeEdvEgC6zxZMcg8vC4mPaMg+7oo9BG9eFbhvMzjKT1Gg4E8657svJlRgruUa/c8sJkovB+NwrxiEJY9ag2PvDtBGj0rg/682HinvPonnTzpWf68EcqWOdWE9LxoyCC9MGmJPMHk1TsW09w64jINva5UOjwWPbO6De0jPE07DD0mU3W8/kcju6QEK72ndey80t7HvOsIQzynfgS9HG28vE934jy5y4w7wORVvKP0p7yXlJU7EuhBvB6yKr3FYAq+Q635PM15UzyWDBQ8HDjRvN6osDtbQcu79VhSvcv/ebyrlfK8xKMdPbhDizx/y1g8AyUWveSFI7yB21s9m7SbvLz5ujsv4Qc8b0vAuwL+Ujwl8jY8ZlxvvOOTSzs8DK88RwuDPCDCLb0R/4E89MIou3MB8LwULTA9wLiCvGcLtLz8mN48Qi4QO2btiD3Qmdk8RzfWvHlm5DzqpwQ9FGIbO6EZEDzn6Dy8cEtAvLRPWDtLwbI8UodlvApzyrzJJGK9WdAJPeiXAb0cONE8Nqe6PJ35iT0WnnG8YCzmPFpmM70Sfms7j+oyPMUrHz3j/SG8PedGPaSxFL0YTTa8i5VBvZ/UIT3IWU29TmdfuyfNTjxN0bW78QNhvUsi8TyFEqI8+r3GO+8aIT2T1c083YqFPOqnBL2kzz87vj4pvVsjoD023KW90n0JvGjWyDxRWxI9pTmWvExXXDxfABO8wQsZvOC4Mz3IOyK9sJkovbKpK72F++E7fYZqvQRDQbzy3vi8OWYCvFMBvzuvtXg8ag0Pu/NIzzxyJtg80DibvF1RzjzWMzk9fuKYPSPECLzi/SE9gABEPADuTztDTDu9CYoKvVDTELpdUc68jLyEPAhjx7sILlw8sYuAPPhD7TuToOK8Dl5lveGqi7wjeN27CZiyPDnHQDxsjPg8Cgl0vN6oMD1WA5q8phSuPKm6Wr2DIEq83AKEvO9dNLxHCwO9iSQAvYA1LzyRkN+8l/XTvO4Knrxk3QW8ck2bvPpTcLyZOsI8XbskPBXqHLz4jxg7MDSevOxNMb09sls7LdEEPGoND705klU9h98RvdpTvzwUDwW9muBuPSUnIryb4O48gPKbPMFAhL2o78W7Lw1bOzMBjrz3xAM9sJmovKxEN7x3i0y9Eh0tu5KQ3zq2/pw7tskxvHIm2LzgTt069v7+PGwdkjvms1E9AhUTPG+AK7252bQ8ElIYPfE4zDyODxs8/qhhPP5HI7rS3se8eCoOPFfs2TzA5FW8iqwBvdSNDL0WnnE9QQdNvBQPBTzeEgc9tO6ZO0AstTwgWNc83flrvJHFyryWDJS7DU7iuy3I7DkaKM68Gl25vJvphjws7VS9zl2DvJ3EnryAJ4e9zQ99vDgYfDyYyYA8uTpzPK6JpTvZ2eU7vj4pPR9vlzw950a9jkQGPMZ+tTyDtvO8O0GaPKbfQrxHC4M8btHmvACE+TwzYsy7ApT8vHsVqTzMGBU7vj6pO99zRTx7FSk9wLiCPKAQeDxo1sg8drC0PPqfmzxDgaa7VjiFuwmYMj2EVbW8NHIwPZXCAD0Muwa9ruR1vRMoS7w4sDS8NHKwu9v/Sj2k/uu7Y2GIu19v/byxIvq8+HUtvRqNcDzNNYA8Ign5PAxZJLtCvd+6HLs2u7mdiDpW47a8EyjLPDgaNj0oGgY98PJ/PBCn5jxuV9C8xsEWvQnvojxJ1gu8ly18vH78Qr12gDo9Qw+EPDyr2LtZdNk7S+bJPFnHd70JhSG72DqMPFrHdzyVLAI8UfjQOxjAEr30Nyk9s/Z8vLiORL1vGxW9BED4PKfp0bxGqEW8R1WnvLLenz24O6a8CucDPWJKpbsyW828WK8avfBMQ7xc7Z69Pn/bvLsPqTxr3ZC8Koymu0COH73I4Bg9BEB4vM3bvDwjeh+8Y6yHvUZVp7rE7ZM9xJvvPO0lIr2wvx290+3DuwgrXrzLaZy8AVw3O+ZeGjyW2t280BnBPI6x8zze6jC9EhiNvNzDDz34yMu8clkZPWRxxrrY2Ck8PP72vFohOzsSYwy9cTqXvD5/2ztzpBi9z5+BvECOn7wvLI27O+64OzMfkrwxtRA9cNAVPSqEB73teMC7MEsPvOCn0DusgZk88WMmPb/6Dr2e7OQ827xqPNjYqTwkit26LR1JO3Um97tBU947UUvvPAl9gj3LtBs77XhAPS+HSj1Q4e08jgMYvbASvDs6lPW767OBvB7LdDtYGRy9kt85PQQwOjyyjHu8BUedve3SAz3vPAW9sBK8PIYlrbxpCQ49YYbgOwBF1LwCxrg8OBo2PSz2pzwnsAS9Z/IqPaRYL70b9/G7IDwbPMLOkTxzrDe8/n+VPAtSfzx5EV08iRCTPMhKGjtDEP68A9b2PO14QD136ju9rj65O72J6DoWVpG7DoDFvJXCAD3o0Do9Wbe5vFohO7whphw9CYUhvZtyJTdAhgA4Ab4Zu3soQL1qg806CCtevNmVyTxL9Y09893lPArnA7zNgXm8qgA1u6XCMDw4VvE8+d8uvTyrWL0mRoO7xysYvcSiFL0sBma8FeyPPEUn4TtiWmO9kkm7PGL3hjze4hE8AhnXvOiNWjy5S2S8RqhFvOBUMr3zeok7XfU9PZKMG7vQr788AygbvUuLjLx6GIK9HFE1vbqlJz3NLtu8mJ6iPIjxELsb9/G8GSoUPU26zLtrg0093MOPO1hd9rqrzBg8Rj5EvCxJRj0Rvsk8jOQVvDZGM71HqEU9gd8JvPdeyrtCvV86+HWtPJ8DyDth4KM8cdi0PEi3CTzK/xo88nNkPGXLCb1Pd+w6nNwmu9IwpDwDcxq8JUd9u5dEX73wpoa8koybvKAaK71dst28MDSsPOERUjuaCCS96OB4vFXblzzn0Do8uvhFPFl02bt9kkE9qxBzvFbjNjw4wHK8UmLSvHQWubnTMCQ9hGFoPOFrFT1+qSQ9bUDtPKiWM72zUEC8EmsrvWrGLbwK54M8WzievLfKf7xcm/o8HzV2vHF+cb2ihCw9Z/IqPIF9pzwMrMI9zHE7uwjQoDw1iZM7I3KAPDG1EL2uVRw9KowmvNpS6bztJSK8CNi/POSSNj15p9s8EOrGvFybej0IK968YwfFvMhKmryWyp+8iWMxvpZ3Ab0JQsE7Xhzfu9FzhLvjKDU6bsFRve7iwbybxUO9t3fhPIbiTLs5wPK8kpxZvI2ZljxSYlI8LAZmvBDqxjt1eJu8M8XOPDaZ0bxIZWW8bZqwvLYNYD0m+wO8U7yVOgkrXjtcmgA9MltNPfmF67yy1gC9snw9vSQngb1N/Sy8j3U4Pc7qAD1pxi09b8FRPKd/UL3E7RM9GCNvvJbaXT1HqEU984pHvEUn4bumFU88kkEcPFXblzz1oao8Z+oLvabS7rukBZE8DYBFvNSapbyHjy49I3ofvUDZHjt2Pdo76CNZPeTl1DzsDr878yBGPQnvor0wlg48Eb5Juv3Dbztpc487RHr/PEi3ibutkVc8ln8gvcfZ8zxZZJu805KGvCoy47nI8Na81VfFO8r/Gr0pyGG9o0FMPOk6vL09aPg8wGQQPIyK0jx9oQW8mx8HvZct/Lx8PyO8GCPvO5muYDzuh4Q+j7gYPFbjtrprg0299wusPJwvRTyYnqI88iDGPFf6mTxfb/28FJJMO0vmyTxfI4S8KSKlO02qjryfVuY8XhzfvNfQCruaW0I9RpFiu9xpzDuHhw+9124oPZhEX7v4da27uw+pvPe4Db0Emrs8Ug+0vEMPhDtx2DS9ARlXO5XCAD017G+8cToXPBrfFDyD9+Y87GHdvP3DbzzcLRG8ngPIOjCeLb2Xh7+76kkAPF0F/DyiMQ49Ug+0vPiF67vLaRw9RZHivHfquzxVJhe9nrCpvIefbLzv8QW9bm6zu6csMr00crC7+HUtvMxxuzx+ueI7XPW9PEp8SLvsDj892w4PPc01ADwIK948+5xOvTyrWD00xU670AkDPasXmDwYI++8DtqIu10MoTzE9TK7n7ApPb5FDj3LaZy8S/WNu6T+a7wMWSS8t3dhvV9ug7q0YH48KoQHPcIxbrusJ9Y8kHW4PA4liDzHb/I7485xOlXMU73sYV27lSwCvQxZJDvndve8nImIvJoIJL1OZ668MVtNO9mVSTy2ZyM8wApNvUyjaT2Hn+y7oSppvV0Egjwcs5e8tV8EvLJ8Pb1pr8q70K8/O1yaAD3jipc8ClEFPbZ3YTv8BlA8RuslPa2RVztPfpG8rj65PGm+DjyjQcw8BEB4PEGWPr3Bx+w8KBoGvAxZJL3oI1k9RpgHPe0lorxRO7G8JvReO+pJgD2fVua8Lh1JPWeYZ7zBx2y8eadbvNxpTL3Gb/K8MltNOgjIAbuL3fA7LFgKO0TUQjx2Jve8BlfbOwysQjx5VL08h/kvPaDHDD2WdwG8Gt+UvMwenbyYAAW8RlUnvdcU5bsAmHI7WRkcOw+PCbjZlcm8FNWsPeuzgTzdeJC7WBkcPejgeD1Blj49l9rdurLPWzw3A1M8Rj7Euw1p4jx1aVe7Di0nPAjQoL0sBuY7XJqAPCN6HzwouCM9/S1xvC8sjbqsJ1Y96wagPKOrTbyyiwE9zHG7vAZXWz2IphG8hstpu5sfBz7brCw8/B2zvCl1Qz2wv508BUcdPX7Ah7yM3XA9lnBcvKu9VL08mxo84b6zPJhLhLvp4Pg7ZogpvWL3hrs0GG08WBkcveQ487vu8QW8917KvFV5tTt6vr67cpXUu0E8+7vRv/27DiWIPBBEirv+6ZY7xhzUPCTcAb1t7U48917KvFXMU7zwCeM8g2FoO0UuBr0IyIG99Ednu3FCtrtDEH65d+q7vATdmzzRv/27Jk4iPZ7sZDwdJTg8VR9yPJBtmbxHAok7ffxCPDY+lDYW/E09w/UyvSN6nzw87ji9+/YRu67k9TwA8jU9bZowPfX0SL03sLS6hB0OPNwWLrp+T2E8BN2bPEXUwror7oi6DtqIvHE6l7zkOHO8Y1pjOzWC7jwmTqK9rT45vdIp/7xFgaQ8LWApu9Zmib230SS80FwhPV2berymb5K9AVSYvPVODDy9iWg8x9nzPGaY5zyDSYu9VuM2vZAimjy4jkQ94ig1PHpk+zx/ZkS80zAkPQCY8jwF7dk82H7muxhmzzzFX7S7Qg8EPBkqlD3f+u48QfABPSEJeb0V7I88PEFXun5PYTy6Ugm8t8r/ukGm/Luk/uu8Uw80vTBE6rtt/BK9rMyYOkkSx7qJW5K8Go1wPNwWrr3H2XM8VduXvO3SAz0/OwG8ruR1PEvmybzo4Hg8SimquxFrK7z+2lK94FQyvDFLD70fhxq9QOlcO1bjNr06hLe7Jk6ivIef7Dzcww+9HGiYu7fhYr3FXzS9gNDFvHYtHL1eDCE9tmejvEbrJT2Eu6s7ulKJPEqTq70V7A89KLgjvIV4yzxbOB49ZcuJvJsfh7yIphE9Di2nPJMGWz3NiB69YwfFvPjXj7yz/aE8fT+jO3OkGL1ax3e7MfFLPROCjrz69hG8mxhiPbt5Kry9Nso8vTZKvev3W7yQdbg8NHKwuV2b+jsK5wO90tZgvcBd6zwmTqI8ZoipOrC4eL20o148v/qOO2GNBbz6nM485fQYuwmFIb2gGqu9jgMYvQPWdr00GG08wApNvdnvjL319Eg9pn/QvJXCgLtiWuO8bO1Ou+k6vLzYlUm90AkDviwGZj3PRb68JTc/O131Pb0VP6687B0DvVHoEr2TSTu8vpANvacssjwcpFO8VpAYPWWACr2OobW7iExOPaHXSjwzxU68WRkcvKeWMzynPPA8ZkXJPE8kTjvbrKy81EeHPARA+DmDs4y8z5+BPKcssrylaO28+NePPHbTWDwOgMW8mWqGPPcLLDtNX489+HWtPBEBqrxyWRk93CbsPPLFCDw8q9i7xKKUPGO0pjvJnTg8NNSSPdfQirwBXLe8ProcvYeHj7wl5KC84FSyPAjB3DumFU89pcIwvX8Lhzs5KvS8X3YivYvNsjzf+m49KoSHvJ7s5DwjzT29kjJYuxnnM72aCKQ8vqBLvfJzZLxdXz+7lzQhPKYVT70k3fs82w6PPBPNDTwxtRA9uvhFPEWBJD1eDCG9nwPIPAJs9byPuJg900DivBDqRr1eDCG8f3WIPXHo8rw9WDq83C0RvAVHnbwSGI08tmcjvTgatryGJa28XKKfvHf6eb3apA28gueoPAVHHT3iznG8i91wvJ2ZRru7Dyk7ZBaJPIYlrbyh18q7Hbu2POwdAz0GBL28/tpSPApCwTrwpoa7OMByvEWBpLwOLae8trpBvSxYCj0JQsG8IOLXPE7RrzyyOd0867MBvdfBRr0WqS+9nvOJO8LOkTxg2f47ku/3POPVlrxBQyA9lzShu8KDEr1DakG9Wcf3PIkJ7rsw8cu8xV+0u4S7q7swh8q7kt85vXUWOb1FgSS8q2o2vFohuzvT7cO8kTLYPDWC7rty7xc9OLA0PSrfRLzW0Aq9Bar5vMhKmjxeHN+6XfU9PZVwXDt6vr47dRa5vNfBxrowlg49VB9yPSi4Izt5AR+97/mkvKQFET1CpQK97SUiPQqVXzxCWoM8V0UZOwQwurwRVMg67zwFPey0+7z1oSo8XVegu83bPLzY2Kk8LQbmPNAZwTtTDzS9MgivPG5XUD0cDtW5kBt1PF92ojusJ1a7lSwCvVY21TzcaUw9RS6GvA3DJbzmZjm9Tf2sPKsXmLlvG5U80+1DPZNZebwZKpQ8aAmOPLI5Xbz79pE8gvdmvG5mFLwXC5I8uDumvA4lCDwOJQg9ZoipvfdtjrzbFi48wt5PvXeQ+Lxx2LS727xqO8EZETv414+8pWjtO6sQczyuVRw9VB9yvbidCD1t/BI8RdTCuq7rmjoSY4y8gNBFvB/xG70cDlU8z6cgvPcLrDtfb/28922OPNusrLvgVLK8x4ZVPau91DxjYQi8ezj+PKW6kTz7We48XbLdPAGv1bzD9TI9rIEZvGFT4rzJKxw9ACrrvHy1AL1JQZC8RCzWvEzL7jw7zdw8FXK/vEcRGDtzRl28HLyBPFJ1obysFLc89XALPaSVbDwvRHK87nECvbY4Ibwm0EE8QvfNO7/HEjrTv509SZbmPMvQOzuKA9k8a+djvLRjCb0CSrw8DH7Nu984XjrySyq9AwqdOxinRzynilU7FrJevEYB7jxnnSS9+dWLvDqY1Dw6WLU8fhqBOz3trbxR9V+9G3zfPHlQgLxzZi695MI/vbYIKT2bERW9ZZgUvd+Yzrtc6VE9NW5jvU0A9zwU/Zc7WbRJvQgEFr2Q7aq8XV75vL/HkrzswUg9SnYYvBpnKLyIHpo7ud3APGmSjTzXOVU8pLW9u+c357z+lHI6y5CcPcD3irzxdhK9aXI8vQ5zNjtsBzU7qGoHvZgMhby/Z6I8BnStvF/OEz1IgS8955fXvEeBL7xKtre8oiBFO3U7Rj21KHc8K1ojvLfIibwmIAs97YEpvIFPCb3SipU8/H+7vPBWQbx/ipi8IQbBPFypMrzzS6o7Zp0kvFc/Ij0OU2U7twipPI5YsrsOE8Y8XV75PBjn5jwTnSe9jrgiPJjcDD38v1o88ctoPHDRtbuAHxG9ybBquG7czLzqfBk9hdlnPJICYj1x0TU9vYfwPPaV6bw7uKU8DH5NOwNfczrQeuu8Oli1vDVOFT1VmgK9DM6Wu0SMRr1FfB89Tes/vcWG+Tu/vHi8c2YuPbC+Zjy3SEi91UTsPOeXVz27cjm7YpOEvC0Pajxoslu9+dULPLXoV7wa3M88HdE4PCCmUDw3Iy09v8eSPAGK2zyDefc8J+X4vHwlGD2gYGQ9j81ZvaSVbLxFPIA5k+KTvGjy+ryTgiM8miE8PXcQ3ru8YhI7P4KmO2sHNb278vc8287NPAZ0LbtTpZm86izQO9fZZLxsB7U80Zo8PY8tyjwhBkG8byyWvJ9LLb2klWw8eNA+vCRw0by0E0C9onCOPJZHFL3zwFG9pzoPvdDa2zz6ChS7+MrxvJ0WpTxAgia7BT8lPERsdbzsAWg9oYC1u5W3qzzT5Hu8d7BtuzcjLT1/b1c9wVwLPEHX/LzZGQe9tjghvd7DNr2JrgI95uKQvfxfajzdUx+6AYpbveTCvzzJi4w7fXpuPd/4Pjzjjbc4RGz1PPDL6Lz/BI08kcLCPN/Y7Ttpcjy9d1sXPcvAlLzA3Em8q5R1PB3ROD0ptQO87KF3PBQ9Nz2CT4k75SIwvHnwjzyPDfm8aBLMvKcKFz0jO0k93/g+PPx/u7tHIT+9HzEpvPe1ujuOeIO9/d+rvMibMz2zk/675kIBvahqh7uOWLK8iO6hPDMZDbzE5uk8xYZ5PGFT4rzSD2Q8ka0LvW7cTLt9mr+89SDCPMFcCz0Ebx091mQ9PdZkvTyOuCK8Iht4vNhZJr3R6oW8y8AUPdsel7zYWSa9N6NrPd0DVryrtMa8HhFYPEeBLzsLXvw8zgXEPdDaW7nEwQu8HsERvDauhTzwtjG913l0PbE+KL2/x5I759d2vPnqQjyDJKE7BM8NPXnAF71x8YY9wBzpvC2Pq7wAdSS8uxLJu3DRNb6KY0m9slPfu9D6rLwU/Rc7AHWkO9suPr0bPEC8jRgTvcfbUj09rY68MeQEvcibs7wfMSk8eLBtPYyYUbkJOZ68zWU0PBWy3jr4BQS9iqPou2c9NL2C5H49miE8uyWwcLwmkKI7tZOBPeUiMD0G/wW9R8HOuXU7Rr0aHG+9Lo8ru2yXHTwtD2o8lDfqPNg51Tynqqa9iO6hPA7TprypH049OThkPYb5uLx0xh68m4Esu0E3bTxvjAY8F4d2POmnAb0OA588iI4xvFLVEbzSihW9B7TMPIaJIb1IoYC807+dO6rfLjxNa4E8aBLMPDaj6zvHG3K9tGOJvOrsMLyKA1m8MtnqvIvY8DxbNIu8uB1gO17eOr0U8v08cLFkvE1LMLyVFxw9JTCyOxGovjw+AuW8KAVKvd9Yrztpkg2+9qADPM/aWzwkcFE8Cz4uPE/gqLzVxC08/F9qvLiYEbwiG3i8IYaCPhaSkLuaIby8UhWxve7hGTzTz8Q8Vb/gPC9PjDwwhBQ9gb8gvbvy9zvAHOk8XQkjPGadJDwZx5g67NwJPZgMhby3mJE86wyCPUV8H7z/NIW7IcahvEdh3jsr6gu70PqsvBX9F73nt6i8sT6oPGY9tLy70qk8KWU6vBGYlzsRqD496HeJveth2Lxh06M8VEo5PZv2U7znt6g869yJO1BVULvpzN+8/9SUPKwUt7wZl6A8qGqHPE7bGL1Xf8G8HLyBPFKlGb3OVQ283sM2vCCmULwzGQ29RqH9N85VDTxAQge9iE6SOssQWzxdCaM8sxNAufnqwjz+tEO8v2eiPFf/Aj295+A8awc1PfQA8bx2mzY9mNyMPDL5uzxvUXQ8TKugvMwghbovBNM8lNf5vIEvOD3bHhc9UJVvvOlHkTnLMCy9NC7Eu+UiML2A75i80YqVubxyuTxTNYI5EUhOPdiJHjyHrv88WVTZO+Ptp7wgptC8GzzAO5rBy7vibeY7M5nLvMUGO7xzpk29jNjwOe+2MbzbHpc815lFPZpBjbwEH9Q8g4QRvHTGHr0vZEO87vZQPCJ7aLxufFy9PY29PIKkXzzDsWE8uR1gPfF2kjtJluY8IQbBPO+2MTy53UA8lffKvHCx5DwJqTW7Mvm7u9SkXDuDefe8J8CaPE47Cb0ZJ4m8hm5gPSP7qTzpjMC8emU3PCUwMj1Dp4c9kWJSu8RxQj1Hga87ia4CPWW98rz8X+q8rqkvvFQKmrud1oU8pkq2PK7J/TsYh/Y8c2auu/AWojvcQ/U8L0+MPBpXgT3u1n89+erCvGlilbzu9lC8oWBkPNkZh7yktb07s5P+vPLrObw6WLW7dZu2u7hdfz0NzpY8K1ojvXjQvjx+upA8WbRJPPSAsryD5IG8hbmZu9Zkvbx5kJ88ROy2vBYyIDs7zVy92g5tPHlQALw6uCW9pdUOPfFreLxKppC8CTkePep8mTzijTe9TdsYPDgTBrxNAHc9wxFSPHCx5LtO2xg+oOs8PM/FpLwy2Wo9QBIPPQK/Yz3PhYW8nytcPfy/2ryDhBG933h9uwjUnTx/D+e7Lh+UvMJR8bz5KmK8FhLPPDgTBr3yi0k7FF2IOqEgxbzjfZC8V9+xOqT1XDt4sO28BG+dvCtaIz2oqiY8aFLrvKxU1jyIQ3i8O7ilPP/J+ry3mBE9FFLuPHy1gDvJuwS8LW9avWnSrLyiwFS7ZGgcve2BKTsfYaG8430QuyDGobuGiSE9z8UkPTL5O7zQeuu8gY+ovAb06ztmnSS7HnFIPaeK1bvpjEA94W1mvZCtC7xMy248S2v+O6A7Bj0T3ca8mxGVvP2fDLyBf4E7mawUPI8N+Txl3cO7t8gJvV4e2ruxfse7lizTPJWnhLyL2PA8P4KmvaM1fL1xYZ68kiKzOV4+K7zTb1S9TKsgvGPo2jngmM68R2Fevd4jpztLBgG7O81cvEYBbjx40D48hg5wvR3ROLt++q+8P6L0PDu4Jbz2Nfk8MFQcvaLgJTz/BI08/F/qu14+q7yDefc8YpOEvBpnKDwecUg9KbWDuQgpdLkYBzi9DC4HPQe0zLtBQoc86KeBvOzBSDrzS6q8Bf8FvI5Ysrus1Be7ACrrvNoObb2dRp28BH/EuiwaBDwvZEO9t8gJPYTkATzbHhc8402YO+1BCjttvPu8/H+7PCUwsjvE0TK9+qojvVkUOr29p8G804+lvPpKs7uXjMM6WXQqu7r9kTs5OGQ9bGclvE7bGL3QOsy8Ne6kvBp8X72BTwm92K58PZW3K7wIBBY9wLx4u4JPCTw3Q3u92bkWPdd59LxW37E8XQkjPJrhHLuiEB68462IPOhHkTw4wzw9GzxAvdIP5LyFWSm9+qqjPEdhXrxePqu80eoFOGMoej3s3Im8m0ENvP6U8jz8f7u88ivZO6WlFr017qS7yrsEPWNjDLzR6gW9sv6IvfF2Er04I608jy3KPPU1eTwEnxW9oOu8Ow2zVTwrr3k8vefgPPWggzsecUi9qz+fvXf7pryzk/68aC2NO5Gi8byRwkK9Ihv4PHogiLzEMSO8yxDbvDxIjjysBBC8e8UnvQIKHb7UpFw8MxkNvVEVsTsI6dS8pFXNvC0Par3iLUe9gC84u7RjibxQNX89piplvfFr+DxxYR69LY+rOEVMJz0vBNM8hYmhuS9/BLw8zVy7ZAgsPWgSzLt3EF483O6evFyZizsjO8m7wVFxPGMoejwd0Ti8/F9qvN7Y7TwUPbc8z4WFvBay3jwYBzg8pJVsPeOtiDxePiu8mXycPCBGYDv4dZu6fpq/OorDObuLI6q7TQsRPZsRlTzppwG9/H+7uynFKr0Zp8c8OdjzvPe1OrxR9d87pJVsPQB1JL1JNva7XTkbvdNPBj3YOdU8BvRrPfnqwjvSb9Q8kiIzvccbcrxsp0S9JlADPdNPhrwnwJq7qNoeu4F/ATxRtUA4FtIvPbiYEby/x5I6/c+EPO9WwTwUPTc9n9uVvNpuXTuV98q8432QPST7Kb3FBjs8/1RTPSuaQj2iwNS8rXQnvEmW5rwZp8e8244uPJV3DLxwMSa9tLPPvMHcyTyPDfm8MlmsPCuawjyY3Iy65jfnuna7h7uOGJO8P2LVvJ+LTLnxi0k8kxKMPDaOtLxaZAM8KCUbvCr6sjxCRxc9eZCfuyLbWLyawUu9IztJO8SRk72I7qE8ZR3jvO2BKTx0Br48vgeyPNPvFb2iwFS9DzOXvSQQYbzT5Ps8mNyMPJiMwzwUXQi98eu5PPgVqzpnLQ29egVHveWymDykFa68I1savRs8wLxMK1+91O+VPK9edr2DJCG9xNEyvTRuY7v4pRM9GhzvvOnM3zyHSQK970aaPMHcyTyNGBO9Z/0Uvccbcjxffko9492AvNNPhj1eHlo6kaJxPbEe17rQ2ls97uGZO1Yf0TyAjyg7hvm4vEWhfbx9mr88kE0bvV/+Cz1++q88yJuzPAB1JL2QrQs7v8cSvNn5NT2uqS+8MXn6tsTRMrzbTo+8ZAisPBxckTwu7xs9v7x4vAlJxTvn90c9r2kQPcn7IzyCxLA8R2HeOuSi7ryPDXk8D5MHvRbSr7wUjYA88ctou8mw6jwMfk28U4pYPYVZKT1tJwa8DzOXPJkB6zvvRpo8SyvfvCbQQbwR6N27js3ZOu8WIrzi7Sc9pBUuPWtHVL2NOOG7bAe1u0dhXr27Umi8D2OPulKlGTvCjIM69/VZvLY4oTwqOtI8cNG1PPC2sb3tgSk8WfToPAhJRTurlPW7HVF3vSm1g7x++q+8X966u4KkX7xUKui7K1ojPJCNujxC90282+4evLaouDzHVoQ800+Gu0p2GD1Uilg8244uPbPzbjz/BA28vGISOm48PboQPoU8xKgvPWvGJ7116iC84kyBu9VlLrzMZLG8WYTyPBIv2LwWiro706opvKlEmTzD2MC8Ix6AvP37z7vCaow8oVgGvE/d2rxVQJI8AqSCvCK2iLyTjNq8iOVCPX4+qzzsWfg85DcXPOWfjrw6xfm8+lW1upm9aLyoj1G851oTvSnt07wOpOQ8mah+vAJCyDqQtq478OTrvC3FF7wXddC4EFksPXLiy7s/1aM8yGsJvO/erjzpmDa8NF4dvc9PR71Fg5M86ONuvaGp+7uZvwA88bRaPbd2JL06xXk9zzSgPDdRiL1YfjW9GTBVvUJgF70gTHm8uhw/PTxl17zj5Am8D4m9PLvsLTzT4He6touOuyq9wrs+IFy9kbxrO1Mdlj1GDG+7+qIFvbGtjbyjGUi842eou6MTC73pFRg9XA/mPHL3Nb2Rtq48UrUeO1hjDrxkxao8CFgvvG1mBbw8L4k8a+HOOw0bCTsJXuy8aIgEvKsaRbydZRu8qS+vOx3YB71VQBI8y8TTu5VHX7uJMhM8G7ULPHA8sTo7leg7I6GevF2phjuacjC8i4tdPUlhlDzrOBQ9NMYUvd5X/jwx06k8l8wVPSbEGj2jSdk6bodpvIoCArtpCyO9UZjfPG+5kjzismA9F1opPb9itzvisuC8pqQ7PDgK9bs8L4m89vpSvIAvfryl6TY9gpmNvDyXgL3XIDO9TD39PM80IL0nTXY8syH/vIOfSjwr2gE8fW48vQMStzxe/BM9H2FjPNSAVbwrjbE8aYiEvcuprDxXye27C2AEPSLsVj0rk+48w9hAPXSyujzvycQ7pek2PcO9GbzDvRm9BRoMPMLzZ7wjjDQ8j/spO/i117wp7dO73TYaPZ7TzzygvuU7ED6FvEJ7vju2kUu9hT8ou5fnvLyPFtG8oY7UvKzqMzwgTHm8WH61PDkMjT2DVBI9BP3MvO4p57wYYOa8aQujPIO68by/R5C60QpMvbJmeju3fOG8SfkcvcSor7ywkM484pc5vIUkgb26HD89UZhfvKXODzxSMoA7aLgVPYvtl7pslpY8a0MJvBaQdzy11sY8WbabPHyDpjx+dPm8zHmbvElhFL2Ud/C8sFoAPbTrML2J6388W3Gguw0bCb2wdSe8+YVGvC8Duz3BHby7mJwEvefCCjzB7aq7C+OiPGBqyDx5RQM80uD3OgJCSD19uwy96CoCPNxLBD0yvj89I4y0PORSvjwwA7s8AVcyPGzM5LyCz9s7IDFSvIqFoLxBkKg8skvTPKU2BzwHo+e8J012vQadKjxhQHQ8oklZvcSoLzy8JBQ9zK9pvP1IIL3BOGO8C2CEuzxKsDy33hs8TOyHPJwzcjx+dPm8Rz6YPK26oryOeAu9J032u0UhWTzN4ZI80QrMPIOfyjypRJk8IeYZvUHG9rwyvr+73ydtu0wHLz3yaaK8F1opvcO9GT0EGPS8QZAovQle7Dy6HL87v0eQPCZHuT18nk09SkyqO8q+Fr3/GA88ONQmO7MbwjzJawm9x7CEvAW4Ubzil7k8qqwQPboHVTzt8xi9YoeHPdvjDL1LHJm8QjAGPMr0ZLvg3DS+Tw8Eve/JxLsE/cy8AXLZO0wHLzyDunG9dLK6vNxRQb3pmDY9pjYHO1TtBL3aqya9+OcAvNxRQT3lBwa8HnbNvC0tDzxHpo+8mJwEvU6nDLyNEJS8DZ6nPUjHczvqaKU8koYdvMSoLz05xXm8Oo+rvAg9iLxDgfu80to6vbTQibu9wlk98OTrPAvjojxbcSA95ihqvfpVtTwPdFO8SKxMPas1bD3PT0c86RWYvKUEXjvBApU8ODwePWSqgzzwrp2781r1PMnTgLyaXca7yDngvMLzZzy77C29k76DvCfnFjzATc08hkXlPCEHfjwi0S89ROuKvaiP0bynv+K8B6Pnu6v/nbz/tlQ8LpUGPJUsuDv5hUa94rLgPCvDf7xzLxw8OcV5PLTQibwL/sk7gf9sO4YPF73ismC8tdbGvQqQFT21pjU8ml3GPDp0BDw2GSK9zJTCvNAEj7uDn8q8OscRPUENij4rcgq9MbiCvPKhCL00eUQ9Ob88uUNLrTwoTw48GutZPBzW77xPwrM8XsrqPDE7Ibtich08jHZzvBIUMTw1Lgy8GgBEvIffhT27Inw8Xq9DOeD327nWUMQ72FiZPLIwrLyULDi9SzfAO/mFRj2/RxC9xX5bvHAhCr2k/qA8zK9pPZ81ir3ATU08CpCVO9HvpDyRvOu8LJNuO/YV+jvisuA84+QJvR6RdDzsI6q8VfPBOtkoCD1piIS8swCbvEiRpTs2GaK838ENvcdOSjzIOWC6gBTXvGdQnjwdi7c6uTfmvHPHpDuhcy08DM64PNtmKzxCZlQ8FOpcvNH14Ts9NcY8esihPKqskDx6mJC9lRERPah0qjz94Kg8SXw7PVCSorx7zl48F3XQO6lfQDw5pBU9gN4IPVHKiDxFBrI8qhQIvBFEwryVLLi8vpLIOz01RjyAFFc9gf/suxL5CT2tuqI8UjKAPBwImbzMr+m8smb6vPCZM7w8Zde7aFbbPFJNJzzXbYO80DpdvebdMbz7JSQ8ZcvnPJi3Kz2qrJA840yBPbzyar04vzy9sKv1uxPknzwCpAK8JKdbveNnqDwjoR68tDiBPCeUiTyRmwc9brf6PAItXjzrU7s8bC4fPdSAVbzgWRY9GJIPPQVKHb3Fruy75T1UvW3+DbzKVh+90xIhPKeJlD0cu8g8sWC9vGMQ47tPpww9GhtrPZNxM7xPwrM9wE1NPJDs/DxcD+a79AkAvbskFLyf00+9iOVCuxB0UzvoyMc8GRUuPbNokrzmKOq7kqFEPGzMZDxEUWo88X6MPUHG9rzsIyo87CMqvZKhxLv50ha9tqY1u7M2abw7lWi81mtrPDcEOLtQkqI93Z4RPXES3bzzWvU8KB1lPcLtKj1Xye071wUMPNyBUjxfmtm8Xfp7PD01xrwB1JO84cfKvdcgMzyFJIE8829fvSZHOT153Qu93Z6RPFsPZj0SSv88NwS4vOjjbj1Fg5O8SoL4PKwFW7zIOWA7n50BPjZRCLs6qtK8yB45PR/7AzyWNI097fOYvCcyTz233pu8oViGvONnqDyB/+w8IBaru2r2OL0oHeW8BOIlPMdp8Tzil7m8rsDfPMdOSr05xXm84hQbvGdQnruDunG88JkzvI2oHDxihwc9cDwxPFIygLyUXMk8Foo6vYuL3Ty3dqS8irvuPAeIwDyEiuA8VA5pOiO8Rb2/35i8sKt1u3/5L71Fg5M6HdiHvKJJWTyTQSI8igKCPKkUCD0b0LK7UK3Ju6jxC7v7QMs7hqcfuxu1iz2lNoe8tosOPXgT2rzQOt27nBIOPQP3jzy4FgI9DOnfvCV3SrwnMk+84MdKPOKXubvZwBA8flnSu9yBUr25Mak7nEjcvJR3cDmDAQW5hXX2PPtAy7zwmTO9sJDOvKlfQDyTVoy8QNvgvCK2CL2vwF+6dJeTvN1saL04CnW89sSEPL9iN7vxfow8Pwvyuxy7SL00lOu881r1vNMSIT3ismC8G9AyPYtVj7xIrMy7M44uPGIKpjzEruy8Wh4TPU/CM7zQbIY7zn9YPQKkgjyu8PA7GTBVva26ojwEX4c7R6aPPIoCgrtQkqI85T1UPHMvnLvdPNe840yBvPpw3LxRfTi922arvBygITwPpGQ7Qns+veU91DxXrkY7QzCGPI/mv7yyS1O8Q8gOvXy59Dwd2Ac922YrvN1s6LwWijq9Mr4/vFjLBb1p9ji8A/cPvPmgbbzAaHS7ED4FPcg5YLwCpAK8VQ7pvCQJFrw7ekG9QmbUvJAzkD3MZDG9uUxQPXTN4bxpQXE8NU9wvYcwez2P5j+8tNAJPUmX4rsrCpO8rM8MvMV+27tXyW07Ux0WPUUGMr3DvRm85Z8OvYOfSj12iOa7Kr3CvDAe4jzRJXM9fLn0vPpVNby5Z/c8mleJOzRk2rxTHRa9JXfKvONnqDzBHTy9nEhcvEwHL712ug+9ye4nPSjnljvjZyi8UJIivemYtjxk+/i6JsSaPJcC5Dz2+lI838ENvZfMlb2WNI29pdTMvL9HkLusuiK8gckevUUh2TxkQoy8IQFBObIwLL2Fdfa7TdcdvdAED72H3wW+esihPJmofrwSFLG7XPS+vFQIrLxkQgy9NU9wvcBodLsQWSy91wUMPbCQTjumuaU83/Eevf3gKDxBDQo96bPdvGrbEbsBPAu7G7WLuvfQ/jzK2T08ESmbvLfeG7yFvIm5YVVeuzyXgLzGYzS897VXvGP1u7wuY108/ftPvKGOVLyacrA82fbeO2TgUT1IkSU8WiTQvHcihzweWyY9zK/pO4D5rzt+Piu8yQlPuzRk2jwL46I8CxnxvPDk67w0eUS9aYiEu2vGJ73pFRg8sjCsPLo3Zj2FWs+8A/ePPHPiS713Pa48ZKoDu0A9mzx8ns28umkPPepoJb0f+wO8sjbpvD9SBT0MSxq90xIhPNOqKTyFPyi8Nx9fO5DRVT3t85i7OL88PFQj0zxhtxg9t3YkPYK0tLxmgK8806opvcg5YD2AL369k3GzvCvD/zxeymo9a/z1OqoUiLyrGkW83TaavPtbcjurNey8sjAsvV9kC71ubEK9sjCsvRS0DryaXUa8cHL/PFQOabwTGm47zmruO5LuFDypZX06Ei/YvEgOhzxut/o8taa1PBvr2bxCZtQ8dW0/O9xsaLxBq0+7ChO0vPz1krwo0iy92AvJPKv/Hb1GUwI9dojmu/Dka7o6xfm8Wh6TvVUOab0Vusu7Q1FqujfUJj0a5Zw8VAisvHdz/Dw8UO07HKAhvJ/udr08SrA88X4MvcewBDuzIf+8UJIivfVcDT3kUr68/BA6vQa4Ub2WNA29LF0gPLiuCr0Z+gY8MOiTuR12zTso7VM8WlRhvWTg0bzAaPQ7y44FvErJC71lsMA9Z1CevB2LNz0XwqC8/BA6PduxYzwMs5E9Bp2quxEpm7y+d6G8Ci5bPHZtP70cCBk9pr/iujnaYzwZG+u8G+tZOzDokzzlnw49xzMjvDtKMDwFGgw8TPJEOtPgd7q/fV46i3A2Pc6a/7sgMdK4bf6NPRdaKT0Vuks7kAHnPEENijwlXCO9Xn+yPIYPF7k8SrC8NWTau+YoarywWgA9ResKvGP1Oz3QH7Y8Tg1sPIuLXTwRRMI7I9dsOycdZTm88uq8LS0PvaJewzuHFdS8cUJuPNWbfDx7mBC9shvCO8V+W7wkCRa9796uvKGO1DyCmY08HYs3PK+luDypeuc7bmxCPWKHBz02gZm94+SJPNOqKT33ykG8IJOMvNqrJryqL6+8DYMAvaa5Jbx5+LK8zrGBvduWvLyY0tI8KbcFvdVQRDwyoxg9z5yXPPz1Ertuh2k8H0z5usrZvTwVuks8R6YPvaQZyDwtSDY7RfzaPFV8gT2SAhW951YRvQs3vLszCX28JJLyvFneQzwrK+e8EbmlOxYE3bzDm+A897kbvbigqbw9Y+Y8//PdPAo3vLw/gw29YEkiO+rj3rxvwKy8XHEivLheEz1BWII8JuAvPZG0VzwquK+8ZfYWvLzrYDsAKAW8Bxqbu+suEb39G967vALsPPqI/zs0+w28g5n5uUS3Ob2Q/4k7LpCvOiXGmTzD/R085q8yPAO10rpukpY8UnNlvD9sAr0vvkW9jMXMPLi3NL0BInQ6PZcNPesRdT0a3Ny8HeiDPXQ5+jyYTUy9piaUvFbvOLwVBF29ho6VvDbnDTw7ufy88th/vLKuE7xLw2U8OqiCPPvWvDk0+428rothvQS10rtFR409E46aOFIArrw6vw29m7WfvBW/u7ztdr28n18JPbCR9zyB4SC9zm4SPWgnODnF0pK8IbryPGAbDL0AInS8wvoSPWj5oTxXYnA8Wse4vIE9zTzCP7Q8M8RbvE4Ro7shuvK8FmaavDlGxbsd4nI8TJXPuUEN0DtWwaK86sxTOxhppbx6jc08uBPhvKVoKj2lrUs93bH1PKQjCb2UXkE9JB87PGfLCz1L9AG7UumiOREVUrze6Cc6w8n2u846az0zrVA8YWAtPQbsBD1P+hc8Pq4YvUUwgrspXAM8vme0vId6Fb3C+hK997kbPf+Aprsmmw69mZuJvT5M2zxue4u6CQkmPGzorLw2hdA80J8zu57PNb2JTwo92Q0dPRyd0TzFuwe9ZavkPOMzX73Hc+A81geHumymljzKrR09YqXOOlpulzwN4SU8+3qQO/UmPT1i8IC897mbvOKSkTy862C8l2RXPE8/OT0k8SS9Wse4vLt4KT3udj09RUeNO2VPOLwkmIM8kf8JvTOt0DzkfhG8MWivvIyuQb1nJzg88CCnvGLq7zyxTFY95zn1PEd4Lr0SLN288k69u61dyzv6iP+8qpzWOnfMWL0xaC88RUeNvBYb6LyZspS8Q4kjO40nCrzRL4e9PKsNPc2wqDyxHkA9mpuJvLf8VT12h7c6LmKZPD6uGL3SKXY7vNRVPTTkAj26YZ46spcIvUimRDsvIIO9dxeLvMEoKT35Q1699VTTPL0fiLxymCy9fpNjO702kzuR4m093uinO0JS8bw5GK+7E2AEvNC2vjwlqX08e9JuvN2aarzYfUk9ZavkvMoGv7vnImo8geEgPcDDYDwkTdE8tGn3PAA5/7pabpe8b3sLO97op7wSYIS8uM6/PFDmFz3Dsms8IHVRPPW2kL2pQKo8gLMKPXMogL1Zghc6QSRbPb4LCL1eLwy9iZEgveaBHDwxDAM8fQmhu2z/Nzy+rFW8cwvkvOGmkTyXCKu8vjkevVbYrbx3zNg7FEyEOxRjjzySGaA8mK+JPE0OGL3u7wW9ZcgAvbhHiDuRy+I8PNmjvFDJe7yt1hM9JAiwvPaZdL38T4U8rrl3OzkYLzxYf4w9coGhOIyAK7yJ7Uy9aGxZOwdfvLqs6hM9Zt8LvX+qbjuQncy8pmiqOyj3Oj2TjNc8GvPnvDP4gj31Jj29GGmlvNsnM7wgXka8eUgsvuYL37wR0LA72uIRvaLs1juSGaA7sZF3vVlUgbzfW9+879LpPOIFSbtISpi8IzbGvFbvOLzvBpE9+OcxO/Vr3ryNCu67Or8Nu59fCb0eFpq8f3xYvMEoqT3Kf4e8KHADPWWr5LwRuSU9FyQEPNR3M7yGLNi8OtYYvXpILL37kZu80vtfPdU1HT0oPNw8MSMOPfqOkL0k2pk87C6Ru0UTZj3Z2XU9xekdPGwtTrvxk9485H4RPN6jBj0gwIM8Q4mjuig83DzbJzO8YWAtPKbb4bqEuSA7qrPhvLxNnrydipQ8R2GjPBsTjzyGdwo9TGe5PC+Qr71BJNu87l+yvPqIf7zKHcq8d3CsPMDDYDxLw2U8GWklvXf67jxBJFu8LEJyO7gq7Dzz3hA8591IPKV/tTwOJke9ACJ0PCfgr70EAIU8q/4TPJ/mwDwK8po8GK7GvMDa67x4AIA6VqqXvIEPNz3PQ4c+GYCwvKhXtbyjGm29FyQEPdC2vjyF/sE8EbmlPCq4Lzz/rry8cmqWPL6s1Tz9SfS7gj3NO/uoprt4Efo87nY9vItSFbu+fj89iagrPOLApzooU+c52JTUu/E3sjxd++S8tTvhvJH5eLtFQfw8PkzbvO12vbzK7zO9e3bCPLxNHj3NgpK9oxrtPN7opzwmshk9n18JvcDaa7wbQaU8sXpsPChwA73J7zM8x4prvGIB+zxaxzg9EizdvDfQArxhYK08593IvI8qlbxHSpg7+HH0vO1fMrzO9cm7tMipPHfj47zQ5NS7khmgO5AWFT0rX448naEfPdsns7o3/hg9O5SCPJyB+DtAJNs6geEgvRZmmjwqcw49mve1PC/V0DxlyAC9xi4/u7gT4TxwfhY8FdbGPLt4KT2lxNY8vme0O4tpoLtI1Nq7Wm4XvJ+Nn7x34+M7k0c2PZiS7bxW2C09xRc0PFIuxDzX8wa7m+AqvNSlSb1cWhe8nFNiu4Jr4zyTjNe81AF2vA6chL2yrpO77BoRPEYcgjy6YR49aYPku22Jej3SXR29LgPnvOpwJ7r1nwU9hLmgPJIZIL1nJ7g8oF+JPEsiGDw88K48vjkePfn+PDzi1zK68CCnPGcQLT11Kwu9+2MFPdtsVDwrihm8vqzVvC6nOr37YwW8nIcJvVMALjvTG4c9Xs3OOw3hpbwz8vG7U76XPGuMgD1e5Nm7/4AmPcI/NDyPbzY9Hxklu9iU1LzywfQ7OkZFvebGvTzXCpI80hLrPLFj4Tz1zRu9SDYYvPLHBTz/gCY9kbRXPLVSbD2zDUu9/e3HumzoLL2J7Uy8HxklvWQhIjvZ9pG8GxOPOwTM3Tzv0um78t6QPYJU2Dxqo4u8bHgAPahAKj0XJIQ8pcRWvFrHOLw4vAI9pcRWuUNEArz5FUi9AFabu5Yftr088K48muCqPCayGb3xfFM9JGTcvFlrDD0le2c96YcyPCrPOr0BInQ9xRe0vEr0AT31VNO8RBNmPCr90D3USZ064u69vAIrkD14EXq7XxiBPdMbh7wS0LA8YXe4vPE3srzyk148qFe1PBHQsDrcECi91erqvAOHvDs8qw09J4QDvU/6lzy1Uuy8V38MvPfQpjuikCq8+SzTu9C2vryZmwm62JRUPDFRpDypbsC7e+l5PChwA71s6Kw8kgKVvCxCcjya4Ko89mveOm2J+rwwMX29VKF7vB1vO7wgXsa8fU5CvJ7mQLxCafw7l2TXPLhB9zz1VNM89FTTOzovurxRpIG7Czc8vDu5fLwOJkc98NsFvR8wMLt1Qha74HLquzAacjxrFsM8L9VQPWCOw7zJNFW8vL1KPJoOQTxDtzm74I+GPNdmvju862C9mbIUPe1fMr3S+987dp5COwdfPD1fGIG9aT7DvCg83LwuvsW7e41NvKQjib1kOC29Gj4aPKbb4bw+gIK9S35EPNMbhzvr+um8Y9yAPZY2QbxhYC296Z69vP1PhTvDsus8cO7COwDGRz1Xfwy8j53MuUOJozv5FUg8tTthO0VHDT1Etzm8psTWO1BtTz3gFj48522cO9yDX72ch4k8BkgxPIGC7jyB4SC6SQJxPGfiFjwz8nG87+n0vDmLZrw9HkW95H4RvV8p+7xkOK27V38MPIJUWL0K8ho9GIAwvIZx+bpWS+U7mjxXvC83Dr0WOIQ8ONMNPJ64qrwW1ka9bYl6vO673ryOEwq9vSKTuyj3Or0/bAK8oqe1u7Oxnjy0JFa87o3IOytfDr3fiXW8+UNevXaHt7z/gCY9DviwvDpGRT3gcuq8WH8MPVOnjL1HeC49ZCEiO75QKT04AaQ7QSTbvBmXO7wW7dE8LTQDPBv8gzwsWf28tCRWvA3hpbxezU49HcvnOsUXNL3GLr+7tGl3PSiB/bwj8aS7V3n7PJXR+Ltog2S7rAEfvZmylLwxIw49cH6WvKrKbLxP+he9+OcxvWCOQz1XaIE8d3CsvEFYAr35/jw7yktgvDFRpDxMw+U8IsOOu8Da67ztpFO9KFNnvY9vtry7eCm8MWgvvTq/jb3j7j09XXGivE5WRLyjMXi8t1uIPLBM1rxXYvC8QW8NvmFJojxaDFq7pq3LOtEvh7y4R4i8BnbHvHJqFr0ogX284sAnvds+Pj0A9F28VzTaPPDyEL0Os4881R4SPWzoLLwUqDA7TH7EuxND6LoS0DA9hNCrPEe9T7v5Fci82CGdu40+Fb0a82e7k0e2vGMKl7xsppa8D5n+OyvPOjyJT4q8kusJPe0xHDyBDzc9sPApPMah9rxuqaE8+UPePNL7Xzz30KY6FyQEvIXQq7s1QK88jICrPLGuE73MsKg697mbvN7oJ7u4E+G8vOtgu9kNnTxFzkQ9JE3RvJoOwTtI1Fq9ReVPPJIZIDxEMAI9Ztn6vACYsTyivkC9A/pzvJICFb2i1cs7/QTTvL9+vzuo+wg9mcaUuguqc7y3/FU9JZgDPIpmlTogwAM9rrn3PKMx+Dzd5Ry9JyXRO1puF72tAZ89ikl5vdMyEryDthU8tomePTgBpLsxDAO8A3CxvNir3zor5sW7tGn3vLZbCL13+m69JuAvvbqPtL2XCKs8YaXOPEX82juzDUu7z0MHOoS5oLuFd4o80ba+O+OVnLumaKo8FJElu2Q4LT24Kuy8eBH6PMp59jwaIX68XIitvIi/Nr2RFhW85gvfvAek3Ty7vUq9or5APQTjaDzqh7I6YWCtvKLVS72wNUu9mMaUvFs6cLvUvFQ8RhwCPVdi8LwNyho9v1CpvKFilLyiN4m9dlkhPW6pIb3YZj68DoiEvDgBJL3r+mk8vR8IvS1iGb3XTzO9BJ5HvJmylLur0wi92E+zPPhx9LtWaAE9ACgFPX/eFb2YqXi8C5NovMZFSrx2hze9KYeOPdCfs7xDoC49Zye4vN7RHD1K9AE9EaKaPbF6bDxQsvC8jdxXvD1jZjy/8Xa8+UPePOciajzdsfU8XkYXvdd9STuhSwk9TKzaPJbxH7y6YZ48N+H8u1Cb5TqsdFY7zoWdPKRRHz30yhC9S8PlO6hAKj3r+mk8iJGgupxqbTxKOSO81epqvbDwqTxZmaI842cGvRYEXbyE0Ku8AhQFPbf81bwS0LA89rB/Pf47hTnbPr48N+H8O3j6broWTw+9IF7GvJc2Qb3kM1+8Fu1RvTOtULtpsfo868xTvUJp/LuZ3R+8mJJtvdR3s7yr/pM8ozH4PPFOvbqXZNc7msmfPJh7Yj12WSE9C8ePvScl0Ty1Uuw8uHWevCACmrxd5Fm76hH1O/JOPb3Rzck7rAGfvPjQJr2oV7W7PPAuPSM2xrv4/jy6pX81PSKsAz3cEKg8LmIZPEFS8TrA2ms8V2iBPIky7rzO9ck8cz+LvLY9ODwjJk09rM1rvUnHKTyhnea8jGT1vNax1DtXrEE8PsWBvGSc/zvXDY+89yEPPbMoCb0h/7M7rDRMPaZu7Lv03gK8kDX7vH7blztMrvu8hHOavK+C/jzm8qY8mzoFPZf7Wjz+R4s8MgA/vVxLCL1vM+U7lN9nOkscoLzdqfO8PTBEvecZwDz6aH28joDoO56B87w2Q0u9E1MfvH1/3TxKVaM8kGocvQCWvTtlJpc79HDePHsxK73c6bq8glBjvUvjnDzQUtW8KPfSvC9LrDy/Hws9zQQjvWFOTT3JwZY8mX6uvCS0xjuP3CK9ldsFO/VluLyRkbU897NqvTvikbx60Q49NkNLPYZhMDunMYe74whzvKLE/7yBwuk7RChjPSmFzDspHmy9ZJz/vF3ZAb2Ct8M8qn85vEZE1jxk0SA9Ef4oPC3I2DzRee68EvOCPP2ADjyTHy+8sHdYPMQi0DwVc/Q6nMxgvNdGkrxFJAG8eUMVvDw7arzMD8k8XQvBvEZE1rw0gxI87zj4PFwW5zuANHC7g0U9vO0RXzznGcC8BQDjPC0vOb0MW4A8sZ5xPROzOz0WAe68HJUOPPJJRTsAlj09MQvlvJADvLx8Xwg8tj24vEIIDr1IOTA9AJ2BvEBMNz3uqn48TXGWPI5OqbwY66E8RCjjO/eBK70tLzm7VPeuPN13ND1IZw28rltlvSQbJ72rDTM7qPG/vM8rPD2YVxW9N58FPZnlDjvklmy9b2gGPOlncj030cQ8QdowvDof9zyJFkO9HMfNPIA0cDqqrZY850t/PO3fHz35dgU9LDpfPTut8LwyMn498heGvAmqz7zbG3o8ExocvA27HLyTHy+7MEssvdF57rwVQTU8aTtGPUBMt7waRPq8mRfOPODBhL1k0aA7ftuXPGd7Db3h6B29nujTu5wzQb3WsdQ8/uAqPasNszzyScW8g6wdvc4yAL3kZK08ENePvDpUGLxwWn671GMiPa+CfrtS2zu9COqWuuvDrDqczOC849YzvV0LwTsTszs9W4SLu1g6Ozo2qis9uP3wuziR/TuPCgA8z1mZOrVI3jnrXEw9mRdOPLqHCL1JYMm8SfWGu5oMqDnC1B09sN64vXQE6zym1Uy6OF8+vXRryzxGtty6LWF4Pfv2drxIoJC8gSnKPG6l67jGsMm7ZAPgPA7iNbxt5TI87zh4PfrPXb0b0vM7Ar1WPcpaNj03n4U8DPSfvIEpSj1Ia+87TTz1vKY8rTyuVwO8oHbNOqw0TD0tXZY85P3MOhwuLjwymV69JIIHvNRjIj2BKUq91GOiPPD7EjyCt0O8GIuFvD/sGr1WhSi8sQVSPEt8vLx5PFE8DJSDPFHm4bw3OKU80uBOvCGY07yjUvm8lW3hPC/kSz1YOrs8l2K7PDMuHDyjwB296yoNvYG+h7z1Zbi7beUyPc/E2zvS4E68X8eXujZDyzwKnym9NIMSPT9X3TvOy5878JSyPbjLMTy9nLc8KeysvF45Hrszjrg7eK7XPOnVFr3wLVK8/24kvXxYxDzkBBE9UFSGPObyJr3287E9fFhEvNpbQby4MpI73gWuOrjLMb71ZTi9h++pO1PQFb3lWYe8ptXMPOPWs70KOMm89vMxvZf7WrrebA48vA4+vXLkFbzh7P87JBsnPc8rvLolSQS9CUPvPGEcDry9Axi9DbscvR9KITwFboc99AWcu1zkJ7ysAg299oxRPYwnkLw/vj28nMxgvDaqq73tRoC8iX0jvCGfFz2rdJM7Tv8PPYnkg7sD4I293Om6PIrW+7wXj2c97H+DPcjTgLtkmJ08uoeIPAwtozv8UjE9xklpvD8lnrxdpGA8LV2WvLB3WDpwwV69jGT1vIePDb2AAjG7YqqHPHAvAz3o2fi5kr8SPINFvTuVO6K9y+gvvPkPJTrrXMy89yGPvMcMhLqmFRQ8HGBtOqZqCr0tXRY9UgkZvQlDbzy1r7481SPbPEMBSjtzqxK7IHE6vQ8Qkzx3tRu+DbucPAvRaDv5DyU9XaRgPLTvhbzd3hS9xkUHvYTe3DsCJDc9aQmHPvKwpTv1kxU8ufJKvMsWjTxDloc8JjcaPVJCnDzHPsM8EAlPvAOyMDwCVnY95iTmu9437Tv969C7ZoazPE+NCb0yZ5880OeSPcAfC7wgo3k8S3w8vBpAmLwAyPw8vlzwu8gznbxSdFs7MjJ+PRpEerz88pS8cC8DvSsairv+Dgg9pdyQvWcULT03amQ86Nn4PBH+KDwTTNs8IAraPM024jx3hz69AJY9PGG1rbx88eM89cyYPF0LQb3nsl+6SNJPPE9Y6Lyov4C8TaNVO7Xhfbx+Dde82NjtvCH/M7sweYm8dNIrPB9KIbzQ6/Q8vZy3PP2Ajjxfmbq8MdklPN5sjryF0za90tUovMhlXLxpO8Y8WGx6PQwtozumPK08RkRWO5wzwTy8PBs9DC0jvPchDzss0349Ou03PdAglrzM3Qm9eEf3Oh1ci7xJ+Wi88rAlvBf2xzvwLdI82KauOuv167pY09q8/24kvJADPL3Y1Iu9bX5SPMMt9ryvgn48w5RWvDut8Lskgge9MdmlvOinubsKPw09IKN5PAkcVrwgClo9E0zbvJCc27wQcK+8K6iDPM/E2zxdS4i9BWfDPPPi5LvKiJO8r+nePDobFT3vn1g9/9WEPI7nyLqjwJ097qYcvVvvzTxGSxo8QQzwO0pVIzye6NO7yMy8O08mKb3PWZk8pqONPf8HRDzrKg2950t/vUruwrym1Uw9TTx1PJExmT36Nj48XXIhPdRjIj3ebA68mCJ0O7t1Hr1G3XU8k7jOPAVnw7xr8Ng86A6avJYCnzzOMgA9Qs+KPL5ccDwQcC89HC4uvTwJq7xnew29kfiVvFRej7wMX+K8sEUZvNnNxzqsO5A8c93RvO+fWD0SjCI9y4FPPLUWnzwIgzY9UebhPH6m9rwkTea59HDePFFNwrzngKA7p/xlvM/E27wE5G+9IZ+XPPJJxTwhMfM7lK0ou+EhIbyhBEc9glDjPHX5xDyOgOi8hdM2PW5zrLyGk+884ki6vFJ027uiK+A9xbtvvIPlIL2Gk+88h4hJPN43bT33IY87E0zbPAvRaLym1Uw7rKbSPIzALz0lEIE9+/b2vE08db2FbNY7vDybPMKbmrzeBa48lN9nvKdjxrw4+F28ZiYXvKkjf7zgwQS9uhlkOkigED3teL+8WS8VvbY9uDofsYE7L+sPPWrJP73EKRQ9AiQ3PSf+ljr0Cf68896CvRWolbv1cN66ZNEgvXeHvjw74hG93jOLPGqiJrzY1Is9XRIFPWX4OTytkIY8QEw3O8yo6Luvgn68O+IRPakjf7z6aH08S3y8uzQcMjwTGpw8J2lZPOdHnTyZsG28SGtvvM8rPLxCz4q8j3XCvFx9xzrIZdw7EHAvvTZDSzwp7Cy9XgCbPJU7IrsTTFs8zZ3CvHX5xLySKtW8L0usu4Vs1rzJwRa9dDmMvOC6wDsclQ47QXNQvXxfCLxPv8i72xv6uZqlxzzf+oc8s5qPvBwurrzNpIa9L+sPPe+fWDwvsgw9rKbSvNJ1jLzIZdw8kZG1vKXckLz/oOO7VxMiu9rCobyU32c9qR8du7qHiLxFHT29tO8FvCzTfrvaW0E8iRbDOlBUBr1r95y74nYXvNYYtbzd3pS8K6gDvfl2Bb2rP/K8q3QTPItk9bsCi5e82sKhPBVBtTuLy1U8asm/uyf+Fj328zG82WbnO8patrtfxxe86yoNvWUmF71new27dQAJvcawyTtcfUe8M/UYPHK2OLwVc3Q56yqNvBiEwTo1Sg+6bEwTvAmxk7xVJYy61GMiPccXqrxfMlo9RksavfQJ/rwFZ0O92imCPSONLbt1a0s8mqXHvNnNR701tdE7HiOIvLHeOLyovwA9VrOFvB68p7q65yS9fhQbPS69MrzZmwi9r4J+PGBVET0YUgK8QdowvEB+djw3OKU7Cp+pPHIdGb2/uCo8LM+cPBugtLxA5dY8KnomvZStKL04Xz49dQCJvLoZZLzZzUe9CXiQPOMIc7xH2ZO8/wdEPOnO0jwtlpm8+11XvNDnEr17Mau8fGNqvLqARDwzjji93/oHPYEpSjwxcsW8mIlUvDFAhjzSPAm9x6Uju3+iFL73WhI9H0qhvIK3Q7szjrg6vZy3vBH+KL2q5hm9muUOvNI8ibwX9ke7i8tVvEjSTz1fy/m7i5mWvCH/szxbVq68nfN5vO80FrwKnyk9/uAqPR4jCDye6FM8QggOve5tmTnaKYK86mMQPaL5oLwD4I28JamgvHJP2DwPEBO8PZcku4ACsTtoRuw8r36cPJExmTsszxy9KeysPO14PzyBKco8UwJVO6rmmbuYiVQ4gcLpPBjrobpiQye9MXLFvG5zrLwm0Lk6V6xBvaXgcjxuDEw8DbucPPX+V708oko8XBZnvUjSTzwtYfg8mgwoPX3mPbzeN208pm5svaVHU7zmi8Y6y0+QPNopgr1ATDc8wUYkPeVZB71FKGO8VxOiPIePDbyE3ty7O6mOPJpziDwRLIY8ck9YvNQqnzzi4Vm9RCQBPeRkrb3KWrY8tLrkux9KoTw3OKU8zHapvMFGpDvVI9s82TSoOwJWdr3pNTO9jMAvvaAP7br/biS96c5SPIePjTy5i+q8eUOVPFkvFTwX9kc8EWUJvVYeyDvf+oe8w/s2PKj4A7xEvSA9OJF9ucHfwzuO50g8w2KXPFx9x7wE5G+9r7efPLhk0bwoXrM8jwqAvV0SBTysOxC9B/W8u5kXTru23Ru9RR09vc+SnLzKWja8x9diObj5Dj2czGC9WS+VO8sabz3KjPW89yEPvDrtNzsTs7u8Kqzlugwto7tkOIG9If8zPUT2ozuD5aC88rAlOhEsBr3SPAk9aaImvek1szxMqpk8U5t0PD3JYzz+4Kq8iqS8vAqfqTsuVtK8+ahEvQo4yT15ozG9p2PGPOM9lDzLgc88i6Q8vKkjfz1rVzk71GMivaj4A73IbKA8CIO2vBiEQT2qf7k8uhnkPNvCoTnXDQ+75P3MvGSYnTyjhxq8uVmrPLVIXjwAL9282lvBO4tk9buEd3w92imCvOfnADxUXg89mqwLPSItETzCBt08wtSdPJNR7ry/WI485xlAOyS0xrs9MMQ6gAIxvBf9izvEKRS9l5AYPepjED28Dj48LV2WPJyaoTxSDfs80FJVu6LE/7t1xwW9SxXcO8jMPL2/WI68o/mgPerVFjz5qES8cJpFPJ/dLb1ZYdS8BWdDPO0RXzzmJOY8pE6Xu7j5Dry/Uco8CREwPbP6K71CaKo8xrBJPWBVkTwI6pa85+eAO7S65LzwLVK9zTbiPLt1nrzPkhy9mqXHPOk1Mz3iSDq8T1joPIzArzya5Q68jMCvvKsNszyiYAG7DuI1PQ27HLwsOt+7d7n9uR/jwLpVKp67eOlGPeyqk70R4ZG7uSiIPA45lbzO+dM7lIHhPLm1ULvJHJI842rgvByFIjzbtgm91SDiOye07Dx/sJU8CxxSPPxvhbxRC8w8Yf9VvBzj0rtP1ga7g1ywPPNe6rvXOYc790yVO8wiv7yCtkK9+PICPcRZYbzUvpO84z3XvAdBn7zpYMe8Uw/qOh9cN7zsN1w7iVAIvQZuKLyUULo8+fSRvAxN+bsje4m6kHcWvaH46DwPOyS8FV4UvYVgTr3ZbD08aSbkvKE8iLw1czE8IgKlPSYOf70RP8K7GAaRPCSsML1l7QA9qGOWvGVLMbxXjGy8MMUHPaQRDr0J6Zu8FOlNvNfGTz2qOJy8/JyOOqZI4rsS5a+8E7gmPIyHXDzgjy28M20EvUfeEL04vwy8+SOqOzSgOryzNDC90hgmPV1RrDt5Gm484DOMu6RERDyWJ0+9apsqPUPu1jyvFd68WqURPT0+Hr1PB668b+sjvS6q07zRo1+9pbkKPa2xAL2qZzS9TzQ3vOi62TxBF8I7EeERPbatFDqqCQS70XI4vSV/pzz7+j69tQvFPG0WHj15Gm4932AVvZmgszzSFhc9drSBOyktUTwI0Pa8WKMCPJX0mLs6wRu9ilKXPTyaPzzrBjU8hAAPPd5eBj1GmGK8N0pGPYSN17vDKLq7GmruPOgtkbxKFeU7AXxfOqs6q7s1RBm9eOlGPIQvJ704v4w99KQYveeJMr12cOI5XrN6vXKVLz3pLyA9czmOPZ0dNr3NyCw9cmaXvTLJpTxmT888PGkYO2cixjxrn0g9pRe7PFZbxT2HBrw8n1L7PGHOrrwkTgC9tQtFPVX7Bb26/Y08BZsxPXU/u7zgjy08qMHGPEXFa7wsdx27l/rFvD0+Hj2gx0G900lNvPtYbzw+QK28xv9OvZkr7bvRo188t7EyPXoxBD2mSGI8Qeo4O2fEFbz8K+a8hWDOOxJw6TsIo+28hC8nu6e9qDy8Aay89QTYvKe9KDv1d488ynxRvIEUc713Q1k7WQXRPMilPDygx8G8TzQ3vDRCijyDXLC7o0CmPC5MozwOlTY8M/pMPGtBGD1wTXK8cE1yvHLzX7zaPzS92Q4NPRAOm7xUtdc87awivR0U+rzejZ4854kyvZXHDz1LW5M8iH0RvOw33Dzb5SG7lIFhPAOVBLxeVUq8Ae8WPJMfEz3fwFS9SuQ9O7FdmzyrmNu7kUoNvZXHj7ydvwU9C76hPBczGrz4ruO5qsXkvA9oLTyhmjg9lfYnPNaTGTwwIzi86S8gveyqE7wfume7CxzSvFPiYD3IpTw838DUu+sGtbxeVUq8dGxEuzNtBLy0B6c8niHUPEQ0hT167eS8+FCzulDaJLwKvJK8JArhvFNTCT17Yis98fqMu8OGajzejZ67b+ujvJYnT712Pzu8xSzYPIEUczxvHEu84wywPD1tNj2oH/c2G9+0vKWidD0ymo08VCYAPLji2T0Hn888VSqePMTKibuMKaw8Qo4XO3a0gTzH0sW8dJlNvT08DzszzUM79TX/PDlO5Dx6MQS9xPuwPWxyv7vs2Su9JiUVvcEijby4hCm+12ifvLHs8jx8xPm8kHcWu05hQDs+nl29tQvFPCROgL33fbw7irDHvFLeQr2IrCm9Pp5dPDHHFj146ca82nDbu0B18jzKHqG8LUoUvS9QQbw/EyQ7tWl1PB+65zxTU4k89HUAvSqilzugx0E90+scvWJyjbxZeIi9B0GfvCbh9bvjDDA8Vrn1OzJY/TwC8SW87X+ZvTz47zzx+oy8HSmBPb7YwDyZoDO5OsOqPIQvJ7zxuPy7GZd3PAij7TwdWJk8SbOWO/BWLjwZZlA8ZvEevecrArzpLyC9DSBwPOHEcj0vrnE9toCLPGmZG714R3c70nbWvOrVDTxGOjK8KCmzuxgIIL26Khe969ecu5F5pTx0mU29WDLaPD0+nrv9oKy8LHedPPLPEjw21X+7i4M+uszEjrx7Yqs8qsXkvYfZMj0/EyQ86wY1PZKqTD0FbJm8LkwjvdBBEb1V+wW8GmruPAnnjD6VIzE9H1w3u8fSxTwmJZU8uls+PDZGKD1NMBk9XsiBPD8TpLsON4Y7sLetO1QmgDy3D+M8p72ou6iQHz3hxHK8xwPtPNbzWD0bgYS84pfpPMahnrzxWsw8wa9VPJ0dNr0c41K9xzB2PMilPD0rdQ69WaegurqIx7zJSyo8MIHoPCktUb1scr88AEu4vB0U+jvusMC6grZCPSkt0TxLWYQ8BZsxvfL8G7x1DhS9Src0PPbXTjoyyaW8aPW8O+CPLTsBfN+85liLvK0RwLw+QK274QaDvN3pP72gJXK8kHcWO80mXTw21f88CxzSPCSssLtngPY7J1Y8Pd2LjzzISRu79308veFmwjxEH/68id3QPLyMZTzCJBw9WthHPJzsjjzISZu8CroDPUvoW7sqXvg8t1MCPZ0dNj0gjd68fWbJvDXRYbyqOBy9rRHAukkRRzpmT888YnINvJCmLrtF8nQ5vF/cvB9cN7ogYNW8qjgcvbHs8jv48oK6A4D9O2Jyjb2s3om7HbbJvD8TpLyjQCY6wNxePbaACztLiqs6pRe7PfyeHb0Uix29FOnNvC+ucbw0oLq8UoCSvaNApjxolwy8xnKGPEcNKTvISRs9TF0iPQhyRj2V9qe7WnoXPbzSE71NMJk8vthAPC9QwbyT2/M8GAggvSqgiDz5gdq8szSwO7koiD2cqO+78s0DvVyv3LqVI7G7kKauPSkt0bx3thA9wH6uPKUXOzwcsqu7VIQwvO+DN7xGmGK8OiHbvJxKPztuGK08ImRzPFwghbz/1XG8ji3KPIUCnjzxh1U72crtPJbJHr37WG88/aAsvTUVAbyFAp67tAcnvTRCCrx0bMS85hRsvFrYx7wJ5ww9ITNMPS1KlD1NLgo85YUUPVI8cz2dHTa9cO/BuxO4Jr0yySW9EZ3yPDZGqLvEyom7beeFvevXnDza4QO8mXEbvR1YGTzVkYq7XSSjPAOVBD3mWAs9pbkKvCYlFT2bd8i84tuIPT6eXbw3SkY8urnuPc6ZFD37+j684DUbPCAvrjo3SkY9qfLtPO+DtzxxIGm9PMfIvFmnoLuintY8ZRwZPf8XAr2cSj+9rN4JPArrKj0vrnG7kHeWvNnK7byGM0W9a59IvBBsy7x+aue8rRHAvL+rN7xTD2o8tNiOvCrPILwj2bk6FRr1vGJFBL3nibK6dT+7PCGmg7sDIk09IGBVu5X2J70JGLQ8DO9IubQHp7vCgsy6vTJTvW4YrbyK4W67avlaPHbjGT0aau67VFenuznBGzw3d8+89XePOxyFIj1aNvi8EnBpPEQffrxpJuQ8nvAsPIrh7jw9PA897t3JOz/ki7wNwj87/nOjvBgIILtrn8g82+UhPF73mTl1DpS7RfL0vJxKvzzMgG+8h6oaPZF5Jbuc7A68kNM3vefnYr1qm6q8i1Y1vMcD7bttRbY8IzdqvCIGQ72sDSI8FzOau2ufyDxJsxY8HLKrvEuKqzxRrRu5CrwSvSqiFz12ErK7AHjBPA45FTxfhnE8maCzPG3nhTwPO6S8vgXKOyV/J7uHBry6qsVkPQQmazvevLY8a/34vItWNbyBhZs7fgy3vJHXVbzjPVc9dMp0vPsnyLtRC8y8/kQLvK61njv9oKy812gfvfQxYTsFPYE6XYJTvUQ0BTx+3Z485eNEPZ7wLL212h090P1xvJ7BFDyu5La6rRFAvA5mnrzTSc28dJnNvEY6srwhM8y8Q5AmuxaPO7hF8nS9nEo/PAPCDb3UvhO8c/f9u2+8i7114Yq7+/q+vO07+jx67WQ6Zk9PPcB+Lr1ioSW9wH4uvXoxhD1hLN+8BZsxPZ4h1DpvHMu8QhvgugT1QzxDYY47NtX/PKny7bwNIPC8zZmUvFsJbz0cVgq9yEcMvSSssDt46UY9ubXQuzPNw7zb5aE8CUW9vNx0+Tz/1fG8+SMqO2LSzLtRafy8S4qruhuBhLygJXK9NXMxPP/Vcbx5vD29KPoavQxigDwAqei7drSBvGeAdjvhxHK8loX/vFSEsLzq1Y29XSKUO+PdF7w3GR88i4O+vLU4zjyLgz68id1QvU9l3rxlqWE7tt47vdc5B73uDvG9P3FUPc6bIzxgWei89HUAvYK2Qrpico29i1Y1O/5Ei7yZc6q84wwwvDP6TLpLWxM9xzD2vJYnz7xvHMs8F5PZvGKhpTwzbQQ8mdHaPH3ZAD1wTXI7XCCFO0lvd7x0bMQ8O/TRvI+ikLzl3yY80P1xvG4YLb2nG1k9GWbQu6iQn7xxwjg9BmoKvFeM7DxmT0888ovzvGOlQzyHqAs9kKauOgf9fzxkeLq8NKC6PGwSAD3Cgsw8S4icvJB3Fr0IFBa9OOyVPH/frbxIPtC8IdMMPNZkAT0ZOUe9RTaUO/8Xgr0z+sy8JQ5/PGqbqjzSFpc6Zu8PPQY9gb1ViE68q2vSvMT7MD32qsW8tt47uxAOGz1ZeAi9YFlovPGHVT1XjGy8G7AcvO6wQDppagM9a59IvCf4izwh0ww71pWovKeMgT0kCuG8WDLavFQmAD1+3Z48D2gtPCnNEbsnVry6RjqyvJX2pzzPKnu96wY1vS/b+rvhBoM8Zh6ovOrVDT3usEC8osvfO7+rN7rQ0Gg8hY1XvOFmwrwlfZi84AYDuyHTjLvr1xy9GNmHPS9QwTsteSw9FwQCuyN7CT3PP4K8c2gmvWcixjswxQe9ZHg6O/TTsLwnVjw8AvGlvFRVmLyFYM68sgOJvcSdgL2p8u070EGRPOhcKTs7liE9nEq/vOlgxzzSdta7fJPSPMUsWL04e+07BZuxvE5hQLy1afW8TLtSvUDmGj37WG+8qJAfvRJw6buDKwm8rxVePTT+arzZDo08uVegPLzQhD0dWJk8t4KavALxJbxxwji8kqpMObC7y7w+EZU9O/RRu4+ikDz7VNE6Yf/VPC6q0zzPbho9KMuCPFMP6ry5V6C8fWZJvBHhkbxzOY47+1RRvOEIkjy23rs6N+qGvNbCMTwXM5o8Mlh9uq5CZ7wVGvU8HudwvAdBnzx0bMQ8EnBpPRhm0LzIpTw8UNokPXszkz3Fzqe7ofjoPBc1KTygJfK8l/rFPO07ejxv6yO97lCBPH/frTxvevs7gok5vHe2ED2okB89M81DPLWrhTxKFeW7ig74vOcrAr3/Rho6fAYKvdtD0jy80IS9DwwMvYbVFD3t3Uk7o+QEvVwghTyx7HK9rkLnu4KJOTsu2/o8JX+nu8b/zjkTuKY8TzS3PCe07Dw9PA+9HIUiOl0ilDwdFPq8MsmluhTpTb0wxQe9Q5Amvch4M7sLvqG7CXZkvfAnFj0NZI88WAGzvFkFUT09Ph67U1MJvb0y0zy23js97g5xPch4Mz3ZDo26GWZQvK8VXrzRcji996+/uxo4sjwdqjW9hPEmvO1PTTz/TMi7EkpDuouOrzzmxpS8RWp6PBFAW7xmniE83nNvu7P6qDw4ouw6Xk0LvGG9f7tpYYs8lNpRPUS74Ly9qwG9kXK2PLOf2jp67AI8YcSCPG3Wczyd15y8IjPuu6xniDzVJ828n+ndO/pyKb38id68v2QDu173MDv60Nw7YWm0u5PNBL0HRR+8QfoFPW87Kj0zKJC8hPsOvMvH2rxyrS08x6Y9u6CiX72jwBe9UHsVvACtCr3uCM+7SvBNO3ugkD1BpCu9+n/2PPZWAD2M9kq9ymknPcJ7OLzghz87i46vvE9sOT39iV65cEj3vGkGPbsnCqg9iXrfvPp/djsajgw8WMyru6XFizvoJEg9YyK2vODYJb3ec++8hKDAuyDLUj2qSVA6vq5mPTlOIT3B0RI8sZINvU92oTyCQg296ucxvBfVirxSLyM7zeWSvDpb7jzGpr27RWwJvRDsD7wNcKS8euwCveQDKzucI4+8NC0EvThOITsMvJa8KytFO7GIpTzRWvs81tOBui/7e7yA3da6pzKbPOuWyzwEybM8i44vPTx5Jr3o0+E8YWk0PWTbN7vYQBE96YJ7uwsL7ru2syq9wzQ6vK0bFj2ERwE8oPPFO9QdZT3WjIM5fLJRvNn5EjxI44C8H8HqvBvxszkjjry8Cv4gPbs8YzwbTAK4f8YhveHl8jz6cim9vKEZOwhPB71seMC85saUOtfgTr39Ogc9xDQ6PVHU1LxDAt+8qJo2PQ/Yv72vI+888zNUOxFA2zxyAXk9J6/ZPORUET2ab4E9u41JvKCiXzyayEA8TxvTOx60HT0EJ2c7D38APVNG2Lyy8EA6nYsqvbB+PT0j5JY8WBMqvSByEzxI3H08JOzvvJf77rym18w8qvUEvHg2Zr1A66k8vVCzPJC5ND0TpZE90hWMPGEO5jw6tjy8poOBvKCiXzyKhEe8xkgKvU2zNzvZ/gY9SIgyvA1wpLxAkFu6+bknPF8GDb2rrga9YL1/PdqjuDyA0+68DXAkvYI4pTzMgFy7mr5YOiyTYLmHYyo98Mu4PJsZJz1PG9M7YLAyO5HDHLroda48/IlevYkp+TuppB6985OWu+fJ+buKhMc7KBSQPHCZ3bzi71o9rsU7PACtirzMJx09svBAvOVrRrt2Lo08LeTGuhtMAruWQu086NNhvRpHDj1IiDI8yWmnPKXFCzuIcHe827IUPZSGhjzP/Ee80r+xvJMruLq1EV48Vq5zPfOOIrx+Gm07ax8BvdeP6LthabS7U0ZYO391u7zHVVc8BMmzPAMaGryp65y7o2XJOiPkFj1c42C8qPAQvMwsET0F2A89kXI2vJFozjtU9fG7LORGu2FpNL1qXJc9zHgDPWALgTxVppo7mKejO+1PzbxCrhO9rRsWva8tVzyU5Lk8eUDOujx5przny4g85bLEO8lpp7weYzc9pSizujG2DDzLx9o9qfUEPWvJJj1XZ/W7TQmSupAKmztkgGk8l1a9vERsib29ULO8vVCzPEFJXTy+CbU6oFMIvXRmrz1x/hM81Mx+vdlS0rwrgR+9GH8wvrZsLLnGnNW5LeTGvP6TRjwgHLk8XT6vvJSJ67v5F1u98BwfvYNFcrz6cim9zeUSvfp3nbvjSik940qpvBjTe7xrGo08Ds5XO0cli7122LK8LZNgvDMjnD0ow6m8wBOdPPb2vTqbd9o7fF4GO1PyDL12dQu9j7m0vI5WDbzCzB68lT8IPb8JtTxV/1k8TLM3PCw1Lb0iM249Ui8jvLDccD2XVr08hVnCvIOW2DyokM67/NrEu2j8VD0Ust483s49vMKFIDwKXNQ7fV6GPL2mDb0oaNs8t8D3vAfq0LsrK0U9FLJePR5tn7zfJJg7t2ysO12c4ry3bCy8j1aNvAmjUrwzd+e8JKKMvB8SUTtpXBe7FANFvfgKDj3P8l+8XOPgvB/B6jzpgnu8846iOtPJGb3P8t+78XrSO0FBBL5XCUI9HxLRO9K/sTzx1SC94OeBvEqcAr3GQxa8SOMAvaRvMT0aR44+0Vr7PNCjiLx3h8y8Z027O+Oggzy4g+E7p4bmO8zbKj0SoJ28yWmnPOfJ+Ty1B3Y8pc3kOlkq37uGCNw8hKoovDPIzTzM0cI9aFcjO/VMmDwwsRi9QwJfPHD0q7szKJC82VJSve3+5rx/fyM9Le6uvOOgAzpqXJe8p4ZmPKnrHD2Lji+9u43Ju029n7xujBA9QEEEPE5iUT1OvR88T2w5PG6MEL3LdvQ6A79LvWbvhzyVk1O7iCYUu5lgJbzhlps8ogeWvBmJmLyLPUm8tbgePKupkrxOEeu8PMUYugpcVDt5SjY7APzhO4X+8zxuMcI8zpSsO57fdbvSBjA8mAVXu7ovFr3t/ua8EqqFvcemPT0jjry7L/t7PJdM1TxQ1FQ8QqmfOswxBT29ULM7poMBPQFhGD0Jo9K7wBOdvE/HB70JUuy72f4GvRnd4zxYE6o8JlGmPOQIHz3ma8a4RWr6OkDrqbzLIim9cKPFO4nLxbyy8EC7NNydO+caYDuoNw+9AhAyvRtCGruz+qi8cJldvcluGzzkCJ88xT4iOx/B6j1pBr07fhrtvIQAA7wKA5W8aQa9uzpbbr2bbXI8IXpsvc/8x7u2syo9udRHPXDqwzxBQQQ9y3b0vEGkKz0j5Ba95bJEPVLePD3LdvS8mKeju2TbN72NRzE9UHsVvTWLt7zlDZM8poOBPEZ04rxzXMe8PMoMPFHUVD1yrS28mr5YPVT1cTxYGJ67yAaAuuNKKb1Zcd07UHsVvcBn6Lw9zfE8iSYUvZ0w3DwEJ2e8Lu4uO8vH2jwsi4c8axClOpf77jymKLO8Tb2fvMzRQr0jPVa8yhjBvEd+Sr0zd2e8Dn+AvDJt/zsJUmy99fa9PBd1SDylxQs8Ax3/PKyxaz2BOKU7guc+PPX2vTwtPxW9H3KTvIkp+TyJKwi9LUQJvfrG9L2EoMC8lToUPRmJmL0oYAI8XI+VPHiHTD3UzH494N0ZPT8/9Tvg2CU9CPS4vF5LfD09z4C6HmM3u1dn9T3MikQ8Xe1IvGJzHD2Eqig9fhptPfBokTxeS/w8QqSrvHqgkLyUhoa8tFADPCSYpLvPnhS93MTVvLGNmbyX+Ak93XAKu1GDbrzxyzi9dyx+vFe427wQkcG88MHQvNhAEb33ACa6rnRVPQvBCr1rHwG9dR8xPUeIMr0BV7A8b5GEvEUgFzx3M4E8tsKGPMppJz3wcGq8XvewvCWngDtIiDK8TPq1PE5iUb2FAIO80xN9vDWBT7t5kTQ9T8eHvLrer7vD2eu7KtD2PC/7e7sOLho9a7++vFCACT0UDa28xDS6PB5jNz06DJc8TPo1PHH+E7wQNvM8LZNgOztlVrwY3WM8G/GzOxOqhbuxQac8wdESu+RX9rp67+c8AK0Ku3D5nzw8wKS81Mz+u4dyhjsqzRG91HizvA0fPjsFgrW8FxwJvGirbjyNnYu8TFjpvFF7FTtmlLk8C7yWO45UfjwZ3WO7BNMbvDbpar3BIOo8f8ahvCyJ+LqK1S08speBuzvFmDyV7qE8GjiyvE1i0bolAEC8PobzuxCRQT1UUMC858n5Oy1C+rwunUg9U0ZYPJgF17ogJqG6VmQQPEqVf7x+yxU5RyULvZf77rzao7i76S6wOmPRzzvP6ga7eZE0PdiZ0LxEu+C8CrciPQR4zTwrgR+9aE07PTTcnbzoda68RsXIvJJyNjsEJIK89vY9uwxmPDr9Ooe89lYAvMKFoDy5NAo5AWYMvSM9VjxC+Pa7SUE0PM3lEr0t5Ma8IBw5vPalV7tWqw49PX6avDmsVD25NIq9sY0Zvd8kGLytFqI9qDcPPIccLD35yAO84OeBvEbPMLykbzE8IBw5PIAk1TnJvfI7m8hAvb9kg7zFPiI97U9NvbP6qLxw6kM8aVcjPVOXPrvDKlK8cEh3u+h/lryirEc9cgH5vL+4TjzDipQ7eUo2vTAF5Lz82sS86ucxvTQthD3ffVe81oKbu9aHj72NRzE9sTc/vWsaDb0/PBA9VVoovaH9Lb0EJ+e8ThFrvXg2Zrs/Mqg8c1zHO/KEurx67+c7yATxvL6u5rzNL/a8dymZOxDnG72dgUK9Nunqvd4fJD3wwVC8kXI2vGx4QL23G0a8iSYUvbreL70bRf+8AQbKOriDYbzj+UK8U0bYPOyqG73Xj+i8aKgJPX91u7y0TvQ8GpZlPMemvTzUHeU8XZziOORUEb3TE/27U+iku7GNmbx7Azg7l/gJPOMDq7v/TEi8of0tPZedO7wBV7C8sTe/O5Fozryo65w8AmsAPQ9/AL1K8M08aPzUPBwAELt67II8hKDAvAFhmDoDv0u8AK0KPXyyUb27jUm88toUvQD84TxZe0W8G0yCPCDLUjxPxwc9BMmzvJEX6Dywfr29RWcVvTkHo7s6ByM9MFbKvLvrfDxbha29TxvTuyrNEb1YE6o8OPPSvICEFzx1dYs8/kLgvH91O73oda49J15zu5f77rxu4Fu7WBMqPHZ1CzqHHCy8MGCyPECQW73yhLo8ptdMvdeMg7wMxG87w9YGPeVh3jyiW+G8r9kLvPEmB7zt9o27R9mYvWir7rye3JC82q0gvNfqtrxWrvM8e6jpvG87KjznGmC7jq9MOztlVrwLZjw8ZNu3u91wCjyDltg8tmJEPbX/HD0kmCQ6hxwsPasCUjyxNz88pR5LO+So3LyAfyO8XwR+vQwVVjtwSPe8rAy6u/Bw6jsMZry8t2ysu+rdSb22Ed68Ds5XPA8zjjxKkhq7mKcjPT4oQLwRQNs89lYAPZMruDr4BRq9tsKGPMvHWrxCsfi87faNOy0/lb2V7iE9XwR+PLtGS72hUfk52UjqOz3N8Tz82kS9392ZOqCiX7w1OtE8gCRVPDWBz7y5Mnu8trMquuDnAbyzS4+8uTQKPf7uFLzBIOo8/p0uvSDLUj1fpso8MbR9Pb6u5jxzFcm8zuh3vD3PgDsDGhq9rhaiO6jhtLsnYIK76NPhvCKEVDtNYtE7cPkfu8LMnrwEH468wXHQOGHEgryUhgY8qD9ovaZ+jTzpLjC9EUDbPIzsYj1lNoY9jqXkOyEmITx6oBA9DBVWvVkq3zsSpRE8kMMcPDzPADxs0448vVAzPLa4nrzghz89UIAJPVNGWDxYzCs9+Q+CO/wrKzxFavq85Ff2u4uOL70FgjU9jfbKvHjimrw1i7c8nYFCPP7zCLxqEKU8QwJfvf06B72uxTu8S0scOuz2DT2HwV27WSIGvZt32jwrNS08ndIovd5z7zx67+c8iXrfu1zjYDvh5fK6hrQQvWkGvbxFano8JfbXvKBOFL016Wq860VlPSWdGL0oGQQ9/0xIvEGaw7w/PBC8m21yPL315DwOLho8+b4bPEtQEL24yl87VFDAvAlE/LupArU8c+ohvZ1mEzxu6A88wPW3vPHcRjzFhKC82FztvPnfYT0z2ZG8sVgNPLoimLpWlyg9C14pPfUxlrp3js84PjuavP6dPD2KDBe9qqVZu2W2grwKJJC7iVDOPN+8YzykFnE8E5A2vIMfSrxMS+48MVdivLSTr7sZthO9pxd6vFF88ryyNMI8XY+cu7dlxjtzuy+9PAEBvBdNCD2w1l08/MslvQf0FD3DVKW8V632O5MFlLr7D129CnNuvedM1bx/qo66qNPCvGMP/7xjHoU95qkwvW7+3TzU3Ao97ts9vZ8UX7ynMB69whoMOrI0wrtC1CA9vJbKuyUjQ7yFc5A8RHdFPT2KeL1JG/M8naAsO7+XU71Bdrw8uTddPWwsR7wK0VK9VvUMvSHzx7v0OzQ9koJbvAGfxTzFyNc8qqXZO+nvebpvLdA7WI0KvSB/lbvYi987QWsVOlCVlrynF/o8tAZZvQHj/LxpIJc7uoqavITbEr1QCMA8G/G1uu8g/rytpmK7KlTHPB2U2rmR4D85pwEsvANCarwqJVW92bpROlet9ju2ZcY8/5IVPfg9Rj2eoCy9fRIRPSRn+jyDfS683UgxPbDvAbyTg+Q7dusqvduljLwDioA9I5bsuozerTv5kAM9TiyLPEUa6jongrC85BxaPM0p17zJJ8U86R5sOmDKPj13jk+7ivPyvH8TmrwWwDE97n3ZvDs6ETwM0lu8wPW3uwL9qTzz3c+8spKmPGGbTD2sYSI9pl8QvZGxzTysJ4m9GbYTPYDvTjtz0f07VV2PPRwVgTwILi49/8EHPVvIrDs2tk89G/G1uu85IjtjD/88mBHEuzFBlDuB2ok8SXnXu7JjtLx2Afk8qEZsPDRxD71cyKy5DaPpO/cNS73e61W9t2XGO3ZJD70A/CC9DY6kO86HOzz5YRE9NRS0PQ0wwDzu2727eXkKux1laL1ESNM86e95vPaA9Lz8bcG8MxMrPYZ+tzqBfCW9PYp4vKMAozw8RTi9tzZUvfc8PT2e/hA9VWg2vEZ4Tr0Q0+S5vOmHvJo2mLtysIi7ljUPvOGdADuWVfs8Tkz3uvZrLzzRFZu5wVOcvHkbJr12Gh09VsaavD/Tl7zTuD+80awPO1b1jDy4IQ+96ziZPVGrZLvEmWW8hqICPYR9rrybn6O8ZMtHPU79GDyndd47HOaOPGtwfr0TkDY8hE68PGcqtTwjZ3q6hqKCvJ0T1jwRpfs8WWm/u2PLx7zwfmK83utVvDUJDT2LImW7a+cGu2U/eryvYqu8I68QPa7V1DykFnG7N1n0PHZJDz19kOG6vMW8un5BA71ibeM8TSuCPGIP/7vsTuc8DAFOPamk0Lt2Afk7w/bAuw4wwDrvOaK81xctPfmQgz3+P9g8aSAXPch6Aj25Zk+9XA1tvSFRrLyGfrc7joFSPV2PnLzGhCA7QZqHPH57nDyPsMS8Dr0WPZ8U3zx6HK88EKTyPWScVT2hLgw9AM2uuxWRP7yvBEe89ZkYPIfDd7xGeE69MUGUu32/0zttiqs8m4b/POequbz2a689DXT3PI8DAr2M04a7060YvRO/KL4DQuq6kz6kPJtBP7pBpS6707g/upGxTb1RxAi9djBrvUhjCb055sq8oHJDveVLTLzlngm7VS4dPc/ln7yzWRa9lLLWPAQTeDrMtSS91SzyvBHtEb3zMI09pxf6vNUs8rsz2RG8vuoQvNG3trv+bkq8loRtu7jZ+LwStIG7mJ4avK7VVLqwePk7DNLbOzQp+bxD6m69XPeeO1896Lsv+HQ9wMZFPRxPmrybn6O7wphcvHEu2btLHPw8jfT7PDHjrzyc/Yc7yeONvL7qkDzFmeW8R8sLOyWBJ72mASw92bpRPWPLxzzLewu9s1kWvUGlrjyrMjC9aomiPJm0aLxBa5W8KcdwvNoYtryrdue7QXa8vPvg6rwI/zs9Jd8LvM58lLyBTbM8hQoFvZtwMT3XuUi9AM2uvDqJ7zjTWtu9UAjAPIBNMzwEcdw7PjsavCf12bzhG9G8nOTjvNRFFr2YzQw9cBiLPkYaaj0xEiK8F++jvCBQozynjoK70PttPB4hMTwSHAQ9oeZ1vH2/U7kCzrc8gx/KPBofHzynX5C8zquGuWGGh7xsW7k8BS2lPeGOerwvJ+c5O4lvvPQMwjuFwu46MuS4vGU/er2K3aS7vmjhPKkCNbxrf4S8p3VevLEF0DyVPy09VvUMvcyGsrsAza68LyfnPM1YST1nWSc9lxHEPO4KsDxHywu9ZJzVPLq5jLxqWrA8Wo4TPM0TibqhLgw84771PIxrhLyDQxW9DwJXPIw8ErxGSdy85Z4JvRiSyLzfSTq78jANvF8nGjwQVRQ81IlNPMea7jt64hU8QdSgPNUs8jtGSdy80RWbvEbrd70TtAE9aLcLPclWtzz4+IU8eUqYuXZJDz2fLQM9kST3uyvI+Tyioj49HBUBu4LaCbvrOBm9h60pvF7tgDuMa4Q8cl3LO5ZV+zwn4JQ8nOTjO8X3ybuxWA28Vwtbva138DsdICg7YO6Ju8VKBzpnTgA9Xw72vEs1IL11jcY7BkPzvKlgGb3PzPs7mWUKPSlUR7w7dKo9nrZ6vJBT6by6N9273tUHPTOG1Lv2mqG92112PLvEM70dZWg7p1+QPM3LcjqGIFM9iFBOPSB/lbvaR6g9tWS9vMpMmT3PzPs86nzQvE3YRLzhG1G9vOmHPMaEIL1M/I87Ujg7PcIlMzy+aOG8wVOcvNF9HT12MGs9FNX2vMaEoD1da1E96aCbPMoozjvx3Ea9YGzavMpMGb1TOLu8EDFJvGiIGbx+7sW7raZiu7JjtDtYx6M85W+XvLjDKjzrZws9NIddvbbYb7wTvyi91f3/vHGBFr2DQ5W9EI+tvC2EQrwU7ho9KJh+vUecmTwz5Dg9PhdPPGD5MLw8oxw9jCLlPOjZq7xYXhg975eGvNcXLb1pKz49XMgsvXyphbxUrO29UNnNPHGMPTwGiwm9dC9iO3WNRrxnt4s8EhyEPbSICD3wOis86NmrPDtpg7xJBi49UlyGOR8WCr1Du/w97AmnO6cBLLxdPN88iaMLPZxmkz1RLRQ8Zp3ePMIlM70nU768+PiFvHV4AbxBuvM88zu0vE79mLzHa/y8MLQ9PbcHYrydZpO8BlwXvc7Lcjz3PL28wvZAvTCpFr0kZ/q75G8XvBtkXz1xjD28I68QvXe9wTw5cyG9zRMJPd1IsbwStIE8+GGRPEUzDjxhhgc9IGbxvGad3rzu/4g7bYorveifkjxGnBm8rjM5PH+qjrpRfPI84ezePLvEs7v/nby7gR5BvM/lHzxCAxM8rSiSPZQFFLxsUBI96B1jvJzk4zuB2gk9wsfOPGb7Qju8upU7uzjmPPkOVLyYb6g8emBmPMlWN7y3ZcY72ItfPLXCIbwQj628L/j0OzESIrw9ivg7SzUgu8VKB7xf+Ke7mRJNvJ62erxOe2m907g/vRuTUbt0vDg7OUSvvDahirs55sq8dLw4PBSQtjuUBZQ80IjEPGJtY7wcZN+8REhTPfLHATwsJl68OufTPHrtvLxlP3o8/m5KvIuASb0SA+C82IvfvIXxYL3FGxU9BfOLPGT6OTyU4ci8ny0DPQLDED1Oe+k8ZR8OvNulDDx1eAG9MoZUveLXGb2mjgI89zw9PDyjnLw2tk88/hBmO770rjzIyWC9WzvWPEPqbj3z3c+7h8P3uxJWnTwU1Xa8bFs5vCWBJ7qqR/W8tIgIvU3YRLwAWoW8TqrbvJUQO7z3gX08+GGRuwy8Db0pVEc868+NPCxVUDzbu1q70dsBvQ/sCDuPAwK8YymsPOp8UL2e/pA9kQ+yvG+6Jr2GRB68N4hmPVM4O7yYQDY89t7YvMIajLq8upW8HZTau7dlRjylRWM8ljWPO0sc/Lx3vUG9sHj5PDeIZr16j9g7FJC2u4ATGrsQvp+89YB0u40NID2PsMS8xUoHPQ5fMry7UYo5WPYVPNyM6LwgUKM7tAZZvWt/BL3qHmw9oJaOvDC0vbxd7YC9lD+tPHox9Lx0vLi8RWIAPG7oD7z6bLi8Zyq1vObucL2Hw3e8u/OlO68zuTpw6Ri99q/mPC8nZzscZN+7VYwBvNTnMT3U3Aq9O2mDveGO+r3f69U8QLpzuwteqbquV4S8Z4iZvFQKUrxavYW8gx/KvPxtQbyEk/y7Zyq1u5GxTTw7aQO9cBgLvQeh1zxzuy+9i4DJu3TgAz2qj4u8R5wZPZtBvzyZEk29i9OGvPj4BT1XrXY7iMN3udbourvpZgK8PAEBvaQWcTybcDG8UNnNvG+ADTyk5/68XWtRPBceljvIeoI8yhIAO3kbJj00CY07fHqTPALOt7y5UIE5WDrNPFJcBj20iIi9pUXjvOlmgr3XilY7uVCBPAeh1zwhxFW5eI7PPG7oj7xysAg9NIddvSUjQzzAGYM6x5ruPNVb5LwgleM88lB5vblQAb0qJVW9ujddPAsvN722NtQ71NwKPPgOVL3hjvq8/SmKPejOhDxozdm80ivpPMm0m7tlbmw8uVABvCpUxzyBfCW8OXMhPW7+Xb1Bpa48nOTjPCAXEzyl9gQ7u1EKvYEewTsPpHI8vJZKvHlgZr296Qe9DV+yvI7fNjsew0y86nzQPMLrmbyRDzK8qQI1PENI0zvHs5K8VjlEPDIIhLo25cG8KJh+uxNWHT0YNOQ8nnG6OWIoIz3q2rQ8i4BJPL/1tzo4OQi9AOP8uzlzobx8YW87DTDAvP/7ILt7EQg99GomvWtwfjz6bLi8YyksvXYwa7qbhn+55AYMvQUtJT2I8mm8MxMrPU6qWz0YthM8AvICvTqJ77wfw8w8hH2uvF08X7z9KYq9C1MCPWFsWjwVYs28kdUYvLsJdDuykqY8h9wbvTdZ9LwzQp282enDu39i+DxYXhi8SgYuvEXVqby5CGs8yijOuiiY/jyMpBS9MwiEPBS/qLtJzJQ8mbRoPOO+9Tzzrl07YMq+vJAkd7s0cQ+7exEIvRo1bTwMdHe8VpcovJtwMbz9KYq8ZZ3eOda5SDsus7S8RAScO6XSOTzl7ee7svCKPD5qDL2+aOE83D0KvQj/Oz2Ccgc9mWWKPWDKvjynMB49OeZKPUSmN7384Go7SzUgPfhhEbz2MZY87yD+u5iemjzTWlu9dOCDPQGUnjwytca7drKauuGOejyX4lE8z7YtvDwBgTzjvnW9pNEwPQ69Fr1Uffu8pqPHPB/yPryNI+67cYGWvNJEDb1uXEK8iX9Au9tddjyFcxA9WjvWOz51szzYdZE7zVjJOx/DTL2UP608j7DEPJvOlbx84568jfR7OnypBb3jSkO9c9F9PGPLx7u6Zs+8P3UzPHriFT3SK2m9VTlEPZHgv7yKrjK9HMLDPDa2zzpUjAE9KOAUPQDj/Lv7Pk+8xIOXOiHzx7v1LMa8uucDPZL0VL2mixW9IMyTPB2WxLyPSLY8l8AIPe6UM7xrwSU9vVNNvCcOFzwOC428Pwcbu3AobDzZgqC8kjQqPMoSJrw3j8g7gs41vENTJL0hxxC8q3cJPJ29szyOA9648/FzuMXm3Lwcm8e7K9BvPCdpKbxNIYa88IotvU7crTy8mKW7HXsHugiON7wZb368+rMhvdBq47rIFyk8TKHbPFYq5btiM5k7pFVGve6PsDwWvty8oCT6vLpdU735WA+84hUwvHm2eLwifTW8BJ1APUmwZL3ye6Q80GpjO82oir2mixU8DwYKvT5ss7zo8pq7lCqkPPqzoTqDxC+8rWiAPH2ibD14O6a7iUaIPIZVEbwx8jK9ePtQPEQJyTw2T/M76G3tvPGAJ70Cp8a8rt5PO20y8rsnZCY9asYoPSBxgTqnhpK7qtcePBTN5by7nag8nrOtPJrHubyuKKu87pQzPDlFbbv1bJu8xSYyvNn4b7yjPwy9JwkUvM75lrxYIN+8ggmIPJuHZDymNYY8uacuvJF+hbx4OyY8L/w4vYkcbbz+utI8aNAuPFzMfTzhFTA9/Xr9vFtWLj3VNpc8ZZrfuwFn8TxrwSW7FQi4POBaCL3wJRW8WlsxPW9oQTzNvkQ9sbQJPRqKED1fuHG7nL0zPAsaljzvLxu8TpzYPJvCtrzr4xE92SILuwgpH70Kv4O92fjvPIT/Ab1AIlg9RkQbvBDc7rwsy2w8OkDqvPkdvTyo/GE9EhK+PD8i2LygaVI9QtP5vKFkzzy5Z9m8wjU7PKCpJz0Kfy491ZsvPcCEGT1eRyU8/vonOy8BPDxZZbc7aRAEPTnKGr135ZY74BozPTIyiLxxoxO8qneJPR17hzsmaam8FcNfOlglYjxK6za92IcjvCffeDxn1bG8BN0VvSoVyDmbDJI8m8I2Pd7kYz1D8448vwlyvPfi6rwXtFa9WWU3vE7XKrw+bLO7sI9xvBTDXzxNJgm9ilxCvCQ4XbtqCwE9Uz7xvAeTOr2qdwk9S+s2PEL4kTv2J0O93uRjPE+SUjzOvkQ78IUqO2Sk5Tsigjg8DPV9PdDvELzHl/46gW6gvHdFLLzLCCC9eABUPRj5Lr1Lpt48TOEwPWA9H73pjYI8L7xjOj4s3jxvKGy79exwvdodCLwM8Ho5WvubOwwVkzwFWOi7qje0PJHZFz3O+Ra95nfzOqOaHj13wP48evFKvKVVxrwp2vU8u0KWPEXuC7wYr9O8BYIDPFDNpDmGK/Y8C7qAu07XKjxZoIm9ZnqfvKk8tzziy9Q8UM0kveDa3Tw/rAg9/akbPB9MabyMUry8AowJPfdiFTy9Tko6AmLuPMyDcj2lEG68m4fkO5J5gry+Tsq6hF8XPINpHT1TPnE8//onPVqgiTwqFcg8FE0QvR+MPrz3AoC8kX4FPT27kbvossW8ixdqvM906Trd6eY8AWfxvLtCFj0Kv4M8ThyDvPkYuj27GHs8gwQFPbb7j7wLeiu8pVDDui3rAT2hpCS9bTf1vGoLAb13QKk8qYEPPI/jHT22uzq9mRGVPdWbrzziVYW9GqVNvflYD736GDq+gBMOPHIeZjuIZsi8fKJsO/76J7zs3o68taUAvEH9FL1g3Ym84rCXvLisMb1DDkw8KhrLvODaXTzwyoK9xmYHvLSA6DvkxtG75bxLvZSl9ryoQTq9w3WQPYlhxbzOuUE8eABUvMdhhDx0T7I7uUcZvM2+xLybh2Q63Sk8usrNzbuCybI8sNRJPPGFKj20BRY9v4mcvdgnDj39/6o8OG+IPVmgCT0TVxa8z/STO9WbrzwNMNC8XPEVPVS5mDz0Nky8LzwOPYcrdrpVL+g7uUwcvGLzwztGRBu99ezwPJWg8zzCepM9WRtcuyoVyLyXlu07hH9XvSQ43Tur7di8RAnJvKj8Yb1NJgm9X+cPvJag87u6oiu9jFI8PQq/A7ujmp68ssrDuuTGUbwEncA8qje0vY/+2rw5ikU8yNfTvUc/mDw2T3M8K/UHPcmSeztTPvG8HZbEO0rwubyr8tu8JmmpPDlqhT7kxlE9WKWMvMuI9bombiw9gBOOPDlqhTyYFpi7oxp0u5yC4bxJtWe8hMSvvFglYrw/ZzA7T9KnOxyACj0v/Li81gf5PEe6aj2XG5u8g8QvO9KqOL3H3FY4UEj3PCZpqbw3T/O8eADUvAOiwzziy9S8uPaMvCr6Cr1CooI8IIc7PbSqg72esy28luBIvOloajw5QGo8RuQFPdRW1zyR2Rc9mwePvBUDNT2/RMQ8Qdh8vF/iDD1nlVw8VS/ovKFp0jxaG1w8yg0jvTfUILuumfe8SbDkvIS/LL1iM5m7y8hKPEjfgjwxrVo8Fr5cPfwErjzz8fO65IH5u4lhRbwz6Ky8xWsKvdxzlzwdlsS9WWA0PZwCDD0CjIk97pQzvFZUgDtiqeg89gcDPRL3ADwLugA9I301PZ39iDyjX8y7L7zjvPsTtzxG/8K8vVPNPLWlADzq6BQ9MPe1u2Kuazyr8ls8WgAfvH6YZr1J8Dk4oWTPvN9fC7wVvty7I72KvHNUNTru1Ii8pjCDu0f6v7w0WXm9rx4lvLTAvTz9qRu8rWgAPZI0Krx4tvi8/vonOm0y8jwtC8I8q/Jbve5UXjwVCDi97pQzvKmBjzwSEj48XsL3O4kh8DwXuVm8OkBqPXT0H73paGo9tcA9PGpGfjzgWgi9W8z9vEHd/zzhtRq8UsihPGfVMT0AsUw7AZEMvaJED72FNfw8AowJPddM0bwVSA09Zd83PVyRAD1tV4o8aItWvVwR1rxB3f+8a8aouwiON7xuLe+8Q1OkO0bkBb126pk8vVNNPJe7BT0146k8CxqWPQx1KL32B4O8D2YfvRj5LryKoRq9Ma1avb9ExLy/Loq80K+7PJkRFb24TBw9XewSPZ6zLbvc7uk8ebF1PUj1PD3xQFK8wTo+Pavt2LsJyYm98nskPXJZuLwwlyC98nukvVS5mDva82w9vQ71vPGAJz2WwAi85qGOPbliVj2mMAM8Y+5APIOEWj2uwxK9S+azPS88DjqDaR08OkDqPX3iQTscm8e8wh+BPU5S/TtAApg98nskPNDvED1D8w69riOouu6Us7zwhSq7OoA/PLOqA7wa6qW8luDIPC3rAT3mASS9k+pOPB6RQb1eRyW9JmkpvaIf97zSZWC91FZXOwu/A7wY+S48IsINvX8YEb2kVUY8q9KbvBIXwTrD8GK8pTUGPfI7Tzx7rPI84B82Pbpd07zfJDm8MLdgukJYJ71Pl9W6EdfrvJH51zvvz4W85bxLPbpdUz3fHza8C/V9O0ACmDsEgoM8T5LSu/rOXj2eeFu810xRPIkh8LyOA947FcjiO2fVsTyHK/Y75AsqPM2+RD00gxS84rAXO67j0rvzNsy7NKNUPJSqebxdTKi8XJGAu9odiDygqae7EvcAPVKDSb0Z7yi9hiv2vLDUSb05ypq8ltvFu6JEj7xiqeg7tKUAvZSqeb3nlwi9CoQxOigfTrwKHxk9hP+BvHjgE7tiM5k8BdgSvY2SETx/k+O7sY9xO70zjTyo/OG8sbQJPUqr4TwiPWC9f8IBPPxJhjxM4TC9W1auPCv1hzy8PRM846sUvZH5Vz0kOF08E1ITPYW/LLytnvo8xsacvPYHA72r7di8HOCfvAJn8Tskcy+8RuQFOyxLlzwz6Kw8xHANvRRNkLvuj7A8soruPAhJ37vwygI9tXtlu83DRzyS1BQ9zb7EvFQ0a715tni7akF7PO6UM7xTPvG88SCSutwTAjxpEAS92/NsO6j84bzxRVU80mXgvDs25LzMyMq8ZZ9ivCMdID0EXeu8e6dvPfdiFbxpyyu9riMovOXBzj0Zb/68WluxPEITzzuTL6e8p0Y9u0L4Ebwwt+A85/cdPQ3r97zBOj69Dev3vAeTOj2qd4m7GqVNvHhAKTuGK3Y87dkLvQ3rdzs1fhE9clm4vIW6qTyxGSK8W5sGvF+9dDxwKGy8K9DvvLG0ib1/k+O7b2hBPeHQV7s6QOq8lKX2vOitQj05yhq9By4ivSrVcjuHK3Y7JS5XvN5pEb0nZCa91kzRu/QxyTtWrxK7E81lPNdHzrs+bLM55MZRvP4/AL1tXA09QAIYveLLVL3QmQG+oz+MPJ5427t1D128X7jxvI+Ii7yv2cy8/K6eOK7eT704Re27n/OCvJ+uqjyzysM8Pwcbvb1OSrx5+9A8/UQDvaBu1TwS/IM84hUwPDqAPz3p7Rc7Ch8Zu/gdvbptvCK8WSBfOxuFDT3+nxW8A4eGu8QrNb1hs248xSu1O+UBpLsqFcg78IotvaxtAz1G/0I8VGMJvQ3werzVmy89Dub0OmfatDxblgO9hb8svKY1hjxM5rO6ft0+vSI94LxFyfO8YN0JPCoVyLzhtRo8wARvvaFkTzw+LF68hropPZfAiL2HcE4874qtOj9nMD3XB/k6Yu7AO7CUdL170Yq91ZasvHeFgTyfKX296qM8vByAijwoH868DDBQvaGkpD3Gxpw8OEpwuYYw+TzQtL48h7AjOq4oqzxd8ZW8ALFMvb4uij1rwaW9JTNavLrnAzzH3FY7QGKtO5F+hbx/k+M7tIDoO5XlyzyRPrC92YKgvFFtj7qBid27vU7KvCZpKT1lmt+8Cr+DvOqjPDzs4xG8pFrJPAu6gDy7WNC7oxr0OzRefLvYQss8dgpaPfcnw7qWoHM9chljPK7eTzxNhh68UmgMveEas7oM9f28JmmpPNdM0bz9BC68dY+HvLrnAzw+DB48uxh7vOf3Hb3C9WU8H4y+u4MEBbytaAA94NpdvDOjVD0FWOg8ihfqPPUsxrwjON08U2iMu6+Z97tK8Lm8q3KGvTSe0Tyrdwm8oG5VvRJXlryaDBK7T1J9PJsHD73loY480K+7PMD/6zsWnpw8t2xcvIa1prvr45E8TYEbvcoSJr2gblU9ueyGvOzjEbwoBJE8xmaHPAwVk7vMw0c953dzOkNTJL0Am5K8B0lfu37iQb0dlkQ9UsMeu62eeryiRA+9PbuRuysQxTz34uo8wvVlvEj1vDv6syE8Cn+uvK/ZzDyVxQu9nnNYPJTKjry/jh89iLCjOwSCAz1M4bA8QxPPPB1bcj3SZeC8U4PJOwSCAz2sMrG6IsKNvKEkejscm8c8ZxoKvSdkJj3B/2s9XkelPPcCAD1YBSK7b62Zu/cnw7yQg4i8lMoOvRAcRDy/CfK8fOxHveTG0TzprUK8QWItOwSdQLwaanu9uPGJvETuCztyGWM8BX2AvPYHAzyHa8s7DuZ0PK+U9DtTvhu9VGMJPWcaijzvKhi8dQpaO6hBuryhpKS8YbNuvT4n2zwAsUw8HKBKPLEZIjw/ZzA9QKcFvSZurDxf4gw8fKfvvGd1nDtH+j87t/YMthWoojxbloO8IsINvbXAPbzafR29DQvevIFDWjyRno+85n3nvLvoaDzZc+K8jR2Ruz6CJT2vpgO8mUPGPBl4NLxwjIw7HQPCvLLArDuDFxA9u+JdPEd+F7l/rLa8MpJJOvfSkbxRmj29OxFBvKfQ0Dzu1p87TDVvvIqcErzdSxy80cggvLLALDxVrlu8LYrBvLjINL1XJUu8RQeoukITPrqdV+S7ehuePPVhLb0UkGC819azO5YZgzyADYE7kRsKvEv/Fb1PI848lVvyuz0FK72gyEi99WGtPKVf7Lys5O68z1Exu2KYLD2Zxku98xD9PMfSubt6QV29GOUUvHwPiL3WUy68NwMuvL0zDj12sMS6m7o1PC9+KzyIS+I8VyXLvDuUxjykvLK8OZrRvKs7qjw+bIA9A5JxPBliD73I8m290EumvCNokD1ehA69v9ZHPcC6Fz2rO6o6hxUJPPh1yzwpH+i8x0+0vP7aGT3HvBS7Y/8BvTf9IjyBQ1q9PmwAvTnxjLxpig+9Lm4RvWmaqTwsZAK99v7bvEx2hbxooDQ9yTOEPHO8WrwXIfk8Lqp1u/5907uBHZs8TgOavOroQDwp4wM8OppRPXCiMb1EepM8eztSPF6EjjwUkOA8ekHdvMM7lry4OyC9YAsYvfrsOj1/rLa7GxVjPByMUj2KHxg9CfG0vJLETj3CQSG8KOODvCBqlzz6WRu8A+ksPUJwBLz13qe8cQ+SvfFzzjyNsDC93/5vPS9+q7zzZzg7/YNePGEhvbyrZ3Q8ZQmROjD1GjxdBxS99sgCPfppNb1hG7I8apopO5YvKLwIdLo8zF1HPWWyVT2Hzmc9JSv+vI6qJT34e9a8Lm4RPVy24zzWU668zODMPBgb7rsvIWW8QZzOu8s9Ez3Kad08icjcvKm0oLxxHyw9FusfvVD3A73RNYE8//rNO0uStbuDEYW89M4NPB+m+zxsC449tjERPJkdB73uQ4C8J2YJvY22uzximCy9Lm6RvNzkxryLOUE9GWIPvcFNN728thO89gTnPNQ5hbwcZpO8U/uHPCvnBz3IOY+6WZy6O8Q1C7wofK66yPh4PNLIoLyPLas8tisGPJTe9zw1rPI8sLadvLdRRbyqZ/S8D1YDvSLxID2WGQO9eY4JPJ0xJTwA9UK9cchwPGFBcbyOqiU98kcEPDh6nbzp9FY8NQm5ullF/zuIS+I8YH4DPaM5rTwpH+g87Ah1vT//nzy4cfk8p01LPLvoaLzYee28h87nPGuEBDxhIb28nTGlu/HwyDxnpj+8w74bPXZT/jsabJ67YUFxvfuPdLxawnk74+bDPF0z3rw0Cbk85E0ZPE8jzjs/Jd+8gUllvPXepzzWQxQ8BOMhvPDQFDxagAo9ecTiu4ZXeDycpBA7ezvSvEn1BrxOgBQ9eZ4jPWkdLz1awvk8UKDIPD6CJb0PVoO8GJ7zuUn1hrtali89FIrVu4O6SbzCR6w84saPPOaD8rxVjic9Sr7/O2gjujyXzNY92XNiPOJDCj0tB7y7PDH1PHM5VbyVnAg9Pv8fvRbrH72VH468VY6nvJRhfbt1sEQ8LYrBvBrvoz1wS/Y7Yw8cvWLEdrztSYu8eCc0vlS68bs0jL46v/Z7vLfOPzyu2Ni6NIw+vRrvo7yfzlO90+jUPO5DgLwiXoG9RQeovLLGt7rDvhs9lN73vCUr/ryuLxQ9l9LhPGo947z4zAa9l9JhvM++kT28ZeO7RHqTOtpHGLwQnPY8ahckPO3MkLwuAbG8gUNavfMQ/bs1dhm8BOOhPB3dgjwt8ZY8Q/2Yu3FFa72msBw9++w6vKghgT2KGQ09k7i4u301R7ybPTs8BFCCvNy+hzz/fdM8f9J1PAbXCzxQHcO8hTE5vG20UrxBH1S8MOUAvSNokDyHJaM8eAsEPd5VK7yAT3C8nKSQvAoRab1TN2w8KHaju9DOK7z/UQm9f6YrvEB2D70nfC68cZwmvXs7Uj1tiIi8TLLpvFMRrTxzOdW8Wj90PMjSOb2wtp28YSE9vPQK8r0uJ/A882e4PDWs8jzB8PA82XNivE6s3rzMug29UQcePHGcJj0YYo8+9/jQPL/2+7yIqKi8uqwEPR0JTTwm/7M8GPUuvK3eYzwM5Z68qcQ6vS8ncDxQHUO8MCFlOjWGMzx/0vU8TqzevNZ/+Dw2A649CRf0vEWw7Dx7uEy9vjMOvJuqmzsnZgm9nLSqvKS2J7x6FZM7RTNyvKM5Lb3T6NS8gJAGPUmYQD3LPZO9PLR6PDcpbbxrhAQ8iUXXO5UvKD2vT0g8Va5bPLo/JL1RwPw8xN7POnHIcDqhS846pdzmOyh2ozs7+xs8TTXvvIWeGb06lEY7ecptukCi2bwgI3a7qUdAvGgjurwuhDY8PgUrPHO82jxHfpc8BGYnvCpwGDwAzwM7dTPKPPMQ/bsx9Zo89siCvXs70jxOrN489/hQPQtuLzyZHYe80cggPc++kTzL5tc6crxaPTD1Gj1xjIw84XVfu0Ww7Ly1V9A75tQivAnxtLyurI481gL+PDoXzLwuhDY8byW3OzWscrwmgrm8qr6vvNlNo7uQR1Q7Sw+wOuj64TvmQQM8z/r1vBJaB72LOcE8ahckvbFv/Ds6F0w8ccLlvJEbij29M468sEk9vb+6F7sEjOY8h1Ftu+zSm73zZ7g8ssCsuyZslDztCPW6F/s5PGyOkz3mfec8kcTOOliMID2Ntru8Dv9HPQ9mnTrMXUe8vlNCO8g5j7wuATE9lR8OvT+i2bu74l092sSSvNtBDb3uf2S8WB9APZigjD3rZTu8pjOiPVUFFz0skEw9YYgSO97YML3E3k+9aR0vvAj3v7zQuIa8jqolPKNl9zyEIZ+7uUu6vE0v5Dz2/ts6dZqfPAOScT0Ngk29nTElvGy0Ur0oH+g5CpRuvMh1c71TN2y8V6jQO3GisTz4Twy8n87TPMTeTz1/Eww8HQnNPDzrgT1QoMg84UkVO2esSj3BTTe7yz0TvVP7Bz0LlO68HgNCvOZXqL2AoCA9C26vOy0HvLwvaAY9J3yuvFeo0Dw+74U964t6PEO297sw5YC7uTWVvOzitT1cM9440kUbvQKY/D19NUc8V/+LvDj3lzz8DO87BOOhPf9RCb0m/zM9/33TvJAhFbxSwPw7N+0IPLmyD7y0Pac8qm1/vKaqET1OA5o8fVX7vFqAijuengW9bhUdvdjQqDu3UcW87Aj1vOtrxrxeLdO8ysajPGy00jk2Ay69GHg0Pdf2Z7zlg/I6CfG0vJnGSzxVjqc8gz3PPL0zjjy4yDS85Qb4uw7ZCLul3Oa8EPk8PPqV/7sRdjc8LGSCvN8/Bj0L1QQ9nVdkvFd8BjwvJ3C7KZziPNQ5hbue1F49wU03vEf7kT1/rLa8fZwcPfHwyDvGPxo9w2fgPKI/uDz7DG88tVfQu95VKzsfpns8YJ63O4wjnLykpo28XgGJPDdqA73h7E47eZ6juxThkDyEtL68zbSCvbJpcbsO2Qi8ZDXbvCF0prwuLfu8ZxMgPCBqF724S7q9mUNGvGkNFb3Yyp083L6HPM3EHLw495e8JoI5u2CkQr2KwlE9hq6zu7zc0jkLaKS84fLZvLBJvTwjEVU8LgExvaO8sruzuqG8TLj0vCKaZT1LD7A8mSMSO3iOCb2KwtE8WEX/uuDSpTzZTaO7Lm6RPBWEyruDlIq8Uz33vDkdV7wOgk0808IVvVmcurw2Ke07HAnNO6W2p73/+s27qTEbPbhxeT2dN7C7rbikPNVZubwq7ZI8UKDIPHfQeLuktie9UpSyuxVei7zAc3a879AUu6vkbjlNrF48WoAKvb/WRzzX0Ki8eKQuu1wTqrzSRRu9DQXTuzCkarxj/wE9jqqlvFmGlT1XqNC8t9TKvBLXAb2s5G49bq7HvMBNtzwykkm8AhV3u6lHQL0RH/y76uhAvOHGDz3cS5y8h5IDvVWu27wWhMo8FOGQu4UxOb2QIZU81z2JPXqeo7w7lMa8GPu5PJlDRrzhSRU8xi8AvRlcBDuuLxQ9z9Q2u2gNlTlmA4a9RQcovbO6IT2HUe07WYYVPCn5qLz+AFk9HQlNPCsTUrqHUW086sIBvfFzTryHFQm9jVl1vdVfRLxdM967R4SivD7/H71Jnss881GTu3MZIbxylpu8l09cPBDjl71vJTe9fA8IvvD2UzypR8C87VmlOlyQJLzqa0a7hLQ+vVUFl7zPVzy8HIzSvFQLIjyLvMY6eMptPFS0ZrzGVb+7kcpZPMdVv7y4zr87j5QAPIclIzmNsLA8hTG5u6BLzryQytm8uUUvOwUJYby4cfm85dqtPKdTVrwrE1K9k0HJPF0z3jxali+8TJI1PYCgIDxL/5U97UkLPH4ZF7sfgDy8lGH9PI4XhrtLkjU8FlgAvWOSoTuwKQk9XA0fvMFta71jmKy83cgWveXgODzlXbO8SRvGPFW0Zjvy1Jg8jbAwvK24pDzsZbu8yEmpPCIX4DwkYgU9w+RavCyQTD02Ay69EZZrvF0HFL0jjs88UKBIvZUfDrz+g1666e5LvFMBk7yEIZ89JQvKOyb/s7wK6yk9EGASPD31kLv85q+8+4/0Om4VHb1qhAQ908IVvUSKLbvhSRU8B9EAPAkX9LziwAS9ccjwuk6Gnzwnom081gJ+vTkd17yPlIA7fikxvG8lN71vK8I8APVCuylwmLoU4ZA7IusVO8Nh1bzKwJg8wTeSPIwjnLzzURM8J4K5O7hx+Twn75m88vBIPWcToDzc3js85V0zvQvVBL29X1i7jbCwvBDjlzzVSZ85xlW/u+SJ/btlL1A89EsIvNVZOb3I8m291cYZPJ1X5LrHe368rtJNPc3EHL1XqNA8q2FpPIUhH7wgI3a9aR2vO/bYnLsvfqu8LYQ2vch1c71hnjc9hDdEvVQLIr0CFfe8oMjIvOj64Tz8Y6q8p9BQPDYpbTqzwCw7vjMOPL/QPL2N3Pq8N2oDO3APkjwq7ZK8FwFFPYS0PrsIesU8rbgkPKs7qjxvFZ08q6gKPTvrAb31yIK8aCM6O6kxGzyBmhW93cgWPKaqkTsBcr087F+wOkITPjz9g148A2YnPRAffLyGKy48L36rPICQhrygyMg8ccjwvHcRDz1OCaW8nV1vPNHu3zxN+Yo9m2P6O4UblD1Dtnc8mcbLvP/6TTtnKUU8SZhAu2s32LsMiNg6ycyuPE0JJbyn0FA9aoQEPb7WxztqwGg9BoZbPBlyKTw5mtG81caZPF4tU73Q9Go8GPs5vcFHLL2wST09ahckvQuO47wweKC7YoKHvaWgAryBI6a8HYbHPGO4YDyPLSs88+QyPYiiHTydIQs9pbanvXdT/jwdA0I9PStqvAKY/DvV3L68Q5C4vLdRRb2yaXE89v7bvL8tg7yRxM67BoZbPBF2N73rT5Y8ZbLVvJAhFb0NC948QfMJPc20Aj2Bxt88IprlvNV/eLz3/ls8DYjYvIKx+zt4wQM8mJ0OvWUQirvWLGU74UoQvd632Lzh6PI8FTCzO3vyHT30q0a89iykPBq2m7zLyPW7/Da6u6OFK7sfwLE7vdvNO9m/HD24pai8R3/OuwFt37shxbw8VWz2PMUW/ruKuME706OsvBlm2LzhHgE8KqhOvZhNyzz5rQG8oNi+vFY4jDrOSdO7AZluvE2JZLy0xyG9grF7vPnZED3h6HI8TDHGPCGZrbvbWi+9mPUsPZObU7z2CPC8nackvXOTOTytQbm86cMpvFrGzzuYITw9uyYGvQochzyK5FA8KlCwvTo6CD3M/oO9s0vPPMFuhbxi+SQ9KlCwvNN3HbovQBE7pTpzPb0HXbxgXhI9eIMaO4nFkDt6Srw7rr2LPY7hgLwtrdm8NxFJvVK3LjxKEgY7uNG3vER6wzvm6q07J4kOvIs0FLmQfJM8arCnvELNVr3h6PI7owlZPAdvGr2X0Xg9eko8varsar1VOIy8yO95vFyfy7yl4tS7eIOavAcForznblu7BBpMPM5JU7y3zKw8gKQVPbCeYrxarBq9juGAO8m7jzv1Uyg9mPUsPD/ISz1qYOS86RvIPKiPQT2rlMw8MuP+POaSj7wHrQO92b8cvdaoN7v5Dfs8pnCBOxcbCTwJdKU9wOBYPOnVA73arcI8l8QSvCzZaLz7jlg8kT4qvFzL2jxFIiW64R6BvFXOE726hn88rW3IvLcKFj2R5gu9cDYQvUmE2Tnbhr68gKzwPGvCAbkakue6LjsGvfldvjwZOkm9HCUfPDcjIzxtiSO85LmTPOZuWzxc92k9c3mEPeE4Nr3/k+M8gKxwvBH/GDt4gxo9zgOPu1pCoroSB3S8gKQVvR5wbrw/ggc9PHP9PMbik7xS4z28MV/RO9FGA72iCdm85cb5Ow+qyjz3NH+803/4PBjdnzx1FBc9Zv4vPS0FeDvLnOa7EtOJuzIZDb0vqom7FAQkvWjphbw6vjU8DIsKPcA4d70X5fq8MYvgu4SpoDzIa8y8J0slvctESD3W1MY8u6ozO+xwFr3W5iA9T7Iju9B67TsWjVy8YtXwO6toPT2aUlY8zaFxPKYyGLymXie8JBoLvbl5Gb1c9+k87Mg0vExd1bsi15Y7NYiQvDfluTlqsKe8V+1TPeE4NjxCSSm8+2LJPAQaTLxKqA08ZXqCPNpVpLqY0fi8+QUgPf+TY70DRls8dVKAO8kliDz/i4g8KqjOvFpuMT24/ca74Ti2vF8gKbzWJAq8tvi7u85JUz3YMXC7X0y4uy9aRr178p28qDcjPUpYSrwJdCW9pMMUvE0XET16dss85ppqvATUh7v1Uyg9NWRcPJkhPLyyz3w9sHLTPNveXLybdgo8qOffu5/ljbrpw6m8P5w8PQwhEj0Hmyk9HRNFu+aa6jvDjcW8sBo1vdYA1rsiFYA77EQHPQGZbryYIby8d8nePMvI9byEqSC9UWdrPdZ8KLxPhhQ9/mfUPSyBSj0Mi4o8zJQLvST2VjyiYfc7ybsPPWrctrz+Dza9vALSPIsIhTybdoo7cutXvFVkG70oS6U9Y31SOeFKkLzADOi8iDfkvNuGPr6oE287FzW+O1gRCLxifVI8hsCFPDpmF70idfm7T94yvfyyjLwZDrq7Yn1SvTQMPr0yGY26HLsmPc4DD725twK8ndOzPCLXFjzToyy96/RDvNCm/Dp4wYM9WUp9PCVyqTy1qHi6+QWgPKBc7DxE/nC85pKPvRk6SbyjlwW8kJZIvP8hED2WoN65N8uEPA5+Ozy/gy+9ijxvPc7FpbwhmS09SaMCPV0bnrzLwBo9/QorvPlvmLwZOkk8s/OwPKa2xbv8Nro7JJ44PI53CLzmFj29Qs3Wu8E497zxeqy8rhUqPbbMLD0J3p26cKCIvBGVILwaIBS9+bXcPJ3Ts7y7vA28HOc1veNp0Dwcjxc7au6Quw5+O71hyAo93l+6vDXyCL0J+FI83Q/3vIpofjo9lzG9lIEevCejw7w8G9+9Nz1YPO+hMLwMIZI8kO5mPLt+pLzWJIq71LWGvNkplbx4RbE8z5mWPj+cPDy2+Du8uNG3vEmw6DzhvGM8voMvvJ3TM7z2hMI7Cd4dvd4zK7nBboU8FxsJvNmtQjllVk68fWGhPCzZ6LwPUiw8dhSXPZ4Rnbw1iBA87ESHvOYWvbq2Cpa8Di54vPS9IL37uue745XfPEOzIbyeTwa9MYvgu8G0STzlxnk9N40bvTqSprx1FJe8wIg6Pcz+g7tk2vs8HLsmPGgDO7sJdCW9rr2LPA5+O71l2ns8swULPBIH9DzWWPS62b+cvEmwaLxnL8q8nq9/u9a6kTyzBQu9jncIvMvsKbyzz3y89tzgPO5R7Tzx0ko8TtknPM6Zlrv3NH882ZONun9UUjxwCgG90cqwu/wcBb1nW1k9dyF9PPYsJD19I7g6+NQFvAfHODvc3tw8LdGNOz+cvDzecRQ9bQ3ROxk6ybyT8/G8o93JvO8l3rw3y4Q8nldhPH4jOD2eER07k8diPBErqDxFyga9B9kSvaFcbLrNdWK8KdRdPDqSJrultsW821qvvLta8LxiUcO8uIH0PESmUr3mFj0860ziPP9n1LzjPcE94JDUvE/eMr1SO9w3Ureuu8m7j7yQajm99lizPGB4x7zWLOW74QwnPZyiGT1SX5A8YEw4PbPP/Lw56sQ8d8nevBzNAD3x/lk9ARVBvZ6vfztqhBi9HT/UPDIHM72QUAS9DU0hPc2h8buw7iW9mE3LvDeNGz1g9Jk9xmbBuyFJaj0srVk8kvNxPGb+L7wmJ3G93+NnvMNhNr0mJ3G8BMKtPEWmUjzJ5548YIqhPBdHmLz75na7gxMZPTc9WD07pAA98SIOva4VKrwyGQ29qBNvO4ItzryO4QC9jg2QPPBWeDxzeQQ9JMpHvUTS4TyCAT89V2kmOnjBAz2raD09PROEPDwb3zzeXzo96e84ve+zCrypE+88MeN+vAQAF70Bme69J/MGvTpmFzx6+vi8cI4uPOxwFjqmyB89zXViPcG0ybpfTLi8Wm4xPVQU2LwidXk9+UOJO9N/eDvoc+Y9CcxDPByPl7sEwi09J0ulPEerXT3jld88GrYbPf5nVL2jlwU7CSTiuy8UAj0p1F07DKW/u0o+lTtFIiW8HRPFPGoIRr0R22Q8ZXoCvd0P97ygvgm9ChyHvG21Mr2J30W93uNnu1cZYz1kruw7BMKtvP+/cj0Pqsq8FzU+PPR/t7wnS6W8/7eXPBQEpDzWUJk8TAU3vYbaurp3yV67qd+Eu4H8s7uDfRG9QnU4PB9oEzqbqvQ64bzjPNZ8KL14wQO8Vxnju8lRlzyd/0I6iwiFPXCgCLw8G988YlFDvdMn2jz8Nro8RfYVPTLbIz2d07M8beHBPFjBxDdfIKk6kvNxPB4YULxl/q+7K8yCOhRcwjsoz9K7gCjDPCdLJbxiJbQ8uVVlu5ZaGrz23GC8NLSfvFcZ47w3uSq7yO95vLuqs7oQ+g28bJF+vZ+Ie7xFptK6X9BlO333KDzkIwy8voMvOwFlhLzqlxq9Ea9VPcwYuTr7umc7rumavKDYvjxrwgE9SlhKPAylv7w/nLy8PdWau8Z4m7yN6ds8daqevP47xTtqsCe9L6oJPfTX1Tx1bDW7RfYVuTqkgLqA0CQ8vsEYPAlQcb1lVs68PakLvCSeuLwvFII8XVmHOxpm2LtMMUa992oNPDcjIz1AcC081nyovGV6Aj2tmVe9LCksPGVWzrxcy1q58biVvCT21rzet1i8y5xmvAYf17xJ3Pc8Uw/NO7qG/7w6kqY8BMItvDQ4zbt1xFO9IR3bvNZ8qLtg9Jk8li4LPT1Hbrz2WDM9FG4cvQFBUL2dK9K8bDlgPRRunLx/2H895OWiuavkD71Six87deiHvJuimTwf0gs9eEWxPAQazLwB6TG9MoMFPagLFLxGYI686cOpPCRGmj0PUqw83Db7vG21sjwfnH28kO5mPBmSZ72PGvY5B8e4OwylP7uoNyO8/LIMvVRA57zY2VE9mMmdOq1tyLtyF2e99lgzPVMPzbz8Njo8J6NDPXVApry/gy+9NxFJvTIZjb2mBok7tVDaPND2PztNQyC9AZGTOpUcsbwEwi293g/3u+9JkjxYe4C9m+ACvYs8772dV2E9SDkKu96LSbyer/+8FrnrulqAC73hShC9B5upvINRgjtN6wG80Qgau8E4dzz0fze9WsZPPFBi4Dsf0gu9/r/yO3COLrymBok8km9EPVgRiLo1ZFy752YAu405nzw8w8C8OUJju5MXpru7qjM7uNG3vMzsKT0kykc8R9fsvMC0ST3m6i29QqFHPVyfSzxPCsK8qRNvPLhV5TyxAIA8T7KjPM4DDzuumde8rW3IO4sIBT056kS9UFqFvLn9Rr3WJIo72F1/vBQwMz3p7zg9p14nPZh5WrwndzQ9ARXBvag/frzWfKi5YPQZPe3aDr2uFSo9uClWvdmtwrtiN468gChDPa1BubyhgCC8fWEhO6C+Cb1zQ3a8+2JJPRTYlDyGMtm7ZwO7u56npDvLViI9fiM4vI4NED14Vwu9mzghPDzDQL1yQ/a8yD+9PD5M+TsiFQA9K/iRvAnMQ7zb3ty7Zy9KO+sgU703Ecm85r4evLyqszwhmS29o5cFPYjFkLz2CPA8w7lUPEBwLTxLLDu84QwnPdm/nDxX0568dWw1O+Np0DzWfKg81roRPDGLYD0niY48RabSOgFBUL3RIs+8kMLXOdOjrL38Njo9WoALvQKREz0UiNE8VOhIPYjFEL2oE2+9ubeCvU7ZJ7s/goc8zi8ePKvkjz2rEJ+7UGJgPOa+Hj0ZDro7ZSo/vWSu7LtiJTQ8Lt5zO557Fb1FIiW9HGMIPVfBRLvkwe688biVvJ4RnbugVBE9/5PjvDIZDbvI7/m81KOsO4A6nbwEnvm8BvNHvf/1gDxo6QW90cqwvI4NED30fzc8ZVZOPLDKcbyQUIQ9c5O5u94HHD00vHo8P3CtvC/WGLxi+SQ6KdRdvXCgCLzcApG8a4QYvHXEUzv5tVw7YjcOu/m13DyYyR27rcXmvIPniTohmS28g9UvPMtw17ye5Y08iLM2vQRqDz3kIww9T7IjPSmozjsaiow85cb5PAtV/Lw3Ecm6Vc6TO3bwYrx9YaE8rhWqO/S9IDzL7Km8nStSPMBcqzz0ZYI8TAU3PdYkCrwk3KE69jR/vQNGWzw6kia9quxqOsZMjLx1UoC8xjqyPGqwp7wWjdy8m1JWOtn9hb1PsqO85m5bvLPPfDz7uuc8ggE/Oz1zfbyQPqq8xjoyPSnUXb3Tzzs9EZUgPfQD5bwPqso748FuvPwKq7zBBA29sFgePQylP7xXlbW8yMPqvJghPD3wVvi7DHmwPBQEpLx4wQM8eMGDvIH8MzyAeAY9d51PPFaiBLzhOLa8LjuGPeZCzLyiB+27GhlgPQHkMb0oW2Q8d0xoPFlaO71FiCm9xOePPL0SyTxtRBU9Xhc6OtO6CDzk4928uAkPu6jEa7xII7+7RqdzvAWXj7vOdrY8GqCzvGZQhLnTYCY7xBQBPTpoDjxmnL86vrjmvCoEobyR3pe8sxH4PO2tnL0IX5Y8IKntvCM9gbwVAn+6dDimvG85jbyiNN68K8KGvRGiAbthhd48riAGPUhQMLx65326eL4SvWacPzx8Nti7y64vvak2Fr3OHNQ5QbaBvFd9i7sNqmo7nXdfPWfoer1M1pw8ZZKePP5IHL3trZw7l7pgvSU5+zyg3gG8wNrPPHzqHL33te+8Gs2kPCiIVT3Q8gG7DF4vPWuzILvsaOO6lxRDvDCUrj3kEM+7YTmjvA+tCb35Xiy8mjasPNwx57lGLkc9tY3DPL79H7qVmHe8SKoSPFtPs7yShDW9hWH7u+nNTTr2wxa9gjgQPThGJb0SlFq9ZskwvAfOoTud0UG90JifvAd0P70zAlM8n/Oqu97aIzwUagi8D1OnPPm4Drzx2Sa8mjYsvbMR+DyPjz28Yd/APNNgJjstGGM9yBMavRI6eDuz3QQ9nIUGPRKU2jyar9i7klfEOlw6Cr0vGwK98X9EPa1U+TuNso285oyaPQppN7mlVse8u/BfPBonB7uq5lS9LxsCPckF87uGkQs9PPmCPN7aI7tYDoC9znY2PBrNJL3fmAk9riCGvOQQz7zg/Aw8cUMuvLVBiDzQ8oE6xtwHu/xTJL0198o8mtxJvWGFXjwPgJg80VaFOxKU2jy4gjs8Z7QHPaK7MT0mBQi90wZEPcvN+Twft5S8YYXeOZ3RwTvpzU08fGPJu0vrxbwGKIS85SgXPY+PPT0azaS8FOO0vL0/ujzuPhG9IKltvEOTsTyMTgo80D49vcevljstJgo8IHz8PP+UVz3L2yA8GJYSvCMQkLzDz0e9qkA3O8jmKL0zRwy9FVzhvAmWKD3Gl069LevxvNs/jryn0pI8Zpy/vMxsFb2e6Qk9UfT/PI+8rjxrsyC9Mly1vKZBnjy1urQ6MLN4vP0RCj2Bpxs9n8Y5PBpzwjzWodm6qMTrvPKXDL2XyIe99M6ePHrnfbxA+Js6HeFmu/51Dbxvx2I8DIsgvU5Zaj1DwKK73DFnPKoTRj03oAc9s7ATvG4hxTz8U6Q8TWcRvZKjfzxcOgq9baX5O7645jsE2ak84M8bPQ/M07yJ/688YQyyPL0SSbzx+PC8J+K3vDOo8LyzEfg8Nw+TvAYoBLzWdGi7MOBpvPlerDvallE8pc/zvPZptDwBESM9Ejr4NpfIB736ffa8ft8UPUcZHjnpc2u8oxWUPaK7MT3kEM+8h7DVu7D9NbzmXym7Q7L7uqd4MD2CxuU8MrYXPe9dWzwYw4M8HoACvXyQOr2FLYi8DX35PG4hRT1I9s27fAlnu3TeQzz/Gys8Gr99vbJMkDzxrLU7teclPchf1T1MAw49pVZHPDo7nbx6s4o7kQsJPVgOgDzAYSO7Gs2kvGp8jjsPzNM7PvV8PE2UgrtZAFm9QhqFPXYArTxQAie9w1YbvWlkxryXQTS+ecizO4mGgzxgk4U8qPFcukfUZLyEyQS9Al3eu+lza70Jw5m7HMKcPNFWBb2PvC69BCVluz3WsjxLRSi9MJQuO+oShzz9EYo8U8otvdEpFL38zNC89KEtPcl3HbtxYng7+biOvHZaDzxs0uq6/REKvP/ByLzrHKi86fq+O/ElYrz0wPe7bnsnPaabAD1JOwe8/eSYvK3bzDxW7Ba8ToZbPci5Nz3m2NW62tuKPCKsDLv6quc8YwEqPSUaMTxmyTA8ouiiPEk7Bz2wduI7d6ZKvTXYgLzsO/K8O4fYOw/5RD1vmnE9LUXUvHnIM7zQay48oxWUvUjJ3DxODS+9Oy12vMjmqLwif5u8F1+APMCAbbzaPO+8IqwMPaf/A71HRo+8hLtdPE6G27yPvC48MJQuvZpV9jvWR3c8Wi3KvZ+ZSD2VZAS7TNYcPV/Vnzzktmy7ZlAEvd7aI738JrO8c5IIPUkOlj6+i/U8BcSAvAcaXTttRBU9lACBOtyjkTqPCOo7ssW8PEkOlrwPU6c8HbR1PBIbLry7HVG7BZePvEcuR7yK0j68Qu0TPcMpKj3Ard47eud9PMbcBztmnL88hMkEPWGyT7x20zu9PJ+gu34MBj3QPr280PIBvcUeIrxxFj08GCRoPSAbGL3hG1c8ogdtvN7M/DzhwXS77opMPZpVdjzhSMg8NZ3ovAzlAjwaJwe9YsqXuo8IajwBPpQ7frKjPBI6eLw4RqW7STsHvQJd3jsfXTI8oISfO8VLE72oS7+85SgXvGErfLt0CzU8kd4XPXd52TygsZA8b/RTPGR61jregEE83Lg6vf/uObwinuW8jbINPb6L9Tz/OnU9uM52vCJxdDze+W08cY/pPHHpSzy5QKE8FBCmPSqqPjwXq7u86xwovEvrxboiy1a86fo+PNZVnjxshi89cRa9O1Bcibqf8yq8HlMRvSYFCLzYHSU7WdPnvOzCxTttcYa7XMjfvB8wQb0gqW29EhuuvC/ukDz8UyS9yIzGPDpojjxRwAy5RbWaPbj7Z7xevVe7Kn3NvIBDGDsMi6A8rTWvvUPAIjyM9Ke8VrH+vKf/Az3Lzfk8eSKWPWLKFz1aGKG7vot1PflerLwlOfs77hEgPdYoLb2xu5u8mjYsvY9izDw8nyC94PyMvHmbQj1DkzE71kf3vL4qkbo8zBE9wFN8PSB8fLsnDyk9iSwhPahLvzz/OvU7S5FjvafSkjpGp/O8rWKgvK7zlDwXUVk7UAKnPAXEADyt28w40Guuu1laOzycKyQ9WIcsPVACJ72JWZK8xR6ivcNIdLzTugi9DDE+ve8D+bsxUpQ79pYlPZ+ZyLwvG4I9YVhtPZxYFbvn8B08YveIPdu4ujwQEQ27nryYPasrjryIyJ28iqXNPJWYd7z9rQa9OGXvvffi4Lw6Ox28XMhfvBJnaTyXmxY81qHZPGPUOD3YHaU8ogftOk4seT1EUZe8Mi/EPGGyTztFW7i7uK+sPduLSbutNS86/CYzPQtUjjwT2ZM9jMc2O4S73Tx2AK28GPd2vAwxvryJWZI8cUMuvarm1LwjPQG8MODpPJwrJD3Lzfm88TMJPOPxBL2Y/5m8uM52PC35GL0yL8S8dckavb4qEbyJ/y89mlV2PIwhmTiT0HA9oGzXvKfSEjw4OP689YyEu1a/JT0fA9A8ogdtPI9iTL3n8B28l0G0u15EK7yoxGs8vleCvb2ZnLv2lqU8WQDZPCoEoTubIQO89zxDPMA0MrwzqHA7dx/3uzstdj3MmQa8hzcpPTAN27y156U8HiYgvIUAFz2R3hc93oDBPKd4MDwVzgu8s7ATvDta5zxpN9U7CyedvKiXejyaguc7d6ZKvMBhIz2tgWq83iZfPJWY9zzB8pc8In+bvJhg/jq9xo28FwWevHlB4LygEvU6BFLWux8wQb1TcMu89pYlvDOo8LsP+cQ8qB7OvPfi4DwjPYG8oBJ1vXqGGT2q5lQ89V8TPXIBlLwYw4M8h1bzO0sYt7sl7b+8h7DVvLjOdry9Esm84jMfPVDVtTt2AK07AeQxvS35mDxZcoM8YVhtPIn/r7rT2dK7EOSbPA8mtrv5BEq9w0h0vC6KDTw1fh68qkC3vDgZtDwc74080zM1veZfKbvAYSM9OBk0POF1ubwq1y89xfEwvNjwsziShDU7PsEJvO4+kbwoiFW8fDbYO+QQT70tzCe9/K2GvBtemTv1jIS8PvV8u8vN+Tv6HJI8tgZwvCpQXL0ws3g8AorPuwXEgDy7SkK7ReKLPYlZEr24+2e9NVGtvDJcNT3FHiK8NfdKPWEMMr2zsJO8535zvI81W7z3te+67O+2PIRCMT2ague8MrYXvdGKeD2V8lm8GPf2uxgkaDxGAdY8WXIDOzu0Sb2oHk48QMuqvB8DUDzFHqK90BFMO4LG5TzEup65dDimvE2UAr3TBsS8iSyhPeNqMToK4mO4bk62vPEzCT2pNha90PIBPF8CET0KPMa8XMjfvPQaWrz1X5O9UNU1PBteGbyrueM49YyEvNARTLuUTLy8CjzGvMDaz7v3VAu742oxvci5N7wCXd69Yd9APdG36bsXUVk8wAfBvGbJsLz/G6u8qEs/vY81W7zq5RW8zknFvOIzH7ywSfE8pbCpvEOTMbwa7O48gHAJvU7gPTyqbai7eud9vBrs7jwWoZo7PTAVvFUZCDvjlyK8Dya2vMkFc7wP+UQ7AREjvGGFXrygsRA9WS3KuoLz1rycWBU9pSlWvQ8mNj1qfI488fhwvI2yjbyo8Vw9XJvuvJ2k0Dx9exG9O4dYvJiN7zxZAFk9X9UfvQ+f4rwArR+9eW7RvGxZvjt/hTI9bk62PIxt1DzcBPa8JWZsPUgjv71pGIu7l+fRPB1ouryzsJO8PQOkPBahmr2PCGo79w9SvJJXxDw4RiW9B6EwuTgZNDxvx2K9Zpw/vbJ5AT0A2hA8vcaNO+knsDoLJ528ZiMTPWbJsLzarhk96K4DvagezjxLZHK9qB7OvN7aozw3DxO97O82Pbj757sr9nm7NVEtPbOYy7sg1l69WVq7vLrRlbzDKSq7cgGUvM4c1Dy60RW9YTmju+4RoDxFtZo8FBAmvUVbuDxmb8676YESPO9d27vbP448LevxPKQKjDvDdeU8535zPNbOSrqgsRC9GPf2vH6yozp86hy9baV5PGfo+rxcDRk8omHPu9FWBTxp3XK8QPgbva9XmL0BPpQ60eRau6A/5rY1nWg9FVxhvWMBKj3swkU9L+6QPGBmFL2TQps7SFAwuwft67xWsf68TuA9vZwrJD0PzNM89YwEvb7l1zvIjMa7R0YPPTNHDL2XyIc89zxDPDhl7zwf5AU7d6bKu2b2Ib1M1hy8uFVKvVNRAb1/0W09WA4AujA6zDyi6KK7sCqnPBJInzy+i/U8iYaDvOoSB704Ze+7eL6SvPkxO71e6kg8KC7zu5vHILzut728j2JMPF4XOrtgkwW7/FMkvAR/x7yHNym86c1NvB209Tv6que845ciPflerLy4++c89O3oPHHpSz0d4Wa7sHbiPAxerzxj1Di9jbKNuzN7fzwSSJ+7Lcynu++iFDyaVXa8OOzCvODPGzxDkzE8EaKBPGEMsjwMMT68jG1UOypQXLxIqhK8jzVbvcQUgbsArR+9vot1vPR0vDzsldS7HQ7YvDoOLLuT0HC9/HLuvM52trxfLwI9KLVGPT2pwTxZLco71+aSPAfAejy9Pzq9eoYZPeknsDyHZBq9h7BVO8gTmjzPYQ29V30LvVGTGz1xcJ+81s7KvEZzgLwIXxY9l7pgvRLuvDwv7pC8ywgSvLNr2jy9mRw8ljcTPRLByzw8nyC8/5RXvTKJJj1LGDe8lpfHvL2EHj1RYDO9KJ2VvCupCTzMQLK8EbZVO9Smzjxgtx28b8HlPMnPFLxYeJs63OXQvIdqFjukBac8NOiLvMesKzzt1xE8itcCPSeK0bxBMGM48uBmPD8zgrvHEVW80NS4PFuED7xcDKK9/hcHvOpTMD32svy8pVPbOtVoP73w4wW9A9OnvAiOyDx37JG8+qoavWOJM73ACIC8XTO8PJ4U2TxkibM6orsjO+eoNLxpQCM8YQXSvFtKMb2pmS29ncakO2MBIb1lwPK8ULGGvPu6vzwu4Eg8OrPRvEHiLj2Hy469axbqOcjmib0nPJ28ktymvPA16zzr7ga9NEmEvLamlDxyBzg9Qn0FvI2WVDxA4i68qCgQvWAFUjxwg1Y9A9MnPHIu0ruwUB29EOAOu1bdxDz0e728yzCNPGfPBTzu57Y7Mk21PFJcAr3K42q8cfcSueKJ/Dyta8M8A0h2O0hbDz3qUzC9Dr2lvA01E7ujHJy8PE6ovHIeLbxkcr68kGhqvCRE/7yyTf48dYsZvAfz8bu2phQ9n/1jPGZuDb0/M4I7CXfTvBbVDT1bIxc9sSkDPa2lIb3+PqG7oL9UPSglKLtxRcc8stivOvzh2bp/P2q9s8G6vIJeIj2TxbE6j3/fPHQX3br1ZEg88dDBvChjtzyrvBY9iQJOvagRGz0cBX27VgRfPbwnV7v3dO06z+utu7ijdbs2Mo+8xNqVPKKoX7zoz847VgTfPNV/tLxwXDw9O9rrPAi1Yj1Cyzm8tpPQPGUNlb3dgKc81X+0vIytSTzjO8g5bnMxPEQC+TxSST48xHb+vDrGlTtmW8k7YsdCvJHzGzukfZS8AcOCPNJvj7y9/Au99WRIvHx9+Tyk3gw9cKrwvAe4AT2AAVs8ad8qveiRP73FKMo83OXQvK4tNL3iO0g8eoRJO2pAIz2Dv5o9YQXSPNiffrwjaoe8BlcJvfV3jDzd9fW8AkuVvA+msDw7dUI9EOAOvStc57w8ryA8L3sfPUlIy7xyLtK8rpLdO6NDtjsfsPg8vfwLvbH/STz+Zbu8XeUHvQuKl7vqeso80Q6XPBxSnzxLQfu7QwWYPDa6obuVYAi9Mv8AvUeZHj3BfU69crkDvFdRAbrLkYW7sSZkPKUswbzaOlU96zw7vNrVK73MGRg8ihUSvRTsgrz2PS49HMdtPL/SUryQ8xs92mFvvVYE3zxe9Sw9QbsUO4p2Cjw9w/a8Z8+FPWAFUruLXxW86lOwu4I3CDy2bLa8vOlHPSENwLzoQws9X943vdVov7xnRFQ9FGFRPTcbGr11sjM8iPKoPNPkXT14Xa+85CRTvA/kvzwPzUq8qOoAu1CuZz1lcj48TGeDvNoj4DpbSrG8NUZlPJT/D70eYkQ9yG4cPa57aD3Apwc9JfIZPKiworwRaCG9cKrwOzh8kjzfabI8uwC9upIDQbwWNga8SUjLPFxaVr2zwTo9WpuEPGfPhTtlmdg9Vt1EPQzUGj0dO6q8Te8VPBK21TyhWis8nN2ZvKnXvLz6+E6856g0O8QoyrvuTOA7xZwGvWm4kD23Bw080+TdvFuEjzxbmOW83adBvmzEhLtCyzk8IQ1APOArIzxU9Dm6gLMmvZmAUr2ta0O9+h/pvOhDC70N+zS90wv4PEBucryfry88+vjOvBppFL3arhE9vjf8PCWhRr1SST69PvmjvBYjQj1DtMS7eTYVvY697ruq04s77f4rujtlHbzaYW+8B0CUvBLdb7wOHh68uyfXPL2EHjy5F7I8OMrGvC7gyLwMrYC8WJ81u5WHoj1TRQ098swQO9Jvj7xmwHK7Zql9vGlrbjwyh5M8zxLIvKD94zxnzwW8sBa/PLplZr2RVBQ78+Bmvfzh2Txawh49+5OlO3xpo7xsiia9+guTO7H/Sb1wbwA99k3TvOP9OLyVYAi9OcpGvcLxijzzuUw8Cp5tvPqqGj1cDKK8SG/luzsnDj0oJSg8kMwBPVlhJr18Qgm9ZJlYOhbVDb4CrA08NHCePGpU+TyLEnM8BlcJvCbIYLs+cZG8urKIvI9/XzySVJQ+gl6iPIUwuDw48eC8Dh6ePNA5Yryo6gC8ai1fvOVL7TvOYxu8VS6YPHYA6DxlrBw8+vjOvFuEj7tXF6M8uydXvB15OT1iYpk9hIELvdtwAjzK42o7Vraqu1EipLv+o8q8ZsByvfLMELyfJH49P0dYPM9gfLwZ9Ve87TiKPGZbST0wZCq9hJXhu4udpLwbBf04FjYGPGY0LzwR9OQ6n0oGPTZG5byafCE7IwkPvcxnTLzJbhy89v+eO9CGhDnXeGQ89XcMvETbXrzOY5s7R630uy+iubz5D0S8AhE3vOtj1bwUeEa8oeZuvIgZQz2StQw8t1VBPHTJqDoNIk8887nMPJWHorw/IL66aQZFvagRGz1qLd88WO3pPCmadjxB4q68/hcHPaRqUDzmNPg7jSGGPBkfkT0azr268PfbvMjTRb1+GFC8uVGQvI0hBrsMh3g80SJtPS33Pbx/2sA81RqLvP5lO7zNjua8vuUWPLSqxbuafKE8Eo+7O8fTRTyjkeq7BgpnvZuQdzoPC1o7IL+Lu6klcTysHY88MGQqvDqzUT3y4Ga8s5ogPJ4U2bxmW8k8xXb+OR15ub3SIu08fcqbvB15Obs2+DA9tdHfPBTsgjwXStw8waTou0WdTz1ft528RMcIPQrrDz0HpT29GvXXvK4tNLxJ4yG7LAoCveM7SD29hB49PK8gPRyg07xO3NG8fVbfPHcAaD1sFmo7uFXBPcCnBz0Jd9M8yNPFPGrINb215KO8gqzWvMrj6ru5F7K5jr3uvOjfczwgvwu9hG7HOrdVwbupma072BM7PcGnhz1yBzi9y7ifvPxVlryS3Ka83OXQvP4+Ib24j5+8RjimuxKPuzwakC69wn3OPDjKxjx36fK8BqU9PN+6hT22k9A8S0F7vL9tKT1Sgxy912QOvewVoTzLpdu8Bt+bvK4ttL0BKKy783s9Pbl8Wzw1H8s8lP8PPHxCCT1fHMc8kFjFPGyxwDwZzr08h0DdvIbLDj0xst67goU8vDJNtT1UMsm8X84SvKCYOj1vXDy8dwBoPfHQQT2TKts80m8PvCW4uzxUpgW9XvWsPJHMATwHuAG98aknvV7OErtC8tM8mVm4vOjfc7yUE+a8Od2KPIABW7xp3yq96+6GvPnRNL3umQK8Dr0lPSV6rDujatC8FXQVPe3XEb2SFgU84WUBPONODDmRQdC41wMWPJ/9Yzug/WO9kUHQvLPBujsLipc7jr1uPFKDHL11srM7L6I5PKwdDz1kS6Q832myOpMq27zj1h69cVgLPbaTUDwxxSI9dfDCvCj+jT3GOG+801iaO6FaKz1mNC88C3OiPN66hTvpuNk8Zm4NO49/X7w0Xdo7ai3fvGcdujqf6Q09bNhavIDawDstuS49/baOvCfI4Lqukt07njvzuuUNXryVE2a8I2qHuzmjrLyAjAy8PtKJvGAFUrroaiW99j0uPJlZuLzRDhe9qCgQPb7lFjvrPDs8/qNKvWAFUr1Djao8qCgQPI3AjboapyM8vBDiPNOWqTxHrfS7ch6tvH2jAbo7J468m5D3vDyIhjwsSBE8q7yWvAs5RL2sRCk8/HwwPIvEvjwlocY6zyUMO7l827yilAm9FOwCvbX4ebwX5bK8MGSqOV2B8Dz+jFU8BfYQPC/cl73Vf7Q87YrvPOmkgzuZkxY8dwBoPQ1J6bvuJcY6jjErPFlhJr3VQSW9bP/0vM2O5ruT7Mu8gHUXvej26DzP66246SwWu43ADbzw99u6Nm1/vNMxAL0lU5K8Zg2VOxNRrDrZTRm8asg1veX5hz1lcj68eNUcvWrfKjyI2zM9V3gbvUY4pjw/Wpy8UpfyvMu4n7zo3/M7nD6SuzCLRDx4Xa86y1cnvR3H7bx4wtg83OXQvLZstrwUOrc7yPpfO61rQ7072uu87SXGPBoc8rx6q2M8XkaAvUxB+zy4Lqc8asi1PNNYmrs5o6y8ahkJvSrnGD36+M68aqEbPTgv8Lx98TU9ZltJvZJR9byOve48FIjrPBV0Fb0WcXa82jpVvNGtnjqNrUk9DwtavHmXDb0mocY8QFd9O8yOZjx6q2O8AZ36POLtk7w9Xs28sbEVvjrGFTy3Lic75jT4vNtwgjsJd1O8ZCQKvc0CI733YBe9Y8ORvH8o9bvJlba8YBiWPPKSsrxI+ha9x+q6PDBkqrwluDs8v5RDPLxOcTuKFRI9zECyvLwQ4rySPR+8wla0PFJcAr2XcK082zakPIKsVrwf1oC7VPQ5PUpEmjxyLlK8eavjPAQh3Du10d87zzwBPZVgiLw0Dya7lWAIPSNqBz00Xdo8lP+PvLzCrbztOIo8teQjPYUJHr3u/qu8YRX3vETbXjzTlqm88uBmPD/SiTqQWEU8SQo8vdz4FD2FvHu9E1GsOrTRXztE29478uDmu1MLLzw0D6a9h0BdvceFkbyNwI08hn5svTyIhjyTPZ88R630vD7SibtSl3I9OyeOPGRLpLyj9YE8gjeIvA4ydDyRzAG83OXQuy5Uhb0JKZ88EfRkvbE92Tw4fBI9rpLdu9jFhjxD8lO8/HywPAfMV7yZ9A67dKIOvfGpp7zqU7C8uzobPTk+A73GOO87ch4tOyma9ryF4gM9e+GQvPV3jDzt1xE8qCXxOofyKLxheY47e4AYPX6jgbsyh5M7v20pPVtKsbylZp+8W0qxvOtjVb35gwA620p6vZeqCz1wg1a8AThRPKOR6jp4XS+9EWghPSvnGLzXKjC9OsYVvDDJ07t6+AW8+CIIPS+iubzHhRE9Jd9VPYWBCzwaHPK8OKMsvKcVzDyVrjy983s9vVCxhr258Bc9Sh0APGGgKL0sHtg7Vyt5PCahRjyTA8G84FK9OfrRNLuMrUm8fGkjPGkGRbyF4gO9eZcNPDGLxLsp/g27cKpwPcbqOrywUB09tIMrPJwrTjwL6w87NF1aPRR4Rjz6+M68KjVNvAS8Mr2XSZO99Hu9POX5BztfkAO8NvgwvQkpHzxZYSY9aETUu0ulErssHli8dtnNOr38i724jx89isQ+vUQogT3XeGQ8jSEGPWwClD2ILAc9wla0PFGaETx0VWw92TrVvHCD1jzt1xG7hbz7POEECbwYvpi8wz8/PeArI72N+309sk3+PDM2QDzTWJo8q1sePM2O5js8r6C8o/WBPI0hBr2XcC08H0tPvZr0jryAAds81UGlOvOOAb3xkjI9ZYWCvYcsh7wH8/G7yeNqOqGBRT23VUE7QDDjvMcR1TsZ9dc7PyC+vMq80DzTC3g99j0uvRgzZ7vAbam58PdbvN5Zjb127BE9CGeuvJyfCr2pma0532myOxqQrrx+KxQ9eqtjPA4y9LyJAs47vYSeOhY2BjxYnzU9TtxRO10zvLxnRFQ9t1XBPHZbobwZOgs9w0drvVP/ozypFhU8r/YPvUU1fLy9NJE89G2QPAlLkjwZAsY6LNruPOIl3bzKwRq7zk00uyp4/7xIVnE8dFbIOx53nDw3muS8KDcSPAxsB7xA4Sc8FkPAPOvJtruHLnE7izgjvd6CgDtBt/A8VVMFveBPFD09wDI78f0SvW39mjxy9Fi8tNYKu7BvQr0edxy9+Qc4vHxuezy4h/U8XV2qPCf68zxp3CW9y4lVPOBPFL3pUIS8YJXivA+II7sTf+G6gvFfvB4/17sgW/M8sCnvvHMQdTyOE0U9llWvvYB4LTwhGnm91HMCPfwoLbylDOM8hRLVvCd4jLxFHrk8ePBvPRfYG7zJys88hxeuOtfCfbxHgCg8j/yBPXRWSDsD3/C8idYzvV9iA7xZ9mE89G0QvXe9ED3LLD87x8X2OmRZQbwSTAI8yPQGvPILIb1YwwI9vlAtvH5ckbxHgKg8mOp9vQmoKL15k1m8aTk8vEWzFL0+FBS8Caiou84HYTr9boC8YSGJPKb1n7yJ1rM8zuIPPf58Djz15kK9pyh/PAIJKL1m10w9FMU0PWl/jz2k2QO8U/GVPFd9rzy56WQ8MTgCPYUS1bz8hUM8Agkovb00Eb2iMUE9YDjMvJcUNbyGdMQ9uROcPA+kv7tGwaK76CF0Ou7qK73EMKg8iGuPOhZDwDysTs08oWmGO5cUNbzHAhU8zEjbuwiMjDz9KK28AmY+O2s+FT0oKYS8aXEBPbvSoTtMGlA8cJLpvO7cHT0DXQm9t7GsOyiitjyLOKO8fZ2LPMCyHD25Kt88QPhqPf7+9bwDXYk8+8Y9O+vl0jtwNVM7aZbSPCYkqzvBYxS9pDYau8uJ1bzq4Pk88AZIPdkNqrygz9E7B6PPPHQ/Bb3tiDy9/csWPCBEsLwmxxS9vq3DPK6wPLz3Al89FMU0PRMiS7wLxES87uqrvMPqVLxGwSI9oAcXvX65J7zQoZU84g4aPa2wvLqjTd28gZRJPA7lOTrM68S8LNpuvZjTOj0iYEw9kyuFPLHo9Lz3SLI7X9s1vMPFgztlUIy8oCxoPMBsSTq70iE9aMCJPMtyErslFh289XsevffdjbwCZr48JseUvBbKjTozee+7ZVAMvaWvzDi70iG9nfQvPUJa2jtzs147v/OWPGd6trwaHuI80KGVPMPFA70mx5S8+cHkPMtI27wIBT89GUgZPalzqzz9boA8zpMHvPtpJz1GwSK7rZQgvH2di7zyxc070ihWvB8olD35qiG7DSa0PE7ZVbuXzuG8q3gEPEV7zzrIAhW9GaWvPGBwET3ryTY70hETvBNaEDu56WQ8IQM2vJOWKTly9Fg9uXCyPEtEh7zVSUs8vO69u7svODyWVS+9S0SHPNYyiD0lgUE9NTj1u42akrwu38e8dzFqvTIAvbx9+qE8N+A3PcCynLwlFp28RxWEPK4N07t0Vsi7E39hPFv7Orsp/8w7dzHqPUhW8Txu0+M8fVc4O4xUvzyZjec8JseUOyDZi7x+TgO9flyROxWEOjw3mmS7YVRou+TNn7xXfa899qVIvA78/LznBdi7106kvBBHKb5weyY8rTeKO4kcB7sQRyk8UHOKO5mNZ73UA3i8HWkOvWpV2LybNSo6rTeKvUCb1LxDGWC8+JwTPeqD47zAiOW8A9/wPCQIDz0Apzi9TjbsvJDJFTz6/oI9xKlavFwX17s/IiK8PyKiPPcCXzyAG5e7zY4uvRi8crrfkA49Jd7Xu/8tBj2RS327TQMNu31XOL2qSfS8dHLkO95h/rvnqEE9r/aPPO5Hwruk8MY8p7SlvFRcurwBngM9Cn7xu/EiZLu+rUM7VRtAu5Xqirw4NBm9p6YXve5/B72k8MY70MZmPfA+DT13y568LH3YvAAEzzwKfnG92ylGPEoV9zuWVS+8kUt9vRZDQDwLPXc8ei0OvLiH9bz4nBM9GV/cvKSTML3+fA49s+3NvI+M9zvlIYG8FeFQPISZIjonnd29xYQJPRmlr7sGzQY9mOr9PLnpZDznYm69zEjbuydAR7x+0Oo8Ae2LPgQOAT05nz28tw7DvKVSNjsWQ8C8h6yJuiDnGb3jQXm7HWkOvUQCHby4BY48iXmdvDDkoDyf+Yi8nK5cvP58jrxC/cM8V5RyPUCb1Lz1Hgg7CAW/vLIXhTwbBx88DODguy483ryFSpq8WhJ+PY62rrxBt3C72Q0qvBKpGDx5fJY9knqNveJrMLxlXhq93KL4PKpJdLzbKUY9JGUlPAkFP7uDixS93t+WPCd4jLxakBY9G4BRvFV4VryebWI7UlfhvB6Fqrw2ZwW9QD6+PDBBNzxT/6O8WfbhOy6CMb3Ayd+8oHK7PO0BbzwSqZi8RAKdPIkzSrvUcwI9vIOZuxTFtDx1cmS9jrauOt2nUb2L8s87UPVxO2FU6DyZdqQ8V5TyO7Ap7zwVPuc8Ae2LOdyi+Dv6/oI9D6S/O9lhCzs6GHC9SrjgvG39mrwj2f678MB0uderOj3MIwq9P8WLO9uieDxDdva856hBupsLc7oCw1S9n1afPJxRRrv0yqa7QuYAvTDkIL0GKp28ruiBPMmzjLzMIwo7pWl5u1P/I7z8vYg96l4SveGC87yuDdO7x2jgPPicEzyid5S9l3HLPGc047v4joU7XtbcPBYnJD1MUhU9YdIAPSWBwbyuDVM9gw38vH1XOLs34Dc9q3iEvWs+lbzXQBa9i9uMPHXPer0sIEK86l4SPb5ncLu87j29ZPwqvdAMujxXlHI9aMAJvAfpoj0+OWU65z0dvFzyBTtHl+u8NTh1vIl5Hb15NkO9rkUYPA1shzu+UC09KegJPX2di7x8bns85+AGOy8lmzwVPuc8HWmOvVmZS7w9wDK9CiHbvBKpGL1b+zq9gvHfPBBe7LtHFYQ8dv4KvRegVj0QXuw8k63su42akjz3X/U82ynGPNdl57kEDoE9HuLAvKTZA7yrMrE8p4ruvKLUKr03Pc69lJYpvMJxoruz7U28k4ibuq4EHjw2ZwU8ao0dPVv7Orryrgo8tDMhPTD747w2xJs787wYO+YvDzyR7uY9cpfCvFhT+DtS44c9JMI7PIzpmj1QO8U8uyYDPf6hX7wVm/27ST+uO6TwxjxUog29RdjlvESlBjz0yqY70ufbPD8iIr0813U8F0PAuyJgzDs3dRO9eNksvNCvo7zlAH+8Cn5xu8zrRD2a71a77Yg8vc+ThzohGnm8taxTPJWyxbxX2sU8Cb/rPLHodDtkn5S7ST8uvUN29rwtZpW7WTy1vHZboTyBvoC9WNGQu10AlDwbZLW8C62BO0xgI7yBTvY8XtZcvSr2lz1rPpU8afNoPaTZg7sGzQY9ycrPvFtBjjz1oO88K2E8PQUcDz0Q6pK8NmeFPHofAL1APj470su/PCP6AD3mjCU88e+EO3k2wzxONmy7cVHvOxYnpLpOtAQ8Ypo7O+7qKzsQ6hK8INmLOysEJr2MjIS8hliovKVSNrvMpfG7K77SvZXqCryMjIS8kAqQvLXkGD00v8K8NTh1PAw9d73LSNu8TGCjPd5KOz0YSJk6XhwwPIs4Iz3tKyY8I3zoO+5Hwrs34Lc7wMnfvKrsXbzrDwo9F9gbvC8lmzthL5e8G8HLPKaYCT38hUO8fk6DPAmoqDxvvKA7HIDRvH36Ib0WJ6S8zY4uO9RzAr1f27W7FRmWPAPf8DhjkYa99qXIPOjuFD1A4ac852Luut4EaD3DR2u7M/eHu+tsILuZjWe8p8touzuklrzKZAQ7uy84vdTQGL0YvHI8adylOpZVr7zq4Pm4gjczvCQIjzwipp+8nm3ivHcMmTwXe4U7K6cPPUn52rzjQXk97uorvWowB71XfS+8Dp/mPEeAqLwCrBE98mi3vLWs07zryba8nImLu4Vva7wmeIy7IKFGPavVmrvEjT68S6EdPW52zbxX2kW7yIR8vFv7uj2ZGY68J4aavA5C0Dt8bnu7XtbcPIHMDr1pObw8U/GVPKfLaDzdLp87grBlvBBHqbx5NkM9VzfcvCgphDtuGTe9nK7cPO0rJr1e1ly8x2hgPPvGPT2VbHK8+Qe4vL5QLb21lZA7IFtzu4Ablzzconi94AlBPA+II7ty9Fi8Gh5iu92n0Twbqoi9UxbnvGlxAb5oUH89K6ePu9dlZ7uY0zq94mswvG7TY70wns28OwGtuzE4Ar3pn4w6/ueyOzc9zjwbZLW8PjnlukeAqDwkwju9VKKNvJFLfbwABE88xjUBPQdGubw5Qqe8OfzTvJG7BztAdgO93Yu1vJkZDrxatee8LcOrvEmFAT2b2BO8TGCjvHpS3zwhioM8USQCPYvyzzzbReK6n89RvM2OLj0q9hc88D6NPP9gZbxy9Ng7MqMmPZWyxTw3gyG91C0vvP7nMr3uf4e8teSYvCN8aD3c6Es9jFS/PDuklryg6+088EybvWXS8zuJHIc92mGLPGI9Jb0FnnY8C2cuvflNC70+3M67MxxZPbxLVL3DxYM8bLdHPTV+SL1BNQm9lpsCPABKojx+uae83CARu1d9rzuY0zo950urOuGCcz06AS29bnbNvBvBS73mjKU6OCYLPNTQmLx+0Go9B0a5u1a+KbybksA79XuevMPqVL315sK8n1YfvW9fCj01OHW9witPPC6ZdLxurhK8mdM6PKnQwTt6LQ68wCZ2O1qQljw514K8MqOmvMj0hjyijlc88guhvPBjXjzJJ2Y7HSM7u44TRb2tN4q98D4NPLASLL3tKyY96cTdvOOHzDw7Hck7Ypo7PGB+n7lC/UO9RLxJvdRzArxiPaW7E1qQPCqZAT2Fb2u8QOGnvBJjRT1WN9y7bnbNvKwI+rwZpa88IEQwPMyl8buoZZ29S6EdPUoVdzoFnna8m9iTOEtSFbx7O5w8F+YpvbPtzbsUaJ48S1tKPGs+lTuF7QO9FMW0vJwL87zyaDe9QbfwvAdGuTwsIEK8WrXnPJdxS7u+UK08Th8pPBkCRj1C/cO8BeTJvHuYMruJeR2981+CvXy0zjvkRlK8witPvDIAPT3Nji4884TTu1qQljxrPhW8YVRougKskbwFnna82Q2qPCi5eb0AYWU9w0frvAOC2jzHC0o9js1xPY62LjzjQfk8qIruO2mW0rwO5bk8YhNuPCp4fzxakJY7Pn+4OxkCxjzaYYu86ybNPKDr7TwMu488AmY+PWORhjrhAIy7AZ6DvLAp7zyJM0q9rKvjPGjAib01to28kBiePEcVhLs8VY68eXwWPDc9Tr2yF4W8lpuCvB7iwDmm9R89CagoPAIJqLzgCUG85X4XPJhoFr2HF648mUxtPMtyEr1qjZ28k1DWO/lNCzwjVxe9JRYdPbzuPbz5Bzi9RAKdvGV1XTzo7hS8BUFgPcSNvrz5ZE66IKFGvAkhWzw8el88h6wJPXotjjysq2O8NL9CPW+8oDtiUse7/No2PBMaWL3ShxU5lqCaPBQOKb1aRfU8oK25vPjyx7voj7M83NfmvHSprDyEkti851I/PDlCWLx4kZu8dp1KvJCNCrywlmU9l6DnvEFPd7yQjQo8bJacvFwzCD1EQ0g8UyynPKBwRbpBjJ46kj5DPabGurzTjdM7q66pvJoOIb1rIiU8IA9mvBMa2LtxO6a7Uu9/vex3Irmj3ks9VxQWPEDVQTxYCDQ8VSBFvWEVBj3huZe8yQZMvMJnM72QSiU8n/AePOab4rwy4LO8AEk9Pf3aNr0D9Dc9EOlFPC67g70oZds8luk9vPQEG7y71Mm8wHMVPZw/s7sEbu26IUxavCAPZj3PXEG8C8QVPS0EJ7ybSxW7Z/GSPI5Qlj2wTcK7a5wNvQ17P72ZlLi66I+zPEIGB70sxzI9yYC0u5lRhjwQ4wc9XmSaPKh9ZDyefHS9bs0fPYh6R7zSE+s89ngSPM7i2Lzi8Bq9oxvAPBzehrwp2YW7Q0PIPAtK+jxZCLS8EOnFPC+7UDziLdy8X16pPO1377ySAYI6tLUKvTMdKL3qQJ+8KGXbPIXJDj0LSno9pJUovdJQ3zy1NTE9/dq2PCyEgDwRoCK98pDwvNPEibw/4fA7UPthPTq2Arvk5Lg8xdU5PaFk47soos+8ezyWPBn2lzwBek+8RD0KunedyjtxO6Y89cG1PI8N/rul0um8Zzo2PAF6z7x0L8Q8U6ZcOjOdgTnZplQ8WYLpvGvZgTwl8ZY8UXVKvPJZILx6Qgc9ifT8vIQMwTyk0hw8KlmsPBDpRTyWYyY98F8RPaZM0jwHXIC8Rb2wPFHvMjyLpRu8KN9DPBSUQLxjRhg9ycMZPB1kazw77QW9sE3CO0ilH7ujode8diMVPFu/3TxFN+a8gxjwvIc3lT3rdyI8tLUKu+y6hzxFvX08mg4hPf1UnzxAVRu7vQWPu7DNm7ya0ay8MexiPGEVBr24ZsO81EQwvDdOujwonJE86AnpvHD+frxiTIk8VxQWvaZM0ryvWSQ9i6tZPVXXbrwV0TS9fXMZPZG+HL3VOAE8+K8VPSsQ1jxav5A8xRKuPEHJErxuR1W8gp66vBcCR70CdBG9bwoUPaFklr13lww7hYZ2vGxTN708Zzs7wx7dvMq9KD0Ne788DnWBva3fu7xYRag7G6eDvKr3TD0tBHQ8IgM3PAuHbjwX/Ig7FwLHPIkxJD0LSvo8TcSRuxvqtbx6wi09aWvIvM2riLwp2QW7oWSWO4xitrxsnFo9vE7/vN5LkTwQJjq9nzMEvbLHdzyVb1U8qIOIvBeCoDi7CwA993jfuwSrlLzykCO9zKuIOrEKELtq5TA7SlxJPRIaWDynAy+8WMWBPJ9wxbzPGY870hPrvEdo+Dw01IQ9Q0PIPBaIXjtb9pO8s37UvAI9W70cJ3e9VaCePHadyjzoCZy8skGTPNwU27w8Ksc8iPQvvOSnRDw0lxC8JDRJOxfF0j1ZCDS99ArZPKeJRrwZMww9ssequ21TtzxEAJY7Yswvve13b7ysZYY8rChfO80r/DyoQPC8GmqPPUyNjjyEDEG9+amkPHfaPrwflTC+oWTjumEVUzwU0bS8iqUbuWW6DzxvCmG9ueArPKwoX71gITW9jJ8qPPGcUr3nFUs8wHOVPOmDBDzrdyK9kEryvF2zrjsgiYE7AAAavQhcgL3fCPk7DbizPTIjmbxzbLi8RENIvOpGXT3yWaC7QwZUu9zXZrx32j69deagO1KsALyA4Z88w6SnPJGHZjx9cxm83NdmvVUahzyQxA08SOKTPSpZrD17PJa8YNiRPPLTiLzJAA68OXkOPQbo1bvPH807EGkfPAP0N7zuLkw8laxJvUESNjyAYca8f231PBeCoDzIjGM9nMXKvPf+9jqZGlC8XqdMvTjI77snKOe7NhHGvBMai73YaZM7DnWBvcjJCjvxnFK9a9nOPG8KFL0UjoK8X6fMOxYCR7zF1Tk8XS0XvNxRz7w21FE8opsZvpQy4Ttbdjq7LAQnPdQHvDxK1jE8FdE0vUexTrvv5ag8hIyaPP8Fiz4vtRI9/Rf4vEY3Zr18eQo9pUwFvH8kBTwE6Ai8QNVBPc+Ztby+QoO9G+o1PdFQkjw0HfW6cjvzO/XBtTz3eF88p0Cjuv0XeD1JH9W8bc3sPGpfGTvC5wy8FI4CPNkgPbwtx/+8laYLu92OwzwGYj686cwnPK1l0zwHGZs8D6yEPVkINL2oQPA83Q6dvGi0az1Tply8fXnXO1hFKD1vChS8FA4pvUW9/TydfKe7EKYTPcjJ17wBegK9PqQvPZfd2zzHTyI8JTRJvAsBCrysZQY8+qkkO8zuOr0H4pe8EKaTvCJA+LwfD5k6V1FXvMk9gjyHesc7MK8hu81oIzsP9fQ7ZYMMvAvE4rn7I1q7y3SFPHTmID1slpw8VdduPF/kQDx3VKc8cvJPPbsLAL3nUr+6+yNaPeA5vjyyBGw893iSve5rwDsGJUq5hUm1PBcCx7u/NiE9uVoUvbU1fjzHT++8ExSau5sO7rwVS5081fsMvUIGBz3bmvK8yr31PNREML0+pK+8H5UwvblaFDw2zpO7BmK+vJUmsjzhMwC9Zf3BPUkfCL1ds667CY2Su4rozTxJHwg9kMQNvUbuwjxp5f27HhvIOx4byDt05iA97fFXvAmNEj0E6Ai9XS2XPWrlML31hEE8XmSaOLfmnLyWaZc7HWRrvCxNSjoXAse66UaQu8QeXT3qRt08xZIHve5rwLtRMhg9aS5UPRc/O7r+C0k9sJblPOEzAD0kcT08pQ8Rvd0OnbwE6Ai9NB11vdBcwTxXSxk9egUTPQdcgDwufly8WQg0PUniYDwXxQU9ZMx8PLCWZb3xX967wmczvebYibsd3oa9njPRvC+70DrxnFK8OULYO+8oDrklNMm7v7w4PQsBCj1BEra8qX3kPHz/7jwiwIQ8vE4yPH2wjb2Htzu9O+2FPL3I57wKSq2793jfvebYibx9tss8nrmbPCBMjTzt8dc8VxTjO7NBYD03yCK8jNxrvN2IBT02Eca87yIdPGJSx7xotGu8hJLYPeUh+rsbJ6o6+akkPcr6aTsFbm09kEpyu23N7DsN9Se9XfDvvCzHsrttkKs8hIyaPGjxX70Dt0O8MDW5vDCvIT3uLky8fML6uzQdqLtEQ0g8Ue8yvDaLrrz5qaQ54XYyvYTPzDxRdUo9UbI+OVpFdb2vWfE5lum9vF2z+zxWUQo6SR8IPbFHBD1Vmq06CJODvKYPXrxPviC9zmhwOmLMrzsBAOc8hsPqvHsFkzs2iy66+mx9PBrqNTzBKr88uh3tPE3Ekby7zgs91ER9Ooyfqj0ufty8e4U5Pdb1m7yciIk7VxTjPMBzlTyeM9E82SC9usGwVju1ciW8YCE1PCyEgLxL1rE7WkV1PDdOurxOAYY99AqMvPWEQTzJPQK8Ozb2PFqCHD2ulpi7Aj3bu7JBkzs4BeS8bBZDvCkcOL3DpKc8iugAukbuwr0shIC8iqUbvUiln7saM1k8R7HOvFu5nzxBzwO8O+0FvWgu1DyEklg963eiuydfnbxTaWg8MSlXPC67g7zKgLS8Ph6YvMuxxrxSb4y8oWTjus5ocDwJDTm6sNNZvQvElTyd/IA8l91bvJBKcrxOgay8VxTjvCqW7bwFbm28IsbCvD+YAD36bLA6mBpQPZUmsrzis6Y8WoIcvZqUOLvVgfE8HhtIPHjO3Dy8Tn89M6M/vHgXs7w3i/s8FwLHvGHYXrzBsFa7nzPROosfhLyvEAG9n3DFPOgJaTyAJAW9EWMuPJrR+byBWwg9FA4pvegJnLxytds8CNymPLbsDTxn8RK99ApZPam62L2OGRO9lW8IvNaytj2klfW7nD+zPJigZ7yoAy+9+PJHvN2IBbweWLw7tfi8vGQJ8busoke8Ue//OwzEFTy/NqE7+amkuxvqtbp8eQo9yvppvBh8/Lzmm+K8bpD4uSmWID2B2y697bRjPBMa2DwLSvo6z5m1u4Lbe70QrNG8UrI+PW9BF71OgSy95w+NvNkgPbsmrrG8uGAFPZ0CvzyQxI28qbpYvCN9n7wpWSy9fvO/u8hDwLx2nUo84y1cvYur2bvDpKe8bpCru/ps/btMygI9OjyavH2wDTvlIfq90lCSPRlwTbwjQPg6gCTSvO2047siQPi8fm2ovMq9dbz0RwC8fvM/vKPYDTwj94c9nT8zvD0qRzvFEq48rxz9vI9KJTpm/cG7/JeEO0CSDz11qay77i5MvTpznbyQSiU9zCsvvSfrcjteLWS881P8u2guB73TB7y7u86LuzQdKLwNOA09QckSvJ0/Mz1TaRs9H5UwPGqovDz+VOw8lSayO71CUDzIBsw87fFXPJT17Dwo30M9cP6xu4+TSDwRYy68+LUGPc8fzbvmXiE9bc0fPGMJpDxJ4uC7iujNPDeLe738l4S84i0PPXiR6DxSLCe9Ru7CPK3fO712Whi9vItzvKAnojwook+99v4pu6BwRT3yFju8gxhwvf2REz3EWwS9/BervAMx+TxizK+8UXVKPbsLAL0zoz87vv+dvDuwXjsD9De9IkB4PBZLaj2vWfE7IgO3PEQAFjxs2U48TMoCPRvqNbumD169aSgWvI1WB72cgpi7RTeZvI5W1Dz4tQa851K/uzGv7rsRoCK8mKBnvV9eqTthm527A7GFvJDEjbwDt0M8UqwAPVv8UTzO4tg8mg6hPAlQnjxMjQ69hsNqvdITa7rA+Xm94/BnPOJ2sryoQCM8BuhVvOMt3LuJdAm8laaLvCcoZ72l0um7/GABvd0ILL3u6xk9sBCBvFv8UbxkCSS7hYb2u/DldbyQSiW9nD+zPL7/nbxw/jG93Y7DvX9t9Tyg6q07CwGKvKtxtTwH3Ca7gCTSPKMVAr0a6rU76UaQurN+hzxkzHy5fm2ovGTM/LxROFa9/ZFgPLyLJr3ua8A76I8zO5P17DuM3B68wSq/PMk9Ajya0aw8/No2vH1zGb2rrva8dmBWvP6R4Lx+8z+8jtC8PIIelDuputi685DwOjA1ObwYfPy8SxNzOvFfXrzttOO8VlHXvOx37zrm2Im8EaBvPUSAvLygrTk9oxWCPPIWOzymxro8f+cQPfc7azw+W1m9vv8dPU3EkbwI3Ca9GHyvu/KQo7xz8oK7WMs/vepGkDyXY/M8HhtIvPGWlDzbXX48zxmPvHeXjLz9F3g88V/evKPeyzy+QgO9VZotvVhFKDyoQKO8gWFGvQ0+SzzpzHS9eQsEPHpCh7u+PJI7GmoPPOA5vrx0qay8XfDvPNaytrwSY/u8BKuUPLwLgDwpHDi8fDyWuyCJAT3ttOM6hAxBvFqCHLxWmi28JS4LvV3wb7zgv1U9LE3KvISSWD2mTIU8EaAivC94Hrzg/Em7SxOmPG0QBT0XgqA7cME9vG1Ttzzy2Ua7Mn6WvPnpYjtJ7PS8WsqIvLbvbDw2C/O8FgcfPJuAbjwdLly8IHXau7yRxryhIkg8iw4lveeaSDwCv108ZCRnPDkbZTwkqHs8hKPXPLKobrydA4S8wwvmPA86nTw4Qx89iTHUuyFSq7uG1vi8YFgFvTeJ/TtkTCG9wx/DPIvXmLxxQOC8yz+nPMti1rz6sta7GDJHu+YBCL3qSIa74NU/PdpHw7y8pSO5uEpIu0+xfb2P5wo9O63MvFflPr3AoTi9JwNXPGGXirk7wSm9RoJHvAEKRz0KTVq8QwS9PCzwGT1q6W+9QKlhOiMjGL2oxKG81hSivMwX7TxvwtW79JMSPWyjkTzod5k9eM7cuiOthjwcecW8QwS9vAAeJLw2xRQ9SCgMvWyPNL346WK9gMMYvPDJ/jyXmDa89kgpPSPQNT0bsFE8l5i2u/riCTwyPxG74Omcu3n+Dz3l+Q68RZYku9RfCz3cLA29av3MvIMKl7jRXuu8hDW/vFtP7LuzTrO7l+uYvI/2XDzcLA096uHGvAAeJD0rJya8t8y9PHKnH702sbe86RhTvJU2Aj21agk94menPbXgGr1N/OY89X+1PDutzDzvyX48ne+mvM70vbx7g/O8n4GOuySZKT0Z5128F1qBPMSxKj3hnrM8DnEpvHgZRj1BhjK89aJkO2DdaLw7wam6vTcLPd5XtTvOqdS8kavzvMUEDT35xrM8f1zZPDeJ/bwWoN+6rZ0HvEwz87yTdGc8YFgFPb1aOr1mtk48htuDPF2HmL1eUAw82X5PPXZBADyfkOA2LpHTPIezST2SdGc95Bw+veJnJz0RpMo76uHGuyYrET2euJq7bGwFPaD3nzzrll28g6NXu3F3bDz4IO885D/tvAX3CbwDnC49e2BEvZ4DhL28LxI8z4YluYoOpbu5sQc8H9QgPPIBKz0+CCg9C9/BuolFsbxg3ei7eM7cvDfU5jyudc282bVbvU6iK7wWkY09nRLWu+i2Hr32a9i6MgiFOoPa47y8+AW9fPKrPDHEdD1oSLa7a6ORuvIBKz3yJNq8Jhe0u1sYYLzejsG8U+mpPEFy1TwjvFi8HZUbvTHsLryyhT+952M8vUq16Dwe1CC9tE6zPIBwtrufx+y85QhhPDyZb7zfQ9g7D8QLPeLxFb0y2FE80U+ZupDTrTwrsZQ8rcC2uhJKD7xvs4M9vyMuvMlLCz3aavI81mcEPGGm3LtfKNK7pmlGPBGkSjw6+LW8SBSvPCfvebzGQ5I7soU/PQhht7x1h948qY0VvU7ZN70wWke8NrG3PERXH70VyBm7zqlUPX0Bfrv7IY+8XYeYvA9Jb7rVgrq6pjK6uui2Hj1uREs8pH0jvIlo4DuENT87ay2AOw4mwLxA4O08Ck1aPe0oRTwwNxg6/ES+vEm16DoOcSm9nkIJvcrQ7joubiQ9mSoevA9Jb7wlce88ElnhvNYj9Lz64gk9gu7Au3F3bDwGPeg9VUQFPHtgxLq1Jvm8qbDEPDNHCr0AqJK6DN9BvFPVTL1yQGC6AQrHPBycdDyJzx88mfMRvacyuj1CctU7jqgFvWNMobrtKEW8dWQvvp+Q4LoPAxE81NUcve/dW7rMkok8qE6QvS9axzwDv928xMUHtntgxLwj82S9oUoCvURXn7w8rUy6n8fsvI140rt0rxg9av1MPEM7ybwQuKe8kNOtOxNZYT1jn4O8PitXOxhGpDw1M608CHWUPGogfLwMy+S8mqgovagXhLvJB3u7aSB8Pdi127smF7Q8hWzLPHGu+Lz9wsg8ne8mvPebCz0sE0k9uW33OwYGXDxtZ3o5V9HhvJfrmDwmOmO72eUOPBGkSrxgFHU6WK6yuwm0Gb0uyF+8BuOsvGai8TvEsSo9l2EqPeQ/bbxJMAW8GGnTvBlOHby46JM8WcqIulVT17xxd2y9cqcfPISAqLyxvEs8uEpIvdmSLD3hnjO9STAFPUCpYbwsE8k8g496uxbX67x+k+W8/GCUPFP4+73sc6665By+PHrHAz1z9fY8ez2VvJ7+eL1Zdya9MQ9evMDsIT3TIIY+HC5cPcV6HrzfICm9Go2iu+RTSry63C89A5wuPARlorsOXcy8UL4BvKxeAj1movG74bKQPE13A7zl5TG7q1F+vOrNaTyhNqU9ov8YvUrJRTwPxIs8hSFiu+KeMzxaY8m7xNRZvOGykLyg9x89d4AFveoE9rvnYzw6T8XauzjNjT3F1Fm9PWLju75aurymRhc8dlBSvKSgUj2BSPw8vw9RvK3j5byNjK+8ic8fvV5fXj3Z5Y68O8GpPOAv+ztJppa8ocATvbdygjyvYXC8ZcorvLIjCzxkFZU7QzvJPKwLILyxWhc99X+1PE3ZN7xkATg9hI/6O0kAUjwAMoE830NYPe8U6Ly3zL28oTYlvaE2pTtfBSM8UtXMu5GIxDygSoK7CLvyuMP8Ez0wAAy9av3MPPxgFD0+CCg9Sez0Omkg/Lzc6Py8F1X2vFSK4zyvpYC82JKsPEaCx7z+nxk8pJGAO+kY0zuZKp679JOSvIyML7wJYTe89ZMSPBtl6LyrzJq9lfLxvIzm6rzaR8M8pKDSPBYHn7tbGGA8wOyhvNPhgD2JRbG8/3ffvNpHQzy6Zp480JX3unwGCb3SGA08NTMtPNLNIz2p03M86RjTPBMi1To2sTc9A++QvK6JKj2d7ya9vyMuPK0TGTtVRIW9K16yvOiG67wy2FE9AEHTvJkWQb1ZrrI9sbzLu/6ua7x5l9A7AB4kuzK1oj3fQ1i8zJKJPThDHzx5qy28L312PBhp07zKihC9+NoQvcnQbr0lTkC6vMhSPQj/gjwQ29a8pNfevNih/jw+F/o8r5j8O6hOED03T4O9gYyMPBqNIr28pSM8sbxLvZU2Ar0nA9c7p/utvPNUjTvGifC8xZ3NPNEEMD3FwHw8gu7APGXKKz214Bo9qpznO88QFD3D/BO9VTAovPVrWD2BjAy98xD9vHp0ob1so5G73WuSOzmWAT2qnOe8mjIXPQCokjxR/YY9RxQvO+bRVL2PCro8E0oPvbwvEjxN2Te6791bPGai8T2NZHW8Dl3MuwfjrD0JTdo7566lPap5ODyVz0I9aGtlvcUEDTzb/Fk9MdjRPHSbuzxlJOe8KKkbva6JKjoEZSI9klG4vHWHXrxxd2y8NehDvDd6q7ul0IW8PK1Mur6tnLz86gI9OFJxPdquAj3qvhe9190VvG/WMr3aroK5gHC2vOiG6zvtX9E6NoYPPAO/3Tt3Gca8DnGpvBx5xTpqxsA8RVefu/dXe70+F/q7c3ATujAjOzuWmDY90U8ZPGg02TrP2Ye8OZYBPYLuQLxR/YY9K16yvJW7ZT09P7S7bjBuPI/2XD0JKis9YFgFPed3mbv6j6c8oG2xuxaRjbt7xwM618m4PO08ojynHl29sOQFPcwIG7tPsf08lfLxuyzcPLvIG9i8qkIsvRT/pbobnPS8S1utvP9UsLwJtBm93wxMu95XtbucJrO9H8BDO4fqVbvI5Es7S0fQPHExjrycOhC9fBXbvD1iY7yymRw9SslFvFFD5Tj1f7W8oUqCPAK/XTyVNgI91gBFvQesID1Uwe88Bm2bvCMjGD2KHfe7a+lvuhucdL217+y6tQPKPCt6iLtoa2U8uIFUPDRWXLxBclW7UDQTvF1zu7vWAMW8SpI5vZa7ZTuLw7u8SaYWO0CaD707rUy8FOvIPLhKSD0LfQ08QydsPSo7A70ozMq7EEKWPJHvA73TzaO8WOU+vNLNI73jZye8sVoXvccbWLwjB0K86IbrvO1L9LqJMdS8NUJ/PEtqfzwZ+7q8jqgFvfCScrziewQ9fPIrvcF+CT3VSy69+lgbvcHEZ73q4UY9foSTOzfUZj1FIBM97SjFvIwWHr3otp48J+AnOyjMSrtJ7PS8D8QLvGXKK73fL/s81UsuvY5VI70GbRu84CCpPcHE57zgDEy8q1H+u72Rxru3H6A8qLBEvWKDLTuBOSo83MXNPDMIBT3VSy69bkRLvd8MzDzqvhe9hI/6vNSCOr2aMhc8+NqQvHmrLbr8RL48P1sKvWYdDr0NXUw65eUxvS0vH7zTucY6080jvMXUWb2g9x89/ikIvRiZBr21A8q8xLEqPYLaY70EnK68Wob4vXYtIz2t90K7RukGvYQKF733NEy7LBNJvcnBnDzHG1g6jlWjvON2ebxxMQ68n4EOPbAHNbz5j6e7wOwhPXSvGL2yvMu8aGtlvMbNgDzT4QA9XyhSvJe0jDybcZy8eTWcPPHWgr0ceUU8ne8mO0fpBrzHLzW8tQPKPPtnbbtahni8xlLkPIICHjz8DTI9VUSFPHExjryrQiy8C99BPe08IrtZhng75713PIef7DzVSy674OkcPaD3H701H1A6NgvzvJ0DBDwajSK9PZlvPYQ1Pz2udc08VxxLuoSAKDymD4u9RqV2vMIzID2IfD09tKEVvMXA/DytE5m8aRGqvIeQmrxKycU8c3ATvZnfNLyYcPw8t7jgu7fMPb3E6DY94p4zu0tH0LtEzbA8+enivEwkoTxfKNK84vGVPF1IE71dczu8NvygvHi/Cr17PZU8vX3pPNRu3TwvN5g8iSICPB7UIDshPs67z5oCvP6fGTtwn6a89X+1vNz82bzQcsg8bWwFPOUIYTxKfty7rz7BvDNqOb1xi0k8ch0xPF8Fo7uPLWk8xxvYu6LrOz0khcy7/PlUPapWiTyaAuS7WXemvMkH+7wX0JK7TsVavdSCujyTGiy9CGG3PDLEdLy+dpA78gGrvPBvQ73q4Ua87ShFu+gsMLy/D9E8O+RYPWJv0Ltypx88hEmcPIwWHjwkqHu852O8vP3CSLyXhFk72+h8vFmaVb2MjC89bVgoPDZPA7386gI8dWSvPHPSxzzLPye9g9pjvFmLAzz6sta7fbufvGaTH73tPKK8ELinvFA0k7xR/Qa92KH+PPZIqbyalMs809z1vCqB4TznriU8QwS9PFUwqLt/wxi9Dl3Mu/CS8rzExYe8pYz1uQ77l7xjTKE8i8O7OwbjLDxcviS9s2KQPOBzC7xwn6Y7nkIJvBdVdrzTzSM7RM2wvNcjdD2koNK8bjDuPGDOljyymZw6L332O2G6OT0O+5c8tu9svWxshTxlyis99NnwOC25DTxMJCG877qsPAHnl7w+khY8EEIWPMxiVrthzpY9vW6XPPDJ/jyk1948g6NXu3wGib34m4s6va0cvQV09LyENT89SpK5vNgcm7yl0IW8Hhp/vSCs5rz02fC4+3tKPUnsdDtHFK87BXT0OloY4DpPxVq6F1oBvbylozpD4Y09F6Dfub52EL0qgeE8XwUjvYOAKL1rLYC7/dYlvB0Lrb0tpbC8DIUGPatRfjtI3SI9SaaWvGNMobvp9aM84vEVPbltdzyF/rI8cNYyPJ15lTxmkx88aRGqvLssnjyZTjU7YN4AvdiUH70kBzw7XzcNvI9k/7qrl0I8EXLgu9gTk7sXjSK9Hux5O8onxLzA4ui7NVDJPKOgTjySt4+8uyyevNR+Bj19muW7gUibvP0mujwxgdU8ndHaPLZq6DxHv726+UoIvDUE+7x2Y447GOjHu1SrjDsHIEe7UrhKPSCTbbs/fPu8SWaxPCzYSDyNPP+8nSpnvCsL7jzjRoe8emWnvAturrxLjjG9mhsQPZIknLzgcmq9vbpoveC+OL32j5S9szWqvIU4zbqGXrQ9GrUivW5T8TyqdoQ8fY2nvbNoz7z+gV+9gOhMvWj2sryMPP87Ut4xOw9wRzwBql+6ndHaPBdnu7ymOoQ7MGAXu183jb2LrjS7UQSZPSRnCrwg37u8BfhGvU9qY7kJE4k82boGPFqvvrxQauM8YqYyvO9gUj039zy8pEfCvBeNojy0D0M9PQCYOzMbCzyH7P46Yf++vDOIF71MNaW7krJmvENL77xxugG8RD4xOmGzcLwzg+45cYAaPKFFqbplqEu8ruUpurEzET2hRSm93XDRvF+kGbyXhgM9skLoPNAwHz00djC9YjT9PIffwDwlri89KjFVPLy/EbxV4Eq8C0jHuyMtIzoUwEc9dBWnO9P40DzotSw9H987O5eBWr3mwuq7EPHTN60Yz7t1cEw5h76CvZRegzxWlHw662t3vMj/Q71ThaU8pjoEvHl3DrtcVrK80J0rPTGBVbzotSy95+hRPXATDry7LB49uzncvNNqhjxAuwu9h74CPfd9LTyIPw88nMKDO32Npzzra3c9hHCbPXAgTLyLrjQ93j2su8GJ3LtS3rE8RplWvQ5PiTyWAM48hgUovXQVJ7zL4B49jglaPZh0HLw+pwu8AvatPa8a6LzOdau88eFePJl0HL2Stw+9cPrkOonAmzwQ0BU9GxDIPRjHiTxuxSa7cXvxvM3ONzx6P0C6SGYxvOSNrLwrjPq8fUYCPFkIS70Q8VO9/Sa6vFwjDTwJx7q6I+FUvbOONrwqMVU7hAMPPW+SgTqDEM07r0BPvEC7C7ymTgS9n1Jnvaai5zyZBxA8UznXOzGnPL0BhHi8loaDvT8oGL3gCgc9/XKIvAkTCT1OAgA9Hl6vvIFIGz0XjaK8l4FaPZ+rc7sUwEe9TVuMPFUGMr0WIBY9C/z4PFmOALxd1747dbwaPSKGL72B7w48rb/CPB5eLz19QVm8fw60vIC1pzpigMs8bNcNu2ZPP7q5kui7oJ61vKs+Nj01nJc8uDdDu03Db73zYmu9E2WiPPItLT3UeV29See9OOhuB7oRy2y8wNUqvGp3P7yfq3M8D9CVumz4SzsCql88YCUmPcSxXLztF5Q8SWaxvKu9KbyEcJu80cMSPQ/QlTwyKEk8wPuRPImGtDxDlz29LyYwvfPUoLy4N8O7AAPsPAsnCb3ntay8Umz8PG3rDbzZJxO9kaOPPRvqYLz2j5S7RPeLPV+kGTzQ0NA8Hbe7vHiYzDx7wMy8RPeLu18MfTgqEBe9SUBKOiArCjrabri8hRcPPQrHOr0vTJc9nVBOvPItLb2NVai8SB+MvP/NLb65BB69hYQbvJ0q57x48dg8NZwXO2owmr3F/aq8rgsRvQrtIT1Nw++8F40ivVQTcLyl+3O8hRePOy1ZVb3H/8O7deIBOxjHCbuMPH+8YoDLO1VSgL0aQ2095Y2su972Bj38Jjq72SeTPFIqAD26OVy8cYCaO9aSBr0dAwq9HysKvCiK4Txw+uQ8p06EPGsr8Txa1aW5yV+Su9VT9juiemc9QspiPAQeLrwTPzs8GtsJO6Qh27y5KgU9EBc7PA+Wrjt/x44800QfvG6fPzyLLai8lrT/u21+gbzxB8Y8fDICPUIWsTxIQEq8h5ibu7ANKj3Yx0S9Z08/PN72Br1Whz674WUsvcQjEj0ea208GbUivLJCaL0TZSI9YswZvGebDbzuvoc8pu41vBcbbTyJhrS8gGnZvBKYx7p7P8C9XCONu/xZXzwqfaM8/fMUPcz0Hrz21jm8UBYAvAas+Lx/DjQ9h+x+PsfZXLxsRBq9z6ppvUS9JDvEi/U8NPUjPfn+ObqfnrW7ce2mvO2EID2W2mY9oB/CPNJRXTux58I7BlNsO+mCB72lR0I876ygPQXFIbw3HaS8G+8Jvcf/wzu46/S7iD+PvNFWhruUpSg70Sv2O3Ii5bzBr0M7TELjvAUerjyzaE89H+x5vRDx0zzziFI8hux+vLtfw7ySSgM9paeQul9+sryWJrW8TGhKPJqD87wMSEc9CEauODGnPDw60+68CaHTPGG4mbwzzzy64jKHO7gR3LyYdBy8MwJivP1MITzB1Sq9/3QhPQuUlbpIHww7hJaCPeOzkzx1JP480XdEParjED0xBws8G+rgPNAcH71/6Mw8LkyXPJCwTTwQy+w87YSgvHh3jjzeYxM9T2+Mu6HTcz0T+BU9AK8IPHD6ZL2FOM07dmMOvECVJDzaImo72ZSfvBBjiTt4vjO9M888PErnPT1ffrK7BCtsvCv+r7zmDrm8XFYyvXgKAj19QVk80DCfvIvhWbyxMxG9pcjOvJQ4HLzA1So8quOQPFkuMry3FgU9onpnvE9vjL1v/w063byfvL5AHrufUme9wwrpPC7aYTvRd0Q9/fMUPTl4yTzS+NA7eHeOPKw+NjxfMmQ9WS6yvNErdjxDcdY8krePvKwYz7zmDjm9pSHbOz1tJL0hudS8eR6CPXJITLybnBy9iuYCvfFTFD04njA9uyyevJF9KDuwoB08d8vxvHaWMz1ffjK9cYAavFJs/Lwzz7w8STOMvFWU/DvALjc8Jjz6vDiesLzRd8Q8ttydOwrtITxBPBg9znUrvUy0mLzotSy9tbY2OwmAFb15TP68AYR4uxWfCbw9bSQ9ntFavFSrjD3gmFG8nh0pu3ZwTD10yVg9XCONO3hyZbzZSFE9r0BPu1JsfDplXP06YLiZu/ulLbycL5C9uDdDPa+yhDoGxSE9vq0qPKLsHL3p7xM9dxdAPcHVqrw8Rz28OFLiPD377rycL5A9a/hLvNvJ3TuAnP49UV0lvXrz8bykIVs9YaayPF8MfT0BhPi8VIUlPXY9p7y7UgW8v2HcPMvgnjy8uug7hV40O6J/EL1DS2881ka4PENx1rtIc2+8lgDOvFdAGb3ALre7WtWlug9wx7zOT0Q8Kle8PBjHCT3EtoU8ax6zvNyWODz1exS9h+z+Og+WrryXgdq6Q0vvPNoVrDycnJy8IAUjveq3xbyYmoM7Iy2jvKq9Kbs7emK8WOLju4/WtDyTf8G8OfnVPKz3EDurl0K8zU/EPJJKAz3+W/i7/H9GPfOI0rywZjY7ZVx9vE+DDLyJrJs9DiT5O4e+gjzey/a82iJqPLHnQjxH5aS8J+PtPH0b8jtar7480VaGvaJ/EDyV3w+8XbYAvGElJrvmWoe8wFSevcIw0LxfDP28Z0+/vBNlIroAm4i9O3+LvKxknTxpquS8qpdCvTrT7rxIH4y8oWsQPXrzcTwFrHi8D9AVvP0A07v4Noi6l4HaPHrzcTsAmwi8Lt8KvNEr9js3Qws9MgcLPZ73wbu6hSo9MihJPK6ehLzSHjg9MIFVuhPz7DpGeBi98NKHPF2L8LvkQV49iT+Pu1uiAD2/O3W8Sec9PJCK5rx5iw65p2/CvMla6bzjs5O8dDuOO9ujdjpy/H29tmroOxpDbTsY6Mc8uOt0u1SFJT0GxSG9Iy0juhV0ebxhs3C81FP2vOkQUrwku+28uF0qvJL+NDvGNxI7yCUrvJ73Qbzgvrg8kthNvFBdpbwLJ4m9skLovIKCAr1qnaa8UDe+PBDx07zLcxI9ud42PeYOuTuvQE+9j4pmPcX9KrxMaMo8Yf++PIw8/znLBoa8SsFWPQJ3OrtKDaU7bXnYu2dPP7yUXgO9ndaDPZ94TjxhprK8uZLoO5kHED0tWVW9n1JnO5IL8ztcDw08vq2qvPulrbzH2dy7EfHTOs51q7tmgmQ7Zwgavcz0Hr1eWEs9fY0nvErBVjq7X0O98KygO6wYTzu7Ody89XsUPUB8+7to9rK8J1UjvYeYG71F8mK9DBUiPENL77xZ1SW92m64PDJ0lzubdrW6A50hvLsYHj1d/SW9yifEvNknE77ey3Y8qcrnujBgl7xwpoG8UznXvLJC6Lz2jxS9PEe9vNRT9rx0FSc9pEfCvGseMzyxxgS9RPeLO62ehD0DUdO8a3e/vCylI7wzqVU8NSpiO+yqBz04UuI8LLJhvMsGBj2ZmgO9lkwcu5qD8zvyrrm8RvLivPpeiDt1o/E8G8R5vH/oTDwyiBe6TVsMPemChzzUfga9+UqIvPEHRj1TGJk8V2HXulaU/Lp4mEw8emWnPFqOAD2Xp8G83dCfvJSlKL35smu8WS6yOx4Xij3JgFA8T5DKPP8HlbxsaoE8v2HcvCuM+jyT/rQ8JgnVPHL8fbxwEw48STOMu0lAyryQfai854/FPPA667zBaJ48O8YwPH5aArw60+689XuUPewSaz1fMmS8bEQaPQnHujxpnSY91myfvF0jjTws2Ei9VuBKPZlONb0WIJa80DAfvWGzcDxZLjK89opru310fjyUcoO9YaayOfX8oLwxgdW8+THfvFBdpbxCz4u9z/Y3PEB8e7wOSmC8ge8OvI8iA7ylyE46QG+9vNaShju6OVw8dj0nPdoi6jytngQ9y9v1vFW6Yz2vGmg8+LeUvF83jbzgmFG99A4IvcQjEr1fpBk9PHrivOMyhzxzqBq86NuTO/Xj97rPQoa8thaFuvrY0jp+WoK7Iwc8PS7fCj0fBaO7HJFUPSfjbbq2FgW8nR0pvUbMezxMNaW8F2c7vIBIm7tvkgG98eYHPV2xV71SBBm9pqJnvHrzcbwojwq8nvdBvGmqZDzFfre8v2HcPHXiAT1r+Eu9FeYuvO1euToqMVW8DiT5vCuMej19jae8rIqEPbHGBL2AbgI8+iQhPY7WND1XO3A9BsUhvULwybwfOEg7aK8NvabuNT1BSdY7EuQVPNR53bzF/So5xTcSPND2NzvOT0S8vFKFu6RtKTyPsM07hRJmPNvJ3bwF0t88KwtuvJ1DkDzqloc9x9lcPfdXxrsC0MY8cKYBPe+soL1a+wy6wC43PTbRVTw7oEm86RDSvB23uzyWJrW8JAe8PITdpz1iNP07UpeMPdXFKzwhhq88WQjLvOLz9jzz1CC9hGtyvKiVKb3WIFG8vtORPAj6X716HgK8alFYPLy66Lz2j5S8B5+6usla6TzsONI7pk4EPeduhzzpNjk8P8jJPHgKAr352FI9RFAYPfx/xryaqdq8vLrovMKvw7zeYxO9Cu2hu/Nia7yXtH+8xJAevMGOhbuYp0G8+8uUPJx2tTySjH89w1Y3PbXp2zuPimY9RvJiO6nPkDyWTJy76GlevPijFL2k4tI7lH8sPR9ylLzgqPG8aTgcvL3Xdrz4cii8gUkoPVaLnLsc14Y8trWZvKg+tTwGO0G8NF+Ou3XSwzwHxMU8M9aJOzs6FjtbcAM9Om/ivFrkejqTbSM8UVL9PHLAOj1KMCA9NkvQO2aBJr3IPFK8FAPaPBEXmLsNxZS8JdagvDPvbT2eYl68IKCFvM/ijbxgEzu7vyHQvBu7nrza/Y86F9Y3OzefiLv21xq8ndlZvZ8jMz0d6Q+9l+JpvecWXb220QG9+qCZvQ2D5bx8ioi61DSRPeHqILxnW988l6O+PL6+kr1Wb7S7GJeMvSHL8rzfRbS86E6tPH52Srzzswi8n6w3O9KZAz28/b28je0uPBOyJbxu21O9O7m7vEJDjz3xumM8mgb8vBdfPL24UCc8FsSuPHf21Tw55t28HEQjPfTFETwdHlw9At9evPUWxrzgqPE8ZDdNPbLiO7u1oxA9tQZOPI12s7rw/BK9QJ4iPCfoqbvdxg69O8OavCwwTryqUL68w32yuvUWxjxPyfg7T2a7u5OJi7u3GNc8V4scvfN7uDpK1Yy72Dw7PU9A9DwY6MA88lXxvAJW2jw06BI9h1n8PCMVTDyAiFO864RIvGu3wbytdNC8cLgQPU5wGrxtih89m8dQPdgW9DtUJVu9UVWBPOfFKLxaVJu7YNtqOuoFI71Ib8s8iAjIvB8wZbzwMV+9+0UGPcZQkLyax1C8MsSAuxJoTD0qKCS68vIzvVSuXz0kaQQ8BxX6PFYegLxskfo7qyp3vK79VD3fRbS8PN8CPMl0ojzfvC+4i2QqPWHtcz0o1Ou8DcWUPCXyiLzBa6m8Fw4IPTxoh70Y6MA8PApwOu9XJr30swi6/0NRPA67NT3s1fw7ttGBvATYgz1YFCG9KdRrvAie/jzPqj08c+aBu3AvjLoEoDO8s5EHPR/7mD16t6o87s6hvPZOlrwxFbW8Mye+vFFVAb2vyAi740P/vFB4RD1XgT297pZRvbIz8LxOcBq5L3onvA7NPr2BSSi6NsLLvBfWNz3SV9S8hfY+POOhlryJ5QS8tn1JvcR9srvVvRU9exroPB9ylLyMdjO9iMmcvB+5ab1DAeC8YKYePckHBrz6+6w8Ld8ZPVb4uLx+x348cSUtOw5gIj3EzuY76TpvvZwbCT081SO97ITIPCn6Mj38vAG7EI4TvJ8/mzzV8mG9ardBuxjoQLxJgdQ887OIu5ARwbxLCtk8kuQePY43iDq2Ph688WmvvD0c+bvIYhk9VuavPPQ8jTxUXSu9oTU8vaIP9TxgijY9uVCnvYUcBrxT1KY7z+INvNuYHbxNVDK8sL4pPc89oTtO3Ta8/oL8POHgwTyrEZO8at2IPBUV47xZk0a8FU2zO2Q3zTzXsza8LKdJO4/r+TzfYRw9m8dQvdzpUb28kKG81wRru+PySj10W8i8s/6jvAeefjyTiYu76nI/vQ0yMT3PDXs7PGgHuwhzkT3NmLQ6O/hmuqajp7zYPDs8zqq9vF7J4TwDFy+8ZoGmvG0dA73o85m8lkABvXz3JD0Wnme9McSAPQUpOLxtih+92Z/4u38llrzrhEi+eUAvvZrH0Lv4cqi8iJHMPLt0Obrsqg+9vU7yu1TwDr2hhnA9kjXTvGFLC729TvK8LoSGvFFVgbsjxBe8k0dcu5lkk7tDQ4887NX8u6LQSbyF9j6927SFPYcIyLsTRYk8RiVyPNTgWDkghJ08yDxSvHz3pLx0rHy8YZy/vNezNrzkBNQ8aG3oPLysiTwxZuk83ftavS37gbwOuzW6/M6KPbIz8DyK2yW8hYmivFVdqzxY0vG8UHjEPFqTxjwGO8G7WUISuxXgFr3NIbk7Wy7UvI+aRbznFt2892CfPBn6STwxjLA8AxevOIkaUbvvqNo8841BvYARWDw+y0S98YUXO1su1LyhhnA90fSWPBWM3jmsmhe9tUX5PN4zK72RW5q6RgyOPAkOH7uFHAY9+l7qvJl997wTRQk7GTn1vTddWTyhbYw8843BPFYegDwAD4W8qqFyvLhahjkiVHe81ODYPJwbiT4XJ+y7u+u0vCmDN72qGO67L5YPPcCqVD2hbYw7xo87vPrVZbxFcQA9ZAKBPeNpxjrzzOw8HVasOsvX3ztE+gS9KpVAPCVNnD3VKrI56A8Cvb5g+7w2S1A80wYguyn6MryFpQo785cgPGPmmDy0Rfm70Zb/OxdfvLytPwQ8m1BVPYSsZb37lro8heQ1PGrdiDz/usy8U2eKPNyqprrfYZy7Kfqyuz+MmTwW1re8GwxTPKnjobq4GNe6R13CvEZdQjxxduG8OCiNPNyqJrw9k/S8vU5yvGHt87ylNgu4KHEuvdnFPz3oD4K7jlDsO6E1PD0qlcA8uwedPDEDrDxIHhc96WA2vKD96zzOmDS9M9YJPajtgDyx7Jo8lEdcPFkcS70Qp/c6DmAiPecWXbwM+mA9jGQqPO0zlDxV5i+9/XBzvEPMk7wvlo+8+oSxOJc2orymvw88sdCyvMuGKz1z+Io755/hu/J7uLkhA0O86/tDvPbzArz/hYA8BrK8u+HgwTrYWCO7CQ4fvV94rTxnCis8+qCZPMcqyTy3GFe8ZG8dvMoHBr3+uky9T8n4O4PSLLxLyy27PgOVvXPAOjwHnv47NTnHPHxSOD2j0Mk8DnwKO5AjSjxYuY085lgMPW0dg7yvUY06cUEVPNUYKbwLcdy81nvmvGxSTzwf+5i8QSenvHD/ZT1eQF08RPqEvFDJ+LyJo9U82I1vPSfoqTsz1om7s/4jPWElxDswy1s8h39DvV0LEb1RAcm8TEIpPecWXbyDWzE90WuSPLs86bxapc+8q7N7O02MAj1qZo07wkViPTIxHb0fuem8at0IvTAflLvVoS29pOLSvCvmdLwdRCO7k22jPA/NPjwY8p89x9kUPIPSLLzxuuM8t1qGPW0BG7wDqpK8SJWSPBkgEb2NdjO8g9KsvL5g+7wJ6Fc8EReYvc49oTy5KuC7rf3UPBXgljuwR6671ioyPbbRgT2ZBny8liQZvUmB1Dw81aO89cWRPaSRnrxZbf+8D/MFPtxy1rvYFvS8MAMsPShL5zvxaS89jpIbvWVvHT28dLm8iRpROu+o2jzw4Ko8YWRvO8r9JrxDAeC8UsIduyHL8jzFGEC8TnAavA2D5byAwCO9wHWIPH7H/ju1Rfm8MMtbu1MTUrvKkAo9TaVmOw2DZbxGrva6itslO7YslTz8zgq9X3gtPNCE9jyQEcE8oiF+vOhgNr25oVu8OR4uO2ouvbxfAbI843vPvNg8u7uAEdg7MjGdPABEUT1NjIK8jcfnvKWthjyfdOe6LFaVO4MjYT1w7dy8NvobPUT6BL08CvA7lH8sPVqlzzwznjk8c1OeuxcOiDyPiLy7SPjPvMtO2ztWAhg83x/tPOmYhr0bux69aCaTvAOgszyrYse7jO0uuyJUd73shMi86GqVvH//zrwPzT68IlR3vaTiUryfPxs9V/g4vXf2Vb2aCYC8Yq5Iu094xLm2LBU9pWvXOxEXmLw3gyC8xVdrvN3GDj2QdH481r2VO7HsGr19nBG8udkrPRN6VT2hhvC77A1NPeO6+jr284K7oTU8PY12MzwJ6Fc8xT6HvUMB4DxQAUk8vg9HPe9XJrwNRLq8RgyOvB7fMLpvnCi9aVSEvMOHEb0kJ1W9nHYcvXWsfLuRW5q76em6vLs8abrxuuM7N5+IPEq5pDwynrk8tLz0vPcoz7scRCM80WsSvW0dA71RORm8Z1tfvP9pmLygyJ+61+uGOvhyqLwyMZ28iMkcPal2hbxKTAi9dIGPveDqoLwLcdy8LTDOvE0u6zwxZum8u+s0Pez7wzzvqFo7nhEqvZS+Vz0SKaG8og/1PMh+gTw7MLe8qD61vBnCeT2WmxQ8P2bSPHrTkryRrM68ZMDRvDnm3TxWeZM7KfqyvGouvbvshMg8vobCvJm1R7yIkcw8w0ViPP1XjztTZwq9lpE1u4Z/wzumoye8Q0OPvPJD6Lzy8jO9EN9HPcZQkLtI+E+6suI7vd4zqzwTsiW8xCIfvTSwQj1NpWY6fj76vBRXEr11rHy72Sh9vS6EBjzw4Cq9ObERvUHv1rkInv667LyYPCpEjLzsMxQ8x3t9vRqpFbzAWSC+DtcdPKajJ7z8lrq7d6UhvecWXbyyWbe8hfa+vAqzi7yQ0hW6jcdnPVTwjrwNg+U846GWvPQWRjyNroM9KpVAvAtx3LyEWzE84Y+NPHWsfDr9Vw887s4hPU6Co7uwD148P6iBu1bmL7xZHMs8j2J1vDPWCTtF3hw9wrzdPLqzZDooBJI8Vm+0u0T6hD0X1jc8jv83vW+cKDsWnuc8og91PJ6arjsxH5S8jO0uOsUYQDyydR898fySvLsHnbxdt1i9og91vM3paLz/Q9E8v+l/Om8vjDwDoLO8EfFQPIMj4by20QE9MQOsPITulDwYwnm8qD61PHE3trsn6Km8MjEdvf359zzHKsm8RDkwvO4f1jqgNby78vKzvNu0hT0VxC49lgixvNZ75jw1wks9CzwQPbZ9ybxAnqI7OW9ivbGqaz3iMXa9dhydvAKqEr1+x/66841BvLLsGrwag067YIo2vUEnJzyEdxm8bVLPvBQD2rzxaa+8mPRyvRQDWjwHnn68JGkEPMr9Jju767Q7lpuUPKmP6btyb4Y8cTe2PCSe0Dyh5Ac9r1ENPB+56by3GFc960x4O0J427wITcq8DKmsvCgWG73gVz29ASEOPTZL0LwPVkM8tPTEu18BsjxsGv+69p/KvNTg2Ls7Oha7Fk0zvKJHRT3RaxI9ercqu3zbPD0Y8h+8xlAQOo7/N71tHYM8JV+lvH/KAjxqf3G8xH0yvCjU6zy52Su9cohqvaiP6by7POk7RdQ9vI6IvLw1wks7BWEIvVqTxjzWRho9Hs0nvTJNhbyxqus8pa0GvKLQSb0cYAs9rf1Uu14BMj2z/qO84M64PD9m0jwocS49WW1/PcwrGL3fRbS8Kfoyu5g2Irx3OAU9ZoEmPNn9j7vMKxi9zSG5udFFyzuuhtk8f8qCvNmfeLxxJS082ysBPJgsQzw0Jz67ZIsFPYfQ97vOqr085QRUPcWrIz1pwSA6rXTQPCiNljwjFUy9AzOXOwYDcTy9D0c8MYywvLyQIb1p9uw8oeQHvd37WjzzIKU9lZsUPfUWxj2zM3C7pCSCO4Mj4bwu8aI8BztBvaMh/rzvVya9hDXqvITktTxSwh29DUS6vByV1zxelBW9BNgDvXP4ijy1zv08Vm+0POnzGTw/3c08OjoWPfr7rDxyNza9zNffPIss2jzsvJi8WRzLvL5g+7zyVfG8I8QXvaajp7oBVlo7JdYgvJj0cjwp+rI8jD5juJ5i3jzxuuM7VeYvPfn7LD0vDQu8hRyGPR7Np7yl4lI9s7z0ujfUVLyo7QC9IRhDPXg76LsoBUy9M75VvXt9+Dld1nu9MeUtPKovATsugpU7d8sovWEyPb2Ma+s7vLGjutqgALztiws9IoGrPIndC72brmW8cd6fPDJVbTpJV0E8JjP7PCFn+jwRA3g8BdquPHy7GTu6bxO9MlXtvGeLFj1n/r28OBoXuqilEL0wy3w9qi+BvAEvNryK4Xo9rm6pO4LwAr1INrm8Bxy/PJ2ANrzU21Y8kBbkvOQ/Wb0Fkk491US/vPQMRL1Zu0O9W/3TvJIwlb2GfuK8Ljo1vNwGgT3VRL+7E0GZO5BexLrti4u9u0g7u7ctA72631K9pB6IvL/zMzxnbv28WbvDOGeLFrzEvzQ9ciMYu1Fl0rxJV0G8wn0kvfqQZDwLD5g953qSukNqOLzDniy9U+/CuslDVT3wzZs8WiSsvdTb1jzEvzQ9/vP8PB9jC71Zu0O9IoErvMnabD2FXdo7pB6IPMzNxbwDuaY7d++YvKzkuLwtpoW7mmIWva/7Ab2C0+k7MAwGvaGb7jw9Cgg9er6BPOYRqjs+TwA8YMnUPEfN0LwzvtW81tGXvLOJ4TxBbSC7PDXPu2sZ9rzYWwg9FD4xPOos4jxEi0C8FuwRPGUlFrzglGC9MQmevMwc/TxJV0E7eaTQPG/hhzzfJCE8A7kmvTmKVjq3CZO7KtccvGZqDjyhlJe8zX4OPJtfLrx5eYm8ScCpvQEvNj0nnGO9SnjJuy+q9Ly6bxM9X2BsurBHUb0J9eY8nM/tOvux7DzYhs+8qgsRPbIgeTrGmFw9hlObOLCPMTwZCjI8eXkJPV6HRD2fwkY9QZjnvIiYEz2oiHc8dqogvLI9Ej3J94W97tCDPKJMNzz+NAa9NgDmPOkEg7xTN6M8CIz+PIUV+ruFMpM9/vN8vO9Aw7yooig8OYrWuwiFp7xdzyQ83AaBvC6CFT3hRSk9hn7iPEjnATwhYKO8IqWbvBgxCjzaX3c8YpslvTqAF71oZyY9e314vGdu/bynGDg8VjHTu+OHObtkvK28M75VvH5wUbyX/BU9u5fyO/7spTv/MZ689XUsvXrFWLwLM4i9QrIYPD3mlzyHn2q8Z/69vMNWTLwhhJO9VjHTvJLotDwqjzy8X6hMOme23TxMSho81NtWPcHFhLw1kCY9QrIYvBX20L0CvA48Y1NFvdEpBz07zGY9OmP+vBlSErtasQQ9mmIWvfzS9LwfYws9aawePYrao7x7diG95zKyvM02rjwxCZ48/csdO21XFztYUlu8xXdUPUkPYTp2GuC8dJBvvVM++ry9Gow8oZvuPM02Lr2nGDg76rwiOeWoQb1se4e8upMDvUZdkTyIULO84NxAPMI1RDxvJoA9eg05u4Lwgjzuj/o7WtxLvI6FHLu/8zM9tKrpvERD4Dxnbv08ZOCdPCD3Or0E/h69VFirueQ/WbtWeTM7ydMVvAx4AL3fbAG8lJaVO0swab3IuWQ9+omNvFBEyjt4WAE9nThWvMdQfD1zILC88+u7OxYQAr0I1N4885yEvKilEL2bpw698PGLOwRxRr3lYOE8AJuGvIiYkz1ID+G7dIkYvbOJ4bxrYVa7jj08vmCB9DuMa2u8nlneu2B9BbtIpvi70iafvN8reLu9Goy8wGPzPEU8iTsHZB+9MnKGvARxxrzbeSg8V5o7vbBHUTyAQiK8IWAjPT93X7wynU08ahUHvWsZdj3HbZW8wKvTPPux7DwQk7g8LRmtPNB4vrqwj7G8H45SvRSqATyWt528j6YkPDNOFj0q3nM7EP8IPbCPsbvmyck8wn0kPSrXHD1Nulk8xuA8vEYVMbx02M+7CRKAvFKG2jz+NAa8lAm9PNg+b7pq8Ra9xXdUPEU8iby4Tou8eaTQvCkmVD0E/p48JnQEPGB9hbzIaq28o20/PTvM5rwJ9eY6/YO9vHSJGLxw5fa8Cl7PPJzP7TzBzNs7FIaRvWmsnjyK/hO8h5/qO04jwjyqCxE9uQYrPCtABbxAKKg7xuA8vBc44b3aX3c8gPrBvGVJhju0qmk9Nd/dvBkuIjvomxq7er4BvLxpQz1w5XY+VjFTuh9jizxueB+9Cqavu7NemjusLJk89cTjugqmL72d8PW8+kEtPcBcHDz6kOQ7IoGrPLPRwbrO7k08KL3rvKpaSD1ROos9AA6uu13PJLz+NIa7tRPSOxEgETyzieG8e3ahvGjXZTxvvZc8vYrLvEeFcLvEv7S8RNOgvB7WMjyLSmO9hTITPeKKobvtbvI7OV8PvAQp5jzIaq077W7yO5zshrx/IZq73ZqwvEju2DzPD1a8NdiGPLOJ4bwbKzo7wcUEvaB6ZjwHiA88vADbvFuNFLxTW5O8gWOqvPPrO72gTx89H45SPA1Y/7vkOII9qgsRPfvOBT33lrQ82l/3PLBHUbx47DA9rZWBvUrkmbvWrSc8HExCPCV72zxX4hu9xpjcOxlSEj27SDs8RaxIPVSn4jyLQww9905UvAxUkLtJn6G8GKHJvKmiqLvIuWS8nBfOO10e3LzEKwW807pOPJR5fLyUefy8SKZ4vN4K8Lyc7IY7TiPCPBPVSDy8ANu7aqm2vPR4FL3byF88OCHuO2F6HbylY4A8Z4sWPL0ajDxjC2W9keucvcHFhLvhRSm94NxAvCLJC70ncZw8eg05u9zp5zytBUE99Ft7PG6cDzwvqnQ8VeUDPTmKVj0kWlM75hGqut9sAT29isu8O8xmvLbLcbyKKVu6eOywvMJ9pLyUlhU9u5Cbu3ACEL2xHIq9QW2gPHMgMDyubqm7LvJUumS8LT3HUHy89t6UPdiGT711Qbg8GVnpvHfS/zyCG8q8G+NZu4uSwzzs/jK9Tmuiu/Oj2ztMbgq8yLKNPAO5Jj2P7oS99wb0OGS8Lb1OayK87tfaO4ef6rx0kG88FcuJvPuqFT102M+6mkV9PRbPeDvSAq88vzsUPZ5Z3jxzjAA70DDevEMbgTyNZBS9JjN7O72KS72S6LQ7lpOtvFSnYr2eoT48AlA+vPvOhTx1+de7BP6eu0sFIj0JPUc9xuA8vBED+DyBYyo9CT3HvN4niT24ncK8keucPHX51z2XtDW9DDf3vNRrFz0zvlW89Ft7uyv/ezy5Khs9B2QfvTYAZjwDAYc7B2t2PBZfOTz1dSw8wu3ju6SOR7ya9sW8Z4sWPfuxbLyC0+m8r/sBvdcd5zybrmU8fLsZvYyzS7wlC5w8xS/0PJS6hTxlJRa9aYguvS0ZrTsj8eo8Bxw/vcqLtbp3g0g9ahUHPTMGtjzlWYq6tX8ivWzKvjqdONa8ltuNOxbsEb3+7CU80eEmPFrcS7sO3gA97YuLvLI9ErtSFhs94UUpPKnx37yDPFI9X/CsuygFTD1NswI8xwFFvJNYdD1oZ6a8oCuvvOPwIb2hlBc9nlleu4SlOr2Hn2o8TQK6OvRUJD0m5EM7nxF+vO6sk7xTN6O70eEmu5nVvTwlw7u9z1c2uxQ+sbuN1NO8dhrgvKoS6LwnTSy9FcuJO5TBXL35aIW8OV8PvTRvnjssaGQ8JuTDPPlohbytBcG84bXoPDDEJbtZbAw9nOyGPKTd/rxX6XK7A7kmvNEpBz3r3So98jMcOXGWPz3k9/g71US/vMusvbtLMGk84dIBPcPCHLwtiey8lJaVvMLt4zxl3TU8SzBpPIop27tv4Ye8hsbCuzvM5rozTpa7FcsJvU4jwrwXOOE7smhZvDQnPr0IhSc85WDhPKTdfjx02M+7leJkPawsGbzmEao8wn2kPNmn17z5J/y8twkTPEPadzuaPqa7gIoCuyYz+zsEKea8y6y9vPV1LL3nepK8R6IJvR7WMr24VWK9WCcUvZUqxbz3TtS8zTauvE/b4Tz0DEQ8tKrpvEWsSL1Ei0A9MXzFvJo+JjyWS808VcETPP+kxbztbvI8MXzFvNp8ED33TtQ7HATivMdQfL3O7k09/cuduqZn77zJIs269FQkPLTySb3KZF28PMWPu6VjAD0bK7o81x3nu6B65jvYPm+79t6UuuVg4TxyBv+8zF2GvBsrOj1lLG28AMZNPJunDr02AOY8aGemOzKdTb0qj7w8leJkPMdJpbwQ/4i9Ua0yvVEd8ryBhxo9qhJovR4eE7tV5QM7zM3FPKaEiDpbRTS87/jiPCi9a72C0+m81zoAvmK/lTzxNoQ674gjvU/UijshGMO8+Lc8vSUsJLxntt28vSHjvF0XBT3Iso08JlAUPWevBjt7LsG89Fv7PKZgGL14EKG8iFCzvO2LizuK2qM7WtzLO7hV4jwlw7u8lHn8PPpBrbsF2q48z8d1u4GrirxfFB26BWcHPSD3ujzcBgG9Ljq1PCKBKzszBjY9hPTxPDW0Fr1yt0e807pOPZIwlbskorM7XodEOd9z2LsHZJ88wjXEPN1SUDxvxO687W5yvX/ZOT0Q/wi9QUkwPaJMt7zygtM7qcYYu+CUYLz+EJa8Zd01O6IEVztqqTY7ub7KO0UYGTy/Quu8gzxSvTtcp7wwy/w85Pd4PJzPbTywR9E8aNflvLctg71t60Y9VFirPF9gbLwkWlM7MTTlPIZTGz1C1gi9PiuQvMPmDL2n0Nc7j637vFM+erzxyrO8VKdivXX5V7wNmYi8LLBEO2f+Pb0+KxC8xpGFvFYx07xhng29dNjPPMoYDr0qjzw9FuyRu2r4bbzKGI487/hivD3t7jskojO9JFrTOp8R/juaPiY9SggKPVLOujyyaFm9T9thPWB9hbvXOoA8ZpVVvJHrHL2XtLW8YTI9u/473Txuo+a8nOyGPGK/FTwJEgC85D9ZPPkgpTwWXzk8NHZ1PBCTuLvPVzY9yI6dPXfLqDycF049K/ikvCV72zw97e68blQvPBD/iDtShlo8e5qRvB39iru+0is9FhCCvdGZRrxhMj28SA9hPPDxi7xkvK061CO3O8UvdDwiyQs8iJiTPJmGhrwYDRq80o8HPBrCUb0pbjS9waGUPatQib0tGS09MuWtvBvjWTwwE109ey7BPOz+sj3XOgC9L1s9vJcghjy1WzI9fU9JPSi9azyeWV481ZN2vMn3hbwj8eo6wn0kPOuVyrz5ICW8aB/GPBihybqtBUE83DHIvDqr3jyWS828DXUYvBDibz3CNUQ96ixiPA5RKDtjU8U8XR5cvdJR5jmp6og9wczbOS0ZLb0SZYk6LYnsO57pHjxD2vc8Ljq1PWXdNT1mldU9V5q7u2hnpjxfqEy933NYPJnVPb06q9681q0nvbqTA72x+Bk9id2LO/wa1bzc6Wc8pfevvD93X7zmyck8xUwNPcEUPDwXgMG7H47SOxH8ID0JPcc7ZLytPNk3GD1b/dO7DaDfvKT6F72XIAa92l93vAiplzuJcbs8KLaUu4ef6jzRKYc8WrGEvLSq6bvPx3U9cd6fO1IWGz3WtH486wGbPHGWvzzviKM7Ap91PVqxBD2PpiS9sfiZu52LuzzToE87X+c0vZU3+bycpt45vuIovUd0kDzuUhG8G9myPGsQgrz0F0q9d8pSPIFDDDwnram75uMrPaCwsjz1Uvq8i/KLvKlfsjzqKDC8WLP/u5Cy2jxexyc8zPujO8rWLDsfAxQ8zfsjvQ8gX7yS19E8jE1JvHv0s7t82ZC8CXszPRaPRL3lHlw6rwRePUG1vjul/wq9OEFvvCJjOz0zoa07M4EgvBvZsrwAIQq9zfsjPQLxKrxlUTC9dcVovW474Lw3IWK9MFwpvIboN7z24YM9phouvOPZ1ztolrQ8FIpavehe9jz3PEG9BBYivVu907yldWs8YMyRvR7jhjuD85+8EmXjPCJju7xfPIu8I4NIvC2Sb7wqLV68BDHFPRNKwDyjSo27qV8yvbaoDL2U3Ds9KM02PBAlyb10v4E84F4NPXgKbTyj9ba8gp5JvG0bU7yTvC49x3YFPWJMRj0J0Ik8aFsEvLiz3bx4Cu28PVCtvIldG71jERa9DuWuuopI37yiENo8zwCOPL9XDDy+Hdk7R3SQPNyKfzzfdMa8/gF6vBNKQDxptsE8tlM2O/B3CD14z7y8JePvPIUYl7yvyS09bjtgPGOBD7ymOju6M9xdvdtkCzyiKgA9kewNvDF8Njt9GSs9y/a5PF7HJ72KSF+8IrgRvJ3ABL1+/oc6UUOdvNYanTs2AdW7F6/RvD3Ld71iLLk8KAjnvNWlOTt+/oe8kMwAPcVsMTxs+0W9d6+vPPzbBb0aKR89Cvb9vGiWND1O/hi9Q7ooPUvZoTyEaIM8HllnO2iWtDyHA1s9yvFPPdbl0zvvch49HPm/PNblU7wn6Fk7fVTbvH0ZqzxAlbG6JIiyvNBbS7y4eC26MZxDPMSHVDwJtuO6SWQ+PbzCG7xiLDm9AtaHPIuCkjw3IeI8kZc3vLMuvzuS11E99uGDPSko9DwPQOw6e/SzvG3gIr04Bj872UV7O/kmiLzSu/K8lNy7PGHxCLxIJKS9n5Clu/+rJjx5JBO8rKQ2vWu7K7rJDPM8pBXEPN5ZIzx+dGg7IZgEvFrynLyC2Xm8Pct3vflhuDyx7qQ7WbICvHePorxuO2C7zfujvdkq2Lza76c8bDAPvSSIsjx8FME8coBkOpymXj324QO9qHpVPSXdiLyKYoW9YmECPKeVeL1n5iA9se4kPYwyJrxhJ088E4XwPIKeSb1anca8mHx9PaU1UT27goE7LRclvfU31zk7S0M85L40POkIozsGqxK8/5ADvdglbj07oJk8XR17uybITL0L29q8L3fMPBOF8Dx82RC9Y4GPPNnPmju68/e8cpoKvG0bU7ymGq48bBbpvOPZVzwEFiI9Td6LPRRPqrsWj0Q8EFqSu2RsUzvlGfK83DQsPV+sBLzkoxE9KLKTPJl7ALmvHgS9Ge/ruzLc3brMFke8WLP/OyBe0bs2xqS8xsduPBvZsrt4BIa9SASXPIvyC71jh3a8LfyBPZQX7LZJZD49kgybPMsrgzzk+WS9tqgMPexNJ7wJQAO9fx6VvFMTPjuXVgm9RjrdPGNMRrzjnqc9mAaduyKea72XPGO9vf1LvKykNr6F4029RRrQvDlhfLyXXHA8fm6BPGVRML1Pk4m7I8PivOh4HD3Gx+68iAhFvcFi3Ts35jG9b3UTPWiWNL01Nh671cXGu9SFLD0RCqa8ZGzTOuC04LzlOX89/IYvu/eRFzyKDa87Xf3tOkCVMT2JXZs31qojvH9ZRb3BJ6281wVhvHRqqzwEFqI836/2PIGzBT3JlhK9JwKAPM8Ajjw0phc9OWH8PE8Dg7zDZ0c9xIdUvLMuv7zDovc8r8mtuvkmiDz8hi883DSsvEb/LLtru6u8+SaIvBRPqruey1U9O0vDux452jyLbVa8vh1ZvDsQkzzz1y+8UbgAvFrSD72GyCq8+ZxovKkkAj00hgo6JG0PPLLTgb39prw8RjpdvPtmIjy7nSQ9/MHfO/4BeruU3Du9FW+3u9oPtTu/Pea9lNy7u/VSeryjugY8v8eFPRDqmLzu4pc8q4QpvTorNr0zoS09ahF/PowXg7xUM0s8q4QpvYF+PDwgI6G8B8ufPDhBbzt5RKC8fnRovA7lLj2XPOO7cmXBPGas7TupmmI8E0rAPCPD4rw0wTo9tE5MPbnTajvlOf+7652TvEUa0Dw5Cyk8r8mtvA7FIb2/ArY7UAlqPGJH3Lyzae87XMI9u9tq8ru57ZA8bgAwvX6ODj1eN6E81qojPCGYhLwb2TI9dqpFvaufzDsmjZy8GbS7OpqB57wshx49mAadujlGWTwOANK8VVNYuwEMzrwp8i08VPiaPDhB77x2qkW8cioRvWm2QTuAPqK8u50kPGIMrDuRl7e8BFFSPRev0TynjxE9LDJIPcRMJDsNG/W8z5AUPQd2Sb324YM8m6ZePLWuczyWATM7TU4FvWLxiDzciv88d4+ivPUcND1s+0U9dcVoPC0XJb2W4aW8SASXu7p9F721Myk8IrgRvD1QrTzXHwe9fNkQvJCy2rswXCm8qn+/vHxP8TsucuK8o7qGvMZxmzywrgo9M9zdvDwwIL2WATO9Xf3tPAHRHbx4z7w7i/ILu7h4rbtuO+A8mkY3vUY6Xb2S19E7Xf3tvAHRnbsc+T+9I4PIPDuGc7yeAJ+6G56CPUhf1Dyj9Ta7GM9ePMnRQjzsTSc9wF3zvAlAgzwaKZ88Ygysu8VRjryjMOe8jseWPN+v9jhS06O8x8zYPD01irxhYv+8I9ievaivnjzLEd27Uy5hO49XHT2+PWY8byA9PGoLmD1c3WC9S9mhuocj6LzHzNg8cQoEvUuEyzzl/k49m0shvdfKMLroXnY7BosFPNuK/zrOVuE8WbhpvWas7bsjw2K9Fo9EO1/METtTLmG8cmVBPKCVD71t4KI8ZDGju5CyWj3lGfI5oSt9PKMwZzwmyMw7b1vtO8srA70pQpo8zEsQvc+QFLqF/vC8stMBvEBaAbrPAA69IX5ePL3Cm7pQkwm7qHpVPH0ZKzzFjD49fnRoPYjNlLyIPQ47CZtAPXwUwbzDvJ09uxIIvWUWADwy3N09QQoVvVG4AL2AeVI8d8pSvNCwITz0TJM8LnJiPG4AML3U2gI9650TvLzdvjy2U7Y8Ew8QPLvYVLy3yBm9XgLYu2oLGD13j6I8SHp3PLm4R7zK1qy72u+nOwzAt7zyt6K8+CEePeYeXD1AWgE9PsUQvUgkJL1HH7q8UUMdPZP3Xr1D2jW8dm+VPfGXlTx61KY77E0nvOyI17yD3uM5byC9vEgElzwiYzu9C6CqPHePojz+AXq8RRrQPGWmhrzDLBc7SASXPAyFhzzSgMK8Hv6pPcbHbrs7hnM9bPvFOwlAA7v1/CY9lhxWvDXhx7wcTpa8nGuuO2fmoDs9y/e8plXePMRMpDwDETg92Oo9PGVRsDmTvC48E4VwOk3EZTvgtOA7O6CZvR8DFLxeAli72CVuvKdayLziDiG97uj+vFl9uTsuNzK92u8nvU7Jz7zeVDm8MJdZPPQXyjo9i10749nXu3v0szkQ6hi8ZnanPIxNSTz0Mu28NIaKPPkmCDu1GIY81eDpPAq7zbx6D9c8jjeQOkqZB73qKDA8bKCIPHFg17rzLAa9pm8EvGygiLu8og49tqiMvPlBq7ymOru6sK6KvBVvt7ychlE73zmWu9NlH72Fw0C8EmVjvAzAN7zAIkO8tW5ZuygiDT3LMWq6Wtj2vNKAwj33kRe8/aY8PM37o7xlUbC7M7xQvA7lrjp4Knq8lzzjuuHOBrwWr1G8RU+Zu0g/x7ye4BG9zyCbvEg/x7x25fW80WA1vQex+bwwXCm9fNkQvE7+mLyspLY8u50kvec+6bxMpFi9ZaaGPROF8LxlpoY8RU8ZPCRtD7xGWmq8XKIwPcnRQrw35jE8Z1YaOlh4T71f5zS9cqDxPCNoJTza76e8I8PiO2UWgLtD9Vi9YSdPvP3h7Dk2xqQ8KJIGPRnv67q4s907JIiyPDSml7wsbfg8QOoHvY6nibzDLJc9LnLiu2VRMDzuyPG8tlM2PVLzsDoS74K8GikfPZbGgrwy8Rm9SUQxvYxt1rzU+g+99LyMPLntkL3O4IC8/+bWOxNqTblOyc87zBbHu7udJD0N4ES9+Jf+vAAhCr5a0g+8XReUO8KC6ryvyS084V6NuStnEb3Hkai8g77WvGJHXL3zF0q8ckU0vNkq2Dz1/Ka8EXofvET6Qj2IzZS8XMI9vMVssbwCLFu838mcPPyGrzuXXPA8KAhnPN1v3DzqY+C8lfxIPUlkvjyEo7O8hPgJPV4C2Dy7Egg9KUKavFh4TzwdGc286y2aPEUaUDw46xu9MvEZuxmZmD1G/6w8TU6FPMNnx7xS06M8sV6ePOB5MD2Mbda8QtXLvPq2jr0RRdY8HRnNvMWMPj1LSZu6mWHaO5yGUbwYlK68ahF/vGQxozpPrqw8ahH/O2Rs07xnsde7oLCyvH+U9bzAXXO7tRgGPaHQP7xhJ0883DQsPV8iZbzjnie9dYo4PfbhgzypXzI8m6F0POh4HD1ljGA9u/hhOdCbZbpGOl07ozDnu0yk2LzOG7G89LwMvSO+eLxptkG6jpJNvExpKD0vsvy8oOvivOlD07yzify8PpBHvYTe4zzU+g+9pm+EPQIsW73xDfa8K9eKPOdYD7yOckC8Hv4pvU2Jtbz6gUW6moHnPJc84zx6D9c8ey9kvaykNj1F3x87TYm1PD6QR722qAy99VJ6PCBe0byhJRY9duV1umY2jbv7odI8ciqRPPc8wTqyDrI8Q9o1vCotXjwCLNu7Vx0SPftmIj1D2jU8lcEYPQl7s7vYrw07VYihvDjLjjq2k1C8TKRYOx+TGrzZCku98QcPPZh2Fr3PkJS8Q9o1vCO+eDv3PEE6p4+RPDUc+Duk2pO6KQ1RO9v0ETsQYPm8jDKmPPPXL7z3PEG8BpHsvD+wVD3Cgmq9PqtqPZhBzbzKtp88K2eRPYGzBT0nAoA9AQxOvQnQCb3VAPe7Q58FPTJhEzwWxI278Q12ukS/Erye4JG82tSEvMz7ozsrZ5G8pFD0vKivHj22jua8erkDPL04/Lwjo1U9OEHvuuFeDbxo0WQ9odUpPWOHdjy3WKA88xLgPMkMc73tqOS8602nPUEKlTxp6wq9CZvAu3rUJjto0WQ77W00PZkmqj0q8i09Jd2IPbeTUDtv5Qw9YWJ/vWVRsLsjvni9DeBEvHrUJr0uVz+989evPFT4GrwsMki8WX25PNxPT7s4QW+8m2bEPHFgVz2fkCU7mguHOjch4jzqKLA8lzzjPNfKsDni9Po8wnyDPOyI17wAJ/G81eBpvRnUyLu3yBm76HgcPCXjbzyw6bo8FapnOlRue7w+kMe8tpNQPQwb9bqmbwQ9/osZu5c84zyjMOc8vTKVvNjqPT3iDiE9h+g3vXJlwbu5/hs9KDAyPKtJ3bzqTuG8w2aVOxAHab0Gmo28Yz61PH+tFDxjVte7f4KyvCTv/TwfZmM6YzIkvPwxFDzX+GW7yBPjvKvDVDw7GMc7nVjJvNvLMzwoWxQ95TMtPKurMjyNGCA8Xnf4O8dpJ702CaS8XqmJPJOC6bwpqim7f4IyvDE9hT0eyLi8MfqAvB6wFjwW/mm7/O4PvdGOnLsxBhI9M8hvvEGV0LuXPRW9WNY7vRtvYj1BIgi930g9vbqEJL3Eltm7wnImvYAIu7yrk5C8gDh/PU7cKLzb6gQ8SwlbPNKTfr3D+C68ccFivVAMbb1xO9o7uTrxPL2yGL0tucw80oILPCnCSz3tQIC8No8sPEEDt7ywxma9qquyOlgsgD0zNtY7GjONvOXp+bzbyzM8Fc4lPViyCD0xpLy9tEPwPOpa8jxsLDc9SvG4vO8VHr3W1DK9dSZKPS7FXbqY59A7cKlAPOpO4bvuOdG8ocnBvH6hg7xB9yW9+a3bvEqWEjxTWTK9oCsXugFgiDynav47Lq07vIRVgLsa3Ug8Apxdvfz6IL2FhcS7clP8O1jKqjuTfQc6ejwcvcOpGT0LFxc8cJ0vPXE72jwMBNe72vYVPOReD71OB4s6zZDsPLqcxrylnA88NhU1PXU5Cj1YAR69WHuVvH4njLxrpi6911o7O/LJmryqMTs8yCajuwcBxbvkoZO9EHXPPIqU57wuS+a5yO8vvOHy+DxwweK5YV2GvCMhDz1nKSW80Y4cPY+X+bz0PGM884YWvKFbWz3cde+66VUQvCnOXLyNc0Y976c3PWhZaT0oMLK8kokYPNZ5DDzcad67Ee/GPAFsmb12rNI8ARZVPAKcXb3XZsy7Fv5pO3Uy2zySdlg8+blsO4Rtoj1JlhK9Xke0vJLwzzrpsLY8OysHPC2JiLvRh208ex1LPQaTXj2qt0M8ShybvAcN1rx+8Bi9cMiRvEGJPzxFmOK8qtYUvd+eAT3NnP28KDxDvdHFj7zS6cI8jme1u0GV0Lxspq68otXSu1lQszxe8e+7UJJ1u+Q/Pryi4eO8klIluvmtW702dwq3GYKiPCiqqbq6nMa8w2YVvI2Ghr0zvN68cKnAPOBUzrxrV5m6KTAyPXYOKDvDqRk9uRY+vDuGLT1PbsI6vfWcvY5nNT17HUu9id6aPK9HDT0Mil+87xUePdx1bz1BAze9cLVRuyNwJD1xkR4988LrvKqTEL17o1O8RWiePPiJKDxJX585tHWBvL8l4bw2dwo9LaGqPBFdrbui1VK9MT0FveBs8Dwptjo8PJ5PvTeDGz0ab2K6a92hvO/X+7ti3N+8H3J0PGNu+bs2gxs8FVSuPHGFjT16c4+8MfoAOrWlxbl7r+S7pbSxvKoZGT1B96U7dQ6oPB7UyTxjMqQ81+xUveFscDsQy5M7VHFUPBlXwDzCnYg8CwuGvLrAeTzb41W6otVSvXuLMT1ZgHe82nCNu7U3Xz3Ijdq6I0VCPeU/vrxBib88dbhjvOphITxoTVi7MoCJvBDLE72/k8e7qiUqvbSBkjwnT4O9I96KPW3Wcjwe4Fq9sIoRvSeSh7spPEO+xJbZvLRKn7zyvQm96k7hPLoiT7xLd8G81cihPBZs0LzNFnU9Nv2SvH+tFL0kRcK8M074vKtJ3TzMVJe9I6eXPFS7BzwysM08VOvLvF0jgbrSe1y9cNQiPRVUrrwUziU71k4qPNqzkTzuTBE90lepvAwEV7zkXg+9YzIkvKa0sbu0+4k61k4qPBFdrTxwvIA95a0kvTsYRzqIWBI7SwlbPXBCCTvMeEo76YwDPDOwzTpFXI28Zx2UuIn2vDvSb0s885InPKG9sLvHaSe7B+mivALyobzzkqe871HzPBZ4YTxxtVE9932Xu0aMUb0ebRI8k/BPvMgT4zwHb6u8juEsu73pC70BbBk96aQlPEYe67xFpHO9WDgRPf2wbbx2xHS8kl42ugKQTDumtDG7KFRlvUYe67yD2wi7LtHuvfcPMTvRxY+8VPfcPEBxHT38JYO8T1YgPMIEwLv3OhO8H1pSPaDcgT7VhR09m66NO7WlRb1w/4S8jvnOPJxAJz3qmBS8MfoAvXC10bx7ETo8Y9BOPH5qkDthXQY8k162uzY0Bj3lV2C9PJ5PPYnemj3kJ5y8jYYGvVTfOjspYPY8ksCLPOBznzuwU568r82VugbRALstucy8ZlSHvAL+MjuFI2+7zc4OPVPTqbzNFvU8dj7su1h05rqvihE8zeawPJvxkTvllQK6nWTau/0lAzx2Ape897QKPf6wbTsowss8/fqgvJxAJ7wRdc864fL4u+Qzrbx/grK84FROO731HL1QAFy8MpgrvYjqKz3Xin88sEeNu43tPT2E86o8FDyMPLqQtTyFhUQ94KoSPDGkvDzzkqe9XeVePC0/VTvNCuQ8uQotvK8cK73k0dc8x6AaPfd9l7zppCU8qsoDPRAOGDxtUOq8QA/IvI1Dgry4rwa9cBenPLSZtLpEkwA9LKEqvceByTzSAWU8IzkxvMLgDL3pEgy9bdZyvErlp7ymLqk83F1NPNHFD7wj3gq8AR0EvV1TRTx2Mts7FVSuu7mEpDtjuKy777PIPLBMb7xnKaW9VIQUu6olKr11OYq8LtFuvWaXizzMhNs7OxjHPCkwMj3cde88U0GQPI1zRj3ImWs8myiFPXLN87xe8W+7ODnoPPeVObyEhcS8KLa6uzHPHj3vReK8KRiQvIoacD0zyO88jdUbvR95I71Z7t08qjE7PZOOeju+h7Y7jxHxPLCuxLx+5Ac92jmavYiblrzI1428q8NUun+CsrzuTBG7ThOcO+rbGL2rSd286s8HvOVXYDxGHus8nXBrPEGtcr2TOoO7aFlpvSTj7DvS9VM6qiUqvaZZizz3LoK8gKZlPHE7Wryrk5A9pjq6PIl8xTxiaRc9Bns8PcyXGzwypLy7wnImPZ1YSbyi7fQ5sEDeul0vEjx/5Ie8XnIWvRo/njw2g5s7AWwZPccfdDwCnF08T+g5PUWfkT3pQlC80m9LvCmqKT0Gh828bKauPS5L5rv3LoI8RZjiPcgOgbwxjBq9ouFjPSlg9rt+5Ac9bDhIuUVcjTwWbNC8U0EQPRS2A7zqmJQ8w/iuO/gPMTzznri8CsiBvLl4kzsGGWc833OfPM1gKL2XPRW9WCyAO9cE97sky0q9oUO5utE/hzxnKSU9GUuvPEYlGr3vs0g8r5aiO+BIvTyTjvq8O+gCvMcmIz1tyuE8YkpGPF1mhbu/MfK8OEX5O42GBr3Nzg49/ICpvPj3jrqi1dK6paggPMjXDT0R+1e8H1rSvC1SFT3NSAY9Aq+duwxamz1/J4y7pcBCPdIB5burVe46RhLaPNZ5jDy1Eyy86aQlPKbkdTylwMI8mIX7vLU33zyqXB08/KsLPSfVi7zzQxK96dRpPBnwiLwZrYS8iohWusJmlb2Pl/m84FTOu3WIH70aagC8AXgqvf2AKbweQrA7/AYyvUB9Lr25qNe8cLVRu51w6zs4v/C7pRYHvIn2vLzq1Om7EXXPugcgFj39+qA8tB+9vNx17zvNeEo8gAi7O13NPD3CnYi8SYoBPWejHDw3s1+8nNJAvFhoVbtjPrU7bLI/vRm5lTpJigG8NroOPUCokLs2gxs8U1kyvMdRhbu6Is+8VOtLu7U+jrxBlVC9H3L0vGsgJjwUwhS7U3iDvRDXpDwe1Ek9We5dutJXqbyDHo09NyHGvDwAJbvv1/u8tRMsvZy6Hr21N9873F1NvJfPrjwL7DS6cMHiu8iN2rxmEQO9KDCyvDM21rxsFJW81sghvfiJKL3qmBS9xyYjvbRKH7wtUhW9qlAMPR7gWj2I0gm9kw+hvNd+bj1xweK8+SfTPEr9ST1s0RC89CTBvCwDAD2NhgY8sEcNPO7GCDw2LVe9ujpxvau3wzxTu4c8prQxvEsVbDwoVGU8pdOCveFgX7yALG486c8HPZjDnTwQ16S8MqS8OkpfHzwRXa28GfyZPIneGr0owsu8QQ/IPZuujbz3lbk7RiUavcOKSD2wojO8v7f6vFTHmDxJU468pSKYvN/aVr16Kdy8N7/wvJ1YyTyNhga9pi6pvAJ4qrtioIo8YRqCO53eUbu5qNc8Y2JovU7cKLxs0RC+tQebPLUTLLwuM8S8+CdTvLU337tssj+9EV2tu06ZJL0uV/e8klKlPH8nDLxGpHM8tTffvCTjbDm5kDU95cVGvSnhnLwsiQi9D8sTu8Siaju+AS49KdptOx5OQTt2lDA94NrWvGavLTzbRSs8qjG7vPk/dbyhQzk9BhnnPOVX4LxAqJA8PKpgvWi7Pj1P0Jc85cVGvd+qkrzSDXY9obGfuqrKAzu+AS68nDQWvJ1w6zxirBs9SpYSvHVFm7yJDl+9nMavPJ3qYryJAk49f4IyvDHPHj0p2u27egUpPHsFKb3vv9k8LZWZPNdmTDxjbvm7zXhKPPwSw7xQhuS85K0kvB5CMD1xO1q7kmpHO+Bzn7vqmBS9SuWnvO4hLz2/JWE9DOy0uxlqgDxBldA86pgUPfQ8Y7wHb6s8ReIVvRQ8DD2AMx29zWCovGuyvzoMHHm877/Zuxt78zvpsDY8nPbzvMz+Urw2xh+9LUtmvLqQtbwowks8nEw4vR7IuDx2lDC9Z2CYvE7cqDx7KVw76R4dvEaAQDr0zvw871iiPCm2Oj1BfS47TpkkPUWY4rxBJ2o9zEiGPEYS2jzk2Aa95NHXvPM3AbxLm/S80unCPArIAb2NGCA9RQbJPL8l4TzDKHO8HyqOO7n+mzqbKIW7Rvo3vI3tPT30JEE9iXA0PJfDHT0uucw7lz2VPF5f1ry99Rw92rMRO15r57p6c4+8RNYEvTGMGj0LnR+98r2JvIhwNDvHaSc8dRo5OBnFJjr5P/U7tZm0O+6nt7z3fRc8D4iPvAH+sjqO1Rs7oU/KvJgGIr20K0497o+VvUlfHz0evCe9ayAmPcLsHT1ezTw8XtlNPXFTfLwUSB29WCwAvTxui7tmVAc9pdOCO+q8R7x/jkO5ReIVvfg6k7zSe9w6hKl3vICCsju6Is87YaAKOwKc3Tte8e+7JMtKPTchxru+poc8bLI/PRH7Vz3kuTW8e7aTPNzj1TwVYD+9XdnNO0uPYz2bro088jcBvU7cKDzyDJ88mPNhOtJ73DzEomo9erv1PLCisz0x+gC8C+y0PF5HNL3SAeU8U8cYvZJ2WLxAZQy9VYn2vHY+7Dz8JYO8JGn1vLg1jzurSV29tT4OvFNlwzyq1hQ9hYXEuu+PFTzHB1K6uLuXO6DcAT0k7328cCM4PQ9RnDxoTVi8Lq07vEaMUb1K8bi8taVFvUmKgTx6l8K8jgwPPJLYLTvyeoW7g6QVPGaXCz3I76+8/GgHPc3msDwu0W48oKUOPdx17zsZxSY9ZmAYu2EaAr2Of9e8wTL6PBBI0rwcXAa9GNsRvfgAvjunwOm8RFfvvPkuDj3WRcM8QSOku5imurxYsTk8d+6TvFixuTqeJy88vkiEPIYw67x6+jY8Iip3u84n1Tvo4Ga8IncgvMidkTzF+u+6pLcaPRF2IrvrqNy8fVODvNfivLuHFOY8ztcEvOi7Er0m8mw9RDIbvW5b1LwtXQQ9mKa6PB+HAr1Zari8bgsEPaUpGDl5GZC8LMnZu4EYJb0nhhc9WD+8vIDtqLz3jkC9OSQPvduCir2yqaE84nt3u9kNOT20iki84jR2PPzzLz0ydUq9w89zug0/g72vwtK8CLjmPFYUQLuxX8y8h+npuuTR77vGuRY9npyAvDbLQrwCU/e8aYoPvfVjxDt4Fjw9dCaeO0lBEr0BdaS8o4yeO1x5Lz2eJy88DtZUvW59ATxgiCY8RYJrO4wjXTz22BW9+8izvPOCHT0/P6k7ohqhu4A9+Tx+eyu7iT9ivVNPnrwSnsq7M6BGvcBUJ7wa57Q87GFbvauz27uFUhg9iM1kvCcd6bxSTMo8JfLsPCkjkbyHomi8JDluOlfNvjuqqow7UWujO9PyHr3Cqh89+Z03PH7FAD1X0BK8XXwDvPCbzryXez69Dh3WvIrTDD39Za28gO2oPPCbTj0fISg8aYqPvCU57rtZari8ckKjvMRB8bzBfyO9/5Apu9e6lDzV1hm8DM2FvchWED1EeRy8j6TRu/sPNb2a0TY99tgVPTOgRr21J8I8ONo5PNs7iTxikXW75m7pPDQxnbyemSw9MU2iO/+QKbtytKC8WbQNPQ2rWD0eQAE9Ai4jvGUub7z4K7o79a0ZPThrkDs/q369I8dwO4Jo9TutJdm7PVsuvXbrP7x3XT09+xKJPHbrP7yuK4E9Ep7KvL8pq7yIhmM8fJcwPD8dfDxrTF28iT9iPMAyej1XXpU9XqSrPNI5IDy78gu9E1odvAuAXDxD5XE7mH4SvSQ57ryklW08NstCPA9IUr0pc+G6bTBYPJjtO7xytCC94SsnvATLnDwfr6o8a24KPEoD4LyXxZO89PFGvY1OWbwgkyW9d109OjkkjzpVwRu7M3geu5xusLkzeJ69vNOyvOFWozzVjxi9WLE5vJZTFjyz0Uk8J4/mPOnEYbx+DAI9Rl0XveJ7d72FBe88g7WevLB7UTpdwwQ9ktKhvEDW+jy1/EU9fsUAva4rgbtpig89p3noPL/iqbxJ2OO8ij9iOvPJHj1PX4A8VaLCOojN5Lw5TDe9dE5GPfGbTjwwH1I7LoiAvVsHsruTQcu7QQH3PAWp77zT8p48twu9vHYywbz8hIa8DavYvAtbCD1td1m5N/kSPBShnryHW2c9CZOSvEZdlzy3Uj68GNi9vLdSvryNldo8jjJUvOSK7jt0bZ88E1qdvHAU07xPy9U4BhttOjqTuDq/B/66mfAPPAuiiTzWRUM8xmztPDJ1Sr02PUA9rSXZu7DtTrzADSY9lLYcvW82AD1ufYG8uH06PVomizskDvI8cbFMu3FCI72NB1i9/fMvPGNK9Lx26788Rl0XvaDvpD1e7gC9VHdGvfBw0rxsvlq797k8vjUVmLyiYaK87dPYvJ8LqjwTV8k7WfsOvWmKDzwhTCS9Nva+PK3e17yZqQ69YR94O5qKNb1lwhk9V14VvY/rUjvDz/M8j+vSO1eGvbze3v28cyPKvNPyHj1bBzK9kohMPA6xAD355Lg7ml85PWq1i7xLA+C7SWwOvR5Agby/B347moo1PMtfXzz4vBA8DWRXPTIuSb25xw+8S5eKPHr9ij1Qr1A9uA6ROyvlXrydbjA8PVsuvRNanbwFqe+7jLcHO95HLDy1/MW8VVvBPG7EAru5Njk7wqqfvHGxzDwf9is9kougPFfNPruYez68PHqHPNuCCr0yA827/vx+vXPcyLyd4C29/cuHOhYfP73rqNy88lehvT8/qTwZSrs6aNGQPIMh9DzsPIe82VQ6PZNBy7w5JI+7mxsMvEf06L1JH+U8QpUhu9HEzjz6VjY9stHJvJ1usDwSnso5yoEMPLgOETxfrXo+/fOvPJrRtjka5zS97dPYvJxuMLumTmw9r8LSOwF1JLzG3uo7s9HJu397K7yEJxy6neAtOxZmwDxTlp87rI6HvX6g/zy3Ur495wIUvHbrPzzBMnq8Hc4DPYkajjyktxq9HBIxvVS+x7x6+jY8RFfvvPCbTjuCaPW8fCiHPLMYSz1sd1m97v5UPKabFT224EC8umG1vBrnND2zQ0e7KpUOPJ+i+7vc8TM8cbHMvIXgmjx/NKq7/ISGO8Kk97v98688DfLZvBWFmb2ucgK7RXmcvJv8srxsd1m9vEWwu00SV73dji09YZF1vIzcWzsUgkU9Xu6APNXTRT1/hPo8ILj5PJy4BT1gH/g8m/yyvDG8y7sKdw09Zz3mPIwjXTsGr5e8VhRAPROhHj0BU3e83BwwPX9Z/jwyBqE8Ydj2vFixubyZXzm81v5BvDHYUDs9W668tIpIPDqTuLxjdfC7Zu0VPLa4mLzut1O84xhxvEhm5rw2hMG8P6v+PKqIXzzfR6y85vxrvIcU5rxo0ZA8nguqO2c9Zruxpk08/0moOxp1t7zADSa8Nj1AvUMHHzyIhmO8FrAVvOLtdL0SLM08Z4RnPIOT8TuNTtk8iWEPPdI5oLwinHQ89DscvDMGIT1F6xm9cD9PPH40qjwqc2E8Xzt9vI2V2rz0Y0Q8C1VgvZ6ZrLcOsQA9ZjSXPABv/LwLogm9B41qPZobDD1aJou86cRhPNibOz2l3O68cbHMPK/CUr0lgG+997k8vcoYXru4xLu8BWJuPDQSxDvJ7eG8Qk6gvJ21sTth2HY8NvY+PJ99pzxpIWG9ALwlvBQ7RL1bTjO8HhUFvZimurxyI8q6zkkCO8VHmT0T6J88ByGVPU5Z2DyHNhM9sqkhPQ8BUT3SOaC8P/gnvcHGpDuM3Fu89WPEvNkNubyHoug8VL5HvGH6I70boLM9u2QJvbX8xTw53Y08AZr4O/eOwDwsnt095F9yvJKIzDyYpjo9YfojveuDiD0dhK68yqbgu8jC5T3XKb675IEfvRp4Cz3crYa7Z1+TPPpWtjuWKBo9FYJFvChI5TyKP+I8CuPiPAhMEbsOsYA8kBbPO81u1jvlrJu8hb7tPGoh4bxyQqO84xjxvEhBkjtZtA29FDtEvWpoYryM3Ns8W5gIPShI5buJYQ+7XHkvPe5ng7y/4im8/vz+vDlMtzxh2PY8T18APQYbbbu2Kpa8iO8RvS2kBbupOA+9s0PHO8HGpLwyvEs7/0koPLh9uru+AQM96QvjvPfYFbxSTEq7oz91PVttjDyd4K09fJewvNZIlzyNTtk7/csHvcpfXz2lB2u8ioyLO4UF77lDwB09OCG7PORf8rzXKT49BPDwPEq8Xj3HCWe7oBR5vCxXXLwnj2a8EHPOPL23LbrEY569KNbnuzIuybwlq+s6RFfvvNHETr33kRQ5yXvku8crlL0oahK97dNYvDTqG71r/Iw9xwlnPDf5Er1pr2M8e7M1vEeIEzzO4NM8Jx3pPCtX3LvWSJe7qfENOuxh2zx4z7o8NstCO4O1Hj36oAu9cYZQvREszTuNwNa8fVCvvBjbETvie3c92hANO1ixOT34K7q7hjDrO/wSCbxL3gs8uA4RvQADJzt6+jY8BdRrvNRkHL1nXxM7VVvBO8WOmr36VrY7VDDFPCt5Cbuve1G87PWFPV7uAL1EV288vIyxu1GvULsrTo28Wfi6vKOMHr3fl3w8XuusOy8f0jxF65m7rI6HvNe3QLw6vrS8INqmvH2ahLz7Eom9JKKcOjzpML3L8wm9QWolvBsxij1Gyew8aa/juyCTJb2vwtI8JRSavFixuTzTq5085pCWPC+tVL1MwoY8s9QduzOgxjwF9pg8945AvD8/qbwboDM9tLVEPBnbkbtUd8Y7y4rbPP+QKb0Jdw28NaMaPRrntDz1Zpg87v7UvFLaTLwFqW+8NeobOyvlXrxUehq96QvjvM9S0T2PpFG9moq1u3jPurx6bDQ9vUgEPR9oKb0jnHS7qmMLu/WtmbyqQV69YwNzvf06Mb1hZvm7eKcSvflyO71e7gA7GXU3PXYywTzzf0m8pP6bOxl1N72PVIG9oYb2vY6bAj2dbjA8B/9nu5KLoLyAPfm83GMxPD4XgbwV9EK9hCecvGQub7pTJKK8ifjgOU/LVbs7MLK6ucQ7PO8pUb05JA+93Y6tO8BUJ7wNhgQ7F5G8PDx6B7yzYqA8/q8CPUKVobxS3aA7ohohPQvH3bySz828RvRoPWYS6jz8hAa9O0+LPHekvrzLGF49DmTXO3/tKLugxKi87MqJPScdaTwgkyW795GUvK7eVzzLits73PGzPMkPD72V3sS8vikrvQdG6TyiqCO8rCVZPT5egrx/eys89KrFO1QwxTyve9G7gF8mPbRGmzwrTo08Ydj2vGlo4jyA7ai8ue+3vGzghzxz3Eg9H68qvIW+bTwJvo4868oJO8RBcbzIwmU6mKY6PcJd9rv98y88FYJFPAVibj2AhPo70cciPJ5SK731rRk9KUhlveZD7byvUNU7qKTkPDG8y7qlB+u7LMnZOxJXybysHAo8Nz1APJv8srwUyUa82xANvHPcSLyc/DI90xpHvQm+DjuXCUE8oaiju2XCGb2IzWS87GFbO3r6NjyemSw9/ToxvA7W1Dyc/DK9gkMhPXbrvzx/y/u74Al6vCeP5ryRFk+7WD+8vJxusDs1oxq97tmAPFVbwTvF+u87HFyGO5KIzDtDB5+7GzGKu7GmTbxkvHE8zZADPduCijynDRM9ZS5vPHyXsDssnl29ONq5Or3WBryb0bY85deXvDCRz7w+FwE9wqqfvUkf5byaqQ47GnW3vPUcw7paJos81R2bPBShnrzut9M89GNEPUYWFr38hAY9AAMnPO4ggjw5spG8qaTkO93VLr2vcoI9/h6svHtviD1s4Ac9YfqjPDDYUD3/SSi9fjQqvVEhzrwgRvy8An7zPJQlxjuy0cm6ayeJPKM/9byC2nK7mKa6PHzhhbx37hO8ZlnrOgWpb7s3QBQ81kgXva8JVD09Wy48BISbPAdG6Ty+ugE9bOAHPMcrlDvKgQw9vbetvXbrP7wNhgQ9j+vSOzzpML0BdaS6m0M0vEx1XTrJe+Q8g0xwPbo2OTzL84k9r1BVPJqKNT22Kha9eyUzPPe5PL1pig+8OGg8vcVHGb0R5Uu8XxapvBU+mLsVgsW6i0UKvXOVx7yl3O67T/bRPAC8JbyJ+OA7M3XKumbtFTxblbQ817fAvFlqOD3OAgE83GMxvf8hgLy0/EW7vNYGOTY9QL0i4/U8ZsvoPKgyZzzXKT49eM86vPU7nLx7szU8llMWPAEM9jz/tf062zi1PI1OWT3vcNI6cfhNPVwKhjvuIAK75PMcvXQnjzwGRpc8OUADvQ73I710iYU81wu0vOFWZrxKNY48o69RvG4QKDvjQLa8aDVUOwZGl7vFXdS7CUIzPJVCoDzlKga8SrRovD5iAjx6gb27+PXJvEt41TzwdTg8W+6FPE6lbDu/xxK8tZnEvKgCzLx/1Dc65UfqPHS6AL2Nrne7ZOJZPS2pCr3IPAy9CX5GPZInVTrHqRq9NYsSvMVd1Dw3w0G8+sBqvLvWDrtmajO9iG8UPbuR/LuG8tK8HG9tvX+YJL2ucJG94LEovDU7aLsX/449Yj2cvFFTKT0k0ho97UghvbWZxLxQLUa9KPQZvRe6fDzDuBY8FtmrvFSAwDzqfYC81A8YPVva7rztqhc8KekBvdGS1rwZpMw7zN1lPdL0TDxwmAG9TeF/vJEVCbzVIWQ8bky7PC5/w7yxqEA9gFyRPFit1zyNwo48EcJEvSwzfTsgwmc9keQNu/qjBrtJ8Ps73bUMvWeterzcIpu8Af60vNxTFr1qva27vGkAukX/d72Ury68zBn5PON8Sbs4hy69UhcWOiy0Ij0h6Eq9+FfAvBMOCz3PiyK8eOcXO4MnsjyxCje9kifVPFAtRjyQXDQ8ybBOPJBctLt0ugA8JXdYvQMF6ToD6IQ9kL6qu9zApDxrAHU9zBn5PAKj8rxocWe7IHSIvBxSCTooJZW8dETzu6sv4ztbHwE89ARGvNxTlr35G608ib3zvHPifDyeNvS8K/A1PMW/yju+P7m8Y26XPOK4XDwP7Is8DigfvB/+erjmqeC6+X0jPQ0ztzrhOYI8w4cbvTjpJD3mqWA9WzxlPdL0TLxv8Xg8meP5uVYlfrvw1648TvWWvWG1QjwjoZ88s6/0vA/sC70Ola08ZOJZPavhAzx/mKQ7u9aOPYRq+bz/9gC9qmt2Ozx4srwqLEm8F84TvaJsijwMq109SdOXPXA2izw0+KC75UdqvGxFh7uDJ7I7PNoovDHo7bySJ1W9PW0aPSRljLzBzka9rlz6u1Wmozy5iki8DTM3vXRE87zhkvk8ANjRPDPSvTljMgS8fc2DvGuyFb2zEWu8jZGTvSbZzrvZdF67QzRXvFvuhbw5ynW7JO9+vfB1OL2IDR49/EhEvWO89jydtxk8RkSKvLflijz9DLG8YbXCPFs85bwoVpC9HTPaPHgYE71B8Y87+hAVPTnejLwZQtY8Oo5iPW3qRL1tiE476eoOPf/2gD1zxZi84TkCvSB0iLxn8ow8iwm6OinpAT1HJVu8WpenvPE5pTwPHQc9DA1UvI0Qbr3XC7S7K1IsPC4dTTxUHkq96kwFPJWkFr3Dh5s7mD48unQnj7zui2g8X0EAPPcx3TuJH2q5i6fDPY0khTnh9G88kL4qvCm4hrwAOsi8KPQZPXunoLwpaNw8QQ70PMp0Oz18aw29sWwtO6gCTDspBmY7pZkhO87HNbwcUom89u4VPLvWjjzUXfe8OUCDPYcYtjsEyVU8cdtIPT7h3LyLp8M8PNqoO7FsLT1YD867MejtPCwzfTumGPy8FtkrvcL0KTw5fBa9NJYqPaIKFL2xbK09xuUtPIArlr2OVYC8TeF/vMKSM74m2c68NbwNPP/FBb0H2Yg84QgHuxh+ab3HR6S8fDoSvZn3kDwZpMy7GsovvfG4fzvZsHG8u6WTPLQ3Tr1e6qE76JOwPCadOz0ff6C8Rf93u3F50ryqTpI9awB1vGMebbyggjq5op0FPete0Ty6Q504GywmvT9DU73llxQ6KFYQvF/L8jzW5dA8ytYxu071Fj0J4Ly8UC1Guwgc0Dy4KFI94VZmPHzYm7z2C/q79zHdu0JTBr1mzCk80TBgvJfcRTwUjWU6U/jmvN/tOzxXzAa9iFt9PGdfm7ye+mA9pz7fPM2hUj0H9uy8mlkHvVf9gTxrFAy9Rf93vB8dKr16H0e8NbyNvTAHHTz8qrq8f9Q3vNCAir3M3eU8NJYqvJSvLjw3w8E8Zw/xvEM01zxUgMC8T8vPvH5ywbvNP9y9/rHuvCwz/Tt5vdA8lQYNPVYImryKRc07Rf/3OxFgTrxSSJE76dZ3PuVH6jwJ4Ly8AsIhvOHXizyte6m7Np1ePZgCKbu8Vem7v5aXvGzE4TuF4IY89ARGvNdtqjywRsq7r75wu45VgL0z0j09BrOlPVNaXbxT+GY8Qaz9vNDO6Tyj62Q8oII6vBTvW7yzJYI7bHaCPEamgLyz9Ia8W4yPvBeSALyckTY977FLvSyV8zxQLcY89SopPAJBfDzq/Fo6Oa2RvMBG7bsVFT+8moqCuzx4MjzqfQA99rKCvBrKL7tjbpe7IEMNPCSWBztKNY68NPigO5Svrrw2YUu8iQIGva17KbwShjG9JGUMPQyrXbylNys60LGFPVdLYTz/9gA9QS2jPNo4Sz2nPt88/ObNPBRwgb37hNc8Qaz9PAvKjDxAyyw8zmU/vU0ALz1rshU9fzauO+H0bz23oHg9MUrkPLTVV7xjAQm7dQjguxssJjzwE8I8G44cvDgaoDsirLe8ZQg9vDCG97rM3eW8D7sQvQ8667xeafy8m81JvMYhQT2dhp486yK+vMiegry93cK8/3XbPDClJrrWR0c8RsPkPIG+BzvNP9y6Z616u4Mnsr3C9Kk6p9xovN+LxbxSqoe9ESS7PGx2gjwUjeU84rjcPOdtzTwdldC8sQo3PYHvgjsaaDk9XSa1vHXMzDySxd47R4fRvFvuhbznbc28LLQiPXC15bzs5iq8DTM3PWJ5r7oPihW9/k94vTzaKDwB/jQ90IAKvKLOADyKRU09QGk2vfyqOj3BbFC96VedvA9ZGr3l+Yq8KPQZva8g5zsVFT88JGUMvelXnbxLFt87PQAMPcOHGzvPvB08aNNdvU2ToLxt6kS9C+fwvPQExrwDBWm9GH5pvBfOE71lCL08m83JvBjgXz1KtOg89YyfPAMZgD2iO489Zw/xuwMF6bzcwCQ9LLSiOjIO0byg5DA62RLoO9zApLtQjzy9vzQhPcOHm7sn/zE9Z5CWPEEOdLvnMTo92ZONPbJhFbzmC1c8UjT6PM4DSb3+AZk9j/q9u/L9ETzZdN49iFv9O4R+EL2jr1E9LHgPPPi5NjzdofU7v8cSPTlAg71FHqe7s6/0u7wZVjzAWgQ9iA2ePLcC77xAy6w7xuWtOl0mNTs2YUu8lBElvQTJ1bz635k8lBGlvGcPcb0RwsS7NdlxPNhiEj31Kim61QQAvaYYfDtJopy8oif4PIZUSbwShrE8Gmg5PEhLPj2d1P06nqyBO55KC71nkJY7Jp07vWYuID0yrNq82jjLPBc7ojyj62Q8hOsePVhxRL3IKHW8CjcbPavN7DyR5A28UuYaPeGmEL10ugA9c2MivEYTD7xMPEI9GDCKPH1MXrzo9aY8V0thPH82rjzQ7Zi8GJIAPap/jbwt9+k8ksVevMPpkby3gxS89s/mu5Zogzz2gYc4NmFLvW+jmbzs5qq7PQCMu3wJl7xn8gy9/3Xbu42udzxW1x69syUCvV4bHbxt6kS8ZaZGPU3Em7xjbhe9d1Qmu3gYE73puZM8Hx0qPYQcGjuZlRq8hS5mu5InVTkklgc9QoQBPB67MzxFHic9BrMlvK8g57zbXq48eoE9PFHxsrtuEKi8gycyPK7dH7xUgMA8+X2jO06ICD14qwS8jM0munm9ULyizgA8CLrZvFp4eLwNb0q92GISPPATQjzTGrC9TWKlPKpr9jpcYkg8hvLSOw0ztz2iOw+8bepEPPuEVzwr8DW8Jp07vX2u1LmHeqy8ogqUOxUVPzzQsYU8fernOvZQDL0d98Y7NJYqvdCxhTxwU++7SEs+vRMOi7yNrne85cgPvVk1Mb01vI09w1agPFNaXbyhRie9kidVPcz8lLwN0UA8xPtdPHF50jsyDtG8E6yUPOHXizwt2gU916k9vLs4Bb3mWwG9g8U7PeIa07rUDxg8IehKu7wZVj2Htj+9kFw0PJnj+TuaCd08e0UqOl3EPrwKN5u8HTPaO6pr9juyziM7TiaSvFvabr1CIos93YSRvKWZobysVUa96kwFPUHAFDugIMS8Z/IMPDkPiLyc86y7589DvTnKdb1BXp68ADpIu24QKL2z9Aa96bmTPN0D7DztDA48J2GovEvaSzyNJAW9r4LdvBBOAr7+MhQ6/rHuOwMF6bzW5VC8FzsivHaQuTpKUnK7V/0BveBEGr3ykAM95DUevBxvbTw6jmK7Pbt5OxmkTD0WdzW9Fnc1vZHkjbyq7Bs8Wzxlu8OHGz00d/u8s/SGu6mKJT0sR5S8ZmqzO17qoTyBn9i8F84TvWI9HD2ibAo9C0nnvCdhqDw/B8C8fNgbPZ1VIzzhCAe9PHiyu8VdVD3AKQm8i6dDuj9DU7ur4QM9lUIgPbxpAD1IrTS9iwm6vKDkML2vA4M8OUADvfNAWT13VKa8jtRaPMOHm7x96uc7QS2jvAf27Dyba9M88Zsbu8zd5by6Qx09//YAvY/6Pb14qwQ8c2MiPS671rzgE585uew+vCUV4rsEyVW9hRGCPem5kz28aQC9Iw6uPG6usTzy3uI8jtTau8ApCTug5DC9NTtoPaPrZL3/9gC9PZ6Vu3unID2j6+S7PHiyuhedGDzC9Cm9eoG9PJLF3rtSSJE7pz7fvA3RwLwrUiy9ADrIPMCoY706juK7/mOPPAIkmLscIQ69hH6Qu2ofJDx4l+07RR4nPaCCujvWR0c9523NvHyciD3dFwO8V/0BvPaBB72j62S9MzS0u7FsLTxYD0483FMWvdK4Obxf3wm5sahAPCV3WLvmC9e7g4moOl5pfLuZ95C8n1zXPEq0aD2/ZZw6nPMsPW4QKLsLmZE8Z18bveVH6jwxy4m8s3PhO0Raury3oHi9FHABPTpST70ZpMy8c+L8PNrWVLzt25K6o03bu0HAlDzlZpk7gdvrPK5c+juJ0Qq9U9uCPPYLervs5qo79ARGvBQ/Bj3UDxi9GaTMPFXiNr2EfhA9MZoOPSGGVD1AaTY9iuNWvagCTL1yn7W8xDdxvAo3Gz26EqK7kmPoO8Q3cbznz8O8tZlEPMR8g7xnwRG877HLO2Dx1Tpe6iE8Gw33PNSiibwjoR89a4GavPE5JTyttzw9xEsIPUamgDwkA5Y8FVHSPOH0b71X/YE75YP9PI3zCbxVRC290ZLWu4nRCr1bjI87QtLgPD5/Zj3h1ws8SmaJPRTv2ztwNgs9jRBuu8s4qDxWJX69tNXXuj7hXL2piiW9mKAyPD27ebymjgm9E6wUPDrw2LzDuBa8t0eBO/OizzxHh1E85ciPu+pMBT0ZpMy60ZLWPHwJF71b7oU88qJPPHg197wFUa+8KQZmvP/2gLvXqT272DGXPJYYWbvb/Le7CywDPYWQ3DwU79u8Rf/3PDFKZDpJ05c8meN5uw86azwopO88CywDPKZ6cj07tMW7XogrvXm9UL2LrDo8Jr8buyhflLxTkDm9OGsBPBx0uLwTkp28Gmv3O69alryVLk48Ak8AvXEUQzxWxAK9RBidu9sfDD3qr/g87bi5vMhInrzjbdY7J9drvAymC7w+w0I80R4RPXJqUzzUFBo9JMkSPKS5Ir3peMi8TzFoOSEKOjyR7ty7UQ+hOx4gWT3uLaq8rqdlvCCoAT1plOA8SvgGvdvtc7zGfR09HgH5u2xf4bxPUEi8oQZyvVJZiTzx+Cq9I7ZavSO2Wr0Cegi94oCOvbrQATyaxM+76baIPfJOu7xevDw8f3QPPKTRcr1FJEW9QQM0vVmbq7xrCdE6hMAoPSgVrLxZj4M8Z8nfPCUM6zzcgcS8q/vEuxlr97x3yaS8Ma1eu2O7hj2H1ZE8l/nOuxUyFr15aZ28mqVvPSTVujwd6Si8YRsOPJ74mDwJcsI71nbSPN+KhbyRtyy8BPugPZ95sbtoPlA9Xby8u0Hk07xt5wm9GZ2PvCui7Ltgph29wKnbu2BJfTz5eA29K/j8Ox4ICT1GmbW7u/sJPH4LxzsyIs88+E0FvVI6qby3fdi7iaASPMExhDuZT988jgT8vO9F+jyHwlm7uBGpPEhYDruzste8z2vgu7ueab22ZYi5MQPvPIfhubv32JQ8t154PXrL1bssbW29sSUXvI7sq7wSKVW8SCZ2uYO0gLyr+8Q8tUYovBgoH70HEIq9QngkPbfyyDzOKAg7dUgMvYINeD3nFhA8TaQnvcOyHD1Pb6i8zb+/POU417wdNng7uUhZvGH8LTwg0wm8e0BGPN24dDsDhjA93kCdPTJBLz1pXTC9zjSwPNZX8jyNzUs8IkHqPEOXhL2hDQI9vIhKuzQMsLwayBe76WwgPK4c1jyou9O8NQCIu/Ntmz0lPgO95o7nvCCogTz4WS05hTWZvC2MTbz2b0w8DvwbPVSQuT3QqSA8zigIu3VzFL3R4FC8Y7sGPcTpTLxUBSq9l9puvSCVyTywkca8djXUvMp/Trx+llY8V5JqO7TRN70u4l28rcbFu1fQKj2L4+o7S/F2vKE4irzlV7e8R+/Fuzv4Qb2FTem7kJjMPA9xDDxU5sm84RfGu4mN2r1e8+y8XbCUPGMU/rzTk4G89lBsPIgY6jrSVUE95UuPvNH/MD3mjuc704xxvdlgszy6+4m8becJPew3IT2oEWS8DXsDPYxrkzz3pny9ImDKPKOawjyk8FI9FogmPOtWgbyYN488RrgVPZ95MTzEJw09zGkvO7qxIb1BIhQ99PrbOyrgrDux+o69TaQnvfIQ+7u6vck8xSB9vQJ6CD0WiCY8ED/0Ol4xrbval+O7N9ewPBrIl7uX2u48aaeYPLDPhj1RG0m8k4KtO43NyzgGiOE7jgR8vGaSrzxRxTg8p9qzPKluBD08bbI8l9ruvDVD4LxWehq9xOnMOw9eVDxU2iG60R6RvG9Jwjxx9eI7GXKHvffkPD1yUoM7076JPLCRRj01Q+C8StkmPSO22rpxCJs8RO2UvEHkUzzpbKC6twWBvZ95Mb3Aqdu6RnrVvCs2vTzf9rS9TcOHPehBmLrCPSy9rzs2vZF57LxQxTi+rHA1vWaxj7w2y4i8NsuIPIsCSzztmVm9QK0jvN9MxbsSZ5U8DkaEvFl8S73sYqk8YKadvGfJ3zyTmn29b0lCvIQKkTxzqBM9IXZpu1xmrLzWdlK9YjNePTR4XzyyUJ88houpO2qzwDzgotU8T2+oumH8LbxCWUS9XjGtvMeVbbwhduk8VR36Ozmisbpqs0A9VnqaPFTmybxILYY81rQSPblnOT2x59Y8HDb4O0J4JLzECK288xD7PFOQOTzO3p+8CzEbO+rtOLw+4iI8xj/duiJUorssnwW9yLRNPI2u6zvYVAs9ALuvu+VXN72/U8s8OCEZvchInjsYNMe8vFGaOAJIcL0vlQ49BVGxvG+Hgrx6rHW9bF/hPLOT97rgtQ08vv26O3cTjbxH4x096s7YvLjmILtIRVa8AJzPvb2nKjwr+Hy8/g4PPD2kYj200be8T2MAvMOTvLwaqbe88i/bOq4Ehj7ICt67s8WPvM7eH73jjLa7xfyEPMBmAz3gg3U4tUaovPTDq7xO+jc7Rpm1PKVZG7tZfEs8ZoYHPBUyFrzhg3W9d8kkPV2d3D1RLoG8oQbyu6ENgry5SNk8Y6hOO8eVbbyU2L28Hz+5u/EXCzwOsrO7ngTBO+56ebwt9ZW76yRpPUHF87yQqwS7d6pEPGTHrrwbHqg8h9URPTs2grxYRZu8CXJCvBfeNryfebG7RriVPGBoXbxh/K08hAoRvDDMPjyye6e75AGnu2H8rTxbKGy8Egr1ukgthrzXCqO8IlQivXxfJj3R4FC8dxMNvNHgUD3Kf048l9ruPGl8ED1cR0w9sch2vFeSajzpWWi9o2MSPc40sDu+3to8m/t/PPTDK71yatM8EJwUPTxtMjzR/7A8VVs6PV3bnLqE2Pi8ZwcgvAxcI7wBBZg7DgjEO+U4V7xLIw89s8UPvefMJ70b/0e82tWjOraQEL1Luka8famOujJBr7zeFZU8GZ2Pu6xR1byHo/m8cLIKvdOTAbwCZ1C8mqVvOuTDZjxPUMi5kkRtPDgOYTwyQS+9YfwtOp2P0LxRDyE84lWGvVgHWzyMWNu81nZSPXTfwzyVLk48mBivPHXTGzyO7Ks85q3HPLv0ebxGmbU8UjqpPJmNn7wYKB871V6CvIJqmDw5ZPG8ELRkvHEUwzwmoLs6T1BIvQ4IRL1dsBQ9bhKSPDE1h7ujmsI8LcP9PBHTRL0zlz89TIVHvXqsdb031zC9wMi7updl/rwFUbG7BBoBPT3iortLEFe806vRPCH+kbxyM6M8AmdQPQVwkb2o2jO706tRveI2JryJbvq7K8FMvPSkS7zLK2+8YIc9PJ1wcDyLFYM9+aOVPPTDK7wWaUY9SC2GPYEUCL0cEgC8uWc5PQseYzyxyHa7LcP9PEub5jsNdHO85AEnvRIpVT0REYW6Vk+SPe7XGT21ZQg7pqMDPQlTYj2DtIC8TaSnO2218TxhGw691T+iPX2pjryyXEc8gizYPcI9LL1vaCK9R1t1PWJSvrt4PhU9yxMfPAlywjxnyd+806vRPPHZSj1LEFc8sLAmPGsJ0Twmgdu8PcPCOwVRsTwhtCm8zjSwvL1p6rtU2iG9R+/FPLCwJjzbDFS9eyHmO4QKETzHtM08yZ4uPexiqbz8W148I56KvEDMAz3Pfhi9mDePPD3DwjwU1fU8QlnEPJF57LxkERe90jbhOkyFxzvCHsy6iY3avH9CdzsU1XW6DgjEvCxt7TyTzJW8p84LuzmWiTwXoHY9HwiJO8I9LD0+pGK8SCZ2PQx087xvh4K5BL1gPXxfJjz0w6u8iwJLO7UnSD1enVw8tJN3vAOGMDspa7w8c6iTPHmUJb1cR8w7iyErPL+Ri7wHiGG8YlI+vOQgh71O29e8ftQWPQ6TU7zOFVA7reUlvRVK5ryyPWc8/Ho+vWaSr71vaCK9bvMxObrcqTxVPNo7mW4/vRI8jbyup2W81+vCO2aSLz3rDJk6nzvxvGCmnbwUEza71+vCO1DkGD3Uq9G7a9IgPMrVXrxMZue8cCriPHaLZLpfUI07BojhvAgcMrzDk7y8AX1vPc4VULyzmgc9tQhou/CiGjx4HzW8iyErvGJSvryOBPy8E3/lvGeqf7yt5SU73HWcvelsILrwohq8cYByPFJZibxWepo9N9ewvDi4ULwhCrq7zjQwvNhB07yqpTS8Yd1NO0gthrvF/AS9U1J5vH4Lx7wjl3q8Te4PvYO0gLySdoU7DunjvOl4SL3WtBK9Rpm1ux6+ILzpeMi8OGsBPdaJCj02ywi9PzgzvYfVkTxsX+G89IVrPMI9rDzONLA8pUbjvBqptzzR4FC7B4hhPKHuobwFMtG8bHIZvVOQuTx1NVQ7EdPEug7pYzz/RT89PiyLvVm6C7txCJs82EFTPcv0PjsX/Ra8bypivGIU/rvwumo8yWDuOiCoAb2bGuC8p/mTPZajPr0q1IQ8pVmbvHTA4zyCS7g8vGnqvOjrhzxvhwI8F/2Wu+DgFb3e9jS9D300vSCogTwAuy+9NqAAvVxmrDz+Do887gIiPB4gWbzOgX8844w2vcq2/rx36AS+bJ0huhTV9bvH0y29SviGvIINeLyFYCG87g5KvCaUE73BqVu8BjJROtvVIzxbEBw9ARHAvJf5zjxGetU8okQyvbgp+byGfwG8aB/wOwVFibu7Mro8slzHO6v7RLo8TtI8DFyjvGqzwLwwzL6829UjvCUM6zwcNvg8yrb+PLTRt7xeMa08OtnhORPcBT1+SYc8o3vivNfrwjmIN0o9AdN/PC3KDTy402g7JUqrPHVIDDwoLXw9HGiQvJCYzLw/b2O9CXLCPODBtbxLI489ppxzPN1iZLwUE7a870yKO2CHvbuReWw8OPYQPbU6gLtArSO9MQNvPA4npLx4HzW9yrb+O0q6xjy30+i8CqlyPI3NSzwTkh079o4svSOXej28aWo9K8FMPOjrBz2ReWw8l/lOPVrxu7zPfpi8bvMxvaZlwzwsjE29pUbjOO24ubx+C8c8V+h6uxxVWDpq8QA9uDCJvCkVrDkJcsI6zGmvvLgRqbyO7Cu8bdRRveDgFT0B0/+8CXJCPFI6qbwJcsK8HiDZvLacuLwhzHk8ZKhOvGJGFj3q7Tg90R4RPX7/Hr1K2SY9tNG3u2U8H7wTnsW8O/hBvfOF67wfiSG9ELTkPI42FDrLK++8ppxzvJCYTDq08Bc7WNAqPBgV5zvoFpC6kmPNu+mXKD1H70U9QK0jvJVsjj3xFws8TYVHPFyFDL0qwcw6KuCsvLa7GDxgvm07QMwDvblnOT3PNDC9+TrNvKR7YjyXhN67iXWKuyUry7oBEUC77i0qPCyfhTt9fgY9xMrsvOcWELzL9L47TzFovMIezLzcgUQ9UcW4Om7zMT3bDNS8tSdIPfHZSj3KvY48L1dOPdr0g739se681KtRvCUrS7wxA289hAqROvH4qjugsGG50nQhvUI65LvTvgk8ELTkvGC+7btdfny7dxONPFGmWDxJrh69p9qzPI7gAzzL9L48yr2OPRe/VjsMXKO7CXJCu9gi8zzbSpS9dNObvJOCLT0EveC7U3FZvNHB8Ly1CGg85MNmO/skLj3QyIA9ZrEPPDZWGD14PhU7VTxaPS3D/by8mwK5LIxNvU9QSLy5Zzm9cJ/SvE2kpzw++vK8+XgNPJEBFTyJViq9vaeqvDVDYLzR/zA8uyaSvMI9LDwlSqu8M1n/PO4hAjwYNMe8YL7tPB3dADwfiSG9jgT8u7gwCbx5lKU5tUaou2+HAjyOI1w7Kza9PCaUk7x5dUU7z1OQvBOeRT1/Qnc8MesePTTO7zx1FnQ8lbndPEI6ZDyB1kc92FSLPJ87cb2pmQy9o+TsOxp4VjolNBm8wLJxvezAj7zy3xC9QzJdvNsHjbwSEKs8EecqvCGX17y0psU8AVcovT0cMrsHZP08/aD7PH7XvLwioC08csK6PH2l5ryExGc796wRO6GS7DzgDSM8RDszPVPLtTxqgw+96CPOvBgmVjwBV6i8oFKYO6njwzwGO309nSDCuMt+yTuIepQ8P3cIPHaG5bw5aBy8AE5SPQhtU7xelw296/BOvG31Ob2RAuo8m6VBvaoMRL23QXC9WwrhvLXv77yyXZu6doZlvI03AD1O/jQ6Cgh+PJvFazwnjVi9sSLvvDJZML2Jmj69Tx7fvDSrMD1U9DW9niBCvDJZMD0+RTI90pR0u8I2SLzs0KS89WomvFT0Nbwv3i8995OmPNFtC7z+y5K9urzwOkWE3TymYQQ9zcfzvNsHDT2L42g81jqMPA1DKjwCd9K8ylXJvB4cVz0Ijf27GTgCPbhq8Dvfssy8IqkDvQTpfLxuHrq7IE4tvbqcxrxC6bI8xF9IvVF5tTylOAQ9qeNDuhakljwR3tQ8tJ8GPZuc67wTWdW8v2nHvCnIBD0q8QQ9ngAYPaQ27bxERAk96+d4PFY2IT1ERAm6lqgBvXGZOjrrnk69FvT/PM3H8zz9qdG7uZNwO1wzYT0w/lk8e1w8vep+JL0FEn27kgSBvDhG27u/cp28k1TqPNm8yzsTYqu8poqEve9LpTwVy388hMTnvCPSgzw9PFw9LpUFPJt1Ar3H+vI8zcfzOwOg0rrJLMm8elw8PPC9T736J5I8yANJvOzQpLoaeFY8pmjDu/VBpj2mSBk9h0i+vMMGiTwkC5k89qp6vHML5TxJEQq9mSpBPU3Fnzy2AZy71jh1uTlv2zy87sY8upzGvDlv2zsaYYI9FuYBvUfWXb2d1xe6x7qeu7TG7zrmyo48jpC/PFFpID3oLKQ9rrDEPB3sFzvRfSC90p3KvH7OZjyWqIE8QLdcvRWif70+NR09/tsnvbSvG73Txso7NMvauqixbbxZwba8+1fRu+bKDrysVwU9+NURPYmR6DxAwDK6v4lxvPVakbwUgtW8dUaRun2uvDxy4mS64ATNvCQS2DvGsci94k33vNBCdD2lX+27+NWRvLSmxTxO9V48eOG7PAmW07v+yxI9SQi0PGEJuLwhl9c8oqSYvGXWODy75fA8+iV7vHev5boGFBQ9JBuuvaKkmLnTz6A8qdptPbOdb7sychu8ZI2OPA+eAD3JDB87KzovOzcWnLzgJHe8FFIWPas+Gj2Y+oG8xYhIvTcdW732s9C6MSAbPQwRVL1PHl88we0dPVsKYbwAJVI6KLbYvLALGzuOh2m8o+TsPE3MXjwOg349fa48vHVmOzzm0U281OiLPCeN2LxpUTk9B0RTO9ToCz3EX8g8l/hquyZk2LwR5yq9kz0WvddjjLx5Cjw8CHYpuzzzsbxO3go9V0+MuwAlUr2qBYU9QvKIvIw3ADxxuWQ9cxQ7u8kMnzyR2wC9R7YzOtm1DL0mhhk8nkDsvNTm9LyF7We9l+GWvNrc9byIehQ7MSdavfLfkD17PBI8kesVvXtcPL2up268keI/vsj6crwrGoW8iHqUvDYGhzsCgKg81PggvSPimLybxeu8FZQBPc3Qybx1Zju9dD27u11VIrxLgzS7PmXcvHGZuryzhps7c+u6PAmW07uv0O67Za04vPeskT1QMAs8Nx3bPH2OEj0/d4g8FFKWPGWdI7uYChe7jBU/vevwTryCcme8DmwqPXVmOzzoLCS7oZLsPMaRnjwX3Ss7n0nCPFraIT1LWjQ9FtRVu2cf4zwj0oO8IGcYu4Ob5zzfq4082cWhuzEwMLzRa3S73Ff2OY6Qv7yYCpe8xYhIvRa0qzxEW1286m4PPcQvCbwd81a9JpYuPF1c4byVjxY8UXBfO87ZHzwtg1m9ZI0OPbqlHLw13Qa7DmNUvRgPAj2yVMW85/OOPKGS7DpDG4m81UohPOlMzrwd89a8iZq+OzJZsL2u2cQ7MTCwvKQ2bTzRVKA9rtnEvKxeRLsALqi8bh66vHnqkTy28YY+xrHIu7XPRTvqfiS9mSpBO9F0yjzPGfQ8jrBpPOhDeLwxMLC8E1B/PDqqBz1B4Nw75ch3PCUkBLzva8+7y3cKvUCXMj0/h509+fz6vOluD7wlJAS9MnIbPLqcRjrwlE+8iswUvZzF6ztQeTU8RDszulKitbwd3IK8Tye1vIApPT2ncZm8jA6AvEtznztoKLm8CZbTu1Y2oTwCl3w6i/UUusaxyLp0NGU8ZdY4vDhG2zwNQ6q7x6qJOxC+qjrrvni88wZ6vAKAKDz9sic8Y2QOva/ShTyBMpO87NAkPA51AL1I3zM9niDCvJ3XFzlV/Ys9FILVPD9usjwZL6w8DmwqPY0+P73a7qE81A91vfaKUDvDBgk8DBHUPECXsjxRWYu9Ro0zuyZNhD1Yj2C70730OqnjQz1ywro8d7g7vRphgryAKT28c+u6vITNPTv7UBI7Za04PQAek7xCCV28yANJvH7OZryDpD29FrSrOcQvibwGJKm8OFgHPegcjzwPlSq9YSnivHtT5rtGrV27XVxhOxuhVrxGrV08O+rbvO4iJTyGKBS8GnEXvf3bJzzcQCK9wgRyO9UYS73Ef/I8LEOFvOqVeDybhRc9NgYHO1dm4DzBtIg8X6ciPe05+Tw6mFu80W0LPUa2Mzy1yAa9labqu9mz9byCWxM9QJeyu/x3e7xqejk907+Lu9K99LzDLXK9UEAgPXs8Ejxftze8FKJ/PFsTtzziJg69VOQgPef6Tb30OFC9CHYpvTJQWjt0Pbu8S4O0u+05+TwcswK9Z/84uw061Dy2Kpw6gCBnPKnchD3m8Xe97fkkuynfWL1pceM7Vj1gvLvOnLxtFWS7mpxrvI1HFbmth8S7nceCPftQEj3+26e89mqmPLdBcDyF9j27BiSpvN1gTD07yjG8X9fhueR4jjunkUM8VNQLPJSmar27xUY8MAcwvAAuKD1KUV4839J2PPPvJT23IUY9eQHmvGzs47stjK88FGuBvAmWUz3rl4+8sktvPL5pxz3uQk+9EgCWvM7yij0cswI8x9rIPDcvBzx2jzs8FIJVvWlxYz0Cl/w8DoN+O9Y6DD39qVE8bfU5vX2l5rwVov84wdtxO3ZvEb2qA+680VQgvZ3uazw887G6g5tnvXPrOjxoKLk8ZwgPPYJ7PT2ousO8p3EZvEysNLyj7cI5aEjjvI/ZaTy9EAg9JTtYO+35pDwov6686+f4vK6phTslNJk8FKJ/vCVErrwTWdW7+ieSPPG0ebw84xw97RlPvKxnmrqgaew8UXDfPDzzsbzXYXU9L9VZO0ysND2u0G68nJ6CvKxnmj0YH5c8Qgndu1rKDLxkdCM9pDZtPFBQNb2Cm+e6s51vPFdmYDxbE7e8SN8zO5WmajueIMK8kesVvEMrnryKzJS9pDbtvAh2qTw7yjE7p4jtu3/gkr1B2R29vRAIPAdkfbwzedq9HvwsvRfdKzvr53g8WIihPA5jVLzAsvG84CT3u//70TyczkE9/yTSO+WoTb0nvy67OEbbu6eKBDxh+SI9eQHmvFxFjTxa6jY8b1CQvJlKazrXYXU8V282OzlvW721yAa7ABx8vFraIT0NWv679DGRPBSif7xKUV68uZPwvNBLyrxs7OO8higUvd/SdjwSECu9FYsru4v1lL2TVGq8JmRYPD93CLwUYqu77Tl5Pe9kkLzGsUi7Nv2wvF+3t7zn8w67nvACvGujObzxtpC6P4edvBuBrLsNOlS9dWY7vA5sqrwnnwS88sYlO9PPoLxJKN684jajvUbWXbwR/v66sl0bvBgPgjzFaB48c+s6vRyqLL1XTww9FYurvKPmgzyExOc8eQq8O/n8+rr5/hE8E1B/PCK5GDzvYvm8QLfcvFAwi71kpOI8pPaYvHCQZLxg4Lc73WkiPf/ye702Boe8zxn0PKByQj0Q1f476VUku2IyODyuuRo7VjahO3aPuzzxthC9QxIzvJC5Pz2sVW68niBCPFiYNrw76ts8mCHrOlLC37so31g8b1CQuiU72LwCgKi8oZSDvBDeVL3XYXU8o+1CvSVELr0tjC88pA+EPGNkjrsdHFe80EJ0PXLiZL30QSa81OgLvlsK4TtQMAs8DDH+vN/UDbxszLm8CHapvAFXKLz3k6a8P26yvO5Czzv0MRE6QgldPZfYwLvTxsq62cUhPfQxEb0MChW9b2fku2IpYjw0y1o8fwC9PMe6njy1yIa8Ro0zPGbGI73yCBG8lF1AvXQdkbzt+aQ8PWVcPN+7Ij2DhJO8cZk6Pa6n7jsmbS49D4zUPAYkKb0LCP47HyUtPS6VBT029Fo8I8ktPFiIobvGgYm6vPecPSPSA70DqSi95bGjvSxa2Tzfssy7Z++jPd6JzDtRmV884NtMvTcWHDz9y5I6dDRlvDb02jy12Js71Q91vJzOwbwmba6896wRvSGAAzwZL6w8NxacvG9n5DzU78o81jj1u5ulQb3t+aQ9GmECPQc9FDy87kY8+eUmPWp6OT142GU44A0jvCT7A71ejrc8WbhgvbmcRrw3Hdu8JBsuPVT0tbxaEze7BhQUPZj6AbrMnvO7faXmvFdvNrz41RG9XW4NvN/Sdr3+yxI9E0KBvEkItLwulQW8O8HbvFFpoLw5eDG8SRGKPKCUA7y3Kpw8ySWKPe87ED0X/dW8I9KDPQOpKLsPrH48zKdJvQ+VKr11Zju8MAcwvY+ZFT32g5G8LYyvO07eCrw8PFw7s51vOhgm1jv2qvq7Wzy3O6K77LtzC+U8S4M0PVFpIL1NzF49PPwHuwsRVDyeAJi8D5UqO+9LJbyxIu86lFaBu4q66Lw0qzA9l/jqO/yJp7uTLYG7DUMqu6ncBLwMGqo7jDeAO0tatLv8iae8hR++PAdNqbzEPx6937siu/Qv+rwOY9S8U8s1PfLGpbw84xw9Jm2uvP7J+zwaYYI9h1EUPSZ2hD1ftze9b2fkvPtXUTsGJKk79C96Pa6phbs5eDE8v4nxvPVh0LyP2Wm84jYjvA1a/rvWOHW7i+NovF+nojtRmV88FtRVvB3cAj3vOxA8xrHIO0HZnT0utS88MTAwPCnIhDvyxqU8P14dvYAJE7xa6jY9JSSEPGEA4rxszDm97iIlPb0QiDxZsSE9/aB7PdKWCz3jXyM93DANvGI7Dj3bV/a8p4htO/QYJr3VD/U3sTQbvbYY8LwTYis9Vf2LvOAkdztszLk88wgRva2wRLysXsS7sPsFPYKtE7ySBAG83WDMOwBO0jwtjC+872SQvMG7xzw845w79BimvA06VDwnnwS8qxWaO4AgZ7w5eLE76UzOu+vwzrsOXBW9ykxzPAq/07sR/n49C/GpO6PtQj0ovy498b1PO2WdozzqfqS8S2OKPfeTJjy3IUa98bR5vIFlN7ytJaQ8ie0CvO+SsLyQH1W8kcqRvTs0RbxLDUs7WK4/PHdgS7xOZMS8ihyfPL1TbbyemiI8FjJ/PEHSg7ouufe8t9wLvEX7YDz8kd28QQhfvAUaKbx2QeM6dYbyO+WsLD2EvLA8yu0ivYntAjtS2qU8EX1NvEe20Trczx08V3BvPTTEIr1KccK8Gon4u9tisbx+mhK9BMykvAJPBD079nS8wz8wOUCLPjxpryK99YUyPAAIv7xuoiS97mMUvXa9A7sKkAq9GEqovGAXI7uzCfI82M1nvNPa5bvbMxU8K3qnvfUC07zd31G9ACcnvUNujLvcBXk90XwtvSPyW7w6t6Q8kF2lPXgLiDwR2oU8bQYcvcaWKb0E64w8UcJ8PRdwTzy0R0K85RkZvfYhO7vt1z890KLUO7IYJr0gfHo8Lrn3PBZ/g7xdY/E8/qmGvSQKBb0CAYA9q4kbPAt6lzvCZVc8e9YsvaUKRb10KLo6vg5evOzefr3Gd8G74rPrPFyCWb0XzYc8uBvcPJ2C+TsV1EY82EkIPWMwzDzQotS8Kv0GvWhhnrwUxJI7LdjfPPOrWTxePcq8upj8PAjVGbxiVvM8MigaOmbrPLxZSki7JW98vVN9bTvn1Ik8ZQqlvI0GLD0qgWY9W9YcPeciDr1IQia9rlTAu2F1W7zGlqm7gWW3vOSsLDwqv7a7Qen2u8lRmr2smc88j4PMunZ/s7z5toQ7RvtgPTEv2Txr3j69Kx3vPBMZ1ry+LcY8rbg3vCWO5DzP/wy9enl0PeBVs7v3+5M7cNHAPEBGrzwAJ6c8yBNKPdrGKLy1IZs8zSzzPFGMITsIWXm8/JHdvFTjmjxMius7swlyvSuZDzzboAE9hhrpPHyRHbyuNdg8gsNvPXYi+7znA6a8ar/WPM/gJLxKccK8kR/VPF5csrtFOTE9JDCsPbBNAT1nh0U8sdHgvNF8rbwZSig8TkVcut0dorxoBOa8bHpHPWmvIr0reqe8/oqevFBdhbz71my8hhrpvDxTLTw0hlK9AAi/PEY5sbx61qw89MOCvLGrObxYOhQ8MgkyvJR2zrwIeGE8a96+vFor4LzGSCW7e0OZvQneDr1xqxk9ci/5vK5zqLxRqwk9Fo+3PEbFhTyJr7K8AEYPPXNHormQZGS94SYXPWq/1rvoxdU8FfMuPbJt6bxFQPA7MS9ZPeTLlL3r/eY5Pe+1PM0scz1zKLo7VTEfvQ0WoDw0xCI9M8thvOlC9jq0KNq7rXrnvKyZzzzY7E88Uxl2PBtyBb2Qg8y77pKwu4R+4DyIMpK9gGx2utE+3TvvHgW85I3EulDCfLwjEcQ7bLiXvJOFAj0Lepe8JMy0PY9zmDrFnWg8bjU4vBNXJjzjEKS87rEYPZRXZjx0xMI8FdTGPElS2jsQAC29/JFdvVlpML17NGU8jnOYPBaWdrwAJ6e8dr0DPar9RjznAya9giAoPdS0vrtJUlq6vR0SPeSNxDvWby88UML8O4FlNzynxbW6H5viPO32J73+aza9EZy1vVK7vTshlKO86isDPFmngL2KO4c9Vp4LPalCVr3h+Pq6YbMrvF49Sr4mKu263O6FvFdwb73hk4M8xkglO//3irwrYv68bffnvDef+zwaJAG97agjvRF9TbznA6Y7AAi/PPLpKbzaaXC80ZsVPO2oIz1m67y87de/vN0dorxmzFQ9yHACPJpKaLxmzFQ9S2oDPdK7fTw6Wmy8oFUTvSTTc73mZx08Zus8vAkU6jzf2BI8eTqkuxIJIj1W1GY8CTPSO3Sl2jxQAE09EV7lPKIQhLyilGO7SywzPC4WMLyS+a0809plO3wVfTwrHe+85I1Euhf8I7zLzjo6sfBIvLTTFr0V8y48eaeQPM3Iez1KkCq8+Xg0vUy4Bz3Ey4S8VtRmPG4lBDzocBI9UABNvQkU6jxX7A+81PnNu+6xGL17cjU9GGmQvNT5zTv71my8v6pmObnlgDyxmwW9CTPSvN9c8jyq3t69sm3pPO6Zb7tnh0W7JlgJO1rm0LxMyLs71ZXWOtqIWLy2xGI9B1l5PjtTLT2eoWE5w16YvKw7l7wIWfk8DiZUvI/BHDzBdAu96YDGvIfkjbxz6uk8hjlRvAh44TzI1Xk82mnwO5sF2bxEnSg9j6K0PRF9zbxnExq8wWVXvYBsdjuPorQ8VRK3OwNAUL0uFjC8mK7fOx7/Wbz4SRi9IHz6vCqB5rysuDc9bjU4vDsVXTuUV2a8697+uctaD7w1htI87zV4PEX7YLtdY/G8vc8NPENPJLu8kb08z/8MPZjsL7wH9AG8G3KFvHq3xLuNqfM5JG98PLNmqrzYzee87RUQvfhJGLv3vcO8hF/4OxAfFbzUpAo8B5dJPCznE7rnpu07YiCYO7Mo2jxGxQW963mHPH/olr2xqzm8NMQiPZ3AST3kjcQ7N597vcws8zpZp4A9urfkOzKs+buYeAQ9qDKiPEHSA7z+Dn69yDKyvEqQqrwYDFg7Tib0uzUxjzxqv1a7wz+wugrP2jk7FV28rbi3vMSsnDxMuIe7iDISvEmvEj11tA48PxeTvPEuubwWfwO9H9myPAnejjwX/KO7P8kOPON9kLx0pdo8uL2jugGUk700pbq8IzCsvJlp0DuU04a9JLwAvNIfdTwQbRk7XN+RPJUCIz0pkJo8Mqx5O3q3RDuANhs9LqKEvOlC9jvAdAu8DGvjvBAfFbwbcoW8vHLVPHTEQrsa5jA6Hj0qPSRvfDxuFlC9tgKzvV//eT1r3j49gyAoPD3QTT1H9CE9d56bvFGriTvboIG9CFl5vV/Jnrz+ip67v7mavP1ydTwkMKw7KEIWvSznE738z608s2YqvI7IW7sguso8vFNtvX/JrrxH9CG9AAi/vG2Zr7pbBbm80umZuxXzLjzqKwM9n7mKOj/Jjj2LiYs7FjL/u7ZvHz2Wbw89ggFAvFg6FL1aDHg8//eKvGMR5LwEzKS8FhIXvOPxO7xRq4m9i0s7PDJtKbxo5f08AoVfPEKkZ7yUV2Y9WitgPV89SrxhhA89ITfrPOfkvbxwslg9j6K0vPhogDkQjAE+R3cBvWG66rx2UJc9fDTlORyCOT2pnw48t2+fPKyZT704/LM8hI2UOplKaDuj0jM89EfiO5A+Pb1vVKC8gvELvf/3ijxHl+m8nwePvFsFOb3FywQ90xg2PHa9g72csBW8TmREvFKcVT1pI048IgEQvaRuPDtPRdy7uCoQPG+TcLyANps8Qel2Pb5MrjywTQE9N0HDOpBF/LyW8+66mkpovDPL4TupQta8oVUTvIVIBTxSnFW7ZNuIOyS8AL090M28o14IPS+yOD2CJ2c8rFt/PQosEz3fmkI91UCTvDZ/E71Rwnw9pG68PDzfgbtGGkm8l1CnPNnN5zrpQna8U3Yuu2UKJTz0w4I8cvkduijG9bsbx0g8EKN0utrGKDyNBiy7to6HvceWKbzrOzc6nj1qvMkTyrvBoye9JW/8vHS0jjzdPAq9c0eivUY5sbxMz/q7giAou+fr/DwlOaG8HxcDvay4N70FvXA6Yj8APRAfFTycQym9p6bNuyMRRLuXj3c8RLyQO+C5qruQAO07cJPwvDj8s7xGxQU7sE2BPOAmFzuY7C88+/XUPHp5dDt8kZ08KoHmvByCObz0KPq8pG68u/e9Q72q/ca80ggCvcj04bxg2dI6giAovRTEkjzukrC9UpxVu6AXQz0ax0g70nwtPFd/oz2RXSW7oz+gO6H4WrxEnSi9/VsCvCt6p7yxfB28SywzvE9F3LzzVpY8swlyvOHCH71MqdM7ccoBvJBkZLyriRu92ZcMvVd/I71F++C7ZSmNuw2Ky7xsesc8Xv95PNuBGb26M4W75inNO7UhG725/PM8QsPPPCqvgrtGOTG8EG2ZO+frfDz7Uo08Sw3LvPVAo7xnh8W8j0V8PKuJm7w7U628FlHnvFTjGj17cjW9v9gCvRHaBT1KUto8swlyPEzIuzqXKoA8mkpovPvWbDyrqAM9G3KFvPvloLum61w9MU7Bu+U4Abpqv1a9QyAIPfq2hDzN9pe8A8OvPI6SAD1SnNW8iZBKvCB8+rzI1Xm92yThPJ3+Gbz5OmS93f65PAAnJzxX7A89v9gCvdrGqDzmSLW8VtTmu/oECb70KPo7bjU4vMdIpbyAyS68BCFovCGzC7z+Dn66iYAWvdSV1rzJE8o8bfdnPEy4Bz0kzLS89/uTPEpS2jwQHxW9vHLVvKM/ILz0KHo8wmVXPHBdFTyiEAS9FxuMPJAuCT3pn668NkHDPEVf2LxxyoG8e5jcOyQRxDwZ7e88A0DQvF49Sj3FnWi8TKlTPUmvEj1Rqwm9h8UlPA4m1DyItvE72uUQPDSlujxPohS8DEx7POcDJj1suBe9P6omveKza73Kr1I9vu/1uznWjD0f+Jo8ygwLPZeu37yt9gc9FlHnO5B8DToRnDU95KwsPG0897yHxSU9973DvB/ZMr0R2gW8Fpb2PPURB7vreQc9rSUkPYVf+LxnxRW9v6pmPUeX6TzSu/279QJTPNZQRz1JM3I9YPg6vD3vtbyBZTe9P4u+PO5jlL2Zxoi8BfvAOmgEZjsBRg+8BdzYvMSsHD1QXQW9V+yPPHg6pLwaBZm8yu0ivZtikbw4/DO9f6rGO5bz7rxuJQS7hnehuRMZ1jmE25i8+Rv8O8Ti9zybYhG79KSaPFyhQT19TA496gwbu3MoOj32rY+8odlyvM0VgL30Zkq9S2qDPG7BDL1XzSc9vHJVvAmQirv/azY8AMruPLfcC7y33As9UPCYvPG6DTsUGVY8chiGPOjF1Tx7mNy7KARGPau/9juioxe8vbAlvAGUEz0oQpa8+zOlO9J8rbp7NOW85E/0PCE367zPg2w7e5Gdu6kyIrzumW87DmSkuzEQ8bvLzro6pE/Uu1NXRj0iVtM7petcvFfNJzw6eVS8g+JXvdFNET0eqha9UpxVPV7/ebwNiks8LdjfO9aOlzx2QWM90xi2vBrmML2xjFG8ia+yOy6DnD2tmc87+GgAPJh4hDrlT3S7CBTqOq+SEDz3+xO9RhpJvL1yVTtjEeQ8upj8PCGzi7v7FD0975KwvBWW9jtyL3k9KZCaPDB0aDzkjUS80KJUPaMwbL3a5RA92YhYPVePVzwmSdW8a6BuvOjFVbzvHgW8V64/PfBsiT3tmW88TKlTPdYS9zntFRC83CRhvTwV3TxVMR+99Cj6u9O7/bwFGim9OdaMPB3/2bv1QKM8NmCru2MRZLyWMT+8uvU0vH/JLjtf/3k6taX6OzKseTwQHxU99EdiPD3QTb3z6ak8kABtPM3nY71lrWw8AcpuO3xiAT1PopS8gFWDO65zKDxkvKA8gj+QOyQRxDxeXDK8KmJ+PT5N7jupgCY947PrOzfNlzwtNZg8pG68u6AXQz3I1Xm73R2ivDFOQbxXs+U7zYm2PMklab1+a3y9GYRbvP+fDL0c+uO8jF/gO48DZjzcj1W8JZSBvMJioTyQLK+8qUeovF0EHjwjSxw8S+MWvPDLxLzndrI7G+iou/m31bsUDlO8bpwHPUatxjyhBFE9qEzcPP2EJL1CDnW7dqg0u3A34Dq8sZS7nY7IPLapwT1fX747FA7TvLPccrzCYqG8gP3GvLlNx7pJ6Eo9dAQvvJx8DbxGRMW5JBTyvD/TcLpxYCm95LIQvTE2U717Hj29rr2wvHaotLwhEJi7eeM4PbUACL3psTY8iuQjPY22pr0mD768spw6vZJns7xd5AG8n8nMPLUACL1e9jy7RHJCPYBmSD3gPAi8PjgYu389/7yWNAK9C2J6uq9vFz1ZF7M8232avJDVaL1oS8+8H55pPZrqwjzxC328brwjPeyDuTul0R+8EjxQPVccZ70K5z28BoPwO+AFXjxUGA09g8oVPC2AEr3UYwy9xk8MvD5YtDwX6YK9L7uWOcnzkTw69Ga9sNiYPG6chzw3fl68Mp/UPMdBKz00egQ9dj+zvDyGMb0cfye5wNBWPXh6t7rPxDo8GyjhvBeyWD2XnYM8BRpvPCLimjzLLha9tRd3PM8tvLyk/5y8SejKPDKogTwnOAc95RLlPBI8UDyyMzm8lkvxvDY+JrwkKwC9Qg51vA2d/rzo3zO7mxOMPAFkrrziDou9InkZPVCihLuAZkg8UZSjvPF0fj1gcfk7CX68vJ1OkDxRCwa9CCOcO5Q5tryuBha8zLczvLxaTj0eY+U6x+pkO8gTLrx88L87JR0fPR8DkT3dTx291AzGPLQuhTxce4A8tRd3vHzwP715LJ67mcF5OzMRA72Bz8k7XY27PPlXAT38KYS8HpqPuUNghz04eSq9Bto2vR9esTxWc627FA7TvDjwjLvgiqE84IohPQAJjj0u+048TjDWO3ObLbzBcAK90JY9PG78WzyzxYO8JR0fvTDN0Ty7iEu90+P8vIp7IrxgMUG7VK+Lu6IE0bwMIkI8OysRvPwbIz0sF5G84VykPF42dTzEdFy8C3kIPCeK+ryyc3E7vSzRPFpgGDw8L2u8E6XRO23qoL2wYTa9C7lAPU7H1LuaKns8Xbs4vMSrBr3kspA8wtmDvGDIPz2NyGE7qUcovRlWXj19Ans8a4+APANEEj11Fuq82ybUO7m2yDzkSY+97JV0POssczxeNvU84PMivGm0ULz9Ld482lRRPZKna7uk/5y6LemTvH+URb0KUL88N4eLPLUACLwHAwC9lOJvvSlc/bt6lR890tFBvevDcbqSZzM8Pli0vC3pkztLuk28UKKEvHeImLv9hKQ8ZRBLvBq/Xz35V4G87X6FPMiqLLu63xE9zxsBvRP8FzweNei7vpXSPAi+9DsA0uM8sjM5vRNlGb2zBTy94wCqu1WBDj2CoUy8V1MRvS77Tj0/Krc82lRRvQhsgT3ENKS73srZO5xlfz3PxLo5C7nAPKsrZrxsgZ88rJTnOxCYyjz5VwG9Q0l5vSNCb72//tM7Ru3+u0z10TzwC329kXWUPd8zWzxX3C69UZSjvG7qoDo7tC6+W1K3u21TIrrCYiG9+bfVOwcDgDnyXQ+9NAMivMWv4LyE3FA9T/CdvKqwKb2jP1W8nmDLu88tPDx1Fuq8pdGfvEgWSDzdLwE9ZRBLvIpbBr0Z7dy8Mp9UPZpBCTyi1tO7eaOAPXpMOryrwmQ9FeDVvFbhYrxWcy297X4FvLkNj7zmhBM98CKLPKXRn7x2P7M86vobPcR0XLzK5TA9ZRBLPXh6Nz021SQ9DLlAvOss87u1AAi9N4eLPaqwKbxSpl473fhWvF4kOrwTpVE8Plg0vEA88rw0AyK9i41duzsdsDxYrjE9w8uivDenJ7w0miA9F3KgvIokXLuQDJO8s8UDO68mMr1Czjw94aUJu1hFsLwZrSS9fmt8PADS47xyEhA9OvRmO+V7ZrtRlKM8Jg8+vM4Ec7wrV8m8JEucvbMFPD2UOTa5jF/gPAFkLj3XB5K8PjgYvYWcmLq8iMu81Ez+PPwphD6LWwY8C3kIvQLNr7xh8Qg87P71PK69MD2o3qY8GhYmvLapwbxUGI07wqJZPe7nBjwM4ok83mFYPIKhzDzFRt+81XVHPMNioT0H7PG7JaY8vLyIy7yUorc87tB4POzMHrzlGxK9dbaVObIzubt05BI8j5rkvLBhNr0Gg3A6zgRzPQAJDr3giiG9mAaFvMvFlLxmOZS8jC0JPYMKTrmo3qa8EpOWvP8oqrwF6Je8HDEOPeZ75ryslOe88YuMO+GlCbxSKyK8OOffu6zLkTwbkeK8ID6VPJPQNL3l0iy9GY0IvQiMHT3EFIi5tS4FvBhEIz3hXCQ84S4nPUUyCryS/rE8ibvavJdGvTvHQau91weSPHCg4TwLYno8k9A0PNA/d707lBI9PMZpPT5qbzvnTWk8GESjPO0nPzwaFqa87Wd3vb0alryAvY67yo5qPOYNsbx88D89Jni/O/kg1zx73gQ8qlljvaajIryjP1W7CX68OdlCFr2dTpA7g8qVu1ErIr2WS/G8mdgHvfpJoDxQAtm80xF6PLNcAj1Wc628Y5UOvAKtk7yeYEu8/u0lvFfcrryE3NA8A99qvV8fBjznTWm89NhLPAAJDjzPxDo99arOOq4GFrwkPTs8G+ioPQaxbbxESfk8q8LkPHA3YLydjkg8cKDhvNCWPTwsF5G8yXyvOht/Jz2yM7k8Nj4mvQA7Zb1u/Ns8GNuhPHp1A71Cd/Y8/BsjPbPlnzqLTaW7Gr9fvZfvdr3UTP681wcSvJv8fbsrV8m8yFPmOytXSb1wbgo5l4b1PPWqTjzmDbG7qN4mPX89f71UeOE6p+wHvQdV87o9WDS9F7LYvJOwGDwV4NW8IgK3OyzuRzs8xmk94IohPciqLDyr+Q49CX68PM47nbxGrca8zptxPO6QwDs9mOw7yKqsvBUXgLzkshA9nY5Ivc1pmjzovxc6HWNlPbPccjwb9gk8saobPdgZTT3K5bC8lnS6PCCnFj10rei8ITC0PFpgmLwf1ZM8QDzyPViuMb0+au+8CfWePRUXgDzxdH49Uv0kPfd80Tw459+8ZnlMPXDOXj1tU6K8ffC/PJF1FDx3Eba86fHuO+mxNjxeTQM7VaEqvVBr2rskazi9RHLCPCBesbrO0pu9bTOGugPfajtiWoo9GSQHOzyGsbyOiKm7Ag3ovLZS+zsF6Je7qHWlPLaXBjzhLqc8dRbqOw+GDzygyUy9wAeBOz8B7jw1rFs8dK3ovPc8Gb1Voaq6nCVHPAkn9joZ7dy87ucGOja1CDwtkk09ZP4PvJXrnD3nVpY7yfORPJ33ybwav188zMluPVfcLj0CDeg8PMZpPDZ+3jx6XnU8ZP4PvEp6lbu4Oww9/1YnPLapQbzUkQk8f1QNPJAMk7wAwCg8rMuRvPMGSb0c+mO6EWrNO9cHEr2xyje88GJDvTE2U71m0JI8YfEIvekomb1BJYO7yo5qvLg7DL1tUyI9pnpZvH3CQr2LTaW7U0YKPBgbWjwwNlM8mYHBvOUbkrxiA8S8FqAdPIEmED0fXrG8mxMMPMSdpbxHFsi8swU8vDVsIzv+Nos8DsbHvNH/PjzUDEY8ctvlPFL9JLuo3qY8ChAHvY/xKrsmD7688KJ7vCWmvLxfn/a8lQs5vHYfF70G2ja8d7pvvQw0/TvLtzM93biePPqJ2DvC+Z89O/0TvTTjBb1ZF7M6ZCyNvVbhYrzTEXq8unYQPIjp1zvCYiG9fitEvN/zIr1u/Nu8BAg0vHnDnLy9w888aYbTvOUS5bwQAUy9cPenvFkXszp4eje9uI3/O1Br2jwtKUy8UnSHvSfhwDwdmg+9kmczPV2NOz0FGu87PgFuPAVRmTw6K5E8eUy6uk/Qgbwi2W28AJIrvFI93TxBZTu8Dh2OPEFlO7vqGjg9au/Uu/6WX7xYJRQ9spy6PJAsLzwZhFu8m/z9PPg8mToMi8M7IAfrPInyBL378tm8CBU7PemRmrwgx7I7stzyvA20jDwajYg70f8+vFgcZzz7W9s7zxuBvFgllLx9WcG7Xc3zvO7nhjzPhIK8ZjkUvS77Tjx4erc8a8FXO/cT0LtWcy09B+xxvLVAwLfdLwG+5RLlPJxTRDsTZZm7yBMuvM+EgrxXs2W8pN+APALNL72bQQm9Cuc9PM3yN7piQ/w8NUwHvdsm1LthMUE9C3kIvcN0XL3Uo8Q6eeO4u6Y6ITzOOx09PmpvvIm7Wjzy3X895GkrvZ1OELzuOfq8oJvPvNJoQDyIIAI9OOffPKyCLLxk/g89t3vEO9M6Qz1FCcE8h7cAveZ7ZjzL9+s88TTGPORJjzwyP4A83spZvIHPSbw0eoQ9TsfUuzSaIL2y84C9x+rkPMPLorzGGGI9moHBOxOl0Tw8hrG8a1jWPCQ9O7xj1Ua8829KPfJdjzz/KKq8yBOuO9FWhbqgyUy9RoR9Oizuxzwav1+9AzYxOyAH6zw8L2s73zNbvSuFxjwZrSQ7GNuhPKonjDvK5TA8fDB4PZAsr7wAO+W6dG0wvUTJiDx0BK+8TbUZva+PMzsIFTu8+uAevIuNXbz9hCQ9SehKujenJ7uoDCS90Nb1u9DtA704eSo8d4iYvXY/szwxXxy93fhWvP3tpbybE4y8erW7vAv5+LxUzyc8bmVdvOakrzqynDo9eUy6PPWqTjxibEU9egyCu4D9RryvjzO9dn9rvZ5gyzxZV2u9fTD4PLyIy7wtKcw6pBFYuWAxwTsgPpU8OVkOPYv2XjyL9l66QSWDPLBhtjw7HbA89xPQOzPaWD0Cduk7WBxnPOcfbLxuvKM8vRqWu8/EOjyYrz49z8S6vD+TOD2OMWO9hgWavHeIGLzOWzm8GhYmPDpLrbz02Eu8U2YmvM2Jtrs1bCM9I6twvGVnEb0MIsK8XQSevOi/l7ybU8Q8BkO4vKge3zy3JP687r69PFmOlTyYvR88uI1/PZYd9Lx2PzO9UdRbvcrlsLyS/rE9N6envOV75rvo3zO9tUDAvFglFL0duqs5+sACvE7H1DxgMUG8qHWlPAfs8TxOx9S8RLL6PB+e6bwwJBg8abRQPeGliblw14s8z6SeO6nw4TwYRKO9rr0wPeCKIT1t6iC98fQNveSyEL1G7X65mkEJuzQDojzf8yI9qHUlPJdGvTwI1YK8WEWwPB9eMbys6y27OPCMvN9qhTwlpjy9dn9rvcuXFzzszJ48tG69PO2+vTujlpu8kNXousLZA7xoS888vIhLPD+TuLsXSVe6au9UPZ8gE7yo3qa8K4XGPAoQh7v6wAK9BrFtvMKiWbyph+A8dASvvOxVPLtbku87fQL7ukjWD7y30oq8DDT9vMQ0JD2YbwY9yXwvPdG/Bj3Gbyi8UdTbPI6aZDwdY2U96ZEaPLkND70+wbW8tAsLPYRs6TtoIhm9QqXLvFYSNbzmQmW9j7d+vAeGB7xN0+s7YV3Ku8rbn7xkNEo70VXbvFY7drl8jwI918lwOxRLF7zd98+7J5sLPHoEX7t4rf86P+vAPF66Dj2+FpA8FwUiPdZ9FD0LYy29SSqKvMRtMDt3LV+8qIYLu7ZLmzw4N5s99p5kvEyqqjpUges8z+yJvP6dnbyohou8WK9KPafvG7xI0yq9cf//vFxM4Lw7Dhs9tO4VvW+cVL3Nflu9PE6rvFxdib2Q1HO8m1lzvGz/Pj0RroG72ncvuy9mAD35TKO9sPogvdp3L70F3u68/AAIvIB49DwHmPm83ndwvODOTz38Bq48UgHLO1Y79ru8vzC90VXbvBwWDDytRjw9RRmgu0Alq7txCoO9ljaXOhL0Nz1tOak8ZqievO8eAz1xEKk8c4qjPHxbvjwCXk69DvqcuhL0Nz1WErW7pJi8PPLYjTvIYSW6sVcmveSlz7yD5qI734gZvYV9Er1vYmo8G8v4vNy9ZTxcTOA8rCnHvO7kGDsp/rY8Zm40PbVX57xMAYq8QAIQvCSz4jx52x276d96PI0rEr1WO/Y8/OOSPHoEXz0Ruk07tCgAvcYKxjzmQuW8lVOMvJiC8zxfBms8CylDPCjbGz1itCm8+BK5vEzwYLyET/Q7Fq5CvDYD17vd9887lALTPLz5GjwLYy2816CvvXXhAj1lNMo7nxN+vNqg8Lv3u1k9P+tAPIBsKLwlJ7c8QAi2u5eTHLwS7pG8ZospPJnwobzCLaA81WCfPBq/rLjpDRk7y/46O8/VOj3L/jo93PfPvGp/njz32E49zrjFO0FCoLuOcUi9UjWPPNAbcTwYXAG9HFacPJJlvTz+o8M8HBYMvdAbcbwQdJc91T0EvbTuFb3nNhk9wgoFvSy4wbw25uE7i/1zPFxAFD39QJg94QKUPB1zkTzaPcW8ipSiu03TazznNhk82QNbvMSKJb21V+c8BN5uvduUpLzr/G87WHXgu7OuBTln4oi8SnDAvHXhgjxt/748u4XGO9FmhLuPt/43EvQ3vfKqbzytb/28Nb2gvF6jvzyHw8g6UMfgvCyyG7wf0Ja9mhM9vOIlLz1nxRO9kNTzvHxyDT01g7a6SPzrOm5WnrzRrDo9PyUrPXEcdb0tG+08L3LMO3XKszwgM0I8hD0CvSZQ+Du46DA9OIN3vZyT3boSC4c7mM0GPQN7Q7z4O/q8ggk+PP1djT1N02u73k4vPWMXVbz+o0O9TLZ2PUUlbLzXvaS8RN81vemZRL19hP+6GrkGPbQogL13oTM9qIYLPKg1Urtk+t+708MJvYGVaTwpOKG8uAWmPBM67juOwoE9vz/RO0jTqjxVr4k6SSoKvEBCILwjxIs8Yt3qu9PJrzyJmsg8zyyaPHHzM73zAU+9Tg3WvOSlz7uICf88rGOxvNPJr7zlGSQ9dMSNPEeZQL2Gw0g9tPS7uhLukbvwKk89xcSPPPgMkzxSUoS8DgDDPPmGjTpsHDS8bPmYvF6jP72Cw4e9AnvDvP+dHb3omcQ8SPCfvS4bbT2mtbE8ci0evRmFQrxQjfa6dK0+vto9xbxZAIS7t67GvKWviztfI+A8CgzOvOYIe7zDM8Y8n3sGPZOZgbz0GB69QqXLuykVhrzpmUS8WcYZvZ97hrxVDA88c6cYPaWYPLwB+6K8EhEtvWPd6jwlCkK8WIaJPGA0iT30GB49d6EzPRIuorviQiS6sWNyvVcvqry4Ipu8Uzs1PU6BKjx3obO7fxXJPMN5/DzSclC8lAJTPXOKIz1pRTQ98sdkPJd2p7s5g3c7zvKvOykVBj24xZW7ci2ePONfmbxsHDQ72TcfvH7PkrxcXYm8/AYuvQDYhzv4DBM8ncchPbQRMTwS9De9FZHNPBmFwryJcYe79GT6vKb757jtpAi9X+n1PO9BHjzblCS8hsNIvQojHTwy5qC8DIxuPNFV2zzy2I28EYDjPH4VybsniuK8BlJDvLZ03L2KfdO8obuWu8C/8TwMnRc9mkeBvNPV+7yAeHQ7oKTHu9paujyV9oY+k5kBPZJlPbyPt368FxHuOzas97ukXtI8z/77OzGsNr18eDO8haZTvDxOKz0/CDY9WwYqO+4N2juVAlM8eb4ovZ9BHD08MbY9rYxyvNUs2zqfQZy82lQUPaq18jvfwgM8Wy/rvMG/cTv+XY08zERxu6SYPL1Yhgm9NGAbvLZ0XD0WqBy9xbPmvC0bbbzvHgO8yxUKvaIkaDnQD6U8Hnm3OikneLy+Bec6JkQsOzXJbDynNdK7aotqOyUKQjzed/A7nxN+PKq1cjwiZ4a7lNkRvYvOjDshShG9F+IGvcHQGr3ZNx89j8KBvKcYXTz+hk49hb2iPBmitzyMN16842vlPIfgPTzHIZU7kOWcvev8b7xIzYQ85dmTPJ4eAT13LV+935RlPZnZUj3dMTo85iVwPG5Wnjx++NM7CinDu6rjEL2dsFI8yJsPPF8Ga7uSnyc7JQScPBM6bjz1Uoi8+8zDOwI1Db1n4gi8b2JqvAOSEjsdXMK8i86MPEVf1jviJa+8Dx24vK2McrzgwoM8PE6rOtZmRTz1nuQ76ZnEu0PZj7zEiiW8QmvhvKiMsTxQu5S8aCg/POIIOr0HmHk8BNIiPA8duDw+lOE84LFaPB6WLDwNuow7v1YgPUBObD3YyfC8yxWKPMdEsDyaE727SSoKPHxbvrz/hs48UI32vJifaDrZINA8dNb/vHNnCL0qVZa9IPlXPXm+KDycdmg6bUX1PIPsyDyfXhG9decoPV8jYL2yY3I7VJ5gvYvrAbzEZwq9c62+vHs4ozxYhgm9HDOBvLE0Cz01oCs7psH9uuX2iD3QSY+99FguPB8Kgb3acQm96bCTvHdho7yuuhA86jZavPWB7zuaWXO7FcWRPUT2BDu6Lue7RRkgPdj3Djwt8iu9e1UYvNuUJD0CUgK850LlOnTEjbznQmW8ci0eO+XCRL3ZFAQ9ce0NvEffdj1ger88oMG8PLycFT0A2Ac9WxL2vE0BCj09iJU9Kf62vHNz1Dx/ZoK7j8IBPYfgvT2n3nK9NGbBvA86rT022pU8OrEVPSn+tjx++NM8pHUhvKf7Zz07SAU9m4cRPBGAYzyHCf87A17OvIGV6bz5Ly66lTw9PNFJj7zHJzs7CeMMvf5M5Dw5d6u7EZGMvbFj8jtYdeC760eDPZ4HMj0nbe28gXj0OsMzxrwDkhI9PWugvNPDiTsibSw9i/1zu6wjoTxuOSm8d0pUvV2dGTs3FAA8j/HoPCFKkbykkpa8GCKXu9FJDzzu5Jg8Os6KvMxE8bsmRCw9GyJYPdJy0Lx0kEk9A3Wdu2zFVD1WErW7PXdsvGA0iT36deQ85RkkuxCdWLy09Ds9kSvTO5OZAb0QnVg8PFr3O/ppmDywAEe9VhK1O6qjgDsTOm47Y/rfPNz3z7zyqm+99p5kvIBsKDwrcgu80Y/FvN+UZb3aWjq9wL/xO/Q7ObzKG7C9GyJYvOHrRLoA3q28sR28PE5BGr3ok568OvdLvPaBbzvIRDA9+PXDOmU0Sr0p/rY7HT/NvFWvCTyDIA092oP7uyJnBj2teoC8d0rUu7uFxjvl3zm8hwn/O3oE3zppRbS86/xvvM64RT13fhg8PbFWu0twQLxucxO8zDglvaG7lry7oru8PqUKvdMgjzvxjXq80qw6vCJnhr36hg08grLePLKRkDwp4UG725SkPSY+hjyaR4E8u6I7vBhoTb28+Rq8J8TMvIu3vTyck9082rEZvcmn27txCoO9LRvtvIp907xOgSq8I+GAPMB5O73v8GS8s64FvdaaCb3Nm1C8ngeyvI5xyDvJiuY8DvqcvA9Gebxqi2o8fywYvVdYaz2AbCg95MJEPHd+mLp/ZoK88/WCO2+QCLwt7AW9BjXOvCd+Fr0QV6I8+S+uvHOKozyGvSK6YXo/PZefaL36hg28gsOHPPp15DwQY+67iZpIPGaLKTygpMe81YO6PNPJLz0RgOO8jSsSvFW7VT0b6O28CdJjPIPsyLy9Itw8i9QyO3ctX7yv14W8pt5yO7URsbxhej+9iBoovUTfNb20EbG7NGZBveOIWrwAwbg8wJawPHehs7uXgnM7zZvQPF6jv7z7klk86d/6vSFtLDulrwu8j6uyvCZQ+LuL1DK9BjXOvB+zobwX9Pi8ptImvZx26DySSMg7waL8PNug8DgYS1i7d0rUPLUuJr2i9QC9yxWKPMSKJTuIN507NH2QO7gFpjy2Sxu8soDnPHehM715uIK8k8hovZiwkbzocAM9uS7nPP1p2TrSclC8xgQgPb4zBT1oIhk9DG95PGMX1byIYN68/S9vPeCx2jyXvN068F4TvNvrgzxSHsA7iBooPbK60by3qKC8miqMvZiwET1itKm8vNylPUFflbxI33Y8tPS7vMN5/Dvh68S8w3n8u4V9kjxFNhU8iCZ0vEaZwLwJ0mO8jlRTvaReUjz0ZHo8XvoevdZmRT24y7s8mLCROzmgbL0OHTg9gZVpPOCxWjuuxtw8Mw9iu6vvXD3Jfpq8qgCGvEjf9ryL1LI8O9pWvd0OH7s5lCC8MyCLvNA45rz/hs68JSc3Pd9a+7z/hk67mLARvYuxl7zofM+82j3FPBNX47wCQdk8bf++vDrOCr0wj8E7uj8QvZo8/rwrVZa8B2+4PONOcLuTq3M8LhttPWqo3zpcXQm9PE4rPWvFVLzNm1C8zI8EvRMLh71oC8q8tS4mvcmn2zwJ4wy7uUtcO8NtsLw3Wja82Dcfu/wAiLvL+JQ76vzvuUjNBDp1BB48GUvYPJoqDL3ptjk9u2jRPAdMHTxYklW8J4riO4QmM7wmRKw8v3MVPUZfVr3sah492ncvvTqgbLxcXQk6umhROkPCQLtuRXW85kJlOG5FdTw0fZC8K48APcXED7xx//+81mZFvBqFQr2ATzO9/noCPY/CAb2NKxI9sVEAvd4xujyh6v08K0TtPPfYTj1tOam8GD8MvV7dKb1N8GC92oN7PUzklDu2V2c7K2HivMYEILoGhoe8p/tnvMHtj7wKRjg8CgCCu7eFhbpk+t87LdW2vPbMgjzuDdo7dcozPCUKQj0/CLY8cNa+PDra1jocVhw92oN7vYgaKDsJ4ww9j7f+u6bSpryrQBa8ycTQO5JCojxW7xk9RTYVPQT74zyphgs9G78svd53cD3wKs+8sToxPXJW3zgGKYK8/kxkvUjTKr2YgvM8gsMHO9+ImTyP8Wg84gi6vGK0KbmH4L27RVOKPPaSmDs6oOw7c60+O4V9Ej3HJ7u7DheSvAAYmDzSctA8edsdvZ3kljzxga67NaCrPOHrxLzJ4UW8UcfgO8cnOzwMqeO8Uh7AvPuS2bzq8KM9G+htO4v9cz1hdBk9i7e9vBK6zTxRx+C6bRaOPZU8PTwyD2K9B5j5vKGKsjz/CyC8vJjFvCWLZ71QUhm6kpNevU7VjrxMvzm75P0MPBirCLwIptS8IZFSPEwLT7253YU7CPLpudT42DzpnSw8soEGO0snjzz5lIC7kAh0vHU5tjlYoDg9O7slvB4iKD1wTQE9YTuNvaNu8rzBRkU7hKWfvB4iqDvubkE91htuPYKCCjtGhs+8e8v1PCBS/bqpMke9Vn0jvCbX/Dzp6cG8P2klvUHYT7yOMXS9kd9zPH959bzIVi+9HaR9vUBN5bzZpli9iBRKvDMTkbys/IY9QyRlub4jsDwERQo9nhuIvX55dbykoAe9bnVhvVKQTrxqPPc84xgtvRAC1LwfBug8a24MPTnkpTvEtW+8pneHvEnoubxBmfo7w7aPPSosJz117aC8QPSPvf4mQLvFMxo9KO1RPE5tubyewHI8of9Hu1HcY7yNMpQ8y7gZvZO3k7wvZRE9jjH0OnIjYT0MR5Q8DivUvGhl97ywUJG7WsPNN+Ow17y8mMW86VEXvIU9Srz2i+u6WOxNPbbHsLtuKUw9CJkUPVSz4zwx4fu8bnYBPJIeybx55zU9JAGdPObGLD1ZOYO8Pt46PRZ6kzz1i+s8DsQeO/NoVr0LCL87NeoQvbGqhrpKc6Q9wTkFPaWERz1ad7g9VtZ4PMhWr7z7A6u6Ihw9OcbLRLwwlWa802CuvFxOuDxjt3c8XeZivOnpQb3EQNo7UUS5PBFO6bxp4yG81J8DPWsUlzz47VW9wx3FOnX6YLyY7128dPrgvLBQkTxAAVC95GRCPDALHDwSzBO8C8lpPHXtoDw2j3s9oGedPGSqt7uFMIo8HZc9PKH/R7vGjO88I9AnvDdmezxnZhe8HwcIvU1YBD2F1XS8LBDnPLBP8byPY4m8MtQ7PXj1lbym0Fy90iHZOhmqaDwx4hu9tP1wurHaWzo/wxo9n7OyPat+3Dx7VuC4qeYxvbHaW7wM7P48KFUnvJBHSb2QCRS9cdfLO4TxNL0lMhK98FOhOriesLxvdeG70PEDvXBNATsV/Og8972APfS06zyAbDW8ZEJivGMSjbuQR8m83d/CvMvFWbrJokQ68ZHWPKX53Lz080C7u7QFvihi57xe5mI9xfREvSCtkrzeHhg8a8fhOutY7DwGg7+8ypWEPdnlLTzubkG9AP4/PI2ZSTyCGjU9Q2M6PdU3rrtkqje9P8MaPVxbeL0kAR08dxC2PARgKjwoVSc8zJzZvBMl6TzB3u88+iwrvA3tHjxJgGQ8uJ6wvCd+Jz1ad7g7TaP5O4IoFb05MDu9R11PvFT/+DwsXPy8tS8GvEYfGj3VNy69lo1zPGrH4bxATgU8/7GqvOKNwjzh2dc8HFmIPddoo7u2iFs8Z81MvIrryTyIU5+8jE20OwE9lbxU/3g8QUClPJriHTzgqQK9ndwyvakyx7xsnmG7KK78udD+Q71yi7a82FpDPet0rLyQvF68LJvRPPU/1jtkuJc88ZFWPZ7p8jv/ZRW6+ZQAvUABUDyUqbO80YmuPONkQr2vA1y9psMcvecSwjsKcJS8iYSUPPUyFr1bXJg9IK0SvDyfZb3SPRm9aGV3vAdaP74kp6e8aKRMvL8IkLyXZRO8B1q/OzCxJr0myry8O7ulvAO6HzwJMb+8P3ZlveqB7Dt2xKC8iKz0PC3aJrsYnSi93tKCPMcKGj06yGW7yGQPvck7jzzPwI49tnubO0ipZD3Dto891naDO30tYDwRTum7jYyJvBxLqLyB29+81YPDvIcUyjxbD+M8hVkKvMT0RDwLvKm5Uxs5vBCbnjy7tAU94UGtPe7WljxGOrq7L7+GPFk4YzuQ+zM8GfZ9ugBKVbxDYzo8Rh76u7ImcTxwTQG9eFzLOpriHb3NQ4Q8asdhvBk1Uzw/aSU85GTCuybKvDy6KZu87ZfBOhRJHr2V9Ug8mxJzvXxXAD3m1Aw8/hkAu8WNj72GyDQ9/efquurOITzigAI9515XvHZ4Cz2Cgoq8cou2OyMA/bybBbO9vJjFPA2TKb0I8uk8KoV8PZ/A8rwlP9K8cJh2vKrK8bwy1Ls8WTmDPl7ngrg3Daa8cExhvcmVhDtSkM68W3c4PQ2gabxXFU48YtM3vGjxgTyG1hQ9iJ80PPjtVTxi4He7NKu7PBde07wfBwg9KFWnPSMp/bxSKRk8k9IzvFcIjjwBiao7hsi0vPQBIb0W1Ig8+ZQAPfngFTtMC0+92PLtuz+1Ojv6eMA8/doqvZk7c7yhijI8SoGEvFHcY72rftw8pEVyvBiriLxbD2O8Z4E3OjT3ULxER/o8r3jxu/d+K7xDJOW7QnD6u5NqXrz+ctU7B8KUu+lRF7xe54I761kMvRCa/rsBlwq9Zs3MPLk2W7u9MRA8KYYcPRnpPTsVSH49+YYgPTAK/DyQ+zO9DaDpPJp6SL3952q6ZUMCPYBDtTyXvwg9rFVcvTyf5TxHETo9SYBkO4t2tLqQ+zM9MeF7vFKQzrwt6Ia8+GLrvBmBaL3dky28f9QKvHT7AD0Kygm7Lia8PBC2PjzDEAW8n7OyO8CuGjyQR8m8eee1u3cQtjpwAMw7s80bvFAF5LxfvgK9gPefPCp4PDul+dy75P0MPN7EIjzk7yy7gtvfuTNfJjzsl8E8tjzGvK94cTwWepO9GaroPN+2wrxVPk486wxXPWE7DT0rxNE8TP6OOWbNTD0nFtI8AomqvJ3cMj3fai081nYDvUxX5LvsWGy6nESIPL0w8LzBOYU8LwscPShVp7y5Ntu8G819vTYbBj1udgG8UpDOOznx5Ty3x7A8+iyrvPFFQTxkQuK8Bs9UvDsHO73qgow7pncHvZmjSLtNljk9bsF2u1cVTrwD1b883niNPHAAzLsJ8wk9awa3vRtYaLxeJTi9Z2YXO4cUyrxvtDa83VRYOcnuWbz3vQC95O8svKxVXD2hijI9N2b7OzrIZTyIn7Q75tSMvJSps7z3FtY8/o6VukWGzzoK5Sm8U7Pjucp5RDxCJGW9/ZtVuybKvLxwtDY9TZa5PLGORjuZlgg9OPFlPSKEEr0tNBw8FEmePPk6C71+epU8Id4HvS5y0bn47dU9BERqvUwLT7xXYWM9Rx76PMtshDyrfty82eWtPHGLNr3y0Ks8T7lOPacPsjr9jpU827wtO0ipZLxmzcy7CGf/OlWLgzwnCRK9DZMpvE2Wubzm1Aw8J2MHPYZ8H73Q8YO7F17TPMcXWj0cSyg9CxafvIgUSrtOe5m8AP6/PMiiRL1BjLo8VYpjPKrKcbwjtGc8fnqVvNxHGL03GmY70UrZO/Hei7yCgoq7EU5pum/CljwuJry892OLPILOH7xW15g8kuCTPB+6Uj3FjY+5eec1PTcNpjyLwkk9ciSBvNhaw7xLvzk9aGV3u8Z/LzwERYo71xvuPPAG7LwScp68lUHeO0FAJT0Ggz89qsrxvCLQJzixT3G8xGnau/O06zoVh9O7A26KvZmWCLorxNE8o63Hu1wCo7xGeY+9c2K2vHsKSzx8vjW9XU64vSeu/LxRRLk8517Xu/9lFT1IUA+8mTvzumSqN7tLJ488OT4bPCrE0bvZMUO90m1uvIxNtLwybOY8QdhPPTfBELq6gxA9M20GvGU1ory4E8Y8wfovvI4xdDzXwpi8MLGmPGcZYrxDYzo9CjE/PMnhmbsZqui8g7LfOw9qqbwQtr686oKMu2YaAr3dVFg8besWvWjxgby4nrC9MGWRu6MVHbziJW08Xo0NvC7nZjzJ4Rm91s/YuT6SJTyrfty8TAtPvBtYaLwKMT884nKiuxIYqby8ABu91TcuvS2OkbwxPBE72E0Du9D+wzy5gvC8X3HNvHJvdr0sm9G6vjBwvKFL3bpGOjo8DsN+vOMYLb2FPUq9mwWzPItbFL2l+dw8Tm05PISlnzyeKMi7QUAlPGbNzLt+ehU6Ss2ZvLopm7wA/j+9bFJMO5vG3bxVimM7l78IPDcbhj2sofG8uKwQu0AB0DwZqug8Kng8PVXW+LuBUHU83VRYvPk6Cz0TZD67ZxnivD7eOryg8oc9vA3bvEGMOjwERYq8U1qOPD925bu0WAa9KTqHPNjy7bta34289T/WvLfHsLx+ehW95FcCPF2Njb1J6Dm97iKsOSwRh7yFMIo8wd5vvJLSMz2YVzO9Wt+NvEJxGr4eL2g8NY97PEPLD7y3q/C8VACZu1LPI73URQ67cT8hu+tY7LwWxqg8A7l/vB5uPT2Cggo7QJqaPED0Dz3oBYK7+O3VvD2SpTznXlc89jIWPKLWx7skAR09mKPIu5WOkzwnrvy8c2K2vJ+zMr2TtxO9q70xPdny7biUqTM97m7Bu7nqxTzA+i897yIsPYnryTsYqwi7EPUTuUcROj1OISQ96oIMPDWCu7vPJ0Q8kEdJPHXtID1cTji9WoT4vB+6Ur21L4Y73BajvLT9cD1CcPo7XyW4PAaDv7xzYrY7+GLru/XmADwTJWk9nAWzulT/eLwy1Du8qwnHvNE9mbyo83G5UdxjPVsP47wvv4Y80EpZPRqB6DsYnSi9esyVPbmC8Dwl8zw85sYsPM1DhDzqdKw9Am3qOqLJh7wB4x+9FKOTPB3/krpAmhq57m5BveqB7Dz5Oeu6+FWru4cUyjzXG247yTrvuoTxNLye6XK8bnXhutdaQzsWxii961jsPLmC8Lwj0Ke80tVDvNrJ7bx55zW9bZGhvI4ktDvhjcK7vJhFuxk1Uz2p8/E8pYRHvV4lOD2BUPW7E7BTvLNlxrwRQSm9AP6/vFFEubyveHE81TeuvEqBBLoBPZU6iTffPDjx5TpHEbo7IEW9uUFAJTsmi2c8KKE8Ov+xKj2va7G81s9YPbk2W7viJo28AUrVvApwlLyl+dy7qTJHu6NucrzHvoS9MLEmPZT1yLwRjb68vJjFvFxOuLu5gnA7dYVLu1IpGbs1RIa74KkCPXxJID17f2C8WjjjvFfJuLqoW0e8ZekMvcbLRD12HfY7PEYQPRTvqLvbCEM9NKu7PNcb7jzigAI94U5tveJBrbyewHK8ajz3vDWCOz0WepO7w1yaO8GSWr0wsSY8goKKPAfCFDx0RvY6mFczvGWPFzx4qQC9Rh8aPNimWLwt2iY93AjDvDo9ezw/wno9GJ0oPAp91LuVNB482sltPOH1F70Q9ZM7MYimPIWJX7zeHhi9ndyyvNtwGDy/u9o86KsMPbwN2zx/efU8wtEvOxC2vrwadKi80ZZuvW/CFrw6yGW9/78KuwGJKr1I9Xm89QEhPBvAPTuNmUk8RTo6PSjtUb3JlYS80T2ZvJaAMz08U1A8T7lOu8H6Lzz/sSo9G819vEFApbuaekg9yTsPPP4mwLz3vYC8LjN8PA3fvjxER/q8X7CiPJaAszwRjb68s2XGvPNo1jx/LgC9rFVcPeU7wjzC0a88cUzhPJSpszxkt/c8MYgmu4aJXz0TzBM9QPQPvdhaw7ys2IU647UZPWiD97xVHhG9JR2UvOLIHL2KDqg8+6JJPJlSJry3VY08K35Avcc55boONXE7JG9EPHFaAbw5lhQ8V9govAq7nTmfekk8LSVVu1tZN7uq8Sw9uEIKPcy6czxO6Q46r2XcO8ZTI71SY+I6S2HFufq78LwLb5E7YKdgu95A0zr3CBS7KqTGvBt6hrw4qRc8tac9vbL6hLxnvRc9lqp6u/gbF7otGHa8OoJ6vcggvjykyQm9jrU8vXeuTr2CH448qCP7vBf4YL0TkRC8R+A2PSt+wLzoMIS8gj7ZO1wzMb2JJ0883IAXvaFH5LwLbxG89W1HPcBEJ7rRFfw78uaUu9Lv9Txpd6+8kU9yu0/Wi7xSY2K9fPAvPNZLlT0WK8Y80vzUvBf4YL0ilco7y9QxPUs1G72ui2K8aV6Iuq9yu7z+PH88EMPePIFLuLznHQG9SY4GPXlJG7wYxpI7LQwuPJMXAL3PVUC9L+ADvdyZPryvbJe8ckZnu8IRwjtpd6+8IOFWvJCJkjy+kLM8iwFJvGFijzyncJ48C2hWvM5PHD3PSGG9+6JJPfZHwTuniUU90u/1vA41cTwXBcA72tjrPDNz/jzh2x+6/Va9u69sl7z9UJk6E5GQPYMykbyj+9c8frGCPRx6Bj25KMy8zntGuucQojyiFP+8ZRYDvCi+hDv+PP88pMkJPQnBQTt3uy29BVlaPJE2S7yr2IW8LvMGPO138rtDXyi8sFj9vEpbIT0/y5Y8vmQJPNkL0bxN77I8dsd1vQxvET0GGi275VwuO2QPyDy69WY8/GMcPXlJGzz49ZC8de6SPcS41rzIRkS7QZF2PSjKTLxtBR092DHXvKk3FbzwEj+8Wlm3PE/V9DwLlRe9JEk+u5XEOD0g6BG9w+s7vRnFezyyACm8+5aBvGF0e7vXJQ89pbyqPLBMtT1zLcA80QOQu+Sb27z7iSK8kT0GPb6D1Lvx+Ze9TCIYvU/JLD2YTAK9SodLvbdokLtNFbk8fdcIvRYe57xk9iA9JEMauketUbz0bUe7aWpQPDYCA70n/TE8fOoLPLWa3jogrnE8GcYSPXa1CT0Z2RW9gjH6ugrBQb0eLWO9sQ0IPSjXq7xELEO8zZTtO7LzSb3BEcI8iifPvMIEYz0hwgs9UnDBvOY2qDyfhyi97YuMPFstDT1iYo87MZobvMZTIz3y05G9MpqbPDGmY7yAimU8ZunBO5IKIb2epwo9s9oiPFJj4ruiFH+7ZCmGvMArAD2IgDo9nM2QvOABJjv3CJS9Eaq3vCjjc7qD+Yc7j5t+vcH4mjyU5Bo9pbYGO+H0xrsXBcC7NvUjOyDUdzzq1xi8eIjIPKzkTT2oShi7hr9nPFCWR7y9nHu8WJ8fvUJsBz2/N8g8VuWHPJeR0zz9UBk8f36dvNZkPL0NXA68TSKYO9nyKT25G227Mme2vD0QaD3Z/wi9l3gsvdS9Jz2yDHG7uQ8lPPuiyT2uf5o8WLKiPE7i07y69eY8NEEwvMSZC7xc8+y7mThovQOMv7z8Vj28tNoivUbsfjx04TO9TBW5PRReqzrXPra8OJy4vBRq87yJWjS+eVVjvO2LDLx+sOu8UK/uPIIxejx941C9vnb1O9u5IDyukh28FGpzu3wJV72Ogte8Z6l9PNAJND1Bko28IOHWvGiQVjzQPBk8kGmwvFwZ87zeWpG8lp6yPYQMi7ztZQa8Ruz+PH3qiz1act48vZx7u52nirzZ/nG9JvDSOtZeGLxMSB49S1Rmu9dKfrpKaAC86sP+vEJSSTwn43O8TA8VPRjsGD1sBZ08+c+KO1b+rjxewZ67dBSZPLy2OTxXvwE847WZOxR30ryaBhq8GdkVvTDNgDzIOWW9gUs4PR0hGzz1YOg8+Ad9vOyej7xRieg7pK9Lvej9nrwcZwO7Kpfnuks7P7zdk5o8xMW1vCJ8IzxhTnW9ObVfPerD/rxRfSC9fOqLPA4jhbyQYww8oGEivcZzBTmOjzY7ObXfvQ8Pa7zebZS78q2LPA4cyjuxDQi9TAhavK2loLwn/bG8AN8GPWMphj4g7jU9wSrpusWS0Lz0hu672vKpPFwm0jxonbU7BUz7Oket0bwrceE8X81mPX6xgjw9EOi62DFXO/xjHDyyGdC8/WOcuRffuT3y0vq8Hw6YPKzkTb1uxdi6COfHO130gzvNoUy9o+74PHsv3TxzIOG75xCivGGOObzXXhg9wDdIPeZcrrxMO7+7+Pu0u03vsrwWHue77JEwPWseRD2IjRk8G20nvXMHujwJ2ui8Sm6kPFbkcLyqFzM8gxhTvCfjczvfNAu8QoUuvYIlsjt9xIW7fcSFvGbcYrvYGDA60vxUvSGVyjwWOKW7fsQFPX69SjyPm/46eVVjPDGm4zzfM/Q8INR3Os5in7wLjly9IOFWPdqy5bvNlO08h3oWPRVEbbyukp08wSrpPKA7HLy3Z/k8s+bqPPHGsrzSA5C8btI3vVtM2LyJQQ29dsf1vIXlbTvYMdc8+5VqvPO50zz3CBQ9DULQu3bIDL2SCiG8/VAZvKP7Vzx2u607eHtpOhKd2Lza2YK8/W9kvPuiyTp7Npi8bcyTu1fYqDwbhk482fIpPU0IWrlScEG9yCA+u5FP8rmXeKy8JGJlvVUK9zwVRO28IbvQPJ6Uhz2QaTA8M3N+PcvHUj1kD8g8ENA9OzxDzby5CYE91ZehPIeNmbxPySw8Y0Itve5eyzwtP5O8ayujvCDUdz1bWbe7/woxvG+TCr3cpp08ikB2Pak9OTwP9kM9jrW8PL22uborZZk7kT2GvRuGTr0osSW9yvSTvCC70DorceG72QtRPVblh7t+xAW95I58PNc4EjxCa/A8/xZ5PWwrI725Nau8gH6dvWJPDLwSnVi8+eH2vLAy97vnKcm8L//OPMkT37zbmb48U0o7PfHf2TtJoYk85k9PPRYe5zynkIC8OnAOPZd4rLpLVOa7VfHPPOnD/juZH8G8ohT/vCGu8TvE0pS67J34vPVUID2txYI6GNJaPBuTrTwVRQS8uShMvMktHTyKJ8+8zYilPZ+BBLy5KEy8R7QMPsn6t7ypPbm7LwaKPTbiID0OEAI909bOvGidNT0X3zm9p3CevFbkcLxMLuA8WX89O2eqFD12tQm95lwuvLoCRj3D3ty7x1MjumQWA71wn9K8iFQQuifKzDzsiwy9QnhPPK2xaLxqcYs9iE1VvP8W+bwcegY9a0sFvIiAujzXPra8Mo08PBffuTxfzea7ciDhPMuuq7yRQ6q8H/p9O7zDmLuOtbw6EdA9vEKSDbvkgrS7JUm+vII+2Tx/pKO8LT58u9LdiTzRFhM9O1x0unMUmT1wpo28Bg3OPBuTLb2gOxw8+shPPNdeGD0Y/xs9sQ2IvD/q4Tw7aVO8j5v+vDp2MjxiYg88REVqO1fYKDt/fh05RvndvKv+izxhdPu85lwuPH+ko71onTW9FGpzPHwQEr3FktC8xLjWvGiXkbyaBhq8mxmdvHUBlr0DjL+6LT+TuwK5AD344o06F/jgPAuoGrzUlyG98BI/vbBGET3NgoG8FViHu2hq0Lzy05E8alGpO2bc4jyIjRm83lqRPCxSljvx+Ze8tZpePSqrATza5Uq8pbwqvd5aETyjCDe8GN85PLL6hDyj+1c8J+QKvIzbQjxvkwq9XuekOolN1bu5CQG9LEvbPLZ7Ezu02qI8lpiOvZXEODt1+lo8kkMqPGQPSDyjCLc8ig4ovU0imLuXcgi9/kneu2tESrwSnVi8COfHOzGm47zuRSS8NvUjO5zNkLzFbMq8+Af9OdrY67uOqN27y66rvGXpwbxChS69M2e2OnFgJTwCv6S79HomPbPaIrwdRyG8JUMavaTIcj2iFRa9ekmbPJE2SzyXeKy8dO4SuixSFjqr2IW7uC8HvK9MNb0Cy+y8vZx7vcPruzy6HAS9ayujvJv5Ojy+kDM9JwoRvYsBSbw/8Zw8APKJPD/LljzuUWy9eHvpu33wLz1LVGa8GaxUu2s3a710FBm9rORNPdSj6buxMvc8xZLQvHsi/jyLGvC8AcwDvcg55TxH09e8iGb8u1b+rr2YUia9KqRGvBGqtzyqFzO99WDovCtlmbtV8c+6h5nhugxcDr1941A8s+eBvb9dTr39PRa+DjXxPGhq0LxsBZ28exASvEe0DL1bTNi8WWYWvfSHhbxyRue747UZPLhB87zIID49ZPYgvLPzyTuITdU8SzUbuht57zueoM885YK0vJhMAj0jiGs7xMW1vFQkNb1ftD88JUMavA4pKbzZ/nG8fBASvcPFNbzzoCw9YY65uo61vLz0eiY9giUyvHsvXT3sayo8MM2AvI61vDzldVU9w9F9PIz0aTw+BCA8Nhsqu82IpTxP1XQ9JFYdvUJsB70QA6O9Jgn6PHeh7zrmNig9ohWWvCRvRDwJ2mi8ZenBunBtBL0zTo88Ar+kPDQ7DD3UpAC9HSEbPW6sMb37vAe8cXlMPNyAFz1acl69GpMtO1X4Cj2fh6i87JEwvCYwlz1xWgE9brh5vIiAujxewZ483XM4Pd1tFL08KqY8OKkXvUpbITzcgBe9WLIivMPllzuQUAk9QmvwvLdVDb2wJq+7vLa5PNgx1zxUF1a9Kb4EvcPSlLyz54G8G5MtvSqX5zz6vIc8cwc6PCNvxDzSA5A8JFYdvRqf9bxVCnc7DGhWOrd02Dy02qI8t3TYPFQLDr2L9YA8QnjPO6IoGTxZjJy8Z7bcvEClkLub7Fu9H/sUPSUdlLy9kDO8cWAlPGiXkTyoSpi8w7+RvASMP72z5uq7HUehPNS9p7v7leo89kfBvBK3ljwI9CY8cXlMu6k9Ob1whqs6YXUSO7WnPb1KW6G8E4QxvaSvyzwqpEa8XQ2rvLoPpby5CQG8lcS4OVilw7y5G228ixrwO8S/kTqIZvw6QZKNvJ26jbxLVOa7alGpO10aCr1dGoo9uEHzuzfb5TxhdPu8cwc6PbIAqTwOKSk9p3zmPCjkCr2lr0s8XDOxO5B1eL3HX+s8r3I7O5eeMjunXZu8cJ9SPCDoETw1QTA9O2nTu7g1KzzBC5470Am0vFGJaDtl6cG8ayujPLr1Zjg5vBo83YCXPaW8qj1aTFg7uFsxPakkEj0ZxhK9kT2GPKvYBTwasw8807cDur9RhrySKew8Mmc2O461PD1ScEE9R+0VPSb9MT30h4W8n4coOzYB7Lza2Os7bfi9vM9VwDyF5gS9XQBMu4oOKD3nQvC7zZTtvGFOdTwxmhu9DjVxvGQPyLxLVOY8Gp/1u8Eq6TynXZs8sCavvPgbFz2E2aW9heXtPBR30jzYMVe7h4A6vNWEnryj7ni8ILvQOnJTRjw29SO9+Pu0vHs2mLz6qYQ9PffAvPt8wzwCssU7kImSO2bQmrrnHGo8Oo/ZuyGVyjxxWoE8ZChvO6gj+7yz2iK7hNEwOyoG4DyIVPm8Bz4YvYcaDr0Q8NC8yFBPu+s0TTspE4m7JnSKPF6GO71Kg2Y86YgKvGE0Rzw5yzc9YzaQPBPJn7xvaa28qTaTPAkVnrxlxoE6UKWSPA+pvDygIZA8bUuTPNYx+Dwm5ny87jaWvDaeEDweX4e62bQlPEsT2Lwwi/E8FEqEvC/7/7s25SS9tcGaO6vGBL3H6yC8fS4FPTLwhLsj1Yu8oOe/O9gIfr2Sa8U857EEvSQP97y5/U69T+ymvAS76rx+Idy8zxx1vBagpT05TBw8jLtwvKTc3zwcs1+9yd53OzguAr21T0O9pyeGvH5ocD34aTO8mfBWvNNnmzyurBc9vEYsvWcrsDsMbYi8iyv/vGllAD06MGY9woQpPLvU1LmhTG69H0NRPG6wQT1uPmo88bnevHAVcDvmFOq8MhvjPPS7p7s66dG8Lm1XvUXVWj2QImi7OHWWvA+pvDzMRe+8zLdGvSu/S7wHPhi9RgAevWRS4bsFBMg8d/+UvHsB+TopEwk9Yl8KPQqWAj3/xco8iFT5u9Ra8ryAI6U8hgsBvWjkGz0j1Ys8Vx37PPR0E70v3648tpbXPNpR2zxvsMG6zxz1u5dgZbxP3Rm9ZUWdvO1S5zxbhPK7O82APGUpZz12N5w8/hmIvCvqDr2qYfG7r8oxvG4+ajxkNpC6/342PZT7Njy06hQ8sJ9uvQv7MLrKih884mbeu6ASg7rWFSc8MmL3uimhMb04Ekw9i51WOwUEyDxT4Ua9BZJwu5+Rnr3k9s88NGRAvBkwlzsa3Nk8cBVwO+ikWz1b9sk8+ofNvCu/Sz1C4Lq8AQ8oPLMxKT2Q94m8X11BPNYGmrykwA67csGXvIAjpTzw1ZQ84NbsvM3xlrsj1Ys97/4Ovby4A71Xqwg9DdI2OloSgLq7Riy8Y32kPHgq8zz9Ndk9Vv9gPLkZBbzjZl69/8XKvKvxYjuwWNq8LN1lvRYuTrz4aTO82m0RvaWIh73GB3K8gxZ8POVoJztRUdW8mX7/PLN4Pbw7zYA8BUtcOxiT/DwfbpS8t4kTPUiQj7umX407gLFNPNz9Aj03gtq7dGAWvcekjDu9q1q94kqNvRK6Ej0YTOi7H0NRvJDb07zoXUe8NjtGPfjql7xmcHs9WYIOPd640rw+3nE85jAgvVpZlDwzxwo9U29vOKYlPTtBbmM9H9F5vY8ETjs1jwM8BWeSO2X+iDqiMJ28WAEqPZ+gK7q5i/e8KC/aOmySp7zWBho9c+x1PWTEODytOkA8pWzRvN+rDr2YGdE8Aiv5O8Kg+rwaI+48jS3IPO/+DjzDhKm89z7wO9s1CjxyegM9MbY0uq2slzxDRWk9n7x8PDG2NLkRx9a7jktiu/Di2LzRHr48IIwuPXmcSjt8Zow8ukRjutQT3ry13Wu9H/y8vPulZ7tuaS27e+UnOzP/kbxpkF492bQlvI8+nrw9eUM9lzWHu4eotjwoL9o9V6uIPL/J9Dy/VwI6U0SROwdpdr28Yv08yFDPvOikW71cIY29kCJoOx1sy7sVkRg9jWcYvfHVlD16c9A74NZsvAIPqLwZMJe81MxJvlNEEb1nAO27PAfsvD7e8TwiDZM7wGYPvRNXSLzkrzu9IKj/PHpz0LypYXG9RrkJvfApbTzY3R89eQ6iuwOQjLzecb48HtH5u5916Lzg1uy7iFT5ulNvbz1NMXK89DyMOcon1Two6MU8qtNIPfxCArzKtX2854ZBvbO/Ub151hq8nhA6Pd64UjxlKee5GAXUPEn1vbxUmrI7K3g3vBSeXD2CFnw9NoLaOvGOAD10NVM8ywuEvO7Evjy6tro8JfOluXLsdbtVuMy8U0SROxE5Lr0GvbO7aZDevMLLvTmcDnE8+YdNPe59KryFQwi9OC6CPPJySr2RFaQ6eQ4iPMxF7zvKbum81czJOlcde735QLk8HkNRvaOVSz1ncsQ73FOkvPFyyjys1ZG7zke4O6FMbjvpiAq9SnaivP7hAL6H4oY8ks4PvCU6OjyJ8ZM887snvUXV2rzvVDC8vmRGvKhD1zu+j4k++CIfPZdg5bw8B+y87u8BvDuivTwtltE86F1HPAIr+TuRv4K8iQ3lPIjGUD1rgxo8byIZPAOQDLw6MOY8n+e/vL5kxju/9Lc9XVv4vHYoj7tc6YW9ym7pO0NF6bp2frC83dSIvYWKnDw+l10840oNO/yl57w0ZEC8M426u/2YIz3WFae85SGTvBBiKDkyG+O7QZmmutKD7Dxwsoo8gohTO9xv9bxGgYK7eccNPCxPvTzKmay6v4JgPFhIPry+q1o8BLtqPDoFiLwodu46aJ2HPDONOrz/xcq88CltPB5fB71SfJg8ykMLvODyIj2yobe7ifGTPOnrb7yk3F89o7GBPK90kDtbWRQ9Y32kvETiAz3RrOa6NdYXPb9XAj3Mt8a8W4TyulHffT3gj9g7SJAPPR6K5Twx8IS8QZmmOjG2NL2A+OG8m4DIvOgHpjzOjky8S8zDPAcGkTz4Ih89X13BPO3EPrwtCCm9FZEYOnqPhjlskqc8O9wNu9MgB7zzkOS8GL6/vBi+v7zMcLK8CrJTvKs4dzqtOkA9rmUDO3yRaj1fiAQ7FFdIvd6cgbyhvsW8hgsBvbXda703rR09PcDXujeCWj3uxL48BwaRPAQtwjyrHCY9cOoRPcvgQDywn+68ywsEPfOQZDxmxgE8RbmJOmmQ3rwOGUs7DzflvI0ghLuIVHk9O80APW7bBL3G3JO8Ym4XPblEYz3d1Ii8Fi7OPCAa1zygaCS9hF/Zu+Zbfr0wYJO9iDgovQa9s7wj1Ys8zP5aPCKqSD06oj08yQk7vVVxODyEwiM8bhMMPcSiQz2xBAK90MgcO+/Gh722wZq8ImO0vGYp57yQBhe8p9H/OddcOzyvEUa93RsdPUwGlDycgEi6ZxwjPRyXjj3sJ4k8ZwBtu43mMzytOsC8UjUEvSbm/DzS9cM8M8cKvVNEkb3w4ti7RLfAvFv2yTv80Ko8w/YAvN6cgTz+NVk8Gk4xvOp74bwQfnk8kAYXvJmpQj3WFae8pbPluwgGET6hTO68sQSCvK8RRj3NcDI8xM0GPXytILxBmSY9v1eCvSCofzzc/QI9jgTOPHyR6jylzxs9Cc4JvRPlcLzZpRg90yAHPG731byM5rO8i53WvBW89rwDWAU8m4DIvO0L0zzYetU8rchoPcuZrDz/xcq8ByJiPBlM6LyUiV+6nXMEvEUc7zvK4MA7+RV2uip4Nz3DPRW9pfp5vKTAjjuZDI08FIILPLBY2ryGqLa6hHsPPUZHMrtpAjY9wsu9vIGkibyKK388X6RVPB9uFDxjmXU9aXQNPFrYrzxtkie9OBLMvE7qXT0IlDk9neX2PP7uRLxkC808HkNRu+Dyojv5owO8wi6IO4L6KrzKbum8OHWWu2m7Ibyobpq7QG7ju4QYxTwxtrS9e+Unvd8qKjwaBx29QlISvNWFtbzGpAy9QEOFO8ezmTsgjK69Rx44O+QShrszRiY8s3g9PM3+2jz0SdC8csEXvXSnKrxywRc9Y32kvFJ8mLvmP628UVFVu6kaXbseimU8GXervN9xvrkDkIy80R6+vMnedz3/U3O8QLV3ORtOMb1chPI8EPBQvAcGET2bx1y65Winus1wMry/O0y7zeIJvR5fh7wRx1a8JoMXvQdp9jzDPZW7Ond6uywker2bOTQ7h+IGPG4+6ruSa0W8oukIPW5pLb1/kzO8k16Buz6X3bzEBY68+ofNvILrnbu3iRO98qwaPKUlvTz2Sxm9FZEYvJ916DzkPWS8hMIjvIIW/Lyn0f+7zeIJvY8vETq8G+m7xuugvC60az1GyBY8nRA6O/8oFb1VuEw9WAGqvJJrxTzPHHU83P0CveqXlzqGNt+8p4rrPNlehLvw4li9MG+gvE7qXb0mgxc9g/qqu2LCb7wqBuA8CNtNPbdRjLwGvTO9EoBCPU3q3TxGgQK8+3qJvYfvyju0o4A7UkQRvCihMbznwBG9AA3fvBKrBT15j4Y716PPO25pLb1Mha88k2tFO0MaC709s5M8qzh3vGabvrzoFjO9mzk0vXH5Hr2hdzG8WAEqvX8UGL2Yi6g8IWFrO8IuiDuB3JC8L7TrPIIWfL0WLs68JoMXvluvtTxTKFu6Cmu/vNDXKbwiYzQ7HCW3u7q2urzQZdK8RdXau0Bu4zsAAJu81gYaPQkVnrw5PQ89UVHVPCQPd7tOFSG8UyjbPIOzlrw4y7c81MzJuyc8g7x6uuS8rqwXPFcdezsgGte88FQwutSFNbxRmGm8BC3CPCPVi7um3qi8jkviPLTqFDub4xI95ekLPDguAr1GjkY8U5oyPUJSEjxERek780lQPE0xcrzd1Ag9DRlLPViPUr1wFfC8q2M6vbPbhzxZgg484XMHPZGUv7zfcT49HIgBvSSBzjxdMJq8wGYPvJEVpDqMkJI8tyZJvewnCT16uuS8bCDQu5enebuyoTc9aQI2vQB/NjxZH0Q9VXE4vdCBiLySFaQ9kyQxux3eIr1gFi07ESohPYGxTT1C4Lq8xsBduhtOMb1Xj9I8L2ATvR4nALxcMBo5TupdPe2Z+7zMRe+83tSIuwUEyLymJT281C8UvTtbqbyKVkK97yntvPqHzbxePyc8NGTAO6Vs0TuQIui7/u7EPA+pPLxrPAa8EQ5rPFOaMjzhATA8gCOlPORZmj008ui7CpaCPPsXPzy4Jkk8xAUOvRVKBL1zpeE8t980vegWszwrv0u870WjPBHjDDx8A0I8l2BlvBSCi7xgpNW8MvCEu02jSTybx1w7DRlLPZobGr2pRaA8l6f5u4uQkrrXo0+9SVgIvLBYWrxVcbi8YXvbOqzVEb2l+vk82gpHvShaHTxN6t28IKj/u7aW17r/U/O8YjTHO5T7Nr2CQT87Eg7rPCaDF70o6MW8qTYTO8M9lTyLVsK8snb0PMSiw7pEt0A9SViIO2TEOD2Aajk7ob7FPNI82DxJnxy8aklKvDJid7odbMu8j3alPOEBsLyTpRU8fAPCu5Regbyp/gu7Kk30PAOfmbwZ6YK8xVsvPDnLtzusHKY780lQvJAi6Dw5y7e7XwegPIGxTT36zmE9INPCu9U+ITyQafw8UOymu2YcIzztC9M7/1PzOP9Tczw0q9S8nhA6PXAVcDub45I9hgsBPaBopDxTKNu8AAAbPOFzhzyvWFq916PPO1GYab2h6Yg8GpXFvNYxeLxTb++7QCdPvVb/4DppkN48n1kXvX49ErwPYqi71gYaPMpDC7vhSEQ7iDgoPa7zKzxJyno8QW5jvZgZ0Tw6FBU9/8VKvSaDlzyyWiO9hn3zvN1vdTv4aTM8DtK2Ow835by/VwK8m4BIPcSiw7yAP/Y8CJS5POFzBz31gyA8X11BPHtz0DgeJwC80axmPGbGAbxpu6G8PXlDPJXuPr3/g6w8iLVkvf6kVzxnH4o8Nr82vPzY+zqfTQs7iZvSvI5bzjzfSuM6vsERPGzzpzxF5Rc9nHoWPHPIbrwJC727+qKFOxSZZj3WqUC8+PdUvDTSrzvMCB67I+ByPIhzjrwbJT48kQCPvAks6Lz9t9A8GyzXvGZGpTxuzAy9MPghvcwBhbwES8G7Az0Pu4ansrzDiCa9PnprvN9R/DzISKI8aUHevLgbqDxULKS8ugivOmdUV7zXjy69MuUovYbIXTtY5Qa9fvmGvKgWcrzrfCQ9tXB3vagW8jwx/zo9GkbpvJjBMzwKGe+8wZsfPZquuryOW848/Zalui4lLb1u4K481OR9PTm6b7y1SDM8IOzSu1nfFrxqBiG8KVGPPe1Vibzsbxu9QB4DvXtieLwTkk09tINwvMDW3Dww+CE9eEaUOypsyrwpRAY9wbxKvLdd/ryT+h68EoQbvKzIO7zlwhg9ToY6vYl6J72FmQC8KmzKO1RU6LzfUfy7WAYyPOLoirypx5K8xHsdPD566zoWhm08LR6UPBVeKbsvM1+8RQ1cu6+BHjsx3g89AIvFPGsuZT1ARke9K1lRPCmN9TwJC726MPGIOxds27zpsEi89SRgvd9RfLxjm3Q9Bx42OrGPUDzGTpI9cdvnO7J1vrwe1wc8a+yOO8WWWL21cHe8uSnau3hnPz30Hcc8cdvnPNh8tbsuLMY8eGc/vSO/x7pTMhS9bgHauyWLozxPWAa9N8bPPNWVHj3YaBO820+qvARLQT1t+sC9MgbUPO9WMjvAtbE8KyQEPYP16DzfFRY90rsQPf6k17zSzzI9R9KeugBqGjvWqUA8yl3tPNEKcDkQigu7wZufO+mwSL1axQQ9BTGvPLRBmry4Q2y8DvP8Ot5k9bx2Zha9S7PFO7FuJbsP2Wq9hKaJPJAaITyJeic9rM9UPZBPbjyJvH08hZmAvEYU9bwphtw8yEiivNWiJ70d8Zm6E7P4PMaDX7xpQd68xlubuwJXITx4Ux29zvUkvWpIdz0x6xg9IMunvGB/EL3zAgw9zvWkvFRNTzyoFvI6aDpFPSmG3Draabw8SqysvKJIxDtCEiM7eW5YO7M6gb3VjgU9LjNfvXdZjTtwuRO8Sb+lvFgNy7wJLGi9FUqHPf6kVzzeZPU6kRQxOwRs7LsFMa+8NdlIPEqYirw6a5C8rocOO3wgory1SDM98UrSPAUdjTx7OjS6nJtBvDTSLz3RyBk82Hw1PLNbrLyp9Ua6mo2PvDS+jT1D+JC858PBPDPsQTx0hhg80vf2Ou933TxIuIy8YmwXu7c1Oj0O0lG6C9cYvIWgGbzO9aQ7MBnNO3xBzTuOJgE9woENPSOeHLyPQTw8tEEavF+6zbtBLDW9woENPXWUSj382Hs8fvkGPJ2pc7vgD6a8PXNSveqWtrxuzIw8d2AmPW3ZFbzAoQ+8SbKcPCw4pjxPrv68A0SoO6Q1S7uulJc7aw26PY8gkTzl1jo8JISKPLhD7Dz9t1C8j0jVO2/nRzyarrq9qBbyuisxDT3oylq85cIYPDS+DboPsaY9veI8PEIzzrxcsos7tIPwvF6zNL7ISKK8QB6DvJbACrwaHiU74Ra/PClEhr3NMOI5QSw1veLbgb23Nbq8w6lRvYxuxzzm3dM8IA3+PM7ui7sDRKi8BTEvPfjWqTzJTzu9U256vXLBVTxCEqM9TaDMvAYQhLsoXhi8omnvPFrFhLuxZ4y7XtTfvCDEDr0w+KG78zDAuzmZRD2Gp7I8v/DuO27grryvokm9d0yEPCPgcjsFHY09SKuDPEi4DLwf5Tk7fEFNPDmSq7zUm448N5ibPAnqkTtZ35Y7R9IevZjpdzzmqAa99QO1O6vp5rzCjhY8D6QdPeiiFj0yBtS8YIyZOqn8X7tjUgW9ZHpJPK2uKTseIPe823BVvcV1Lb2flvq7iXqnu9WiJ71enxI9pDXLulQYAr3xQzk9HRLFvMeK+DnVjgW9O14HvBwzcLzlwhi+A4b+PDa/tjzwLxe8QjNOu8LD47vdPDG9WRRkvPT1grzpsMg8gsaLPiSREz3psMi6+NYpvQoS1jy5KVq7xnxGu8wpyTuttUI9WtmmvHCsijvukW88DP/cu7JUE7waP9C7ZWA3PG36QLyfdc88OmuQPS8z37pTJQs9spZpOzun9jkWhu079umivOmwSL2n9B28ItnZPFRNz7wTcaK7aDrFvMC1MTwCVyE9gNmEvSK4rrxzp0M7DqqNPSXNeTs12Ug9GHP0PARsbDxr+Re9cLmTvN0bhr0liyM9snU+vJ1gBLv9liU8oUGrvH0GELwjlwO9wbxKOxCKCzzRCvC8YXmgvG/uYLxUH5u8fAwAvUfSnjvMKUm8MgZUPBoeJTsw+CE8QRgTPZAaoTmHhoe8oToSvXdgJr0rUrg8ltQsPDEgZjyiIIA7I79HPOAPpjzHYrQ8eFOdOe9Wsjv+fBM9p+eUu7ow8zq4Q2y9Kj6WvIqi67tTRjY8mq46O49I1TzyFQU77KRoPPfcmbzi/Cy9RuywvDundjpv7uC8BTEvPchwZjzMKck7JaxOvOXCGL3zN9m7JpK8ulCU7Lu4B4a7VE1PPLc1OjuA2QQ+1OR9vPQ+8rtQlGy6ay7lPCpsyjv9lqW97nDEPEfFlbtBGJM8ra4pPU6nZT0O0lE9zvUkPVUSkrzOFlA98w8VvfjPED3MKUk9tk9MvWw1frzbTyq9jxMIPePVEb3psMi8gPovPXVshrt+Ne28x2I0vfFr/TyV7j49kCequ1YgxD3CjhY99fybuX/mjTtMkhq9ToY6OY18eb1Y5Qa909bLO3/zFjyhOpI8zTBivEQn7juq4k09xnxGPFzGrbtdpYI8fAyAvRC/2DroqS+9QU3gvNLw3bwy0Qa99/C7Ordd/rvj4ho8VCwkva682zzeZPU8J5nVOqutALpRelo9gAHJOwFxs7yttUI9fEHNvDPswbxgyP86NPNavX1IZr0FUtq9lNODvGDB5jsrWVG9u/U1PGonTDxWGSs8yVZUPdhoEz0phty8qNoLPfFDubxRRQ07h67LuxoepbxzyO491ogVvMChj7vlzyE9WewfPb7BkT2U0wM9B/0KPYm8/bwaP9A7LDimunab4zu94jw70enEvMhwZrzwLxe9q+lmPZ91z7wvC5u8LRGLPAM9jzzqt+G8GkZpvBOSTTvEjz+9cPX5PETrhz3tila8oFSkvLNHijvxQzm92zsIPQoS1rxr7A49Whv9PHLB1TtGywU8+d1CvQNEKL2OOiM7mOLevNe3cjyU0wO9b8YcPF6SCTwbBBM8D7i/PBlg+7s00i+7E7P4vPBdSz2VzZM8u/U1Pfn+bbu4PFM9OmsQvBWgf7yRDRg9VQUJPBo/ULxfmSK8mc9lPH4u1Lw3xk+7JIQKPbSD8DvVlR48NPpzPEAlnDsphly8UmDIPOu+ersO0tG7yXd/vEEsNTwjv8c8LxI0PKJIxLxJxr686KIWva6bsLxUGII8yyIwvd0oj7y77hy9WA1LPB4g9zvjA8Y7p/QdvOqWtrxDGTy9RsuFPTiLkjyq4k28gAHJPH4AIDymAac7Bx42vMN0BL1t+kC8fAyAvPYKzrwkxmA9y0PbOypzY7wN5cq8vPxOPWZNPjyC57Y8M+zBuhZRILzVymu8jlvOOwCLxbymAae8RQ1cvNK7kLxPjVO8TJkzPCDs0jwCXjq9IOxSO6InmT1X/5g8A0QovVUzPT0Oyzi7PFgXvAMwhrxxsyM8UyWLvJnP5bx4Z7+7FV4pvUuLAbwPsSY8C/hDvOxikrxgf5A8SpiKO8Swajse+DI8hshdvWVgtzyCuQI8PVKnPEgB/Lsi2Vk97k+ZvWCMmbxgyP+79tWAPRslPjyxbiU9yU87vXSNsbxlZ9C6RCBVvKvp5jzFVIK4PGy5O8Zbm7wTs/i8E5JNPTMN7bxBLLW89umivArdiDx2ZhY8uA4fu3lu2DuxsHu8/4MsPZ5uNr0EN588f+YNPIbI3buXuho89D7yvKfnFL3S8F093mT1u0UNXDt7GYm9a+wOPb3ivLy2T0y8qroJPWsuZbyvokm9vsgqvUIzTr0hvp48dpvjuyxg6rphrm29zu6Lu2vsjrx7OrS87IO9ux3xGTzfUXy8XawbvUBn8r2n9B09u+GTvFfyD73pjx29xVSCukqlE72/rhi9wKGPvL/w7jv8sLc7N6UkvfMCDD3tSAC9/ZalvJQp/DyzWyy8+byXO9Z7jDtYLna7Y1+OPAUqFjtOp2W9CfcavK+BHrt0eY+8PXNSOhCKizwPuL86mOl3vEQn7jx0rly7iJQ5vA+4vzuMdeA7Ecbxu+1pqzzcd+47YpTbPKcp6zwShBu8SqwsPGdUVzrzDxW8O38yPBdsWz1liHu9eGc/vHLBVb1kMoM84iTxPA7z/DzEbpQ7LUbYO8WWWLuvegU9TcF3vV6ztLovCxs8fg0pPWGGKb3JVlQ8X4WAvYbI3bxI2Te9ZjkcPIuI2bzgN+o7xVQCPQCLxbw9Sw69NNKvPFQYgjtYBrK89fwbPDelJDsjnhy6ufSMvC0eFD1UHxu9gPovOmonTL2lB5c8An/lPPIpJz1w9fk8UF8fvR7XBztlYDc86bBIPDundr0rJAS9bfrAu6gWcjw9c9K86oIUPcdiNLwO8/w7r8N0u+q3YTwnoG68caaavNPWS7w8WJe8+d3Cu446Iz326aI8JKU1vD1SpzyRFDE8SODQO31Pf7zfCA29dbV1O8SPP73/g6w7dI2xvGCMGTzhFr88p+eUutePrrvjCl+9H+U5vdePrrtymZE7H94gvVGB8zzDqdG8lQ9qOut8JD2diMg7hsjdvD1zUrxpGRo63iKfvBslvrvDiKa9tk9MPRKLtDxH+uK8/4MsPEqsrLw7f7I8jTMKvQrxqrzYdRy7OIuSPBc3jjsms2e8wLWxuwhG+ryr6eY6KUSGOeLbgTt3ovy7AGoaPTIn/7zCynw9gue2PFBfHz0vErQ7omnvvNapwLw3mBs7/ZalvOxvm7ydqXO8fvmGvI9BvLu2LqG709ZLPO81h7xjczC82J3gPIWZALy2LqG8OKy9umVnUL2lQ/08GVnivKzP1Dx5blg9fgCgPVYgRDwRpcY6dIYYPaEtCb12ZpY7fi5UO1UzvTwIRno8eTkLvLn0jLuTIuO8Jc15PYm8/Tw9c9I6GRcMPffcGTwvM988oiAAvPJRaztCM069SqwsPXk5C71TRra8AF0RPV6ztDwisRW8imCVPDbg4bzyKSe9X7rNO5rWfjwAkt48DL2GPAzKjzujLjI8m4CGPJyi2rwwOvg80vBdPV6Sibyq27S7FoZtPHCsCr2D1D28FzeOPCpsSr28xwG9tzU6vMOIpj0DZVO9QEbHPNlbirylG7m66KKWvFnzuDyLiNk88DwgPPm8FzwmcZG8KF4YPWZGJTt7kWk8BLOAPORsS73YO6W7XIq3O+U2zLyqy0c7fSVrvD2xw7vjg+o7BV4hvY1vtjxDRgi9WRUWOyMIFD14BSk7UMWPurkcEbwMOYY9lELavF1UODx6sMk8XMA2PEPCpzxEbcg8bW+CPMH/VbtR9BC8xxA6PXKXBb1QaG+8gx+wvENGiLxGN8m7E4hJvEcByjwR3ai8xydZvZs8H7zpfS890K1evHL8Bb0Bmx47xydZvVTl0Tw/RcW84osrvQFdXr2QIpg70QMBvXETJb1C2Ua7/f5bPQdHgrnolM48XKkXPYkJc72dBqA83HpHvVkN1byAuWy8E4hJPWtAAb37DRs8uRwRPLJo7DwllNS7RTfJPNanozk0Kz69XzVYuweNoj0Uaek6VpgzvYd9Mr0VOyu8p1YmPRp6zbx7eso7ex0LPbuwEjt6uIo8GkROuxfmy7uL03O8k1l5PTlTQTzGRjm8gxfvO6puCL2yjw295ggOOx+qEb1AJuW85A+MPHPdJbuy9A29V3lTPMmF2zybNF670gthu5pyHjwElCA7e3rKvOzbMTxVxvG80JY/PUOjxzzRaIE9qeonveKqizonKNY8DDkGPeKLKzzfDsm8bPp/u9yZp7xt1IK8WEuVPWrbALzns648t5gwPYv6lDyiLqO8P3vEPL2CczzQd9+8dGEGPEtAbDwfDxI9t7cQO7kckbzXcaS8wmyXu+ezrryPvRe75uktvSY3FTy/NVU70xMivbGe6zoCyp+7arwgPR3YT7tU7ZI81N2ivac3xjw5NGE8WRWWO45ndTy711I9/DRbPa/7iz09miS9Rk5oPWzj4Lxf4Hi8ZS8dPb5rVL3ANdU8o3wEvK4K6rsnRza8sPsLPBW/Cz0ythy9kDk3vE+mLz15x2i9pm1FvdP0QT3NIZ68HuCQvDk0YTyq0wi86X2vPDGXPD1GN8k6qstHvGluv7yO85a8fQ7MPNFoAbzupTK9aXYAvdP0QT1AZKW8EPRHvQaF4buGN5I8+fW4vHEL5Lz0G5e8fCXrPIXhbzs9scO8lvW7PBzv7rwANh46jlDWu/jW2LtoZv47Aj7+PFr2tTwPC+e8FPWKvEekCr3nys28ohcEPROISb2YeRy8ZMocvMwZXb22r887lELavDZigD2qtCg9OGpgvTG2nDz8chu8n5qhu4heUj25JHE6R6SKu5+p/zy5YjG9gIPtO2fS/DxkPvs8t5DvO0zMDb1MMQ49jPqUOkCyBrysX0m7N4H/O8R8ODz0thY9W9+WvP00WztN1O287qWyvEwpTbvg96k7P1zkvMOT1zzzzbU8phAGvA2Wxbsp2ze9jW+2uxrnjjx/wS28QLIGPdIqQT0sZ3i8jCkWPHq4irvcese8gYuuuiBsUT00rx49XhZ4PGJ8Ozyq04g8GM8svRUcS72uEiu9HqLQPNrmRT1HpIo7fQ7MvPxTuzzeJei4C+ukvAvrJD07BqM7JgGWPObh7D021t477cSSPNaQhLxxKkQ8hW2RvCPh8jtvf6O8glUvvRRxqryHdXE70kkhPJLFdzvH0vm8Dn+mPfLk1DxDRoi87PoRPKgBx7zBHja+3LgHveezLrwL6yQ7WbAVO6s4iTphqnm9gx+wPAhXo7zGL5q7zuseO1kNVb0QKke8Rj+KPEp2azwBXd68rkiqvCE20jyX3pw8728zvHRhBr1auPU7gU1uPZLFd7se9y+8RITnPEfi6TwOQeY8PoOFu485t7w/RcW96XVuu9x6x7vRWP88DkFmPHO+xTswxfq8mzyfvbD7CzydBiC8S19MPekBkD0Q9Mc7gjbPui1YGjtJ0ws9yYXbPNdxpDyp4uY6fvesPP0dPDvQd186OVuCvWBsmrvNAj69weg2PR6i0Dyxh0w9fQ5MvFTtEr1U/PA8eAUpvZUrO7yLX5U7gmxOvPH787z6qJo8weg2vCgwlztrpQG9iTAUPVWv0rxN8827tL4OPRT1Cjv1gBc8HC2vvMm7WryMnfQ7lSP6vTa/P7zMOD28tcbuPORN6zxoZv67CqWEvcLotrwJQIQ8OVNBPeMPjD4VOyu79Jc2PIJ0D7xuOQM6YpubPLeYMD2DPpC7vkQUPL1ElLzupbI8rhIrPd+xiTyoIKc7C61kvJfeHDtrQIG8TArtPCZmlj0d96+8Kl8YPUK6ZrwQSac7ak9fu2o4wDzzzTW9urCSPGzrIT3Em5i8Q6PHvLC9Szux3Cs8WCw1PXZSR70rnfc8AMlcvICqjjymhGQ80J4APezbMT0uAzs8Dn8mvX/gjTwSpym9TvsOPQlAhLqvlou7xifZPPgrODw+kuO89kJXO0LwZbybUz686j/vuyTSFLt2Ukc7dGEGvRU7qzx6uIq8hemwPA9oBz1QaG86DZbFPKggJzzJu9o8MFEcvTlTQbusAoq9leUaPBzvbjzrEbE7T6YvPYar8LwCXV48ixE0PdT0Qbwq0/Y84NhJPRwtrzxcwDY80WgBvfdC17wVHMu8uiyyO8fSebw6wAI9EBOovAXaQDuTUZk8nrHAvMYn2byljKW857MuvTRCXTxcirc7bdSCPL9UNb3vZ3K8T8UPvROnqTq2BC+8oegCPeoo0DwxeFy8aXaAPVTOMr3LT1y9y09cvPpDGrwYzyy8pxhmvcw4vTxJlcu8rF9JPbQ6Lj1UzjI9Mc07PcA9Fj0xlzy8s1mOPc85AL0fg/A8ZF3bPAXigbwxj/s8QS6mvDJZfLlZDdW84qqLvCB0kj3C/1U8CqUEvRBJJ71vd2K8gx8wPWNlnLyfscA9i9NzO9enoztcirc8OA0hvXZaCL0bLS+9NdbevJ6S4Dt/Fg09V2I0PSPhcrzQjn68TMyNPNlaBTwaHQ48fQ7MPHBJJL3QWH+7cEkkvTodQrwQlwi9gtmPvVBo7ztDwqe8fQ5MPI5YF73hwao8yNo6PQ2WxTzuvFG7CThDPZi/PDyMKRa9eVMKPCpfmLyzOi6828+mPJ7nv7xjXVu85R+tvR7BsLvHEDo7/RX7u8SbGDy/VDW7D2DGuV/geD1zvkU86V7PvKPZwzy0/O28nec/PaZtRbxNEi68a/r/PR33L734DFi8BPHfPMjaujzXiEM9QE2GvL6KND1b11W9TtyuvJb1uzz7ibo8TvsOPYDYTLxpbj+9W6HWvJUj+jxLSC28gIPtvBK+yLzXiMO8DbUlPFdaczv35Re85aMNva/7CzsJOEM9iF5SPNEDAb2YoFw7ts4vO02WDj2p4ua8xsqZPDPlHT2iF4Q7EWGJu30trLwOQea8pYylO4I2z7tDq4g8V0NUvGyGIbrh4Io8nR2/PAF8vjyZDZ48XA6YOxW/i7xrQIE8ihE0O5OuWD07BqO8Ih8zPWtAAbtpdgA99uUXPX73LD0ks7Q7iijTvIIPjzz3r5i8JZTUvJ7nv7zcmae8cQtkPNg7Jb1LZw09yYXbvE3UbTxHAUo8RIRnPOVVLL1MCu28BBgBvOH3KTuxxQy9b38jvQ1/JrwDJ9+63VtnvLblzr21iA+7aREAvU7crjyd74C8aRGAvGNlHLyCNs+8epHpvLUjjz1g6Dk8oegCvC29GrxHAUo8jJ10PYu8VDwOfya9pm1FPDeJQDsYsEy8BV4hPUm0qzw8VIQ5UzoxvUnTC7xUzjI8TDEOu75EFDyE4e+8/R08vKggp7uacp684LlpvKFNAzvdYyi8JZTUOw9Jp7nkNsw715AEveleTzplLx09IwBTPXqZKjw2vz89W8A2OZz+Xrwqnfe7qCCnvGo4wLwIdgO9AydfOwh2A70ks7S81PyCPHckibz4FBm9Kdu3PFkVFrxkypy8oJqhPHyCC7wqvNe8nsjfvASzAD17ekq9QfBlPTK2HL1U5dG8nB0/vfuJOj3OxP27BBgBPWUQPTuIARO9FRzLuwdHArxRaO+8lUqbO0Euprxh0Zq7dvUHvUm0Kz0F2kC98821vNYrBDurrGc9u3oTvULw5byljCU82FoFugMvID2Tlzm9RG1IuvqoGj1fHrm7gKLNPKTCJL0l0hS9X+D4PLqwkrz/3/s5oB6CvaggpzzEk1e8zusevboN0jtBD0a8+oH5vG61Ir3kTeu8HthPvCgwl7yJKFO7Jl5VvVhLlTwoETe7K6U4vLkkcbtJtKs8SnZrvcjaurylRgW+14hDPY1vNrwPC+e8KfqXvA2eBr0tMXm9cUFjunqZKrwcDs+7hdKRPB/BsDp/2Ew97NPwuYzElbw11t48+BQZvQTSf7z0j/U6jMSVO1q49TyL+hS7wzYYvb248rxVxvE8ee4JvT2aJDwQSSe8c77FvG8DBLuXeRw9orKDPNgcxbxim5s8ZfHcurkcET2jLiM8y/IcvVkVFjybNF49dXEnPbGe67ryh5U8Jl7VOz6DhTzVvkI9MmG9vKc3xrwqXxi97bzROyPK07uuMYs9HCXuPL9r1Dxg6Lm86KttPJCHGLwxlzy8v2tUPPm3eDsDJ9+8SbSrPKTCpLzKnHq8Q+GHuyY3lTzjTWu9qeqnvJ3+3jwfqhG9aI0fvVTlUT0mZpY7G0yPvGBsmjweRRE7/gadPOwRMTse2E88fvesvJDk1zv47fe8jobVupOu2Dyzjw28iShTu0CyBr0E8d879WG3PFyh1ruO8xa9E5AKvSyG2LyQIhi7R+LpvBUz6jxIbou7wT2WvEfiaTyZqJ27tBvOvI7zFrwv5Fq8/t/7vDZDIDvD0Re80s2BPIDYTLxkPvs8hABQPJO2GT1ZLLW72HEkvcSTV7s29T687fLQPCdeVbvs27G74HsKOx7BMLz5t3i8865VvcmFW72cBqC7l94cPJVKG7z5vzk91iuEvKxfST37ibo8sdwrvCco1rxrAsG8ybtau8YvGrxrQIG8xxA6vXYzZz3BFvU4nec/vXHNBLyYQ528bOuhPLqwEr3ii6s7ebDJuKZOZbxonP27Q6PHvMcnWb2fkuC8DMzEumfS/LzJu1o9DDkGvJUj+jxS9BC956vtPD6S4zxxC+Q8cGgEPKFFQr3LMHy8YpsbPLeQ77zQnoC7iSjTOwnbAzwj6bM8lIAavIyddLyHARO6xi8avPgUGTz41lg8Q4RnuydHtjuM+hS9BbtgPXSnprxwSaQ87mdyPaKygz3CqnY8gxdvPfBYFD3rKFC9QLKGPLzAszwBfD67jJ30OrUELztxKsQ7401rvI1n9TzRQWA9YjabOkEXhz15sMm7tcbuu0BkpbyRxfc8xxA6vdHkoDwshli9Ur4Rvf0dPD3iiys6XjVYve5n8jwE+aC9sNyrvHYzZ7ymbcU7PbHDPHgcyDvI2ro8aI0fPTXW3jzT9EG9hW0RPMEeNj2b1x69KtP2vNB/oLt/uey8Ed2ovAQYgbyuEiu9GLgNvf4GnbysQOk8HBaQvIooUz3qZpC8Q6PHu+OD6jyj8GI8EEknPJH7djwtUNk8afIfO9dxJDz0Gxc8Zj00PW3eozrk4UW9jZUwvUQzRrsrAum8OyIgPCI/RbkDg2U8nbzPvFJEeL2BII87JY1TvCmBGLwSBww9iKuRPGxYgLyyxiW8FC6TPGXl/7p63rs8XXoQPRvgHDtsoa88IwyDPLy1o7qOwQq9jA8NvBT9ZTzj4UW8g6ayvF+LKjvdmIo9il2PvCV35rzXy0A9FT8tvO2OfL0pgZi8Qcp3PeqCNbyhTCW85gP6u4g2iL3Ujsw83mywvEZwOr2gIEu9UE4evdM0g708OI28WRHCvHvDez2opvq88TkSu9o0j7sZo6i9MjMiu2pJe72jR1K94luivIFOfj0wUPe8TACQO6+OBD2Eod88jGnWvKJiEryo0tS7ppqzvDtrTzwNd7Y91p/muz3Dg7vrmCK9dU5mO6LXGz0ua7c8IC6rvS0Y1jyBCqI82NzaPK5MPTr61S699HEzvNJnRT2dzWk73YKdPElOkrzcQFa8o12/vP0jvbxeSeO6HMovvTytFr1GcLo7psaNvMTLnDtMiwY8Qq0iPPVbxrvemIo8R5wUPbTXv7xX1M06Z1MhPCAYPj0Pype78A24PBU/Lb2Of8M83SrpOpuQdT0aiGg8JZKmvCn2obolo8C8Qcr3OrCJMT1QTp48LVodPR3xNj3E4Yk6Kgc8vbOrZbtTnKw7TuD8vOdFwbrrmCK9bsi2u6HtCLxiw8u8jnpwvaWExjyYQue8OXCiu0Tx/rxj7yU9nw+xOan+Lr0pysc8/BKju9FR2DxcTja8quPuO84ZN73R9w49kF0bujXgTDzaRSk7JDMKPYbIZj2VG2A9ZhFavM4ZNz2u7aA8RxEevYYKrjzcFHy9W8iSukMiLDxWwzO9JXdmPGLZOLsYHQU90n2yvOT3sryZmps96XEbvfPrD72Bfys8oDsLvWj0BL0iP0U8L4GkOz91AT3vh5Q9d6aaPNsvPDxtaZq89VbzvK4g47t5WJg8PXzpvH9CN72Gsnk8f0I3vd59Sr1yEXK8RieLPLFAgruxbvG8et67vAwYmrzoL9Q80WwYPFjqujsg/X08LRjWvCWok7rsfWK9J57tOhREAD2WBXM8s8alvFjP+rtei6q9Mnf+vN59yjwSwHG80WdFuwcYDj2xbvG7d7wHPbFAgryXQmc9dnrAO+YDer1Ghqc8Nfa5vP45qjxu9BA90n2yvD2SVjxaPRw9/LOGvdsZz7yD0gw9ckIfPRDbMTyaaW69UXUlvN2YCj3JieG6yolhPMZM7bsElP+86mxIPeK6vjzEVpO8WaGLvbgPYbzmHro8ewXDPEvUtbytCnY8kXOIPG7Z0LwtcAq84uaYvFEzXjs1yl+8z/52PETxfjxtnFw9NzOuvMqfzjxcTja8Ul84PIoWdbyCkMU84DQbPOCO5Dxm+2w8y2wMPeYD+rwYkg69NLRyvAk/lThhUxU9RlrNuzlESL0YfCE9Kge8u/NKLL0VVRo9MTOivL5WhzwHEzs9/iM9vPZs4Dy1vP+8DVz2O7f+xrzjmBY9fMP7vIFpPr0+1B29RV+guls4ybzxxAg90iX+vJaJgT1bPRw848tYvUGciLxfi6o7WOo6vg9VDrzZ8se8zhm3vOa/nTu/3Ko7Ul84vfh9ejt/bhG9chFyPYw9/Lu17Sy91UWdu2qLQrwyMyI7ciwyvd+TN7uGyOY86yMZPV+GV7yZsIi6rkw9vb5AGj0aiOg7ksj+PNaf5jzEVhM95gP6PCfPmrzN7dy6C3yJvRc6WjzitWu73SrpPAKIOD3NGbc662f1PHreuzxL6qK7sSoVPPjEFD1pZLs8m9cPPElOkjwUE9O6P6PwO0itLj0Erz+7YxuAu5f+ijzv5rC8RHUNvAkk1byMbqm8oDsLveCpJD3k4cW5YZfxPKVuWbvRggW9OnAiPdxA1rxrX2g85a4DvLncHjsDrz+9nbzPPEhVejxM+zy8Q06GvTyBvDz1Epe8XUlju64DDj3MxtW7bq12PIaECr216Nm6Pr6wvM4Zt73gNBu75b+dvCe5rTwRxUQ9HgekvEZE4DpHEZ68E6McvX9CNz1haYI+JagTPM4ZNzxlFi29P7ldO6NzLDwfAlE9uPlzvFksAr3k3PK81+GtPHMn3zyPXRs8fRuwOiu+jLsb4Jw8Pr4wvehFQT3Gk4c9qNLUu+LL2Lzfv5G8W1OJPLl9grpA+yS8a3XVvOF49zyovGc8VnqEvCe5rbz7nZm8StS1OfWHoDwNXHa9eZz0PGUsmrtjG4C8UhaJu/jEFD0wDJs7DS4HOz1mfLxMiwa8z0C+vNzQHzxvBSu8tv5GO9JnxbwmWpE8IRNrvMiOtDsZS3Q8zQidvM7X77mONhS90eEhPOuYIr3nWy49B6OEO8lFBbzSk589KwJpPOVKFD2i15s8PFXiPDOj2Lyq4249RAdsvcMUTDxhl/E7xOGJPIO8Hz23+fO8QRGSPHCmDj13pho7NvHmPI6rHT31cbM8btlQvbCJMbwCcsu81aQ5vK9d17oJP5W8FT+tPDYMp7yS+Su8DGHJPHVO5rxjBRO9wGchvIw9/LytYqq8LBhWPOCTNzzQKlG8964nvO+dAb0e28k8wQMyO+dFQTsPVY47ONSRvMQquTxCOBm9StmIvfPrDzyUNiC9hrJ5u1SGP73iW6I8REmzOSnF9DyGyGY9JKiTPGGXcTyDi/I7wdfXPAvxkj3jteu8qLznPC0uwzzv4d28Sa0uvOt9YrzEO9M7RPF+vFSBbLyjcyw9s8HSO1jqOr0VP629ILmhPKxRkDwXZjS8ZABAPc2TEz3nYIG8HLRCPQXsM72rJbY7cOpqvQJt+Dthl/G8ec0hPEUu8zzaA+K8eViYuzEzIjxUyIa8MJI+PLXSbD1tnFy9RTPGux+oh70kUF+6F1BHvMm1O72q/q47cyffvAB3njwtKXC8c+OCPbk26DyBU1E8nyUePUrqojytNlA8riDjvLKayzzUuqa8w/5evEUzxryKXY88vsY9vJ8PMb1HVfo8Hh2Ru8tsDD0SBww8v9wqPEiB1Dw/uV09Kdthu9afZrxlLBo9ahuMvDSGgz0nzxq8GB2FPGQbAD4U/WW9a3XVvHQ9TD1GcLq7H+zjOzw4Dbzu5jA9FmsHvbf+Rj3X9xo7CzVvuvNgmTx/45o7/LMGvGlku7x0Uzk7CjrCOyNmzLo0cBa8EuzLvK+OhDxmJ8c7eW4Fvbk26Dviur47MAwbPVgAKD1jBRO9RPF+vGOQCbwuP908gD3kvFksgjo9fGk9d6aaPHIssjxDOBk8U1rlvHoKljueJR68ORjuPOLQK70SwHG8pqtNvC6BJDwRkoI8Buyzu4f0QLxAo/A8c+MCPQtmnLxJkm497WCNvKAgSz0BRnG8JHy5vPz8NT1eFqG6UNmUvNE767zN1+88OF8Iu7/GPb2fD7G7EcBxO/eYOj28tSO9JuUHvIoWdbu7eC878zS/u+WuAzxlQoe9xQ95vMEvjDwiP8W8U1rlvGyG77zjy1i9FT+tOykMD70LfAm9HwJRvWLDS7vVifm7oMYBvEOtIr37um68kKbKuzgzLrxwANg8IC4rPLy1o7xTcNI7+naSvIg2CD0ogRg9MrnFvHv0qDwnua27IhPrvCW+gDzc0J88LUSwPPyzBr0eByQ70PeOvKVY7Dzv4V072xlPPJLIfjvZ3No6LXAKvKRYbLveIwG8fz1kveuuj7u17Sy8ILmhvFcWFb24USg8SU4SPUcRHjzILxi9aRuMPYPSDL0H5+A8JB2du2Kt3rwrM5a8YbKxvOCpJDxyWIw7+alUvGhOzrz61S69ILmhvKZ/87xdSeO8AEtEvLOr5bz9Txe9heMmvSZakbyMU2k82r8FvdN43zyUCka6Sr7IvNWfZr1771U92fLHvLp9Aj3k4cU817XTuhHFxLo2OIE8YZfxu8d4xzwL8RK8kKZKu+ThRb1TcFI9QPskvKwPSbwIE7u7zNzCPP4jPb2jR9K6Y9m4O53SPD2MhJY7Y9k4vMvG1Tpjvvi7uVEou3WVAD0LUK+8uFGovCZheT1Q7wG8qp8SPAxLXL1K2Qg9iO9tu9svPL3LxlU8QzgZuhU/LbwWJG29m9cPvbt4L71XqPM6uTs7vWQAwLzw98o8bbLJPNxxA7znWy68qKb6PPWHIL2wibG83SMBvr+a4zrCGZ86qNcnvehbrry1jpC8fO/VvIShXzlMdZm8964nvc4DSj1LABA87/wdPS1anbsrM5a8BMUsPdWJ+bzoGee7ZBYtvPE5kjw7IqA8u2JCPPaYujxsQhO9Zj00PbgPYbyJMbU7DBiavO3Qw7zSfbI8jWlWPZfonTxzf5O85NzyO5dYVLx5WBg9UXWlPP45Kr29n7a8MkmPPfrQWzw/1J07cABYPG1pmrsPtCq8FRNTPYBTUbsL8ZK8TieXvbk26Dw/1B28qKZ6PXRpprtP74E8XTP2vD6ow7sNcuO82y88vNMeljxeFqG5gX8ruxQuEzzQKlG8D1UOvQTbmTylWOw8BJT/u27Z0DxIgVQ8w/7evOgvVL3+Hmo98A24PCnKx7kg/X08/OH1POT3Mj1L1LU7p2KevFVr/7zgvxE9Yd4Lu1TIBrznWy67pn/zvLOV+LthrV682y88PbklTr2GyGa8uTZou7XtLL2/3Kq8a6EvPG8FK70aRAw9AI0LvTRwlryi15u7pqtNvBPWXjunwTq9mn9bvJvBIjvi5pg8Va3GO1JfuDxwpg69bIZvPU72aTv60Ns8ZidHvNqpGL1wAFg7ht7TvGBw6jzGCJG8p2KePNwq6Tsf7OM7nc1puwJt+LsxZmS73EDWO2j0BDvNA8o8ssYlPd99Srpqi0I9DGFJvNIlfryNlTC81Yn5O328k7zupOm7BxiOu2k44bybpmI9xCo5vZT0WLwAdx473mywvGyhr7xDTga8tNe/PKRCf7vaRSm8BdZGPLnyC71j7yW8lgVzvLxzXL3Lmvu8CT+VPYpdD73Eyxw9uSVOvU4ixDyopno9Y+8lPb7LkD3sqby8iKsRvWPvJbwF7LO85gN6PRhhYbuRt+Q7k5qPOxVVmrzWy8A8R5yUPFbZoLtGhqe8HcXcPH89ZDz65kg8qLznvOgv1DzemAo8smcJO6zGmT3PFGQ9f26RPBQuEz02IhQ9OURIve+dgbx/45o9Ff1luhdQR7zpcZu7jasdPBZrBz172eg8FmuHPW7eIz163js9OvsYvBDgBD2yhF69FSlAO7y1I73Tk5+8IBg+vQ6evbxUshk9qNcnvD6+MLwtLsM8aWS7vN2CnbwFZpA8m6biPETqljwo9iE8b9lQO4Fpvjy01z883RR8vNbmAD2TIDM8uFGovMpWn7wxkj695a6DvAvxkrytNlC8X5xEu2qQlTvY3Fq8AUZxvOs5hryCelg9VIHsO4aECj33gk082wPiOyW+AD1Cww+88xl/PfyzBj0xkj6905OfvKKAazxRuP88qAUMvQmgBb0Kf9m8knENvSjfbTpkCPe8S0a5O89V0DxABx69V0gEPB58OLx4ELo8aOsTPLz69DzDUJe8O0WtuxG/szw/IFS8LPGIPJQW/zxPIWA8b0QkuwjznTwyeZc8RmsSvdsduTt4+vE8OaMpvawaFTuMAjU8fOD8PAHJC7wNuHy7LPGIu+wI/TrCRTO9jy2GvAKajT2MAjU8faMsvNpwUbxI9029mncFPbKXv7xkCPe82c5NvXKTDzz9tvC8kpUnvQj+AbuygXc98aZTvImo5byYEtI8u1UDvWQT27yQ6D+9Oy9lvRGp67tRw2M9YpIDvVs84Ts2jiA9JA+rPLnMtbwMEwu801wHvSJ4C73mljY8zpqWPZNCjzvNyZQ6BaQyvV5yFjzPSuw87cusvOqSCb2IEUY8I1ffu8AMkDysBE08eb0hvXW26ry5wdE8BpnOPBj0qTvnH4Q7KnMfvejwBb3Jwl28R0pmPN9ICr2cDiW8sPW7PLwbIb149wO8pymmPLGth7stxXi7f1AUuHs7Cz0d2rS7xys+PAAcJL0c5Zg8S1GdO2Wq+jyBwxm9BAKvOa6NGjvzPfM8rpvsPMXDnDuCc++69N/2vC6IqLxCbz89jo5wvE6KQDsKij098OsZPawaFbyw6te8Qm+/PK2m0LwkBEe8cOYnvJ885LonPeo8KaIdvNDsb71Rzsc60ouFPFW0UrzOYLQ8SzvVPNM7W7rKhQ291dL6PH9QlDtLUZ27HmbwvHHQXzyPMHS9BPdKPWj55bySlSe86OWhPDZqhryIEUY9M0oZPKMib7yfR0g9Bo5qPBaPdrwybrM88y8hvf3MuDz1oia95N5qu62xtLzTXIc8gdzPPBc8Xr2GhYo7AzwRPbaILr3k6U69Oo1hPTZqhrytsbQ7RAZfPITjBj1kBQk9NBC3PZgEgDwNw+C7Ky7ZvNAYAL3A9sc85n0AvWZiRr1nTP68AAZcPV6LzLy2kxK9Ymbzu7NPCz0DPJG75pa2vD6JNDrTRj+8GovJvBGp6zpqjZc7CyzBvDtFLTyyfom7odAVvNKOczvcB/E8yoUNPE3SdLtb6ci7yBV2vf22cL29skA9FpravDgBpryaYb07CyzBvOnBhzwNzsS8zBwtPXm9oTxlpwy9GoDlPOdOArzPPJq8ImLDPNZ0frvmlrY86do9PZwOpb11tmo8pnHaPCNM+zyOi4I88bE3vW8uXDzRpDs8yBV2vLaIrryEFXO82jMBPMm0iz2uXhy8EBLMPImoZb1kCPe7u0qfPC59xDx3WG69XnIWPWMpIzwVpT47FN+gOiWxrryNr5w6MAaSu5M3qzucA8E8NpmEPTac8jkgCPQ5QcJXvPp9zTtRuP+8/cy4PPJpAz186+A8cdvDPImoZTyQ6D+9NPruvOAOKL0lpso6IbVbPDjg+TuptWG8bAsBPQ24fLu1xX69IAh0PS3FeLs5o6k8toiuPfNIVzsNtQ48NmoGvatJkzxjNAe8SPfNPDWn1rw+c2y9dBRnvegUIDzzLyG9COg5PQp/Wb0uiKg9a0jRPEzoPL29nHi8WzH9uyj1Nb5yiKu8nO14vGHBAbwwFGQ8Ka0BPD8gVL3GiTq7ynopPGzqVLz8FG28M1hrvfG8GzwgBQa7LyosPZ2lRL0fHry8FAO7PLDq1zzE8pq8ccX7vDac8rws8Yg9TnGKu1W0UryZqfE8YykjPUWzRj12Y1I8loYWuztQkb3bMwG9i1XNOi81ED16aok7FN+gvAnS8TtVpoC82zOBOhwUFzzLWf08iPt9PZXD5jxbUik8xyu+OysghzywC4Q8+dBlPA24/DvU6MI8RbPGux8poDwAEUC9OAEmvKm1Yb0ZoZE8NzuIPONSLz1FqOK8GzixvMAMELzqfEG9A0pjvNANnLxVtFK8KyCHvFT5mDy5zLW801GjPFgZhr1TKBc9ja8cvfT1PjuoE168nO14up6aYDx1tuq85ovSvNcsSjyVw+a9LdvAvIzsbDprSNE8WprdPDgBprwtxfi8joCevLHcBb189kQ7WbuJPtpw0TyOjnA73PkevL2n3LwAHKQ8tnLmOfT1vjzZw+m81POmvDqYxTz6k5U98bybPEgNFrxRuH+8ccV7O7p5Hb27Sp88zBHJPRje4bzmfQA8bn4GvN9LeLy9vaQ8EcqXu/aB+rwTSAE9oaGXPKXBhDzGcAS9bN/wOzznsDw4AaY8rptsuw57rLxrUzW7BaSyvLgUarwt20A9OYJ9PWZtqru8Bdm8SzBxPOM8Z7yIBuI8byCKvEswcTug/5O87AUPPCabZjyIBuK8SAKyu8z4ErtCeqO7HoccvCWxLrwI3dW8BAKvPH8hFrw1sro8XotMPVZsHjz9zDg8GoDlPEz+BD0d2rQ68ARQvGmmTb30AKM8Coq9PM2zzDzJtAs9UbURvacppjy8ED09gpSbu7z69Dug6cs8DnDIvPDrGbyE44a9px7CvPdEKjoh1oc7JaZKvD3DFj1x28O7mbTVO8NQFzzcB/G8xom6vEW+KrxEEUO841IvO5HPCTytsTQ7XovMvEqAG73pwQe9gPIXPaMtU7yGhYo8ybQLPbz3hrwjV988q0mTPGKSA73LJ5E7SyKfOR3P0Lso3229NOwcPSATWDzPSuw83mHAPOdDHjysGhU9hc0+PWDlGzyqba0821ebvJXOSj0vH8g8CdJxvMGjrzpsC4G8TzcoPJnVgbz91xw8JPliPe3LrDuOgJ688zoFvQGzwzyvPXA9q0mTvNXSej1PLEQ9pmZ2PI87WDvfS3i9Coo9vdAYgL0Bvqe8vcgIO2W1Xrx/Okw9ycLdvIJwAb01vZ48N1S+uh3PUD0RqWs9kzcrvTtFrbzPPJq9ABwkvOgUoLy+Xyi9EB0wu8crvrzxptO530gKvUgCsjwmjRQ9JPlivL2n3DzFn4I94oyRPJzqCr3DIZk8/bOCuf9Y9LzMHC09eb0hPFz0rDpjKSO9QoUHO8Dg/zuLVc07zb6wPBNIATzMBuU8xyu+PBQDO7whqve7gnABuoZk3rxlqno9F12KOqmnjzv2gfo9K0QhvaTlnrs2X6I9XP8QPRG0Tz2V2S48EmG3PH9QFL10BpU88bE3OwM//7v+WPQ7WaVBPU6KwLwxqBW9OoL9PPGxt7sekgA8IaeJvNwEA73wBNA8K0+FOfKYAb15sj08FbsGvL3IiD3WlSo881O7vMGjrzrqh6W8EmybPDdUvrxzNZM8gOezPNG6gzwXUqY8WppdO9Z/4ryfPGQ70a8fPQaOajzOYLS8dAYVvCQPqztyZBE7jOzsOymiHTtaj3m8oPSvPIm+LT2bS/W8gPKXPcnYJbz2l8I8Kpe5vDp/DzzMBmU9D1eSPE8sRDxlwMK8McyvPCp+Azzo5aG8Oa6NuVc9oLsXUia8GoDlvCHAvzwKlSG8baKgPD3RaDqIBuK6BOxmvb8+fL1psbE81N1evSNXX7yylz+9r1M4vRQZA7yHJ468CP6BvfqIMTq4Bpi8d0qcPPjmLTzyaYM80OzvumJ8O707IRO92oYZPTGoFbsiYkO8QakhvMwRybuigGs8vBC9PPWiJrzv+Ws8ao0XvIqak7yI+326GoDlPLnB0bxHVUq9TnT4PHZ5mrwRqes8aptpu5XOyjsrI/U6pzSKOzdJ2ryPRjy89zlGu2XLprxyfcc87cssvCTufrs857C9S1wBO5Dd2zzIEgi8JbEuPDNYaz3bHTm7gdHruz5z7LwUAzu9f0UwvLNEJ7sZoRE8rpvsvJz4XL2M7Gw8OoL9vO/5a7w93My7pzSKvNDsbzx84Hy8APgJPC6IKL1s3/C80OkBvEHYH70qgXE9gcOZPIJwgbxFs0a9qBNePZtWWb1Sey88unmdPDJuM7zaZW27fn8SvO3AyDs/K7i8cdvDvFgOorwqjFW9zBytPPMvIb1Vvza7KyP1PAp09TxegGi9FAO7vAtCiTtI9808KoHxOxnT/bwGmU48/yYIPXz2RDtLUZ08Oo3hvMTymrxYAz493an0vEtRnTz2jF69Tc8GPbpuObzmi9K80AI4PBnT/TtsAJ281N3evPjmLb2uXpy7/AabObgGGL1IAjK9fAEpOkHNOzzfVlw7XP+QOHj3Az0QB+i87AUPvXHCDb4TVtM8IngLvLZklLyygfc7wy/rvPwU7bzcBAO9FpravKD0r7uB0Ws76x7FvGJ8Oz0Vuwa7FO1yu16LzDznToK8wAGsvNpwUbzWf2K8LPEIPTtFrTy8Bdm7SztVvET4DD3bMwG9hm/CO1gDvrwI8528KnMfvOT0sjwmjZQ73an0vLKMWz2zI/u8cOYnPTtFrTxJpLW8DBMLOrHchT2+mQo92x25PKmnjzxjWCE8zmuYPKD/kz2Geia9TorAvB22mr0Nw2A9v0nguz3RaD2IEca7Ux2zPHgbHr3QAjg8YBQavTqN4bt+jWQ8BoCYPO3ASLwxtuc89yP+vJ2wKL3LJ5E8wy9rPewTYb06mEU8R0pmPcZlIL2I+/28qaePPYMru7sHIhy9cnLjO8ABrDwmm2Y9x0EGvZ2wqLsTPR298mkDO1gDPr2zT4s6mBJSPfAPtDziXRO9IngLvJD+hzxzH0u8VBJPu52wKL13WO68xOc2vbXFfrkxwcu8+x/RPLTmKrzHNqK8s0QnPCqXuTv/VQa99aKmvPQAo7tEBl+79dwIPK6b7Dxc/5A8B0a2vOM85zzgDqg7saKju5HPCb2GZF69+OYtOpgHbr0lvBI9ecgFvXmyvbqqeJG8Ux0zvGQT2zvqcd28MnkXvfMvobuQ6L883BJVvCT54jzd1QQ73mFAPRASzDwufcQ7fzrMvOp8QbwKf9k7bOrUvCjf7TtqXpm9hOMGPVW0Ury10GI6S1wBvPZ+jDs2nPI7rOuWvGtTtbwqlzm89dyIvIW0CLoXXYo72oYZveDte7xc9Ky8kPMjveDqjT2pqn28sAAgPVqa3byw3/M8Qm8/PMXOAD2Vzko9J1OyvDtFrbwA+Im8ZcsmvSTrED3Z2bG7ez75OcKYS7wE7OY8NPruuW8jeDv13Ii8Oa4NPGdMfjsVu4a7qAh6uNDpgbus65Y8Ydo3PLKXvzx6mYc9FO1yPQnPAz0ukww91opGPRdHQr3MBmU8aBoSPFHZq7tYGYa8mneFvO21ZD3TXAe89AAjPYs8Fz0rLtk81yzKPL3ICDumYwg9JA8rvSWxrjoyeRe9lmVqPM5gNL3Boy+99AAjPZm0VTr09T68ezuLPFtHxbxvRCQ7PmWavPQLBzyyjFs8FoyIPFc9ID1d0BI82nBRPKptrb2Q3ds8TzeoPLM5w7wRqWs8W0dFvVsx/bsCYKs7v1TEu+seRbwKlaG74aXHvGj55Tzqh6W8Ux0zPWzf8Dx6X6W4hycOvccrPryujZq710KSPPAPND35wpO60AI4vUs7VTwHmlS8do4mPedWuLy+zG69flwWvO4OyLzcBK4729iAu6qhF7x5/OA8N9wtvYtIm7wzFoa8Fgp0PDWwgDxxWjE8ZsaZvKBEnTw1sAA8Kz2muzg0m7zMMTE8XcGMO0ZtHbpUb+88Rm2duv/hxLxLlqK8rKz0u30PmTxTTjK6cWWhOZbnIj0AL0K9Le2AvN9y6Dz5SvK8OYEYvZIAq7xGNm09YqjxOzJ8+Ly2QB88NnlQvWaP6Ttrw968EnAMvUZMTb33P5W827cwvYI4Hry7XjS871vFPHKynryG6OW8mWu9PD9+Xb12Fem8WicSvcw8Ib0qxOi46RGDPYdLQ73VCn48ZsYZPXFasTy2QB+8pCAlvPNjDb2jvce8YtSxPNWkiz1TOFI8nHOFvPbcN72qEvq7LeIQPS8vjjzLuPO83dhtPI3thTysrHQ774cFPbf+/ryZP329J1YuPT6Uvbu5mPk8QMtauz61Db2f1k+9YKgEvWMhL7xZzyS9OXYovO3imjwwcZu8++RsOtvNED0w4n27lW7lPJlV3TyxIgo9JabTvK5yr7uIriC8D9YRPbZAHzsFY7c8NCzTvMMA5DykICU7G2opPRAjjzyccwW9Okrou3di5rwiIjm8bnM5u+/45zmFm+g8gcpQPcg0WTxTIvK8do4mvZxolTkjkAY73VybvEXpb7y2FF+8HRqEvP2qpzxTm6+9tHrkO5PqSj1oYBS89xNVvJ/WTz26Ebc84pAQvduh0DxZzyS8TgTdPOE4I71oVaQ8Rf9PvU87ejykIKW8pCClux87wbdxWrE80BgpPS8OPj3md4i8YyGvPOpeAD37EC07vi9MvMhgGb3X5hg8nSZ1O19bBzyf7K880OxoPF9Qlzsz31W9iYLgu+/4Zz2tO5K8Rf9PvcB8ST1gqAS8HLemvMaE/jvShuM8Mqg4PdfQuD0HmtQ8xHmhPEzNv7yrX/e733LoPCHrmzsq8Ci9F6SBvMf9uzyewAK91ld7vWaPabylbaI819C4vAQsmrw9R0A866ANvU2hfzz1edo7X8F5uywR5rwczQa9hv5FPLb+frwbdRm9PWgQPTlgSDqyQ8e7eK/jujg0m7352Q+9ZHkcPQQWOr2Mfzi9TOOfu+dAWDwThtk8+dmPvHIucT22QB89vMERvdfQuDzKa3Y7zX4uPeFDEz3btzC8WJiHPHFaMT242pm9wyykPPnOHzx0/5s729iAvL7iTr2s2LQ8qcX8PN+pmLtdilw94puAvLonF7yLU4s9gMrQusNCBDw0Y4O9XddZPGqiIbxF6e88JG82vV9QFzzzQr08mWs9OzV5ULxEslK8ckTRuqWDgrwgct47+/pMPM61yz1CnAW86I3VOxYK9LsEN4o8zDwhvXIucTxlWEw6VG/vO7hL/DwlkHM7MxYGvYNkS7ygOS29pkHiO6DAbzzJrZa8h2yTvLrl9jwjDNm8LsFAveIiQz2LSJs74L/lvGVuLD02Y/C8OcMlvDWaoLxeDgo9JFlWvL9bjLs5jAi8o6dnvUXpb705wyW8NmPwvESy0jzyIYC9ifudPSyVkzyMlRi9uvtWuMm4BjsTnDm+OkpovKoo2js9R0C9hv5FO947SzzbzZC8RSsQvQ0F5zuExyg8WicSvdaDO72W5yI8Bwiiu44D0zvbodC8cXCRvDbnnTwrJ0Y9aSlkvPWPOr2f95+8zBtRPReZEbwxRds8fIB7Pa0PUjwctyY9rnIvvE9R2rnvcSW9hv7FvGcIp7xLlqI8KvsYPNkdNrsbdZk8//ekO7JDx7kY5g48HLcmPenwMj0l0pM7DpSEPN+IyLuGH5Y7+IGiOy6r4DwzFoY86drSu3jbo7nB36a86xFwvHJE0bvpEQO9kDrwPPG+ojxLgMI8nO/Xu1onEr38cwq8kgArvXaOJjvuJKi7mPJ/PM7LK70AW4I6HQ+UvCW8s7srPaa8g5ALPeuVnTtzp648BrC0PHysu7zAfMk8aa2RvCRvtrwwcRu8JbyzvXtJXrt5MxE8RLLSPAxHhz2/Ray8WGzHvFM4Urxm0Ym88ahCvOZ3iD7zQj09+Zfvu7OmpLxaHKK8Jbyzu0OccjxpKeS7jH84vHVBKbwgnp68kbMtPfQsXT3+DYW7QUQYPHJE0TsrPSa9oDmtPAqXrD1gJFe9VfOcO5bRQr1GTE09j+3yu2FbdLy3dzy9bEeMOk2hfzwuq2C60OzovEEY2LwDs9w7gcrQPKKRGrwVvfa8h2Gju6z5BL1Zz6S85myYPNwPnjwEAFq80U/GvMR5obyUTai8h2EjPcfnW7xvlPY80U/GvHoz/roe2GO7MxYGvcoFBDu6Jxe8YyGvOwOz3Lz3SoW8NmPwvDutRTp/tIO8oDktvEusAj18lls8n/cfPcNChDwz31U9ZqVJu6tf9zzwRWW9B4T0PAawtDw1jzA9khYLPfQWfb1GYi095lY4PW/AtrsJVZ88rUYCPZG+nbsMzsm7Iqn7vEOccrxF6W88cA20vPbct7jINFk8lz+QPFonErxvwLY7CqIcvf6Ux7w85OK7bDwcu7b+/jviIsM8yB75PDKS2LxtENy8356ou+IMYzy6Moe6LBFmPLXdwbvUIF48YyyfPG2JGTzXuti88iEAPT1dIL28qzG75neIvcmtljwL7xm7eTMRPFZAGjyHYaM8kZ1NPBTpNrx09Ks8dqQGPXUrybzxkmI8IL9bOMaEfjwbaik8kDrwO6ZB4jy9lVE5fPk4vBI5XD2J+x2926HQvOKbgL0a8es8AZ0PPfnOH7x2FWk99LAKPdfmmLxsPBy83O5NvTP1Nb0Qn2G9qhL6vBCfYbxFFbA7sMocPYIB7rwvDj696KO1PNZtWztbBsK8Qns1PR3uQ71nExe8tkuPvbeYjLwjDNm8f5OzvMrks7tDyDK8a++eOwzOSbywvyw9LV7jO9pqMzsDnfw8mB5APXOnLjsEFjq9anZhPQ0xpztoVSS8cVqxO04aPTz9MWo8tSo/vTmMiDzxyX88nSZ1Pd+eKD3MPCE926HQPJ7AAj1LgEK74UOTPPsQrTy45Qm9HLemPYdLQ7xuR3k8GoAJPlEBNb2neH+8lE2oPchgmTwXjiE8lDdIPZRYGD2QOvC8pCuVPN+eKDvc7k27dUGpu8B8yTwHHgK9JN0DvbmYeTwuwUC6fc34upbRwjwXg7G80DnmO4xpWDpDT3W9CP2xPLJkl7vDNxQ93lGrOvxHyrpjLJ88vi9MvV22HD2LMru8OkroPPL1Pz14r+M7nNl3PM2JHr3VNj69pArFO8vO0zyCF867GCgcvGIsH7yiWmo8DRtHO/VjejxGTM270pzDvKBEHT23d7w9ZVhMPP5+Zz1zkc48FjY0PfSwirz52Y+88b4iPaZXwjxivtE8opEavP5+5zy6+9Y8kgubvN47SzxXNao7OBNLPM1oTrsUCoe7cA20O+dA2LzrJ1A8Gz7pvBYKdL3ftIi9FOk2PXFlIbzuL5i7sy1nvZGzLb3GHgy8dStJvC6r4L3ouZU7nTzVOxdXcTzg9hU8ffm4vO9bRTzmbBi9CYHMuhdtUT1YVmc8I5AGvYUqBjzuDkg8jqD1O0j8pzyLU4u7cA20uz8CC73UV448v0UsPQVN1zudPNW7C+8ZvJVuZbv+fue8oZwKPbhL/LtgOjc8z5/rvFsGQru65fa8mAjgOnk+gTqGHxa8lE2oPKZXwrzp8LI87iSovZmMDTxprRE7ABniO3kSQbtYgic9E72JPIG08Lz4/fS8p7qfOpgIYLxhvlG80U9GPEj8pztAtfq8LatgvDJ8eL3ShuO8Le0AOs1+LrsFTVe7v1CcvDfcLbwkQ/a8R8UKvXyW27xgJFe8YDq3POyKrTxhW3S8ZtEJvaz5BD18llu9k2MIPaVtIj27dBQ84PYVvMB8ybt2jqY87iSoum7hBrzvcaW7abgBvdgzFjzp8DK9o96XPOx0zbyQh4A9JdITvbDKnLzeO8s8IHJeO0ZMTTyqEvo7JvPQPPbyl7zsdM08qV+KPA+1Qby5rtm8vMGRPcvO07xhnZQ8CpcsvTgTSzys+YS8ULQ3vfLJ/7ypX4q5b6pWvNKyI70NBee8Qnu1vDWaoDwLa2y866ANvFiNFz2PA9M87IqtOodsk7wd7kM8FOk2vLt/hLyj6Qe+NbCAuyTdg7yri7e8OIwIvZ081bwSOVy8VG/vvGMsn7zT/yC9HM0GvOxebbt5EkE9KyfGvC7XoDyImEA8CqIcvSCIvrxQtDc9XXR8PGcTlzuri7c8td1BPBjmjrzftAg9EjlcvTUWc71BRBi99ty3vFocojyjvcc8ECOPPFCeV7xUph89seDpu2L1ATzAkqk8O63FvGcTF7zWbVs94NXFO3diZjxHg2o8h2GjPFnPpDy42pk9qNvcvOcqeLxNoX+9anbhPBOymTyP7XI9ztabvGhrhDsiOJm8v0UsO9fxiDx1K0k55myYPJHJDT0Ds1y9D7VBuwqBzLwE6nm9IjiZPJ/WTz2Exyi9F1dxPeSQ/TxJ0Oc7Fb12vUEYWD28wRE9AWbfu7EXmjxKX4U6JgkxPYi5kLsczYa7X8H5vEDhujzETeG8sReaPA/LIbsJHm87mWu9vNnxdbwm81A9zZQOvTRCsztOGj281FeOvA/hAb0MR4c8aGsEvdzuzTxGeI28kb4dvcm4BruAZ/O8h0tDvRzNBr0R7N68dhXpuz1okDtV6Cw9T2c6PRe6zrxzkU49myYIvcaaXrxQ1Qe9QLV6vazYNLz52Q+9WIKnPKt11ztUhc+8T1FavA5oxDzb2IA8F7rOPKjbXDzhQxO8uEv8OrC/rLsxL/s8kZ1NvEJlVT1eAxq4WvBhPIxpWLx5KCG8NaUQvPGowrqCF848HLcmvXkzET0tdEO9UtX0vLXHYTzbi3A78b6iOeC/5btt+nu7M8n1PAAZ4jtMzT89F21RvKBPDbwBfD+7kIcAvKk+Or1mpUk92AfWu446Az35l2+8pArFPH5nhjyOttU8rMJUPViCJ71prRG9hMcoveSQfb3m81o9WdoUvHgSQbyc2Xe8bCY8vMwF8TsENwq7+IwSvTsmA7uMfzg8Jh8RvN+eKDw2edC8WFbnO8aEfjyNU/g7tHpkPR0EJD3kpt08LXTDO2LfoT3v+Oe8yZc2PD1dID1ze+66s6YkvTBbu7pGYq27dSvJPJnOmj0ctyY9qNvcPGSEDLvMBfE7n/cfPd+eKL2ihqo8zBvRvG5H+TuTYwi9j+1yvXFwkTy6Mge9F7rOO6EjzTsELBq9S5aivB3uw7z9Meo8LsHAvFrwYTxuR3m7OyaDvHIucbyAZ/O8QQJ4PBoHzDxvqla9r0bvuzRCs7zZiwO7hMcovEX/z7x8rDs8cVoxPcwF8bvfqZg8+pfvvJIAKz3ShuM619A4PAFm37uhDe0734jIPL1/8TsBfD89rvnxO+nwMr0C3xy8iXyKPK2sBT230pU7JxpKvbVThrkfz468J34wPFHrBTzTKZ08PZC8PDl1E72VPrQ7YnG6vBZFmDw0aiw8SeCeOUzRdbwZ2ZC6nVf8PJbazbw4S8E5y9/6PDdoSzoyAAY8JvD3PB6QUzxDuC29YfKqvCCyhDwqwys88TEnvM3sQrsiHCs9/jIMvV5JSbxGkwI82q5sOwBzYL3cnqq84BUZPQ2JrjtvFlq9+UpvvEZhj73CxrI8tpNava8rFb1+nm+9BLjbvMwJTb0K4Mw7p1IhvGGORD27dO+7YDmHvBgLhDydnli9utjVvP+5PL1WhT69bZfKuntmPD3nCxe9lVs+PKLjUz3YEtM874AkvIy0PToMpri8v3kWvTFd5LpeLD89ufVfO3n8FTsXKA69n2REO0vR9TwbLk48ljYTvF4svzvL5gI8mFndO1kETjzMlwW9q23KvNwtfD2OwQW8DO0UPVNNCzvhVe28P1YovSy7Cry098C7DYkuvZd2Z7whOTW6pf58vKeEFDytepI8l3Znu5HcLjlxVRU9rawFPeXhRL3spU+5j10fvLHcFz3wTrE8Snw4PSr1Hr2BR9E8efyVuostDTw7WIk8neW0vKMij7sc9Dm9xRvwOsBcDD0nqII7dcwDPYxtYT2D42o7OARlvQq2erzxwHg8X8jYvB5J9zstV6S8M3+VO3aFp7tt3ia7LLuKvSAP47sD1eU8A9XlvJHcrrrvgCQ9Ry+cPEmZwryAwKA863v9u7mgIjx+nu+8ILIEPM0zH72Hywc95BtZvEKOWzrL5gI8BfcWPWA5hz31TNA8wioZvXyQDj0w65w8l3ZnvJD5uDx8kI69DKY4PFmg57xXIdi6aa6UvMBkrTv8ENs8EcFhvSJjh7uLX4A9Xiw/vUKOW70ZkjQ9i23hugs8Er31TFA8AoCoPOOpET1x+c89ILKEPIrRxzwBxwS9F4XsuxxtCT3A1vS7KnxPve7kCr1uM2Q8K6YhvcWhh7xNJZo7dKKxPKlKgLwj/yC8cNYFvG2XyrmHywc978eAvALy7zw8Zmq8QtW3vDbMsTzUsE29RM0WvLK/DT2cXoQ83TrEu6I/mTtekKW9o5z3vMptMz1h1SC9M9zzvJDPZjyiKjC8o8bJPPHAeLw6oH49ItXOPNBOSL01v+k8/Fc3uwUpijyuFiw9J34wvMu0jz1DzRY9XdeBvVMGLzzgcvc81dofPGGOxDtV/o294xvZPNT3qTzs7Cu8/jIMPZCy3LvbdNi7CwofPed9Xrwq9R682pFivUV+mbs+5Xk8yybXPPMphr1TOKI8A9XlPAS4W7tjKl68XpAlvBZaAT14vVq6DtCKPOwziDxkVLA9JzfUO5ZohjyEaYK8gB1/vFM4IrzkYjU9YY7EPBqStLoq9R49FqL2PKyXHL3yo+68tpNavNgS0zwV6VI8fZ7vOuOpkbwgVj87YPKqO4LVCb09kDw9gR3/uir1njpTeHY9G1igujEAhjz6ux27jjPNOydhJrydu2I8mcqLvPZ2or3+j2q9eL1aPMvmAr1L0fU8kdyuvV9WkT0vTwM9NhMOvf9yYLzMUCm8EodNvjDrHL3NSAi7cEAsO7d2ULuXvcM8NUUBvRUGXbxC1bc7D08aPPaLi7ubZiW9sZU7PT9WKDsvCCc8lKIavQ9PGr1lNyY8aXwhPV/lYrwaBPy8BXH/vGEHlD0IRDO8uaAiPPboaT0j/6A8dj5LPC2Jl7pPM3u7Rox6vdGVJLwqwyu8SsMUPflK7zsPCD68qe66PIRpgrty+c+8o39tPOinsDzLJlc9Nem7PEmZwjlQ64U8WGATPORiNTyqGI07h29COjfhGjzNpea78E4xuw7QCr2JNS46GnUqvfduAT269V88GZI0PX5BETwijnK9lKKaPMZvFL0ijvI7kZVSvFN49rtu8w+9xKkoPEZMJr2pp966Y4YjvbJO3zw89CK8b9YFPQ8IvjsMpri8DYmuPI7scLzRTki8nsiqu3sf4L2ZPFM6svEAvEz7xzxylek8wj+CvLRwkLzuQem7P+yBvOcLl7vc5YY+VoW+PMYoOLwFKYq7CjySvHL5Tzw7ytA86Bn4Ox3Xr7yryY+8mRkJORw7Fj0Vd4s8vVdlvDCkQLx2aJ070uphvQX3Fj1ayrk9ie7RvFfa+zuOeim9KLZjPNu7NDwc9Dm8ydGZvJgZCbwvwco8lbD7u01XDTtrX5e82VGOO7igIj3UaXG8H7olvCrDKzuCcSO9S6YKvBz0uTx4vVo8KP2/vJO/pLzbuzS7/TqtO/vQhjynhJS8LiUxPNg8pTslmzo8DO2Uu9dZL71GGrO7PuV5vOfEujtTBi+8BuKtvABzYL2mtgc9RpMCvYpfgDxL7v88UF3Nu3S/uzzlKCE9Gi5OPSngNbrwazs83zKjvQHHhDxe5WI77DMIPQBWVj2x8QC9vVdlPbbaNj2NlzM5083XuzAdED0Nia678erKu/P3Er0wpMC81i/dO9huGLyuXYi81AyTPITwMjzgcve8bEKNu0bw4Lx8eyW9XuXiuwiLj7yEaYK8EhUGPJqDrzv7dMG8A9XlvPyek7xyOAs7oj+ZvKPGSTw+LNY8HyxtPFM4Ij18SbI8fJCOvOvCWTscOxa9UvlmvIzeD71656w8NNxzvBLOKT1X2ns8mOeVPOT+Tj3AXIw8quaZO6COFj27u8u8DYmuPNZM5zxz1CS7SW9wO+Qb2bu27588QMjvvMI4+rtUokg9iQvcO7AOC70I/Va9xm+UPA8lyDzgADC8t70sPaehHj0H2gy9xBtwPAiLj73wshe9+3RBvWwQGr3se328BSmKu9QMEz3sXnO7KVL9vNegCz0AVla82BLTPFi9cT3HCy69k7+kvK56kr3fMqO8hWkCvcPbG73F/uW7wsayvAY3azwnGso6q7QmPRgLBD1nGpw8KuA1Pbu7Sz2OjxK7QTmevG6XyjxlTI88I/8gvOGcyTspmdk88obku0wY0rxBq2U9qorUO1rKOT0aBPw8D4ENPY7BhTzAuWo9BXF/u3XMA7uuXYg8gKu3vJjnlT3aNAS8AJ2yvOaa6D2+Olu9Rje9vL/WdD1Rh588quaZPPkfBD3SMT49zcJwvDAdEDw9SeA7y996PHtmPDo2zDE9FLEfvDkEZbuBAPU8qGeKPNDcAL27NJu8F8zIvA6eFzyGRfA7gUfRvJqDL7xFmyM82BJTPeomwDzBKpm8UmqVPIPjaryTvyQ9ABaCvIl8ijxu8w894eOlu+LGmzzyo+68OqD+vF4svztl8Em8UkDDvDWi37rnxLq7i21hu6Mij7ucXoQ8w6movGQN1Lz9T5Y8RX6ZPaNUArsN+3U9TImAuy4lMT3HxFG9RX4ZvePUfDzMwvA8EeszvE46A731In49MrGIPNzlBr3P5KE8AFbWu2xteDxbZtO8QMhvvGf9EbsfAYK83fPnOxrZELzpn4+9NAZGvUGrZT0M7ZS85HeeO2/Whb27u0u9E2pDvEuRobz+HaO9NaLfvGy0VLqhRzo85GK1u6BHOr0TasO8d0uTvJD5uLzpn488Gy5OPDFAWr0Z2ZC7qybuu8Qb8DsLw8I8QuogvD2QPDxTOKK7Rjc9uzxm6jwwpEA7AA96vMOpqLuFGoU88erKvLfSFT1jKt474tuEO9jLdrzqJkA8Dfv1vEhvcLxhR2i7t0z+uuRFqzt32mS8iJmUPHqg0L2eD4e7KnxPvMYoODuamJg7tpNaPQVUdbojMZS8Nem7vC4lMb1RFvG8mTzTvGVUMDzxwHi8pf58vFMGrzzS6mG9XyQevZMGAbyXk3G8LiUxvHl2/rxFmyO8yDWAvcG56rwoGkq8qe66vDCkQD3T6mE8uvVfvBLOKb0Vdws9zJcFvdMUtDzovJk8GAuEPLn137tmL4W8V9r7O5cEoLs2zDG9CBphvEo13LzTFDQ8xig4Ou/kCjztAZU8efwVPddZL73COHq8qtGwOhcojjwxQFo8Rje9vOinsDuNlzM8DF/cORV3izsP3mu8AoCovK6lfT0l4ha9iFK4PKZvK739gQk93BDyOyY3VL33L0a7SjVcvMinR7s4S0G9v3mWvJ7IKr1QpCm7n90TvfExJ7ysUMA8eoNGPSBzyTqDDT27V30dPJ7IqrxVW+y8k9QNvvCVDT2CcSM6tM3uvG6XyrxGkwK9/YEJvP+5vLucAr+8R4z6vPCyFzyHb8K8QtU3PeomwLsAnTI7NE0iPZe9w7zbApG8SBISPbt0b7yEN487onGMPKLjU7zXi6K8b899PSZ+sLzGKLi8N/YDvXd9Br1lxne7eS4JPGhSTzy7u8u8/7k8PG+kkjvtHh89PnOyPEcvnLwTakM816ALPVutLz3p/O07nZ7YPBsuTjx/geU8ciOiPSHy2LkYr768+3RBvWRpmTyS8Rc8wLlqPXY+S7vL5oI801sQvfaLizz+1ka8lVs+PLi1izxZvXE8KBrKvGt0gLuUtwO9f4FlvYstDT2IZyE9MAgnvTPc8zxS+WY8x+HbvMHjPL2K0Uc9jsGFPNSwTbzLnyY86O6MukZhDz2/qwm8L3puPI7scL3BnOA8Snw4vcAARzvb0J265GK1PDPc87wSzqm8zhaVPJ468joWWgE8bUKNOro8vLzRTki8gypHvKRi47xOJRo92IOBu6jE6Lzwa7u7+Gd5vOJ/v7zKbTO9E+MSvEY3vbuhXKM88oZkPXkZoD0YaOK8Xw81Pb36hryjxkk7jo8Sug6eF71OJZq8wn9WveY9ijz9rPS8b122O3ba5Dv4Z3k8g1QZPFCkqTxmGhw7Oufau6IqMLqOwYW78s1APV3CGLxt3iY961ASPKrRMDuOrBy8PizWvACdMrp4dv67yGBrPPLNQL0IdiY9Xw81vcG56rxdpY48e2a8OsmKvbilRVm8yrSPPDz0ojujIg88mpgYPQAWgruYGQm9rXoSPE8ze7zqJkC9eqBQPU9617sqfM88liGqvEE5Hj24tQs8ItXOO2z7MD3jqZG9QMjvvAxfXLqWUx29Hkn3PJDPZjwtiZe8Td49PNAHbLoAFgI8qhiNu9g8pbxZ50M8EQAduhSxH7shD2M89yclvadvKzyqitQ80aqNPPMphj0S4xI9pow1PKLj0zv9gYk9N+GavY7s8LuNl7M6yYq9vGy0VLzNCc2882laO5o8Uzw915g9BLhbPcPwBD2G06i8d32GuzrnWj1AaxE8ImOHPJ468ryPFkM8Z29ZvfkfBL03aMu72y38OmFHaLymtoc8Dt5rvcHjvLzTKZ28gQD1O0/Bs7wvCKc8TzP7vPWTrDycAj88yCAXvTdoSzwaLs48s6KDvdofG7tTv1K81dofvGMq3rwWEyU81u+IvCKr/DvyFB29tD4dO0Qq9byi49M8kgYBu47s8DxW4QM9mYOvPDuDdDtMQiQ9WEsqPVkETrteiAS9SVJmPAE+izvXSwQ9RCSevK+TCL2fvT+8XUfOvCrvlDx5zy07yD+lO+8N+jz2I8i8A8CFt3XLODzR1Ps7iw6mPF1HzjzzMSy9CqS9vMidbboPiPW8g2CEvEngIz1Sz8I7FS6ivPX7FT3PhBc8FBzJvIMfBzyFiDY9vbXAO/MxLLvjtSu9BuFFPbqUgLzjdK47ny3hvNiMgTtGFjq9d02zvHn+UTzv/hI8VauFvOEEDTxQ3Sa9RQThO61o5DtnL/u83uBavT09dLwkSei82j0gvXeVIrxBYaY928YMPI2XErsEAQM9es8tvRf4i7zF7E69yoAivfzYWzu3QSo9mFCbvBWeQ7wUvoC7t0GqPHyATL3uRoK85FTxvLTuU716r3A8GLAcPcP6MjomLB08YApGvUt4dzyrj5M7Kl82uKVKobzSdjM9FYzqvOBiVTtI55W8bNyZvNJ2M732Uuw80+ZUPKfi9LxtdO08g+Z+uylN3bwd9Q69797VPA2oMr1KmDQ8q4ihPHjWH72TM9s7mGb0PIhLrjyaGgU8lNUSPXZUJTyXmIq9GmG7PCzoorxhZI49D4j1PHlfDD18wUm9ftMiPR4EdrxdGCo7npUNvNxe4LtHppg7vjc7vVjlkLwyhGs9fCKEvKhVCD3N4l89N8ldPQhjQLm3scu8gBQgPNEGkjzGRpc8Q4LmvGQ9Xzw6u3k8aaKOvMaOhr0Z0dy8aEFUPMfPAzt4LfY8Aq4svAYQarzKgCK9jU8jPbjgbztYpBM94hN0vPURbzyxu7q9f50MPVYC3LzwP5A8qA0ZPWskCT3mle48eqAJPPS6GLyDdl09diWBOxsS2jwk8hE938qBvAoU37tp0TK8ehCrusZNibzZ3GW6sYyWPJLy3bwG4UW7Ru6HPcP6Mr3XWmu9b8fDPNEV+bs9PXS8djtauw3XVjvk/Ro9stz6PcIpVzt1O1q5qIQsvVBNSL3uzPy7nnzCvBiQX734vo08J7UJPDYxir2nzBu9QWGmu/QR7zybWwK91XoovZuKJjwL5To7Dkf4uwIezrwTrKc8E6ynvI2t6zy0xqE8OmSjvMIp17nGLcw8JEloOrgSBr2aGgW8FS4ivQSgSL3RpVc9sYwWvY8vZj1JmLS8t9GIvDfpGj05Ctu8mrlKPU6cKT2PL+a8NQZmPJKCPLw+fnG7rjnAPHyZlzy07lM9+v+KPRWeQ73l9ig8xexOPCpftjvQxZS76mq/vAYiwzw5OX88FV3GvAqkPbwHkuS8wrk1PYVZkj2gz5g7AfabPC0QVb18IgS93zojPLef8jwCHk69eq9wPQ7X1jwrP3m7Z79ZvGiiDjrtRgK89eLKPAKurLx1yzg83V5gPZDRHTxhS8O7xuzOvPyBBb0PiPW8CqS9PIfbjDwQuou8ELOZPOurvDxrm5y8Zxkivaf0zbxGFrq8LsFzvOLSdryS8l28iNsMPUy5dLxuFqW8ZX5cPeRU8bvl9ii8HGyiPZwMITw0lsQ87rYjvI3uaDyiUZO8zrO7PCvPV7w4s4S9IIZwvdMn0jx6r3C8E32DPWB6Z71B6pI9zswGvDr0Ab0jCGu8YGsAvcqvRr5nkDW91PitunqgCb2FJ3w8XrfvOg2oMr3ACBe8d6v7vCRJaLr9ehO9fnJovUMrEDzlNyY8cDflPFWrBb3I3mq9JsviPIUnfDu1XnW8/cICvcxyPjzq+h09WbP6vLM9tTxc1yw9zw2EPJhmdD2XV427EQpwPH0CR70yhOu84hP0u9o9oDzYWus7olgFPIURI7sb4zW9Uz/kO+6dWLzXGe48QWGmPYkcijujkhA8pAIyPOPkT7y2SBw8hmj5OyRJaDsvqxq7OvSBvA/pLzsEMCe9P5DKOzXXQb3MYOU8sCtcPNrcZT0Cju+72n6dvLR+Mj3GvSq9+uY/vHX63LzHne28RFNCvem5oDw5mjm9PM3SPGK7ZL0obZo8BvoQvNGl1zyMrWs8kNGdPIx+RzxmaIO8rjlAu86zuzvxH9O9l8euO6cUi7zw3tU7ciGMvLPcerzPI9284QQNvHIhDL3hww+85seEPksIVj1maIO8ZyAUveenR7vIbsk7deSDPQrlujyvej08O+0PvEEygjx6bnM8iowrvDxdsbuD15e8rTnAOqy3RbzkVPE8t0GqPREqrbzti/87qWRvvHEIwTs18Aw85P2avFGnEL1jnpm7z4QXPbqUgLz9qTc7xr2qvHkXHTuWxy49vbXAvFwG0bzUaM+75n8VvWeQtbxGFro8HpRUPW107btWYxa9fZIlPbGMFry4EgY95T6YO9HUezyXJXe8OMldukMrED1oQVS9Y12cvGhaH7z/K7K8NK8PvOurvLygbt68pQKyPPLwrryW9lI8zUOavCj2BjogRXM8VgLcPAXP7DojmEm8cZgfPU1bLL3Rpdc8+0CIO/3CAj2+Nzs9r+peuhUuojvTtzA9cFeivFdyfTs+fvE8YGuAO8AIlzsNqDK9uvJIvSMI6ztRjsW8/cICvU477zxjjMC6r3o9PCecPj2s0BC82fwivUMSRbwf1dG6OQrbuahkb7oX30C8NTEKO/g1obzNiwm98vCuPP3CgrwuwXM8w/oyPLStVjwNOBE9PM1SvPrmP70Qs5k8g+Z+u3zBybzSdjO9fTFrPex8mLz2Uuw8SOeVPPRDBT3iE3Q8hEe5PPsnPTtrJAk9mynsvHn+UT2yhaQ7GdHcvBWMaryhPzq8qISsPFomDr2uUgs9HcN4PaMJpDxnANe8jD3KvGvycjx98G09BkIAvUcvhT1Hhls9gcU+vLIVg7yDdl29c7lfvZNi/7xKmDS9TSwIvGyUqjz+GVk9xexOvJzLo70qX7Y80JN+OskQATkJ02E90aXXvOgX6bvoeCO9B5JkvEXVPL1WwV69OMnduqNRk7shcBc9iRwKvQTP7DyJK/E8XukFPTA0Bz2q14I9jwBCOzscNLwAy3e8/IEFurNs2bzyMaw8A+8pPbmCJ7wGQoC9FYzqPC/ziTuw1IW8bXTtPFzXLDxvx8M8mZEYPdn8ojoWDmW8LYB2O696vbx8wUk9jgDCu3A35TttFiU+Ub3pvITmfrxJaRA9dQw2PG107TzDDAw8yRCBPE47b7133ZG8PJ4uPMQ7sLqzrda71urJPJESG7z+6jQ8s2zZPFhcJDz6J728LiKuvDpko7ybWwK9X/hsO4kcijw8XbE8OMldO6D+PD1Vaog8PM3SvB3DeLzfIVi8Zn7cugKuLLzmlW48A19LPKUx1jsxpCg9Ra0KvdU5q7xHcII7j3BjPNiMAbylSiE6vjc7vMAX/juFoYE5mAisPD0nG7yYp3G8sZt9PMHo2TztG148mhqFPcNq1LwscY+7Orv5vB2tH7wD7yk9mQgsPdpsxDxnANe8I5hJvAYiwzx+cui7Spi0ugNfy7trUy27pnLTvG+GxrxnqQA7932QPH9cDzzNoWI8l/ZSvRN9A70P6a87OZo5vXgej7xNWyy9q+bpvFdjlruTw7m8ZmiDvV1Hzru2kIu8+ua/PLTuUzy2AC284+RPvFGORb3V2PC7MhRKPCM6AbzdSIe8MS2VvC5RUrzVl/M7D+kvvIsVGL1ODMs6H6atvF2377xf+Gw9j0E/vDqskrxGFjq8/7sQPS/zCbwjOgE9V9O3O6oGJzw9/PY7gjXguNwvPL0110G86bmgPF1Hzrz9SH08HmUwO9OIjDr6VmG9C8X9OzsctDwYOQk9OJo5vNcZ7jwGQgC95pVuvPyX3jozxei8zyNdvIpdB71FBOE82JtovMODn7wBbS89XYjLvGU937y0rdY8MaQovHVqfrzyeZu8mFCbvLfRCL3WqUy8lHTYu0p497zOzIY9UK6CPKZDr7vyj3S9pxSLPQW5E70qeAE9xr2qu2TmiLtjzb27Nhg/vRuiuDvAeLi8jxkNvEXVPLvGvaq7i80oPYH0Yrx7EKu8leT5OxEqLT1p4wu8cZgfvdrGDD0VLqI8DgZ7vDACcb1GFro8eB6PPMXsTrt7IoQ7ti/RvPTiSryZkRg9N4hgOwYQarxJaRC9KzASPBXNZzwpTd28fMHJPM8j3bz6J728HWwivQIeTr3SiAy8hzlVPC0QVbzhYtW87QUFPQC1Hj2C3gk9vYacvFiEVj2xjJa8b8dDvDXwDL6PGQ09I2mlvOO8HbyyzZO8GmG7vLW/r7xIKJO8JsvivHOjhrwd9Q47/eq0usoJjzy/Nzu74GLVO0DqEjzi0va8qgYnvCAvGj36+Ji88o/0PN8h2LvIhxQ8fgJHO65SizwU7SS7DD8DveO1K72c+se8n72/vKu3xTxsBMy8OJo5vMQ7MD1KCNa86AGQPeRUcTwwAnG9QL/uO1jlkDz3fZA8IIZwPLZInDxmTzg8nPrHPIm7Tz2kkpC8H0XzvMQ7ML2+Zl88w2pUPOHyMz0S28u85T4YPRuiuLvXAxU88K+xvGzcGbslMw88IiioO3n+UbyoVYg8b5+RvOA6o7xcR046CTQcPUbuB70J02E8zEqMPYMGPL077Q+9lB2CPR31Drybucq8E0ttO74PCT3mfxU9h1KgvNNWdrziMzG9Y6ULPDuMVb1zSb68OCqYO2NdHD1Z9Pe8/XoTvZoahbyDHwe9XukFu4cKsbwwY6u8iKn2vJPcBLwgFs+86pnjPIRHuTsKFN+7ZOYIu4hLLjz8gQW9TZwpuyB3CTwDwAU9rWjkOz8gqTwtEFU9HfUOuxEqrTzXGW6895Ppu7YALb1OO++8auOLPH0x67z5txs9E32DvA2W2TwVdhE90E6BPFfTN7yhPzq8vORkvOcXabyhr1s8Ub3pu8sxQT1nqQA70yfSPCcM4LsADPU8f4RBveopwrzBF347Ku8UvfMxLL1RjkW9H6YtPYRghL23sUs8YHpnvMsCHTwjOoE83p/dvMvBH7vT5tS8tb8vPJdXDT3xOJ67HPwAvV2ISzxcqAg9nGrpvMyhYj2DBry8VpK6PKOZgjo/T8080/gtvDvtjzvecDk8tkgcvFGOxbx7Uai8YCMRvSj2hjyhP7q8iRyKPD8gKTzI/ic9npWNPBQcST2W9lK8ZM29usxyvjxslKo87sz8OhwrJbxLeHc8Pfx2PFfTtzyI2ww9R6YYPaVKoTzXGe48s2xZPbTuU7w118E8Pn7xO3VqfrwdbKI83UiHvIm7Tz1YLQC8aXB4PRiQXz0JFF88prNQO35jgTsq/vs8hgqxt41PIz0t4TC9Ort5PHZ8V7wBba+82j2gvFpVMr23QSq8HLSRPPURb72b0pW73Z9dO2QOOzxiHJ+8SLV/OC6yDD3GXHA7DWe1PG2mg70sz1c9eL1UPUk3er14LXY8GLAcvfxourwGIkM6OZq5PIx+x7t5/lG93rG2vJ+9vzwhuAa9jA4mPbnySDun9M08hOZ+vCBFc7ytyZ480GRavDKEazsfFk+8TyWWvNbCFz0xwTc7s07gPEZ/Ob1Ei3i8TxCFO97IML3ePYs5U7Z7PMeBvDsloMA7KCQtvYvX4jyyyMC8W++Fu3QDFj1Ttvs8GnOKvJDfO70rMz885FGjPC49S7y7ZUu8Y1QmPBV89jz92g08c/4PPeBTVr16kQ68xAJWOf7fEzziXeI8BrACvPgPJT0xwbe7YNz4u9Eo07vVPOu7GoRPvX6lprwRbeQ8Z90YPCGMKD0ikS48YEUUvcya2jvmYLU6aWg+vc3Li71rZos8G/4vvRuET7zSHJS73cOqPZ5/mbzMhI+76eQhO+BHl73eyDC9fKxfvXshurzEiHW8+lYhPSMLjzuOW084uOHePIY9qzwpKTO8yIZCvKWiQ7z7Hje984ayOydcFz09bdQ85hKAvMeBPL2QZVs7dJp6O93P6bw//X88aW1EPPaVxLwAvvQ8GoTPO5bnFL2eCr88dhlhPXP+jzpzwZ88mfamO8N3ML1zmvq8aBoJPD3z87u8HBy9JJu6vFw2Ar0mMGy89yDqPE0XPj1cvKE752A1PE2i4zxGCt887X7ZvLRYbDjRrvK8RAXZOj34+TxA8cA8hnobvYi8kTxm04w8phwkPfpWoTzyfKa8hj2rO0hAFr1Fi/i8hj0rPVu3GzwMWUw81CagPANuDD3xAsa8nLcDPUkILLziiQ07qWMgPfSLuLxNouM8hL5EvH4aAb2DRGS96SESPVNch7xXLik8k2OovOcSgDta74U85hIAvfDxgD1urYc9UCbQPJoM8rtFkP48/CO9vS7I8DxNouM8NUqqPFRhDT193ZA8RoQ/PX4agT1NyQi8yAAjPZsM8jwhAQM8N2X7PBkF6buiHlc8W/SLPINE5LzNyws9eRKoOz1cjzyknT08kW/nO/2uYj0b/i+941Ejvf6iIzy662o7aRoJvf4cBLtx9AM7kunHPGhovjxxBUk8nIvYvCKRLryoMu+81Ky/PM4eR72p3YC8anLKvOTcyDxpHw+9Vj/uvBbqlzuYfMY7T6dpvAtDgb3cSUq8HQi8PIxWyTzKG/S8nIvYPGLaRTx0wR881iumvP7fE7yehJ88Ep6VPLVMrTxq5yS9FKMbPBb7XL3eAJu8qqUWPXKV9DvTpzk9IxAVO+dx+rxa74U8eSjzvHmiUz1Ozo48LrcrvYlMvTwoJK28w4NvPMDzwzxYuU68KqMTuoFmgz1DdS29iNJcvGGHCjy7YEU990wVvHeTQbwvzfY8UCZQPSMQlbzjjhM9LrerO3lPGDxKHnc9tsYNPPVCiTsSYSW9M32OvV/ceDu4CIS8FWuxvXYZYTsRbeQ8HRR7PAQ2ory55uS8EefEPLXBh7u0R6c6fbFlPPypXD30PQO9c5V0PIAkDbzNn2C68PGAO7C5LjtMjBg9+tABPDjf2zxu+zw9xfaWu0+nab3p3xu8PnJavIRJ6jwMSIe8oAMGvQ/YsjwmV5G8UJuqvDRFJD1WOmi7o6R2PD1t1D3XbZw7B1b5O3mMiLtVOug8sjgVPPG0ELou7xW98P0/vQE41byBKRM9YYeKPJguET3HhkK9MniIPTcGgbz4DyW9cIZiPKYcJL2JRze+EZSJOjD5ITws6g+9+y/8PNy+pDvfTlC9wfhJvGrnJL3Qna08YlvfPBn0I73yDNK8Dul3O/+4bjy95LG8uebkO6HLGz3HEeg7mnAHttVjkLyFOKU7tV1yPWbpV7kptNg7T5YkPGHVPz0ArS89EmElvfG5Fr0HVvm77vg5vOxoDjgXdT095uZUPOt0Tbwt75U8xvscvc8NgjyyyMC7stR/PRVrMT3rJpi8iFN2vLbSzLx6HLS8I6f5PL9jmDynLWk8npVkPFJXAb3E8RA7QuoHvQd9Hrx4Txi9A7c7PPL7DD20U+Y8Ts6OPI/atbyQkQY9oJ9wvfggarrx9ga9TIyYu232Nr1lXjI9GW6EvBDiPjxFMYS9Pv1/u+tjCL2XKQu9/+QZvRN38LvDd7A8+RmxvE2RnrxFMYS8KrnevfH2Bj3+oqO8Vz9uPO74OTzSHBS9E3fwvNYrJrw0RaS8lGguPQdWeT6vRNQ7RoQ/vL9jmLzfBSE9S5hXPIj5AT2OjAA9xLSgPNxJyryvtKi7VWYTPcJ+abzuqgQ9Vy6pvGrnJD3ZOri8f7txu7+giD3EtKC8AK0vu6MNkrsgmGc88IhlOyKRLry78HC8opMxu1vN5jwjrP+8sshAvGVvd7xnY7i7T9MUPV7GLb2V4o48tsYNvXQPVTzoakG9E3dwPIhT9jylVA684okNvH2s3zywvrS82a+SPHqn2bpAnoU8i9diu4xFBDybhtK8oZ9wOxluBLpTXAe8g0TkvGltxLymKGO8SAOmvIMzH7vZRvc6YNC5PLI4FT0V9lY87vg5PavihrxUqjy89w8lvGTfyzyehB+9GfQjPaAUyzy+dF08v+69PJgCZjtzCk+7dh5nPXB6Iztexq084l3iPHZFDD1WLqm7N1Q2veteAjxCcCe8A2mGPIvXYrvs87M8e9MEPPSLODzcSco8Z+7duw/dODkR58S8cHqjOgbGzTodfZY78gxSO+nkobsHeBg8HQM2vZ+a6jwvvDG8YIIEPYsIFDzXMKy8l4N/PVAmUL31BZm9IIciPA9Sk7r2G2S8cAVJvXkSqDziXWK7T6fpPCcfpzy8VAY96//yOaKTMTwQVxm8876cPHuWlLw7FZM8stT/PBs7IL0/7Do8bnAXvV7GLT1JCCy8DV7SuyCdbT0/Zps8SX0Gvdi7Ub2MVsk61DdlPaortrwlJmA95VuvPHeYRzpLh5K773cgvZV+ebzXMCy9X1ZZvCqjk7x4Txg9VKo8PBl6Q7xNouO8scM6PYS+xDydfxm86W9HPWRq8bzLIPq6PfPzvD7ntLsJxBq9AmkGvY7aNTsiHFS8HA91PGvsqjubDHI9e9MEPfSX97oOXtI8cAVJPRFcHz2R3zu7NFtvPZCRhry3yxO9MPmhvLN6izuW55S8DRCdvaSdvTyjpHY80zJfPF35ET1BqJG8BMHHO1qylT2a+6w72Ut9uzHBNz1yf6m8RgpfPV7Grbt+paa8HboGPrVdcruGehu9rz9OPfQ9Azzpb0c9ZM6GvKkrNj0rqJm9TaLju1m+1DyZAuY8Ck/AutAjTbzkZ248Dl7SPPwjPT0TZiu8y5VUPK3AZ7wP3Ti9B0U0OxcnCDx0D1W9UKzvvBwU+zzNjhs96m/Hu+x5U7yB55y8lGiuvNz7FDyevAm97POzPNGucrsFwUc99ZC+OzgLB725DYq8aR8Puimv0rxKgoy5J1yXvG5wlzyQVBY85uvau4hHNz0sqJm86PBgPIrGnTxDda08EW3kPFYuKT1+paa8DmNYvFAVi7wkm7q88bmWPRs7ID1nFQM97X7ZvGzxsLzA88O8AeqfvNk6uLzpakE8NL+EPODNNr23Z348eRKovM6kZjy55mS8zZ/gPIzhbr0vMYy874PfvOXhTryBZgO8o5i3vCszv7wDboy7l/1fvTbVT73VoAC9zh5HvOZsdLz5n1A9Pv1/Oz7nNL1mdP28O1IDvRd1PT20R6e8dx7nOoLFfb3jYmi8QnAnPV3BJz2vRNS8YdU/PQ+PAzi44d68JVKLPbhnfroAqCk8HA/1vHsy/zsGtYg8XjsIvCYw7LsrMz89+ImFPLJ1BTstw+q8X8uzvI1KijnEAla9H4civXqn2byiGdG6AK0vvSalRjyzeos79QWZPEhAlrvQI808czuAvc+YpzzTIZq6XEdHvZyL2LwlTYU7l4P/O4AkjToFc5K8u9qlPL3ksbxUJB29w4PvPM0ZwTtNF768ypVUvTpeQrzrdE29TRe+u8PsCj084i69ADPPPL+gCLvcScq8OMmQvTFMXT1uB/y8CtplPZn2Jjwmpca8k90IOyMh2jwvPcu6aR+Pu5NjqLwUazG8lW20vH+78TwYAOO8YNC5OyGMqLzNyws9kN+7vEoNMr2U7s26EOK+u7+giLzjjpO83dRvOwLDejwR58S85VuvPMKDb72P6/q8Y9rFPLxqUTvbRES8s05gvQIsljrPqWy7ei15u4lMPT31Qgk9a2YLvYbIUL0V5ZG9Y8kAvbfc2DtA8cC81qWGvS63qzyvtCi8qTz7PPeayrw5XsI7gz9evTHBN72cehO+ZN/LPMYzh7z7pNa8TRc+vZbnlLzWK6a8IYwovKct6bw+YRW9Y8mAPF3+lzsuPUu8KuCDvCYr5jzm69o8P2abO/aVxLw21U88sdT/OzPLwzx+4pa7zqRmPORRo7w+cto8n8GPvD934Dv1kL67EJQJvEuYV71p+Gk9CskgPA9Sk7ob/i89I6d5vBd1vTyW55S7kuRBvWfu3Tzk4U49UleBOgwLlzuv8Rg81iumPAhb/zsOY1g9zImVvJqBTL1FMQS9QKMLO2+yDb2311I9RjaKPIDnHD251Z+8cvmJPFm+VL1MjJg8v5sCPda2S7w4zha97Ql/PQGyNbsVazG9l/3fvHUIHD0NTY280bP4vLpPAD2COli9qaAQvUkUaz1VZpM8tUwtvHMP1TyutCg9PBqZPCqjk7xc0mw8/a5ivVIr1jxijBC9mfYmvZTz07zOHke8MniIvPIM0rwP7v27bwBDvWRq8TxNFz69JzDsvD0fn7yZM5e86yaYvVa0yLvhTB27H7+MPGx81rzfQpE7E3JqO2Jb37ypN3U86ByMvBr5qTzv+Lk8zBS7PCytn7yJwRc9XcEnO5y3g7wxTF28cItovTSCFLvE/c+8c5V0PekhEr1SpbY8WrIVO3vTBDvPmKe8cfSDvLhWObwEMZy8UNgau/4cBD0RbWQ9RIt4PEB85rtijBC8wXnjO/YbZL3vdyA8hL5EvIMznzw84i69cADDvA+PAz24CAS9u9olvTfaVbxYqAm8QnCnuw0QHb0SbeS6ow0SvUH2RjwB6p88ngo/vcJ+6bzaPz47i8sjvBoK77y2UTM963TNvCOn+TzVoAC9DdOsPGdjOLxwi2g9hTglO1Csb7zOpOa7+5iXOGNl67wdAzY9uNCZuWFKGrwor1K81DflPOwEeTu311I910Hxu9nsArwTd3A895pKPGHVv7rZOrg7/NUHPc+YJ72Gtws8pJ09PVczLz2OjIC8oRnRPJZyujw4VLa852A1PBX2Vj1Spba8/qKjO0+WpLy/oIg80dodvGokFT3r7i09lW20PHuWlDxmdP27epGOvNk6uLw5WTy8GQXpvGrnJLsfhyK9cIZivJRoLj0lGqG87oNfPG6B3DsM3+u8446TvPEHzDyacAc9TBK4PG+yDbtTMFw80NUXPUZ/uTyekF69DM6mPFg4NT25DQq9HI5bu26tB73oF4a8120cvCytH7sWcDe9QPFAvU0Xvjs1Sqq8oIklvCGMqDwWgfw8kGrhPKgy7zopr9I8dpNBPW77vDwfk+E7GvmpulOqPL2CLpk7KsuavLNuY7tL/Tq9TLqdu0FXcjwZqJO8F3viPDCy1zwIUI08ej70OhRRCL0/O7Y8ddUjvba30LtdotU8j6poPMZE1rwZdzu9pi5yu1/v6bzRMwy9WD2sOiIhKzxL/To9N38BPYfL+Tym3ba8xXEHvciNQ7zbLje8ePFfOoSTAb3LJ+w8e4dhO08V0Ly1GQE8M3UKPCnT6LwXKie8wNGOu9ICNDvRNzM9ZNL/Oz0tGL2yJXY8gAuevDGuML2RdWm9ze5FvKSCBL2hfDS7YGmvvLaliz2NLHy8OtYMPCIhq7tVJZe9YWWIu5jSRL0/jPG8jxaQvFKr0TzwadM74BFNO+V2djxP5Pc8kkBqvM697bnWyY26s9ATvPZ9QTxMSs88YThXPM3uxbyAShS9GfUnvF8cG72u+xu9nOayu7jyHz3sVeW8JwTBPFIboDuEoR+9QgKQu+uGPT3ObDI7mFCxPBMWObpDU8u8RpgRveSVibwYrLq6SDZhvAwlBTzXCIS8j6ZBvd80BzyEs2Q8DbW2PG9HcDx5ayU9FjL1PA4Cy7w1ARW9r4vNvPQwLTsZ+c48KSD9PBhpHb3vDiE9ZfuJPB/KnzwLbEk9TZdjvOuGPTyVtoi8pWPxvBuTdz3fxLg7w6otPIrDKz383kM9rwk6vTPGxTyFAPm6VrGhOh28ATyXVNi890hCPS8wRDx5vOC8FTJ1vbezKT2mTQW9hV6CvDN1CryRdWm8TgOLulKrUb2KQRg9oTkXPQN7lTxlzti8K8saPVtVwbz2TOk8jN9nO8Cy+7tP5Pc8SLRNPGFliDwNBnI9DrEPPd62Gj0U0xs8gcgAu5fSxDwHERe9WBD7ubs7jTwaNJ68Uym+PG9H8Lt0Vzc98VcOPfe4kDx/HWM9ePHfvHu4ubxfPH48FOVgvGDrQr0+O7a7siX2O78ULD3lJTs9TkaoPBl3O7xsXIy82y63vF1RGjyJRT+9dpIGvFV20ryyD4o8gZeovLfkgbz4mf27IhONO9/1ELwaNJ69gujjuzonSD1hZYg8kPNVvcXGaTyzbmM8cg5Ku9Wc3Lz5ZH44iPgqPTUBFTyXQhM830IlvbAFk7pZPSy9YQf/vAZUND0HERe9vud6Pd40Bz1sXIy8MK4wPBGc87tORig9G/EAvSWKe70Xe2K8S8zivLmC0Twlu9M7DTfKu7Twdrx67Tg92FUYvXKMNrtDT6S8+RdqPW1877zbf/I7jV3UPC7jrzyzn7u7mQ2UPOxDoLuJSea7P4zxPIQ1eDwIH7U8qag3vT5sjr2Clyi8jd9nPFgQe73mYIq88ZorvKzxpLubaEa78BgYvcZALz06pTS8UGJku/Hr5jzkKWI9v7L7vE3Iu7qmTQW9BxEXvEp/zrvii5K7qSpLPK77G7wgJdI80gZbPSL0eb3+JzG9eG9MvccPVzu6TVI8vRjTuyWpDr1kgcQ8RmvgOqeaGb0GWFs8cPKNvFsEhrxlUOw9VOYgPFbD5jxrYLO8755SPCk/EDzL0ok7PT/dvG90IbzLI8W8X+/pPKwwmztXvz89d6CkvODAkT2I+Kq7uQA+vTmpWzphONe8EEs4vt13JL3Mpdi7B1S0vE1GKDzM8uw7gEoUvWPxEr17Os28Tsg7PBIaYLykQw69VnKrvLMhTzzw2aE89kzpvIFqdzyUvlY8vMu+PG5mA72yUqe8qSpLvP2pRD1sL9u8rDCbPJmdxTyLvwQ9RRolO7zLvrwA91i9G5P3uo8WkLzBnA+8bqmgPPFXDj0pz0E7HsofPTd/gb1l+wk926wjPcDfrD0DC8c8YGkvvXKMNrwZ+c68L6ASvSETDT0zdYo8239yPBcqp7slK6K8qqQQO3ooiLxhB/86hDHRvMOqLTzFMpE8RKBfPaRDDjzW6fC7Fy7OPL0Gjr2T6we80gZbvQTa7ruXVFi9ljgcPXzziLxF7XO7SOUlvQFAxjz0MC29zV4UvaqkELzy45i7FyonPQgfNb3K1rC86OwUvMsn7L1o5m25vEkrvIlFPzwE+QE83UrzvKOY8LxVZI27tbt3u3IOyjzFcYc+/icxPTWRxryYUDG9OZeWPELV3jyabO07rcDMOhVRiDufbha9YG3WPBkmAD2iR7W6nrGzPPnCB7o1lW09Lrb+vJBVhrw3jZ89Tsg7PHwJdbyueQi9XNMtvBRRCD1+QB29k+uHvCpNrrmD1h49ddnKvGFlCDwNcpm8YjSwvGuxbj3asEq9JYp7u9EG2zs8cDU8SYP1vJxWATp11SM9kPPVvIuAjryLktO7ImChPCyawjzRNzM8Zhttu2iVsrw6pbQ7QIjKvD4/XTw8oQ282eEivZuLALzGQK+8jAyZvNWc3LwHI9w8ddWju71FhLzZ4SK7EHwQPGwrND0f3GQ8EcmkPIFqd7vkKWI9Ec1LvXXZyjxrse48t7OpO2nmbTrwmqu8L2GcOWeZWT2tPrk7niECPXHyDTwShgc9MK4wvDfMlbyOKFU8pBK2u/JlLDx0qHK8WvqOu2I0MDs9LRg8kzzDO2KF67yoGAa8ipb6vNhnXbynX0o7bZuCPDzB8LzgEU078ZorPExKT71a+g68w2eQvF2QkDv9qcQ8sUQJPJ6xMz3r13i9cUNJvaSUyTv9qUQ8hquWOWBtVr06pbQ8FWNNOxj5Tj1W8Bc99X3BPCMdhLwcEWQ8KxzWvEmwJj1vxVy8w/voPPE4ezzqeJ+8mUyKvLezKb2Wtgg9zymVvOWjpzvr13g9qnO4u6+HJr3MoTG9uTEWPbYnHz2dN+68gJvPOsGcDz1BhKM6ku8uPNbJDb0RnHM76WqBvW94SLygbha74uB0Pf0ZkzzoQfe8FBISvc9ssjyGrz09NUQyPMpYRD3YYza9CCNculymfLwAdUW7G5N3vdE3M73rt5W8uk1SvUIi87vQO1o8Gch2Pe3T0Twnt6y8eG9MPdG1nz1aCC086L9jvGgFATwkv/o65nJPvUptibybiwC84RHNvHntuL28iCE8fYM6PPJlLLyoGAY9b3hIvPfK1Twvslc9KFX8ujqltDxaOYU9nWQfvT/4GD0AdcW7Q0+kPC62/j2Ix1K7qnO4vL9hQD30gWg8wTBoPe8OobxG7XM96gz4vJ1kH72mkKI8Re1zPLDGnLzncs+8AERtuwrqtTx0qHI9ePHfvJw37rvi4PS8SbRNvQmPg7ysQmC82p4FvbTaCr12U5A8PfJIPaj58rowgX+7qKg3PH1SYryByIC8aOZtvOp4Hz2sMBu87lE+PfGaK7ozymy97VG+uyJyZrvAXRm9Kk0uvF9bkbyRdek8HH0LPR9IDD2lkCI9vBz6vAIuATyKlvo8uLOpPPe4kDyEHww9R2e5vCU5QLyE5Ly8FV+mPJZYfz2KklM9qXffO4pFv7yzIU+8Ar6yvJ8vIL0OAss65FYTPbmvgjutDeG8BUaWOmven7z/5BM8p1sjPKPFoTxOyDu9vlMivEICEL3sVWW8mFRYvIwQQL3kp847mUyKPNiUDr1ykF29Zc7YvCd0jzvlo6c7x5FqPaXhXbuE4JW8ipb6vBwRZLsBwlk9aeJGPE04iruGLSq9HBFku4yOLD1CAhA9oxbdvNky3jwkapg54o+5vAZYWz1mOgA8AUDGO9VPyLwQ/qM86ngfPG/2tDuo2Q+9YbZDPXrtOLt12cq80Dvau4Z+ZTxa23u8oreDvXntuLwqnum8tezPu7OfO72Am088zZ2KO/HnPz21u/e7WBB7PWybAr3M8mw7JOyrPN3IX7yVide8kFWGvLvPZbyDYim8niECu+duKDx57bg7qFsjvdWKFz26z2W5HV54vOOrdb36kS+98ZorvEouE7pAdgU9sdS6vN9GzDzRMwy8Nw+zvJUHRL0mt6w9XiDCvA03yjwj3g07DTOjvJS+VjyMjqw8XaLVPBVfJjtLeye9F6w6veduqLvuUT49ngJvvIIVFbxHNuE7TxEpPTS0AL2uvCW9bXzvPA0Gcjz17Y+8bCu0vDCB/7unX0o8CFCNvAK+MrwUY029FV8mvXRXNz0c/x68ksL9vMCuVL0ZRmO8jF1UPL0Y07t+0M4826yjPFX0vry3NT28E2d0vc9ssryJSea7/alEvMpYRL1p4kY8u03SOrxJqzofh4K8XaJVPOxV5bw8oQ29vMcXvs9oCz3tgha8f5/2uzNI2bx5vGA8f8wnvfmDkbzzIg+9rcDMvBTTGz0AdcU8mZ3FOwrqtbzPaAs8jdtAPTF9WDupqLe8G/GAPHprpTxUevk841o6vJNA6jyXVNi8qnM4PO/PqjzKqX+7UGJkupB16bt3oCS9J3QPPWc6gLyUjX68Q44aPVi7mDsyeTE9Q08kO6yuB7wcwKg8mFAxPQHCWbyCVIs7n26WvP36/7pz/IQ8u3qDPI1d1Lx12Uq90oRHOyApebx0V7e8EoYHPfyt6zkLbMk8MP/rvJNA6jz9qUS9rW8RPSIhKzw+vUk9+YORuiWpjj3TgKC8TMxivFX45bxOxBQ9hOAVvS8wRLwdj9A8lAtrPJV3kry+53o9Q1NLPTUBlTyggNs85JUJPQunGDzrhj28//ZYPBIaYL20XB49ELsGvSdVfLyEkwG9ee24PK68JbyB6OO8RAwHvDWRRr2RIAc9EJzzvPlEm7ydZB+9xzyIvH5SYr0fhwI9b8VcvLTw9jt9ASc8nrEzPFwkaTqAm887q8TzOxcqpzxVJZc874wNPcf9kTz9XDC8OEqCPSFSgzzYY7Y8YQf/vCCn5bzKiZy6oHy0OYQfDD3f9ZC8R9eHPJnOnbv17Y88VKequ1e/P716a6U8a2AzvCYIaLwqTa47QtXePChV/LoOchm8q/VLu//kEzwpAJq8ONqzPGytRzzfQqW7rEJgvWbOWL36ZP48WoaZu/4nMb3AXZm8xkTWvGA8/ry8HPq8uxx6O/kX6rsnBEE9jlmtPISTgb1haS87NmDuulX4ZTyCVAu9C2giPc9oC713Irg8Uq/4vH6+iTvPuUa8yciSPf/22Dxl+wm9OqU0vFtVwTu6TVK8HsofPaE5Fzzo7JS8KSD9vJHhkDxIJBy8PHTcPHbVI7zHQC882NMEPXQKozu5glE7ebzgPKvxJD1omdm89SwGvK+HJj1PFVA9CzvxOm5H8DzqDPi6O/ZvvWux7jzXGsk8nyGCuviZfbxMup26OifIPEA3j7uhS9w8OZcWPaes3jvJB4k92bRxO20rNLyAHeO85ClivK68Jb0zxkU8eB4RveSr9bxhONc8IRMNvQSJs7svNGu7+mR+vU8Di7zkp867vJrmPLzHlzwB87G8vpY/PDNI2TyH6gw9qfnyvMje/jy6fio9icdSvC40azzNnQq9Ix0EvNqwSrwtFAg9ihTnvGG66rwtZcM8JTnAOwMugbzeNIc8524oPYavvTvuUT49tbt3PEhjEj1b19S7KxxWvJM8Q7xR4FA8tNqKvLTj07sJDYY7tS1IvSBcC7oVTpe7bC++vC0arjynsGU948MMPCQrVztYmRu9u4i2O4bfDr0puWI7fzosPREKgLy3RB+9HtDovIvwCDzHId+8nIwIvbh3PDoAboA8YBkEPYcEibt/Oiw9C+IuvXbOQ7z8ZMw88NEAPWUkobx6rCC9uzAfPXT5GrwgN5G8+dDjO93z0jtkvXi9wggfvBzWRTwXvQU9Xn++PDMlyzrNzB69X8kyPHQeFTyBhCC94/7vvNLXOzwe7Ry90tc7u/hT0rw01Xk9b8MmvBxLkTz8l2k7jFBmvYE0zzu3J2u97O3GvDa5s7zIiAc9B05GO9aQHjxOuGe8hT0DPY2a2rzNdAe8gOpavPGu77wtGi49110BPWceRLskSAu9AG4AvT3EULwRuq68d40DPEityjvkQJ48lT+9vJsXvTy4aRm82/kvvY2a2rvFnIc9SUeQPHkS2zv2AZg8O8qtvAplnbxtebK7EocRvErEIb3tati8+SC1ukvpG70YOpc8xKoqOjS/kDylKw48OoA5PVTguDxKxCG99UJYvGLgibxq5ck6MJHiPJsXvTyhpUi9BVQjPSpTKDuuiOU7KDzRPKGlSLwXSLo89qmAvMq1x7wX+Gg9oaXIO3ymwzu0AAg9AEmGPdUTDb14Yqw81dHeO33wN7pHMLk8xKqqvHqsID0KFcw7rk0CvYAsib3ejRg9kGHgvO/RADwZki68KG9uvDTVeTyoLXe9yzJZPfL4Yz2jbM48pqifvMc+Ez17KTK9IBrdPMZxMDxOuOc7+dDjO4E0Tz3/eyM7QUqWPVnUfjwCEIw815jkPC8U0TyONKA8qxExvQ35Bb16rCA9K9C5vHRRsjuYg9S72ixNPA/zqDvbfJ67WHQhPcGwB719I9W8qEqrPHfIZrxiw9W8yrXHPKO8HztO1Rs9Sw6WPSfy3Dta8bK7AUOpvCOuxbzfuli8ZVe+vJdWFL1S5pW8ONAKPBVzkbxCHz+8ZoR+u35ACbzvga86WdR+vVstBDw7elw9PRQiPY7cCL1Boq08Q8/tPHwbjzpFGeK8H036ug3UCzzxyyM8cYosOzYJhby/mTC7fqBmvZiD1LwWrnQ8cTIVvYQYiT3heRi8tACIO7GRmbzdQ6S8Wm5EPE64Z7wbAZ29N+xQPGXMCb0NqTQ94PwGPPW/6bxCHz+7aloVPU81eb1s/KA7xlT8PMBJXz0XSLq8yJ5wvH/iFD0DjR099wnevPqdxjy+HJ87KlMoPCRICz3H7sE8OKsQu8DpAb22opO96KmvvMBmkzy9glm9kaOOu2dR4Ts4Ayi6JuoWvCr7EL3DUhM9hBgJvWykCbtsLz48yQWZPRhIOjyJieA7IBpdvKaon7z3jEy8NNV5OwwPbzwi2Zw8Npz/POtwNT3PQ9O8VDCKverzo7ysjkK8l7xOPDr9SrwQcLq85w/qPKAotzzro9K8A40dPdup3js9kbM7RVsQPsZxsDvKgqo78P7AvN8KKjy3d7y85OgGPasRsbypFw69xZyHt6w+8TqFRcm7xfSePGOCFb3BxnA9Q89tvG2sT73Bk1O8wZPTvEGiLb7B46S8nZROO8JgNrsASQY8r+8NvP9e77wt/fm8n1tUvU99BDyk6V+8ONAKvSZCLrzi0a88PTkcPX0j1by8Bcg6j+TOPMRaWTwOdhe9a2LbvAD5tLyYoAg9X/zPvF2FGz2/zM08X/xPO8928DyBqRq9zK/qvG+m8ryi77y8KG/uurV9GT2+xAc9tCWCOw3UCzxXp7689Q87PS3CFjq3d7w9cJAJPUGiLb2kObG8xhkZvYdcoLxYdCE9ggGyPNjakjysW6U7VOC4vE0zELz13J27UcEbPObiqbx0HhU8uPRNPTjQij0DjR09bN9svIa6FD34hm+9pwC3uyqGRb3Kgqq84SEBvfHLIz1kilu7v+kBO1m+Fb0Fh0C6Zx7EvG9z1bynsOU78vjjvJqaKz1MvkS9B0aAOxiSrjvF1+q9bXmyO6/vDbsfaq48sJ+8vBTRhbxRnCG9eWIsu9pJgTzWG1M6tACIPm5rDz3Q3Ri9ou88vRFilzwWyyg82DIqPRdIujzU7pI7WKc+vJUMoLyvIqu7ad2DOr2C2Tt/Oqw6P75zPVTgOL20AIi7RpZzPR7QaLyWiTG8KjZ0vV+s/jv1D7s8iiMmvQEm9byDfsO8C6+RPPntF71YV+075sV1vMakzbxpGOc80tc7vXVDj7sjXvQ7y08NuybqFrwDcOk8FCmdPM753rxuIRu8P9unPL5PPD2g9Rk8oCg3O/3h3TzPdvC80Y1HPPZZL7ypPAg82izNvJJ4t7yBNE+7lQwgvSIxtLxlJCG9AEmGPAM9TLybmqu5UwuQOx8SFzv6EhI9rD5xuxOsi7zKKpO7O615PQBJhr3g1ww9BLpdPQjDETsBQ6m7lj+9u51hsTyBZ+w8WzsnPBtZND0lbQU8CcvXPEcwObyYew68+HCGO1P8/rsxxH88RrMnPOj5gDwTrIs7xddqPOToBj0/vvO8hhKsvFBEirzyFZi8zfGYPDfs0LvbxhK93RAHO4m8fTv5lQC9enkDuu6shrw+DkU8Qh+/PFGcoTzHpE098kg1veCHO73vtMw5RoCKvPY8+7vVnkG9mKCIPNTR3rwbWTQ9sWwfPdLXuzwy21a9tt32O2dulbyAtz09qH1IvRtZND2dCZo8r1XIusWch7yHXCC9K9A5PYFn7LypPAi7O615PU1YCjsZXxG901RNvZc54Dxiw1U963A1vWB54Tz3jMw8rYCfvD5BYjyuTYK8C+IuPekmQbsBdka9NKLcvEAIaLcV/sU8aOumvODXjLxWDfk6f23JPNI9djwrA9c86NSGvQ+bETz3CV68dLfsvLLpML3U7hK93j1Hu1hX7bx/Oiy8VOC4vOEhAT3XG1M88P5AvBtZND2QsbE9QUoWPZGrVLwi/pa6jtyIvNNMB72jZIi7wBbCu2dRYbw9OZy9Jw+RO01u8zz+/hE8ViqtPPmVALxu9sM8q8FfPQoygDueUw49fXMmPeavjLy2+io9FCmdOwTXkTxKkQQ+5RVHO4AsibxnUWE9HpWFPOEhAT0do6i7N+xQPS6XP70x05C9CjKAPI3N97tefz476KkvPIsVAzzQEDY8FCkdPSVthbwZQl07H2quvMSqKr3OxkG91RONvGzfbLzq1u+8r++NO2louDyWvE47s2bCvM1JMDwDPUy8RmPWuzeGlrz2AZg8z2CHu55TDj2YoAg96vMjvZHICL3MdAe74PwGvZzknzsI/vS8wOkBPdLXuzzNLHy7S0EzPS6Xv7w1PCK8+dDjPDErKD3b3Ps8YuAJPRUx47w15Io82BX2urQlgjtSyWE9O5cQPQnL1zuhcqu8qH1Iu52MCLrkmLW8Hu0cPFxo5zvxy6M8pqgfvYySlLuAt728+HCGPFfaWzyaULc8G1k0vTL4irxvpvK8q96TvLPbjbzeNQG9N+zQvEAIaDwjIxG94xskvZqaK72+/2q8U2MnO2VXPj272Ae9n6ulu0hd+bzCYLY8MK4WPXhFeDzePce8/IGAuzowaLw37FA9CjIAPURpM71pGOc8nMfru5zH67w1PCI9C5Ldukqn7TwgGt07hC5yPZZs/buafXe7baxPO0RM/zxNO1Y7kcgIvVFphLxTC5A80N0YvD4ORb3K4B48KIyivChZBbxRaQS9/bSdPMbBATunsGU9nt5CukHVSj27MB+9O8qtvB6VBTzQELa8nMfrvP3+kbxkilu8sxbxOo40oLslqGg8AXZGvPL4Y7135Zo8fKbDuwBuADzGGRm9mporvZc54DuAtz29TtWbPDeGlrwe0Og7NgkFvc3xmLymUIi9o2zOPTjmc7wRui49e9GavKUrjrxb69U6AUOpuxM3wDzpWd48yGtTvap367x9I1W8t+wHPVbSlbyjbE45Kjb0vJRyWj08lxA8+zeMvAD5NDxpGGc82f+Mu4/kzrxZoeE466NSuy6XP73TTIe8J3VLvURpM72CATI9hT2DO6v0/LxouAm92f8Mur7/aryR+yW9EmpdO3PUoDz/K9K8pbZCvR9qLr2tAw67OnIWu7K2E7zgVB69DF/APKNkiLxNO9Y8lCjmu/apAD3PQ9O8LcpcvUaACr7Z4tg8cYosO2LDVTsKSGm9EHC6udniWLvEd407AvPXvBrcIr13S9U8uBGCPG+QiTyHjz07oHiIPCXFHD1YmZu8t+wHvdvc+zx8VvI7sTkCPahKKzvq8yM9qEqrvDa5Mz2gnQI91IfqvPHLI7tabsS7WuOPvLGRGT3g1wy8rk0CvfyX6Tzr5YC7GL2FPRiSrjs+DkW9RGkzvNx2wTy4pHy8s2bCO8GLjbvpWV47jme9O0h6rTzzxca8lMIrvfOSqbwwkeK8MvgKvMUnPD0i4WK7dFEyPV5/vrxkits8Gg9AvWahsjw2nP+7q8HfPOiM+zkXSDo9TYunuhiSLr1P+hW9aOumPCyA6Ly/fHy8nZTOPHfIZrzVayS9NKJcPUpsij3yvYA8VV3KPAVUozzurIY8UZwhvJrNyDyLoDe9f21JPYnZMbzH7kG9s2bCvL/pgbsWrvS8j1mavB7tnLyKyw68ku2CPBQpnbw3NsW8D6PXvC3nEDxp3YO9qnfrPK0L1LwHgeM7gLc9vGMNSrzBxvA8EzdAPCm54rnrcLU8gTTPu9TJmDzUIbA8le9ru77Ehz3hIQE9Zx7EPLbHjbxfrP68EHC6PO/RgLtu9sM8CooXvX1zprt72WA8O615OoYSrLt9QAm91U5wPP7+EbyPAYM8Mqi5PNLXOzwmdUu72a+7uSiMorzCLZm61O6SvE07VjyxHM66HnALPE9SLb0oPFG9W+vVPGqyLL1qsiy9p7BlPLu7U7zhIYG8kfslvfyX6Tt7DP681RMNPRMEozzVayS9AMYXuzFexTrb3Ps8GoxRvM+4Hj3HId+8KQk0u1hBhL0mJXq8S0GzvJHIiD0V/sU8yIiHvPpNdbytKIi84FQevHcYuDz+I4y8zsbBuuavDL1tXH66T30EPJ4R4Dzbqd47ad2DvPntFzztuqk8HXCLPHymwzsU5+48RrOnvIQYiTwtylw92kmBPXgYOLzy+OM8b6byuwD5NL0p7P88xFpZPRM3QLzySLU7Z1HhO1h0obu/mbC4jW0aPTy8Cj0qU6g7hMg3PXIHvrsAqWO7YsPVvDMlS7tRnCG9x+5BPF3PD72wFAi9+hKSPJ9bVL1vkAm8sNLZulLmFb3/e6O7sWyfvCoJND2cx+s872T7vK/vDbxlB208RrMnPerWb71efz49LkduPUfg57wBdkY9CjIAvWkYZ7xcaOe8/dmXPPoSEr3Uh+q8HaMoPMx8TbsnD5G8lI+OPLfsBz0sgOg7COiLPEFKlruZHZo9U/z+ugHrkTz9Ma+77jc7PP0xr7xz4LU8MBbRPF1o37ybgPK8sL04Oxk8Gb2q3XE8ihZYPPx69jtlGrE8zcYGvTC6ZjygvKO8imUnOxqlHj2Zz8E8nJsPvb8nU71tO3885De5O8myDb3rgIW8mhdtvNy6gDy4aOa76xcAPThL3rySENW5qPGwvPN6Aj1sfbM8TqJavZKaND0xI2w6/ATWunAbDDyCD0A8XG+Dvc5j+LuKf108RzI9PHzG8zxk0oU8m1L9vHtxLbxsik67Als9vd0PR71GvBy7IM0QvdV+z7wEdXO8/Pe6Pb5Irby38sW85RZfvHjnk71Nthm9VVQsvVzYiLxsLuS85a1ZPb+DvbxR+Ic8OEteOr+Q2DwksxS9/meeOiAIIb2oomG9ur6TO893Nz3kZa48pP6RvPSubr2d1h+8t+UqPSzbBr3lunS8NruHPHW/WzqK7wY8RzI9PL6xMr2oHya8FYSKPXtQ07tJlYU8bE8+PCQcGr0K35m8KWR/O0DpcDucm4+8IM2QvMgAdrzztZK89K7uu3e5njxdTqk7CvnPu7D4yDz+wwg95HLJvAJBhzznbAy9TsO0PL9v/jygr4g8c9Mavd4CLD2JWAw8jdWKPPZgBj0Ct6e8zknCuwsaqrwh58a887USPRUbhbsSO/g8jT6QPGxpdD3sS+y8Gnept6+CqLyiEeq8EiFCPWW+RryZwiY9ZgbyvPubULxGgYy9xjWPPTrPgLyCpjo9CydFu/v3urzPKGg8ToikvLd8JT3dpkE9obwjPXMvBb2wj8M8b7+hvTFyOzxdxMk8kuLfO+SgPjwgQzE9R6jdOXN3MD1SjwI8AzrjPCF+wTwrcgE9xorVPBI1Ab0khR+81kM/Pe208byzLRw8MPV2uynAaTw/u3u8IrlROyQcGj1/Dwa9Q20Tva+jAjxm+da6+2DAOjFRYTqzLZw8DVwYPYo3Mj2vsJ08sb24vFgtlbyCayq9Ak4iPV0gtLwn9YK8OjiGvCEv8jyRjRm9wk8LveT8KLw4hu479YB5vBEHjL1r2Z27p0CAO/MeGD047/O89KHTPBFPtzz7JbC7AvI3u6v4DjwS5rE8N8giPUbJNzzkHYO8ZCdMO5nCJr0SO/i85B2DPClX5LyhbVQ9VkcRvE3xKb2wnN67xswJvexfKz23t7U8Pv0vvSizTjy6VY68IcbsPO2G/DwSXNK8kcipPBIAaD1Au3u984edvAqDLz0oSsk8SBFjvN1eFjw4S948ZHabPBIuXbu6vhM92bMivJpFYryCPTU9IgF9POUWXzvcjIu81sZ6vS/8mruRJJS8icGRvdyZpjy+0gw9oGA5PJqhTLzsENy8i86sPOUjejy/0gw8Kaazu/qBmj1J0JW8N/YXPNU2pLy/gz2852wMvOu7FTxu0vk88+MHPY15IDwo7t48s8QWvNgPDb17udi8IiLXu/Tp/jxO0M+73V4WvQ2KDT37YMC8LzcrvXQ1/DwkhZ+69vcAPQrstD2HFh48dO1Qu11bRLwoSsk8dcx2PCgwEz3797q8KIVZvWwAb7sh2qs8XYm5PFxBDj26vhO9Gb9UPfuOtTspV+S8gwIlvPslsLzGfTq+7DG2PKiIKzwkHJq8xtmkPCtEDDsaNXW9C53luvcyEb38EXE7qUb3O+AJCr1daF+8Ebg8PPPwojygRgO9JHiEu5mUMT2YTAY9IefGu01NFLw6zwA9eimCPRyLojzNpSy5t1tLPN3hUT0vziU9N6dIveyaO738ena8cxvGvD6UqrsksxQ9xk/FPIpywrtdt648ZLErvVbX5zzvoZm8EgBoPVZuYj2rYZS7qbagu6hn0bv6rw+9bFzZPGtCozqCmR88t04wuufVkbxdILS7QpuIvFepcrxmBvK8qDncO97u7DySHfA8t7e1PI0+kLyvgqg8SiyAvV91ejxsuMO85wOHvGe4Cb2HFh49oT/fvNU2pDvR5xq9TeQOPQPyN7ygji69kV8kOZExr7s3A7M81axEvXOYirtN5A471vTvvSAVvDwwjPG8Vnt9O8qyDTzr6Yq8+2BAvb4AAr1Vysw8Q20TPV0MdT53fg497GzGvAT/0rzsbEY93VfyPGdPBD32YAY8CXaUPAMTEr313OO8r+stPQpVurtORvA85NtOvE8sOj07RSG86+mKPBpWTz0rf5y8/1oDO2iKlLxGbU08k3laPH7hkLxsik68MSNsu8fzWjwZPBm911BavISFYLypr3w7wuYFPQsaKr0zeRk9DVyYvHzaMjv71uC8r1QzPZXPhzzv/QO9QEXbvOwDwTz0odO7uicZPXTM9roiIlc8CXYUvb4AgjqwvTi9zyhoPIJej7ySHfC8FRuFvN4CLL1zLwW9yFzgvE7+xLwRB4w7N/YXPMYUNT3dHOI7IfRhPdaSDr0h50Y8A/K3vAPe+DwazG+9e3EtPMA07jwgn5s8gyn2PIqTHDy3W0s8VgXdPEbJN7qSPso8VSa3PP6VEz25DPy7KBxUvSH04TsVv5q87APBPLgtVjwCibI885S4vKHj9Ltlb/c75FgTPHpkEjxVgqG8mhftO9FQoLxsl+m8MRbRu94p/TzC5gU9+1MlvTcxqDzvoRm9IS9yO02IJLyv3hI6ur6TPc48J73sX6u9N40SPfpGijwTxde7Pv0vveboaTwD3vi8xua/PBF9rDwJOwQ9DYqNPN2mwTyZOMe5epIHPZmUsbyCAiU9e1DTPDfIIr2zxJY8VYIhvchcYD2iEeq89HNeO5m1iz0E0d07x3AfvaEET72Vz4c8Fu2PPfrdhLzOVl09g+HKPKEET7mSPsq79aFTvDdfHbu3EyC8YOwBvRFPt7wZv1Q9qd3xPIkqlzkvoLC8+5vQPMVjhDwcFYI72eEXPSfHjbyklYy8vjsSvSK5UbygJam8T91qvb+DvbuCeMW8GYREPJJL5TwK+U89b1YcPRqyOTzWImU8eikCPSSFHz0ZpR48vxo4PWdPBL0akd+8RiWivAqxJLyRjRm9GXcpvdbnVDxHjqc7+1MlPL5IrTynqYW8wiGWPKcSiz1zpSU6t1tLPE3kDj2JWIy8UTOYPd4CrLuZlLG8x5fwPfPwIjzlI/q8WPIEPYOmOrwwcjs9lc8HuygCHj04hm69L2Ugvf6VE7yNPpA8J14IvCtyATtkVUG8Ph4KugMtSD2ZOMe8PpQqPO84lLzkkyO9tgaFvALEwrsk4Ym91dq5vPQK2buWOA09s1sRvMeeFLzrgAW89Ol+u12W1DxNEgS9zTwnO8/tV7y35So9d7mePJiHFr1suEO8t+Wqu2vMAr1VVKy8Ak6ivEIEDjzsp1Y8gg9AvK8Zozz7vKq8MPX2OpPv+roKNOA8ktVEO9V+Tz20liG9eimCPL/swrtsAO+8eyJePdV+Tz1gVQc9PlkavZqhzLuarme8O88AvMhc4Lywj0M8C2/wuqRnFzxzG8Y7P7UEvf5nHrvdpkG8XcTJPDd5U737YEC9R0xzvNUIrziZz8G7XSA0u8VjBL0cuRc8KNQovZnCJr2brue8K+ihvPRF6bwx9XY83Q9HO42nFbxk0gW9ElxSvKiiYT0ZG788XS3PO+z2pbzHXOC75AlEPahaNj3NPKe83Q9HPRLzTLzk28681sZ6PaHW2bv+lZM8miusOvPCrTyVz4c8r96Su+WgvrqwQHQ9MfX2O2D5HLyzW5G8r3WNvLqDgzz8qGu9CjuEO80vjLwDR367xn06vQfLoDzNmBE83gIsPf4sDrxGBEg9CzRgvbBhzrz3m5Y8/Hp2vSlKSbwiIle8bE++PD9mtbvV2rm82KYHvEksAL17Il69Nz7DPItyQjwwuua8GsxvvTcDs7yLzqy8EiFCuZxtGj3sp1a9kVIJPQsaqrz6rw+9VhJ4vZJ5Wj1sXFm9AkGHPZoXbbycmw+8XnX6uhFwkTxVVKy7OD5DPO20cbwJdhS9ElzSvGSDNjy/g728RiUivFYz0rwwcjs9jPX9OsgA9ryiyT48zTwnvCGY9zuS6QO9ZcvhuZG7Djw+Hoq8ZTRnPEIyg71OwzS9qFq2PD84wDxlkNG8N3lTvSK50Tz3baG7HFCSvPPwojwpZP87uNHrvBVWlbxC1hi9Lwm2uw1cGD1JLAC9P3NQvea69DwKSJ+8P886PHRqlbwhi9w788Itvc7t17xRjwK+wFXIPI0DAL1VdYa8gscUvQbLILsiudG8Gp76O5k4x7zvzw69htuNvLOJBjyg6pg8WVsKva+CqDy3EyA8KD2uvIo3srvNpaw8J/UCPJybDz1k7Ls8t0GVPN3h0bzOVl09sb24vF4tzzx7Q7i7TgtgvJGNGb1W+EE9vt+nO0bJN7xoXB891yLlvAqxJD3Wko48BvkVvbhOMDzz/T0981koO3QvBTxrQqM8Ak6iPL5ILT3sXys9CrEkvYKmOr17It68c9MaPVjyhLz8EXE9wDTuPM4bzTxUDIG8zaUsPL+QWL2oH6a6bIpOPeaMfzwLGqq81c2ePSgcVLzHLmu9bKuovF23LjwDDO68mUXivBxQEj0z1QO9GmNqvQtv8Dx6KQK74KAEPFx8Hj1vhJE8sBJ/PAMM7rz+LA49E4pHvdz1kDwazO+8mun3vO0xNry6VY68tgYFvQ2KDb3gco+8EqT9OjSnjjrGNY+9qCxBvF3Eyby/y2g8/iyOvfO1EjzgoAS7kj7KOor8obt8L/k7iyPzvBIhwruq3XG8i7ptvLOWobr8U6W3920hPVYF3booMBM9OJotPINKUDu+AIK8iq1Svc3GBjmzxJa8wFVIPU/dar0Zdyk785Q4u92mwbyvR5i8ElxSvOsXgLxnuAm7qZXGPGiKlDy3xFA9qUZ3vC9lIL0SXNK8jWyFPF06ar0VKCA8EU83O5Fsv7t0Y/G8sAXkvGTfoDySEFW93gIsvTH1djw3jZI5hq0YvHwv+bzgoAQ49KHTvDjiWLuCD0A92kodvVZA7bwSIcK8Gu3Jue0xNrzzlLg8N2y4vL9v/jw2u4e885Q4u/cEnDsLQfs8v1XIO6BgubzUwIO8osk+OzAW0bwLQXs9DEF7vC8JNjzCIZY7K3IBO75pBzyoHyY9xjWPu13Eybvk7w09xtkkuveblrs+KyU8t1vLPIOS+7y3fKU8EuYxPU0ShD1suEO8e+dNPb47Ej1CPx697R33O5IQVT10+mu8kTEvPKBgObqgji49uIlAut0PRz1dty4984edPIIwGj2hBE88bH2zvM5JQr1sxV45VesmvZGNGbtl2Hy9MLpmuz+u4DyKRE29oK+IO0bqET1diTm93JkmvMYUtTx2FQk9evsMu6BgObzWko68x5fwPMhc4Dz13GO9gnjFPBmyuTyrYZS85PwoOvsEVr3NpSy8dGPxu75Irbv0rm68XNgIvdYpCbowf9Y5FVaVvCizzjzZ4Zc8dcz2PGXLYbxeLU88YJCXPbkMfDz06f487F8rOzBRYb03p0i8iq9yPP6FYD2IBAq9esXuvCU9sby0hcG8X+XAvFuD2zy9JaM8m4EqvBSiOjyOwso8F5ABvfRrzToDVtE87T8BPfn41rszahy9tHkbvGxhOTopBw88mkrpO+YBhbwBK607Sjfyujj3pTzusx+9ktUivNtnNrobZgW86G+QPA5kvjvyg5A98oOQPJz72zp5YwC9dkSCvKquFb1pQru72vkqPWswgjy8sQQ9OPelPK610LxHnkK8AmgBvK81DL1I1YO98zoWPA/Sybwm7iO9WVg3vLPClT0zahy9kpI7PJcr6zxWiMa8vLEEvV40Tr2+yni8H/80vMJvRT2ifL+8hhbDOwx8ATz06wg904TtvHOftTwiWwe9ZHJKvVJpyDs4LnA9FCgJPQ7e77w/NSK9Kg0iuNGWHT2ouru8BnXPvBn+DLuJeCi7S6uHO7Bmwzt6V+O8lYCCvEzoZDwYO+o7/0J5vC7dEj2yWh295FalvAC3DrtXfCA7Ju4jvV8oKL0B6EW80JwwPNowdbwRCQs9uNsAvAQHxDt70Qs91aNrPMvMv7zpGvk8EcYjvQ0zBz2dLAo9rsH2O5lWBr2vO588slqdPDL8kDy0Qlo7AxPqvGweUrzAhwi9O6KFvdHT+jxDi2q7IPOOPN7VwTzJrUE9nGlnvElPtTxr8628EQ8evXGr2zshpAG9zX0yPRPxxzsFgXU6qTRtvSCwJz0pk3k6T9AYPSBtwLwlgJi8AW4UPd2kirsdkSk9WVg3PMe5Z7rtfF67SvSBPZkTn72Uz488elfjPIWotzogsCc7wIcIPdYpOj23Ko49LSygPOVQkjzJJ3M891MBOwx8gTxpyAk8++ywPHpX47ytzRO9HypZvBvgtjvUeMc7E67gPJMYijyiv6Y82NQZvUIRObwHY5a7xdEqu2sqeLzSTaO8+y8YPa610DwuFN08O01uPNAW4rz3BH28M60DvZlWhjzmgUm96V3gu3imcLszrQM9+M0yvZlcGb29aAq8qP2iumT4GL3sAi29catbPII6rLrJato8kO3uvI7CyjxUlOw768trvGwe0rsn6BC7DuqMPP+2Dj1Letk78gnovB5CnDzpoEe9YM39vKMtsjw9xxa88zqWPLZt/rpZJwC9o7MAPRgEIL3C9RM9RTC3PGiRyLwfNv88i6PMO312YbsSdxY923PcvLiYmTsiVX09c581vVvS6DtuVRM9jBHYPOuOjjwBK628FlOtPAvLDj3/vCG8af/TPJ11hLzPcQy80dN6PZs+wzwpyro8cTGqvEQ8Xb2x4HQ8wb5SumykoL3Zwmk942JLPa6EGbxL9AG9S/SBvFnqqzqtiqy72Ug4u4j+fzzThG08jZETvU4ZkzwpmYO8SjfyulSgCTvy/UE8rscAPdVsoTwYwbi7+rXvPDQntTyJeCi9j39jOz81Irwacis9c5+1vHw/FzrpGvk8/ZeQvFez6rxfKKg8++wwvG4SrDyiv6Y9CGmpPMbLFzzmAYW80d+XPF1AdDwIJsI8lrG5vPN387w8QUi9vHSwPNJNozz06wg9P/I6vTOtgz0H9Yo8HjyJvYHMoDxk+Bi9Vsstvj+v07uDcXY7+AoHvdAoEj2TT9Q7pd6kvWxhuTmd7zW9oi0yPDQntTyKNUG9P2zsvI1IGTyVgII8LiYNvVbLrbwDH4c9ehqGPNTy+LtPjbG8AL2hO1xMkT0XkIG6++wwvLRC2jzMzD893pJaPXgsP72xoxe9iEHnO0ZtC73R2YQ7RbYFPYBS+DzO9+O5VgL4u9T4Ar3Gyxc9UiZhvIdTFz384Io9oy2yPJV6eLydMh08UTgRvR2LljzOOss72FTePJqN0Lson5a8DbPLumWpC7xCETm9fifUvAy/cbzMiVg9rc2TPAKlXj0vlJi8HkKcOroGpbzPLiU9K3utvBrsXLqCA2u9w5rpPJ8a2rybPsM7+M2yvfcQmjwDE2q9sGbDvKprrrwAerq8F02aPDHFT721eRu9ptiRPCnW4L1MbjM9BvsdvAesED1rMII7LDjGvH25SL1JQ4+8371+vIlylT05LnA+0JywOucyvLvmB5i82vkqPTwWpDwtLCA9PUFIOzoiyjynRp28ucM9vLTCFT0naFU8uFWyPFzGQrxhHAI9kiQwvFQauzx7jqQ9e46kvP0XVTuNVD895r4dPTRSWTvLmwg8hC4GvQ3wH7oJUeY83k/zvDdGs7xT19O8PccWPHeyDT3mvp28VsWaPLXzzLyVgII7rYqsvKqulTyoujs96V1gvIry2bwB6MU8vp/UvNvhZzxH4ak7jCOIPPupSTvYzoa8veK7vGvzrbx6CFa8NtKUu1F1brxA2ne8+IrLvFc5ubxmnW683wyDPES8GD2ZEx89Zp1uvN1bED2GFsO8xCA4O0v6FL39hWA8a7BGveisbTuF5Ys87T8BPcfFBD0XkAE9WafEu0VzHj0Dmbi7ASutuzG5KT0RCYs8tm3+u9AWYr3sRZS8MrMWvZcr6zxhHII8e44kPYEPiLqpay48g/fEucIs3rzyg5A8Od/ivFDKhTwLiCe7tyqOPFMm4Tyx1M68azACvSy4gb0YwTg9mJl2u1QOFT0oGUg8quXfvA0t/Twd1BC9LLJ3vcwPpzzJJ3O2OHHXujCOBb3U/pU8D0x7O/9C+bu1eRs9/oVgPVLpA7w/r9M853WjOjzTPD3Jatq8ayr4PAYy6DxKAKi8WafEucRdDL2k6ko9rQRevCw4xrxHGHQ9ZC/jPBKDPL1e8Wa9JHoFPHC9iz3qGnm81uZSPc60/DwLv3G7pVhWvD9sbL0RxiO9vLEEvceCHb2zyKi8FeUhPaXepDyVQy694LFYuwSNEj1R+zy7WWTdPOE3pzzhNye9DfayvIGJOb2XYiy8CGkpvFTXU72W9KC8ugalu305BDrDrBk8YRBlPXgsPz2x1M48nWnnPCw4xjxspCA91DVgPKprrjw7nPu8oQIOvX6tojwRD568OmUxvKprrr2BD4i7M62Du2rzLbwJUeY8UMoFvW/66Dzo71Q9ormTPA2zyzmYpZM92QVRvO4tUT2nTDC7mo3QvNpz3D07X568gsaNvKooRz1B4IG8ijXBPOMfZDze1cE8RH9EvVH7PDxetIk8e0u9PExuMzwIoPO7JT2xuT8vD7z3BP08Lt2SuyKY5DytzRO8vSWjvBSiOjyXH0W8jCOIveC9/rygiGW82BeBPQKl3rtdQHS8lXr4u2uwxryAiTk8tm3+vH124TyDd4A8WadEPdgXgTuHx7W8usO9u6tfCLyd77U8++wwvZBzvbxtjF27A5m4u+4tUbwO3u88JMmSu8ubCDzFjsO81DXgPFUOlbvEILg9FeUhvfCb3Dz2og69dcrZvApRZj2ux4A8EoM8PZD5i7xa3oW8/Vo8O5vEkbz91O28/BfVuoYWQzyXYiy8BzJoPPUo5rz7KYU8pRVvvPK62jyVQy69MEuePIdTl7x/XpU8ALeOvGAilTuz/3K85FYlu140Tr2Tz4+9SAzOvLo9b7xdQPS85VASPbIXNjy8dLC8EncWvfn4Vr1mYJE8wEShvKPqyjuP/x69+MefOzCCaDx3pvA8/0J5vJfujT0feeY7pOpKvSPPpTx5YwC9WVi3PLmMfDkcWmg75NBWPJYrazyVevg6ObS+PLce8Tu+DeA742JLvTplMbwl+km7pSGMvZQM7bt2ARu8/0J5PF1AdL1TGjs8v5OuPICJObwZ/oy8T0pKPSZ0e73EIDg8RMKrvNgXgb3R0/q70FlJvMnwqDy5Eku7MAg3vQMTars7nPu865QhvRd+0TwxdkK7l27SvHGr27yVvV+8XMbCvLfhkzyVAEc8nXUEvRWWFDyykWe8Jqs8vOld4Lzry2u757gKvaRqhj3F0ao8tMIVO2vnB7wmN548OqiYvBCP4rpeKCi6NRsPvPhH5Lx9OQQ93O2EvCyy97ygDrS8Xnc1OylWnLstplG8yl60PP+8IbwxdkI8vO7hvJcfxTsEjZI7uJIGvI88fDy84ju9U+mDvFh2DT3JG007P69TPDg6Db0dQhw9ukkMvFLpA7yCxo09AmiBPJ2szrwjz6W8bNvqvN9DTbz5O748LabRvCkHj70/8ro7gYm5u7TCFT2yF7a8kO3uuiqHU73EXYy8IKQBviy4AT3cWxC8hC4GvVwJKr3ARKG8zroGvIbTWzsfeea8ENJJvSoNorzZSLg8uYx8O8UUEr1MK0w9ajaVPMCNG71zn7W8/chHPHY45Tz/Qnk9LDjGPNDTeroFRBi8jjz8PMOsmbyqKEc9wIcIPOuODrwxuam8Ng9yPTDFz7p1vrM7naAoPdAoEr1DTo08inKVu/jNsrwehYO7aUI7PfcEfbzQnDA8tMKVO6aDejxmI726e4iRPemgx7wIaam8qmsuvdlIOD31a029VBo7PWwe0jyJu488dUoVvNSvCD0t6bi9vLEEvYwjiD3ipTI8qWsuvGxhOT3Uu668Ef3tvOIxFDxQ+zw91pfFvA32MrrndSM9gYk5vQnXNL3mMjw9p0advAjjWrvdpAo8dr6zPBpyKz0O3m+89DQDPbrDPb2iv6Y8ciUEvSQG8Ly0NjQ8f14VPNlIuDxjBD+81im6u8wPp7wkyRK8wixevWEQ5bzmMjy8HYuWvI9Chr1Xdo272jwSvUjbFrwGdU+8kPmLPBpsGL36te87WeSYPNlIuLtphaI83hipO9CcsDzP6707hSJpPF39gzxAoy29R+EpvcPpdr2rHKG7qxwhvSDzjj26PW+9e/wvPE0fpjubxBE857gKvFd2DbxvPVC8bozdu3WH8rvw3sM8kVv6PNGcMLs5LvA8Gp1PvG3PxDy+n1S97uppu3gsP7ydoKg7C4invHljgLzXHRQ9Yn5wvOjvVL2gy8y7nHuXO0aqaDxPB+O8iqNMunb7B736I/u8ZuBVPKL2cL0jz6W8DL9xvJb0oLw8kNW8x4KdPF39g7x8/C89t+cmvH05hLpvwx68G2YFPTplsbq3pL+8ZuDVvJdu0rwuJo29O5z7PAC9oTtH4am8xF0MvWsqeLth0wc9e4gRPc19sjpMK0y7x/xOO3uOJDlYZF28s4VBPA0tfT2DfRO9wEShPGFTTD2o/SI9qEAKvWo2FT0+/uA8Cdc0vcfFBD3mgUk9LaZROrMLkLwVX1M7OmUxPFizaru9JSM9DfayPGznhzxn1K87ASutOesCrbrFFBK9uYDWvDWVQL1gIhU8vG4dvR3UkLsPoZI8Xf0DvYm7jzzjpbI8AiWavOaBybwHMmg8UIELPQtFwDwpVhy8Gp1PvLfnJj0YO+q787pavVSgiTy+n1Q8ZxcXvUTCqzxAoy29DIKUvLwxybvvZBK8bhKsvC3pOL1I25a8bGG5vO7q6bthEGU9e4gRPXrF7jylIYy8shc2PE+NMT3cqp07ULjVPNHTerwkyRK9U9fTPGzas7sLNzA9mcMfvdfGibx4fo25c9YcvZaHzLyyNA49e4gUvOUX4brXOTa9C6rcOx/oCL3HkmS6eAJQPMSihLuRpQq8Zu/gu521AT0+p9a36UylvJgNkTwGAuw8kVsZPf83zzygZAE9Yv3+vG54nby8Y7m6RUi4vEpjVbvHSHM77KCdO4yBXDzH1UY8dYWcvFKiILze2he9XJ9/vHi4Xjxn6NG8fPQxu/kjQTwCdCK91ReKPECgx7zlMQi95sZgvYf6ITzVchG9JvwWvQoVhLwWZls9UMFUvI3Evjo+p9Y7fpKbvdh8mL2AQZu9cqRQvW8/wrpPd2M98aMVPMaSZDw4DwY8hukLPVMmY7w0eCu8Rv5GPKxydr3nUzQ8MYZJPYiYCz0fKWm9NeRIvdVykTyZ7Fq8ubS5vD5+mzzSaAo9QQzluynlZzwJy5I7W68fPBkvAj1bM2K7ltG9vGxnBz12ljI8HN6BvDXkyLzMpvK8pjWtu01EIb0trg69sac6vOsCtLwSt9u6yYtVu9p1CTwgbEs8nSiuPKrdHTxcwDW9TX7yvP6BQL2Ce2w8XOlwPePU/jqBUrG8xpLkPAa4+jznnaU8W1SYPF5vtbxtuf28muzavIBZwLu3cdc8kyI+PK5CrDu+heU8jcS+PPDTXzwqcru8q3J2vO4+h7xIQak8n5RLveFoYT1IKYS7wk4MvP7LMb2Zqfg8lz3bvFVitrxdA5i8M8KcPG+Js7ubWPi8fTcUPaxy9jxMRCE8/YjPvA4woTzb0JC9q5MsPN1NxLqAi4y7dFrfPPTFQTxu/N88xx84PUmVIb1vcY6751O0u3BxjjzsuEI9IGxLPGFopjxhqwi81EfUvLrd9Dl2ljI9STqaPJJsr7yLWKG8eTQcPZzlS71XztO8Q8sEuX6jMTwrWpa8O4y5u7rd9DxsTWA80BSSPIiYizwGZoS8TuIKveBvcLvZfJg8eExBPNkhEbvTHhm83ckBPWhUb7xt0yS9UnDUOwMqMTz5bTK9ZM00vc52KD1RcFQ83jUfPcxsIb0JiLA8il+wPBzegTxovxa94WhhPDXkyDwkPfc8lfp4PLTjDb0Xqb28mal4vUj3tzt1ncE80pFFvFPlAj2E8Bq6aiu0vPe3IzzFJke8iPOSPagN6DuxjxW82hFxPNnoNb2OURI8obZ3PSBsS7xyxYY8eTQcvFNpRb2G6Ys6hW3OPJ0orjwVLAq8NWCGvFOzNj31vjI918aJu/pF7TzVs/G76OCHvKM8PD3nnSU98oJfvB2UkDx7JHy9iamhPDPCHLrN6VS9OAb1u9JOYz1WShE9WBE2vChQj7xKY1U9x6wLPOs0ALvnUzQ9man4O6Y1rbwujdg8+SNBvJbRPbxXGMW8FLDMPAKdXT1TaUU9U+WCPG+JMzwIRU47CPtcvc/iRby81mU85O6lPK9k2Lyw0HW8deeyOwx6Ejpi/X69Z6XvOh5z2jti1EM8X7KXPUCgxzshPAE9riH2u7FdyTv7BI28iPOSvAePP7uElZO8F9J4vWm4B7peoQE8VwCgPGDbUr0KgaE9lj1bPDA8WL2BD088kaWKvNLbNr5HtNW7xHC4Oz5kdL0JcAs9vRlIPO9gs722Nwa9KnK7vI+9rzyc5cu8erFPvTC4Fb1LjpK8bdMkPMkYqbzJzre8rTEWPX3cDDy0Vjq82sf/vK0xFr3+gcA94x7wPFzp8DzxoxW8Rkg4PRIzGT3PG6G81bNxvFk6cbwhPAE8AHuxurdIHD1IhIs8t0gcOypyO7yyE9i7JOuAPGT2b7z07nw9cmFuPVRACrxe4uE7CEXOOzZxnLxLMws9hm1OPJdeEbxOC8a8i8tNvJlXgrw+p9a8FLBMuuh877zBVRu85kIePbDQdTx/WcA8AGobvE3I4zq/yEe9K97YPLNWujodMHg8ooYtvNas4jy0iAY9yzpVPOzqjr2kPLw8ygCEu6y12LyEKmy8psIAvX30sTz2KlC9aZ5gvA3VmbuqBtm9kaUKPZ5rkDzaEXG7FWbbO9WKNrzJ93I8/Pt7vMzw47y+RIU9GoqJPpY92zu3BTq71oMnvcjVxjxIhAs9ESIDPQccEz3C6vM7FLDMvK/glTy2eOY8jQ4wOq5r5zxZOvG8JBQ8vANTbLySbK88cnuVPWXGJb3ruMI73wNTPNMemTuiQ0u751O0vEB3DL2qUEo9DMSDPCwhO71hq4i8yQAEvSFlvDrI1UY9TOkZveUxCD0jG0u8BBKMPDVghjyD8Bo9wsG4POs0ADvoCUO8Sa3GPOzhfbxRR5m7LhqsuXeWsrltuf282sf/vCGvLbzzOG68YdTDPFKiILr+y7G83Je1O1bvibtafVO9ut30Ol9O/zxI5iG8hAExPe6QfTydKK48gQ9PPCGvrTi5/qo6a5dRvCCeF71gkWE9YxemPJ21gT1+7SI9RtWLu1ZKkbz2nfw8Zaz+O0EtGz39Pt48NVf1O36jsbznnSW9JjZovLdx17wyNUk8/liFPOInAT2Gt7+8cGj9PJ+Uyzx4jyM8wMjHu/+BQLyJX7A7U+UCvFMmYzul67s7tcLXu9MeGb2URGq9/KmFvGqX0bydch88wk6Mu0zpGbvkF+E8WKWYOlzpcL2NxL48W/IBvPy6mzqvrsm8FG3qPD9dZbxfJcS8wTTlPFB34zy044282TKnPOsCNLwvjVg8CcsSvXR0Bj3RBPI8VxjFvDDQurySbC+9ty71O4kczrsMepK81EdUPQjSIT1+khu9sslmvdZyETuRpYo98VkkvMHBOD2rkyw8Uv2nu20MgDv+WIW97j6HvCJNF73ZMic9i+yDvNIlqDzWcpE7SEGpvNC5irsJy5I8UQS3PECgRz2zE9g8tgW6vAuqXLvdwPA7Cmd6PKAAabxWi3G9ayQlvFXV4rxrl1G7ZINDPIJ7bD1aCqc83k3EvEaLmjyUGy+8FzaRPRqBeLt70oU9PTs5vJ9KWrwKgSE9YmEXPHh+DbxJrUa9H42BvBX6PTtxq188OMUUPfBgs7sftjy7Hr1LPDLy5rzfueG8YA2fOwB7sbx3TEE9TgvGvD07ubs4ag0+3cmBPJQbr7ymFHc9jvaKPPsEDT2HZj+8JOsAPZAAkr3bVNM7EZUvPMJODD3WQMU8OZPIvHotDb2cF5g8qOQsPSpJALk2cZw7WTrxu8n38rtRkQo9Eo6gPPHthr0+8Ue8Oow5O7BkWDxcTQm9cRd9vKY1LT255gW9/cuxO1zAtbyF4Po8yQAEPd5NRD12U9A58aMVvdXNmLtLXEY7rq7JOzWh5rx24KO8PcgMPBc2kTxJrUa6dZ1BPYpHC70lyko7vIx0OuM4lzvgLhA93OGmPez7pLyjbgg8I14tvfad/Lzc4SY9zK8DPWXvYD27INc7UuyRPGEGEL0mNui76QlDOWwD7zqrvOe5IdhovePUfjtQNoO72HwYPVG6xbwSAU08tOONvardHTxhUIG8jDdrPC1rLDy2eGa9pX8evB0w+DrLx6i8fxZevSahD73jHvC8xbOavDnWKj1HMJM84PxDvQtg67zHUYQ8BAn7PK1CLL1tRtE7nBcYvduexDzSkUU8LZTnPG1nh7yTS3k9SqY3PfLM0Lw/NCo9BkxdPMT9izwevUu9cmFuvDqMObuRc747i1ihvIUqbD2/O3Q8uyBXOxjL6bz3tyO9ctacvBAIXL3IvSG89K2cu6H52Ty/nwy93SSJvBNEr7pb6XC66+qOO4kczrsSM5m9lagCPFGRCr2YV4K9qSePO7VPK7xH/sY8VZsRvJbRvboM7b47vK0qvdwK4rxCVtY89VKVvHs+I730xcG8I/KPvEa0Vb2/+pM8a01gPf83z7xsDAA9PW2FugZMXTsi8o+9Of9lPWdkD7zkkx49FmbbPC6N2LwdlBC9n9etPGCRYbzXrGK6n0pavd0kCb0moQ+9FoACPePUfrzAyEc8V1unvLJdST3aGgI8vhK5u0dqZD2YNsw7+wSNPOor77sDU+y7YkDhPPe3I7zWgyc9rLXYvB2UEL2Ce+w8IGzLO1r5kLubomm9gcVdu19XEDyPva+8h2Y/PfDT3zu3LnW8czGkvGXvYLzQXgO9ADHAPNdrAr24u8i8L41YPLEaZ7z7j948ZwmIvGeugLtkOVK96gI0uzvPG77dwPA8YasIvKlQyrsrWha99gEVvWal77uCnCK8Y/8Au5NL+byQvS+7yRipvGWDQz00eCu9lodMPWGrCD3XrGI8ZmsevEZx8zyT2Ew8Ia8tPEeLGrt157I74bJSvLtjuTxt06S7ZTlSOwpn+jwI+9y783tQvJAAEj344N657WfCPPW+sjxgshe88T/9PAr0zbsdMHi8KrysuwYjIj0FAmw8VB/UO9kyJ7sXNpE8fdP7PPHthj0dMPi7TX7yvDA8WL0IRc48p9MWvfKCXz0W8y68J8O7PHBo/bzPn+M8n5TLvOkJw7zdJIk8sjSOPMdI87w8Qsg8tAzJu4VEE71j/wC9NS66PFUfVL0UsMw89qaNPDI1ybyrSTu8aVRvPbq0OTyEvk48kObqPAqBIT1t06Q89irQvFk68TuX82m9jfYKuiqbdrzU1Ke8QgxlOkTcGjxeXp88bAwAvdoRcbsiG8u8vUuUu7sgV730xUG9iGa/vNIlKL05IJy9PmT0uyfDu7wSS765ADHAvIKcoryOMNy8Ab6Tu/cBlTz9iE+8S/CouxX6vTz6Cxw9g5UTvKq85zyNDjA8dZ3BvPHM0LtnMkO9nbUBvV9O/7xScFQ9suqcuwhFzjs4k0i7+4/ePPHthrwkFDw8EnR5vXQQ7rykyY+8VR9UPWwMgDwbDsy8kmwvvE9OKLwzqPW6bANvvbi7yLtvP8K8EM4KvEQFVjsjG0u99K0cPUTcmrymNS29k5XqvEAchbyC34S8eI+jvLIT2DgId5q8vkQFPJnDHz2kPLy8eNkUvWPNNLsSt1u7CXALvWkrND1vP8I8fTcUPYNLIr32KlA9tU+rvJtYeD0OD2s8JqEPvWZ8tDuDOoy5vK0qvTgPBjswhkk8VovxvFOzNr2VqIK6fpKbPEmtRj1v9VC8GaKuPOz7pDtnMsO8OWoNPHUqFbsPKRI9AhkbvXTnsjyH+qE9BiMiPc7p1LtXW6c8sPGrPMr3cr0rWpa53k3EPPamjTw0DA68erHPvEyfqDwcemm8r/g6PS2U5zrkF+E87truuzlJV7zXxgk8BAn7vKYU97tcLFO9ahMPOn7tIr0t10k8BiOiPLv3G7x+Fl68/fTsPKhXWbxrJCW9BkzdOyD5Hj1S/ac7sV1JvNjXnzvPLLe6+SPBPGIXJr3SkcU8YNtSPT6n1rwbUa68/D5evGMXprxZ8P+7uiBXvGU5UrxNyOO8uiBXvOo0AD0MxAM7ESKDOyMbSz0u18k81oOnvIdmPztyODM9T+KKPEhBKT2pzIe8obb3vOXN7zoW1c46YdUCPW4DbL16scW8r+gmvAST/7yDzL68rNu0PBlbvbw81j25ojpNvXjlIDykwdC8RPJLvIbZMD2WDg68QmozvLiMTb27ESc8YJOgvDM2azsCS588ELz/ucMv3zzNz7G7CSQ2PZSJNL2fbRM8tn9bvCoXnjwDjpY7SQL9PPrsLj1/ABo75CEyPJIAhzzzE5i8nixGvQDEGzwRQEQ9mhyVPIWUjzzN0MY8bQLXvG1CDz1Wrqy8Ma29O4PPfb3imIS6ycRpvBE+Gr0b3wG9uEaXPdp/tbwHn9w8Y2DaPHUd0LycpUK9pke/vHUbJr2s27Q7C6s5PbFtADsW1mM82PgxPEHmbj135Iu7H/FcvJB917zejKe9xG4CPQUWLz3uwQQ9uxI8vRsjjr00uq87A4+rPDzX0rzgEha95qlKPBVOyzwYFpw8dRw7O1AbTLus27Q8ZufdvBvglrvr94k8KZTuPM9Y37wAhOM6JYXSvEZ3pbyaIGm9WbyzvIvpYbyliAy8afKlvIBDET3HPeY8BNENvAecnTx1XQg9CJ5HvXksbDzoLzm9wuiTPAurOT1UKD68bHzovMGmMT2P92g8y0eZPE6WcjwOdB+9Y1/FvHgnA72s3nO9TAsbPOUkcTx5K9c7Vq4sPOATqz2XmeW7eSpCvJIDxrzvBRG9nKIDPCmU7rwEk/88/HZxu1AbzDxB5m69jzYMvPISA72XE3c806aevE6Tszxey089Pl5WvBrjVTz++rU79iCKvJSIH70OM1I9XETMvB/x3DxUK/08Ok2QPAOSarwY1/g8UBtMPeKYhD3Ebxc8R7kHvJSHCjzwSIg8347RPKZJ6byqVtu502OnvFyFmbz/fw+8/vo1PEwNxTv++8q8dRumPPrrmT3qt9G8xbbivFBcmbtZvDO8y0iuvGXmSDzfkPs8BJLqPNp+ID2L6Ew7R7ocuolj87xavci8bQAtPLDpOzpav3I8/vzfuwkktjyFlI+8fXgBvZ4rMbtxDrQ5mh4/vSmT2bz67tg8uEUCPDZBszzLihC8ZeMJumLZVjzR3k27jG47vajOwry9lxU8f743PeFWojyYmNC8Nj+JvAebiL2lRRW8c5bMPF3JJb0lhdI713RtvK1gjryUi948NfyRvImhAT2qVts8f763vACCOT0VTku8Agm9vKwcgj3PV0q9AMOGPGHXLD2uowW9pMA7PUe5hz0Lq7k5I/ykvATSorxgkgs9IDGVPJYRzbvlYxQ99Fv4vKTCZbzinFg8srEMPZ4t27tfU+g7ycI/vfbhZj1i2uu71OgAvTkKmbyxsqE7HOV/vNezELwtoeC8PReLPGSgkrx9N7S87cMuPIbYGz3N0du6vFMJPfYgCrwvJjq8Y6ASvQkktjzNERQ9bUIPPaZHvzxzkw090mKSvDpQTzwEkmo5HWnEugSR1TwxsPy8f763vEElkjx8Np86GpyKveKbwzvPV0o7rqMFPY1xej2lRqq8h9rFPDGvZzvNzhw7B5ydOzzUEz1Wr8G8SP4ovZdRhb0b4Ba79Fpjuz0YoDu6zRq95+mCPca3dzxOlV297DsWO5IAB70b4kC+6DDOO+QixzzLSUO9twS1PDIyFzys3nO9+3EIvXUbJr0ZWqg8nKXCukgAU71jXZs7W0IivC3hmLwb3wG9rByCO8nBKj2XmeU8A40BvFMnKb2QeYO6kX5sPYBI+jzDL9+8GVu9O2nyJT2Z2Z08vtuhvJtfDL2Zmnq83ownvelxG7sCC+c8bf6CPWHWl7xp9M87dRumu9JikjwyNME7SYWsPJiWJj2DDYy828ACvACCuTmz9i29Pl7Wu+EWajqH29o8lg4OPPISA70lhVI8avZ5PPRWD706TRC9JYQ9PH06cz3y0TU8uYojvASSarvmqLW8qVKHuyG3Az0e7Yi8/vvKPHgng7wYFhw81e3pu/Ra47tYNkW9/fiLPGr15Lz24ea8+3GIvDzVqLyxbyo9Vq9BvcuKEL0heGA6pknpvTS6Lz2kwLs7uEUCuvRYOTyXmWW8fTneOx/uHbzJxOm8SwqGPd1Hhj7RH5u6F9XOvGBUfbsAhOM6avb5PK5iOD0hdjY92n2Lu61hI71I/ii9wyuLPJdSmjwrWQA9rWCOvEqGQT2oD5C76rdRPVr9gD3FtU29UqNkPIXYm7rsQH879Fpju9wGubw/no69A5JqPM3S8DuycD+8D7grvbsQEr2IXgo7nKStPGt5qbwvJ0+7Qmqzuz5crDw9Fws8fryNPEqElzwONfy8QOXZugyueDzr94m8BNKiupB5g7w5ymC7HWnEuxqdH7zafiC9pL8mvScLwTyDDqG7G+JAvFQp07zNzzG9tPjXvGbn3Tj2IAo9HWcaPBlbPT3sOxY8wadGPQIJPbxviEW7W0KiujjItjw6Tzq9ja+IPUj+KDxCa0g9y0rYPL2Zv7wZWqi6xzkSPfBM3DuaGwC8N0RyPbgG3zw5Cpm8iWFJvU6TszrruGa8nKZXOi4kkDwSQm492fvwPHvyEj1dyaU7Y1yGu9TpFbzcBrm8RPE2vJ+wijtjoBI9ni7wPJnZnbyBR+W8gEMRvcc7vDz23ZI8cMkSPRxmBTwhd0u8rmX3PBlcUrv3IZ+9QSWSPNp+IL0snQy7S8eOvTnK4Dzuxm080d04umn0TzxgU2g9K1oVvew+1Tyz9IO8wywgPYfaRb2G21q82PYHPfLPi7xzkw28K1kAPN+P5jxvhQa89ZobvUTvjD2r2h89YdcsvbmKI70anIo8WHeSPci/ALxQGaI9fTjJPIhfHzyaG4A8IXY2vQyu+Lx5Ka28ZicWvEvII7uLKIU8iGC0PJXKAb19OMk8MjOsurqO97oM7Rs9FUyhu+KaLr1IAei7pUUVvZIAB7yw6tC8lItevYPP/btsvKC8YhkPvdn7cLz+/N88xbS4PB6qETzuwhk93AWkPPBLRz1vhYY7rWCOPaVGqrw1ve68QOKaPGNchjxO1RU8iaKWvS8o5LzRHxu8bLuLu/77yjygs0k9HWnEO/Na4zyDzmi71nCZPOq2vDumSem8h9taPXek07z++rW81SwNPr8fLr1obmG8Agk9PQST/7sUyXE6B52yPFtDNz2Jopa9lxN3OhC76roHnTI7BRQFPa5iuLqF2Bu7H/JxOw+4qzxreSk8E8fHPDtR5DsNMr28IXUhPYPP/btCaIm9q9kKvfLRNTvuwhk9UZ+QvE2RCb3V7NS8O1FkvAuqpDxeDJ283Al4PI70qTymR788tXwcvEj9E7xjX8W8OMi2On68jTx9NzQ8nKdsvAurObuwK5687wURPbcCCz3DL9+7/3+POoheijy1e4c7ni3bOzHvnz2oz9e8y0rYPG4D7Lxi2da8wyuLPU6TszyJYl48m6ZXPKC187g+Xla88tAgu/LT37yaGwC6JYOoOrsQEjy9mtQ8FMnxvHBPAT24RYI635D7PI1vUL3+/N+8vyBDuyP+zrsVSwy8KxgzvYLLqbzNzzE7nKMYvXOVN70b4au8/fmgvBpefL3hFuo8P54OvJtgobzNzpy8hFCDO+fpgjzmpgu9+eqEu6TAO722f9s8erFFPPBN8TwyMhe9EPqNPMtKWLyXmeW8GVkTPScN67sEkVU8FU/gvBVQdbYp05G87wWRO8RvF7uAQxE9UB12PK6kGr1cREy95B+IvPrv7bvTpYm9RnnPvDI0wbyWD6M8lcoBvR1qWTookBo8GVu9u2BS0znhVqI8rNxJveerdDnzE5g7+uyuvQ+4q7uuYri8KheePE6TM7yUi9685qlKPLV9sbyeK7G8jXDlPMGmMb34aX+7PNWovBQIlbyZ2Ii813Ttu7rNmjuYlia8hFGYPL2WAL2L6Mw692Urvf799LvR3Ti9wy9fPduC9DwBSoq74RbqvGnzurwRQES8eWuPPOq2PL3uxm28KZLEvI1v0DwONOe7LJ6hPGt6Pr1FMxk91OkVPCAxFbyL6vY8jvSpvK1hIzxfUb48qM2tPCoaXTvEbxe9jbAdPVKiz7wCCb27dRy7PE6V3Tt+vjc88EgIvcMv3zzDK4s8s/YtvU8YDT1mbcw8nKbXvFKiz7wQutW8/Hbxu0Z5T7vHPvu7OQmEvaCytDzPWfQ8MzZrPVKj5LzDLkq7s/YtvW0BwjwUCBW+DKxOPU8cYTz24Wa8E8YyvUZ2kLsGGNk79d2Sux1nGrvfj+a806UJvQigcbwp05E8d6IpvAkkNj0VSww9AII5vIBI+ryxbYC7ZKASunuy2jzdCOM8iF8fu4XYG7xbQzc9dRsmvOOd7Tx3pNM8R3t5vNJne73+OwM9miBpvLP0Az3Xc9g8P19rvMnBKj2Uhwo7KZPZvHDJErwtonU8j/j9OpiYUDxq9eQ7GV3nOjM11job4Ss9pMFQvHUf+ryP+P28jG67PIRTQr0+XUE9AITjPB1pxDxE8ba8A48rPScMVr2JY/O4f/8EPRlZkzwwrKi8Fo+YPBE9hbzruGa9myH+vIRSLT1xEfO8/38PPIvq9jxey0+9m6QtvaaIDD1p8RA8SoWsuj9fazyP9+g8I/5OO+fpAr1a/QA8CJ5HvUTzYDzwSIg7NLiFvACCOTyw7Hq6f8DhOhlaKLyz9Rg86C+5vBVPYLu+2oy9ZGHvvPtynbxiGY+8vpx+veKbw7ugsjS9neYPvNwGubwAhOO8NLqvvHkoGLwWUPU7BRUavLmJDrs6T7q8avXkPP+E+DsUBwA9o74RPEqGQb1q9vm7AkufvefqlzvejKe8KJJEPfx1XLstoeA8cQyKPE6W8jyRfmw8Nb3uuyWF0rtezOS8uxASPEJs3TwQulU9pke/PCB0jDsQ+yK9o8N6PAzshrxQGjc7D7grvEqFLDsDjYE7qlQxva/oJj3qtSc78YwUvfrtQzxl4wk9VGmLPKzbtLxA5MQ8tPjXvKzbNDp3o747RTKEvOv4Hr25jE28jXBlu3EQ3rzLihA99Fg5PLJz/jyz9IO8KxtyPMnBKrx1GyY8tPfCO7qN4rx2Xp28gw4huhVPYLylRio9+GQWPEgB6LxviEW95CGyPMWzIz1sfX09CN+UvMW0uDz23ZI8erHFvHPWhDxnao281e1pPcMtNb1UK308TtSAPajQbD0ONXw8XcgQPWt6vjzwTNy8fXgBPYhgND2coxg656v0vAef3DsqF568jvQpvRvjVT0HnbI8eq+bPADDBrxO1AC8rNs0vAiex7yL6My8FMnxvMc++7sqF568QOTEvAyueDwEk/878tT0Owom4DxcRMy8I/5OvDjJSzpyk409pUQAPLaAcLvuxdg6i+hMO3uwMLwCSgq9SYWsPKZHPzwW0o+9/vq1utp+IL0nC8G7iGC0vBaPGLyEUIO8F9S5vKzbNLzLScO8kgRbPBC6VT2uYjg9fTe0PASRVbygtXO59t4nPegwzjx3oz49YtlWvF7LT71UKmg8tmQ+OkkPIz1Xuwu9A5N3vYLOFjxQVYe8CuWPvM+TwzyrNMS8CLKNuYDYzLyq/CY8xMc6vD1N0DrbX8w8ytocPEESq7zhJCe9zQHrPPyLSTyKGZa8EEsUPSytGz0TKXY8/7SVPLzP3buI2t+8ynGQux9Kn7vO97S8tNJlvL4H+7tbPBU9n21WvOHANTsf68g7SQqIvFruDb2Qc+a7TicgPT+A0junb+k7GPPrPGxzvbyubOE7Vh3/vK0qjrxaoIa9h30HuZU9XL3znyC9rcu3uhHihz1IFD69pc6/vCJ9IT0xfCy9jzGTvQMxBL30jlG8qGUzPOcmOj1FQJK8FMwdPM0Ba7z0k+w8tNJlvHiDlzwzqpO86WNyvT7kwzo93yg9pdh1PSMZML2VnDK9QHs3Ozv1kjzPjqi8pN+OvDO55DxIFL48NezmuwH3aDwxgcc7GeSaPKzV7bw6tty8Kn80PRqKXzw4H+k7JLpZvA0iyLyV5R680svgvDF8LL1+oC+8dBZ6PMGPHbwOZhk9w9HwOznCkLz9Ij284DN4PNVYHr2aYQ07/x2ivIQGtDszE6A8iNApPGvSE73SxkU9ps4/PfPtJz1Zqjy7fA7XvKFeBTwTKfa85yY6vQdd7buXLgs9NPiaOzcmAjx/m5Q8PuRDvLzFJz1wR+m8BCrrvKzVbbtfEMG8B2SGPO40gTwzueQ8rss3vTZGorvth6O8zvzPPM0B67zllGG8K7zsPOm9rbwNIsg8n8ysPKfECbgDNp+7W0EwPRdNp73YLMo83Z4CPSGM8jxmuhY9sywhPO4taD024jA9xgTzvNLL4LtZr1c8i7AJPDnCED03fr881j2ZOwBb2jtwOBi9hax4vCBFBD16fP45Db5WvUcZ2bqfbVY9IxmwvBf6BL2/+Kk8DR2tPGtzPb3MDZ+6CfRgPC7v7jxVgXA9iNCpPIHTsTtchYG8IYxyvcxq9zvBOv28gNjMu1Q6AjxQt/o7gN1nvVtBML1G1wW8h9/6OzSvLrxDRS29ZXGqu5Bz5jr+GIc8iWy4vIff+jwjFJW8/x2ivPuQ5LxnqUe9h+YTPcYE8zynYBi7yTf1u2FDQzsVu069MXysvNEgAbtTSdO8xcKfO0OuOb3RJZy7Wa9XPKs0RL2t0FI90JjeOkNU/rqcP288wissvJfUT7xsIBs9b6GkvOXuHD0kq4g9XrgDvcCUuDztlnQ8OXmkPPV/ADzc+9q8e7aZPOsGmjwTKfa7R3gvPT3kw7z8Mwy9fA5XPXhJ/LuKDWK8H/V+PHoai7xxgQQ91GJUu9wAdr0R7D07Q6kePdX0LDvuggi9ma+UOqs+ejzk87e7PowGu0NFLT2GQ2w9U+r8vKs++rkIU7e88+iMu/pTrLy4BWg9bGmHPaEESjtoSvE8pJaiPBhNJzyKGRa98/x4PHg1ELyhXgU9vg6UvNgsyrxkbI88/SxzO8b6PL2kPOc7RoLlOUkPozyINJs9tl+jPNz7Wj0ih9c8XNijPL5cmzz0mgU9bWkHvRIwj708p4u9JV2BPJhwXjyoAcI8/x2ivU8bbD1k1Rs9jzauvXPUJjxx3ly98CMyvmcInryMmp88ff8Fvd32vzxDVP48tcivvFPl4bx60R68TYsRPPmygjuCzha9qzREvYCAj7xkdsU8kgravC5JKr10cDU9X7HqPEkPI7zxVjS9cx0TvPAelz09Qxo88+2nPPYq4LqDEOo8MsUYPWa6Fr2PO8m8vXKFvNrDPb0TxwK8LKiAPGE5DTxlHgg83y7dvHYCDjwJ78U8zVYLO7Gf47nk8zc9Mw6Fux9PujrNWyY86MLIvN72v7qjmz286NOXu3/kgLww4J08gXn2O2rcyTsK6qq8n3LxvNCTQ7mubGE9xMIfPXQRXzyFT6C6edtUvNu+ojxK74I8M6+uu4WYjDv08kK91LwPvI8xEzwC8k28Yj4ovRnkmjxchQG92wePPOHF0LxrffO7LFj7PEXmVr0HXW293o2zPP0s872rous86/plPBoth7tchQE92DHlvJ4wnrzth6O8U0nTvOjTFz0Nyoo+22TnO57WYjyYcN68BiC1PP4ivbspehk9yS0/PbI7crxk0AC9/OofPOpZvDz4vDg97TmcPDbiMLuYa0O77ihNvNEqNz1gpzQ9PowGvZNJkDvJ1YG7jUX/PE8Rtrwu5bi6tmlZvW1pBzwn46U80DTtvMYEc7wf/Je8eswDPUTyCj0zDgW9I8YNvAddbTziYd88RUASvD1NUDibnkW8xqcavPYgKrsY5Bo95PM3vd3xJDukkYe8+vnwPFruDTw6u3e71F25vL1yBb3qXtc3j80hO4DYzLy8wIy7FRWKvF8VXDyFp9280C9SPJhw3jwYTSc9q9yGPG4FFj36+fA8WKq8O57W4ruQc+Y8DcqKvYyaHz1CWxc9luCDPaFouzx2o7c7SLyAPLTNSj10axo84mb6O0BxgT0PrwU8qvcLvY2furwtsrY8Eey9Oyog3jyCb8A7Lu/uPNLGxTwpLJI8mmGNuo2furzel2m8FmMRPHjnCDx9qmU8ySikO6ui6zy8z128szE8vd3xJL0WV1084sA1OutUIT31fwC8QBzhvLmXQD2mzr87dqhSvaXT2jvtjL68MIHHvIUBGb3FXi49YesFvampBL0CUaQ8TEfAPUzeszwsqAA8HCHTvHwEIT0Tjee7mv2bu9z7Wj3Pk0O7bqa/PJueRb02QQc8sywhPJbZarxCDRA9GS2HPOjCSL1T5WG9M6qTPI2fujy/XBu7iXFTPUmrMTwkv/S8OB/pPETyCr3/GAe93zP4vGsgG7yueBW89Ik2u96X6Tz7kGS9rsu3PFJEOD2Rbsu7D68FPc1gwTyINBu9GoVEvCDmrbzz6Iy82dSMOiog3rze7Am86/VKvOzwL7w5FbO6EeIHPZ9t1juLsIk7H/yXPM1gwTz4Yn090C/SO5IKWj3FY8m8/iK9vDqxQT3G/9c808EqvFXWkL2f0Ue8GyZuPJBzZjv8kGQ8gNjMPD3u+TuBefY8yTJaO9iQu7vcAHY7yiikvD3pXj0jeAa91prxvMVo5D21bvS8z5hevKNDgD2P3PK85ZRhPdAvUj1ms/08e2gSvQPoFzwksKM8CVM3POaZ/DuMCEe8blOdvDuni7rpY/I8SQoIPQbBXj1bQbA8eDqrvEbXBT3MDR+82muAvVJO7jvmNwk8iNVEPVqghrssqAC8DmYZO3pySL11rW08ujhqvEG/iDtnAwM8dp6cPEtCJbwiI2a8VXe6vPPyQjsB92g8O14fvQuBHr3r9Uq8I3gGvar3Cz2pqQQ99O0nvAFMCTyhBEo8kW5LO0ENkDqirIw9vMWnvMooJD033RW9gd1nvJyZKj1b4lm7gmolPY7jC70pehm8bW6ivOpZvLwvi329zve0PKKlc7xDSsi87i3oPGHrhbyFrHg8wJS4u0pM2zzH+ry8lZyyPJuoe7teFVy73Z4Cu3RwNb2teBW9fqAvvOWUYbye1mK9b6GkvOm9Lb32f4C9EfZzPX8yCDxq4eQ89X8AvH9BWb2DZQq82CzKvPPojDsDjty8XIqcPDkQmLuhCWU9ORUzvVBVB7wbIVO5d5kBvX3/BT1eBos8sGIrPLvU+LxoQDu9jZWEvA9Vyrunas475PO3vHaoUrzEx7q8gOQAvezwL72ubOE7xWhkvdiGBbuz3hm9XnSyO7/4Kb2KGRa9Y9CAPBDxWLy5kqW8gxBqPKQ3TL3Hm2Y6r10QvJsCt70xgUe8fAShPBqFRD2hXoU77PAvvQD+ATwTJFu9pJs9vQn04DwuRA+8neIWvdiGhbx3ROG8QrNUvb5m0bwsrRs9vQ4Uvem9LT0uRI87IofXvASEJr1Drrm7GOQavd3xpD29xSc8yTJavJ/MrLx0EV885e6cvDEi8TvP8hm9Mr5/vIlsuLziYV894CSnvGVxqjwQmRu93fa/PJfPtLtnn5G7VhjkPDkazrzCMEe64cC1u4IcnjwSiEy8xL0EvV3TCD02RiK9ae0YvPFnAz033ZW8SQ8jPBDxWL1sGwA8LKiAvPe8OLwEKms9bWmHusVjSb0B9+i8ZXEqvUzoaTokqwg9BIQmvfSahTuFnSc9pdh1vBQVCj2//UQ8uAXoPK0qjrxdb5c8XdMIvtLLYD3CNeK6d+eIvGsbAL1/Qdm73zoRPPpYx7zTwSq7xL0EvZ3iFr39LHO8CU4cPYnLDr3xYGo99PJCPfucmLuhXoW8zL8XvFiqvDuCFwM9g2WKPEzjzjtkbI+8gNOxPIyk1bxM40490deUOyfjJbzOVou8GoVEPWdRijt354g8eTWQPGTVm7zoaos8/SI9POlj8rz/HSI8l3wSPbvbET2c4pY7y87oO/C/QDzCJpE8ZroWPb3ADL3vIzK9jzETveHF0Dy8z928sAjwPHN10DxaPJU8O/WSvM/yGT3PnXm9YUPDO2+hJD3xxFu8aErxvBju0DwxfKy8bgUWvRjptbxi5Ow82sO9uxsXHTz+w+Y8gm9AvTbnS73UXTk9ViSYvJ9tVjxBEqs8Z5+RPOLK6zxuU528jjtJPS5JKr2CdFs8P4BSudHXFLwZ82s8d0ThvEG47zxV26u8EFXKuTRQWL2+YbY5IPV+veTzN70g5i28dBHfvKhgGL19CTw8mwI3vdX5x7xkbI+8J0yyvP4iPb0ahUS8eDqrvHp347ttD0y6TxbROzbiMD1SrcQ8ZRfvPKs0RDueK4O98VY0vA5mmb3P8pm8yJGwvA/9jDy5kqW8DWaZPIZD7DupC3g8026IPL1hNj2SaTC9Ce9FvLioDzwMIsi6Yj4oPcRt/7swhuI82rmHO4A3Izx6fH67ZHZFvFtBML1QEba6BSVQuvdpFr18CTw9615XvLcATb0XUsI8eDqrPJ06VDy00mW8ORrOPIDTsbyx9IO8EueiPCiQA71lbA+8DcNxuxMkW7yRFo68F1JCPcc+jrwYlpM9km5LvIZKBTyzLKG8vWbRu2TVm7uCFwO9PoXtu9VTA7wdveG8GoXEPJNJEDv69FW8H1lwvFPl4bv2hBs8UL4TPWwbgLy/+Kk7HBICPc+OKL1tCjE8hAEZvCZRzTxgTfm79O0nPN46ET3lj0Y939GEvHwEoTxSqCk9LFh7vbszz7q2wxQ9EueiPKw0RLwMIki7icsOPRdIjLxle2A9zA2fu3PUpjx51jm9GPNru6fJpDzD0fC8z46ou1tBML1j0IA8FsDpvAn0YDp6ba08kBYOu2sgG7zMYEE9B7eovOJcxLzW+cc7gmolPUOpHj3nK1W7vmtsPN0A9jwGtyg7ZHbFvFvi2TwNIkg83zN4vcULjLxcfui8ZhJUvOcrVbzTbog87J2Nu1V3urxRqKm7XW+XPLqXwDrV/uI8D1XKO33/hTyldoK71fQsvFuKHD29ysI8+vRVPR9Kn7tk0AC9Rn3KO/3iCL1zPxA9otkTva1j5ryh4i+7TbGtO2Zg+7wl5oA9qfdsPAODsDueUwO88SkHPVXG6josfQw8J1uWO2B/bLzaR208F0jTvEE5Ez1NOPu8QQHIOuPMwDwu8qE83nL/PISh1Ty5E8w8jO5dvSYsZ7xdzQw91OisvPxy8ryetx28S5eWPP5gOjzsEC28hY+dvHV82rwWyqG8sb0nvHzSfjw0SEa8ABe3vIjDyzwvZze8cNMWus3YbryaSyQ8xYJKvUBCLzwp2Ue93z2Uvd+hrrzqImU9U1HVOo0dDTvfoS48m0ukvfavF702P6q98Ds/vT0XnTtf3gc9o2DhvESljLyMrfY7vRKPPaKhyDsJWyO6Ac0zu8Y4R71pRSc8Lo4HPW2oBD1Z8Xy9QIOWvaDIGDy2352892UUvcc4xzy/6z497k13PDY/qjsf1kK8xV+XOyQwBD15IJ87Bq5CvMFgVDyb0vE8+FB8PCFLWLw91jW98m/tPK4ZY73jBAy9YXbQvAJLZb1tL9I7yoGNPOgmgjv3ya46DI/RO36Ie7tDNXa9GzJ+vVirlrzIcBI96CaCPc3YbjwpmGC8DE5qPWbQET1v3DI7JmQyPaQW3rwL0Li7VcZqvYIjJL1hdlA7EemSPDY/KjzpbGg6PN9RPRTTPTxJTlC7CSPYvIH09LxG4lY83DU1vU8DED2+LCY8tYQfvAauwryAdkO62QEHvcqBjbtfATs86xnJPEUs2jyrrem8BDktPbM7WbtBAUg8I/g4vYzlQTxdzYy9c895PJfoxjx38W+84U4PPPOnuDvppDM93yj8PLhUs7vleaG8f1MQPEL4Kzxl4sk7WiCsvNpH7TxpBEC99hMyvV2Mpbztz0U9mN+qOyDNprst+z28TqgRPfQ6Ar1avBG9wh/tu/4ob7sYB2y75QDvO4IjpDshg6M8TLpJPQrZ1Dvm1B+8M9MwvEEBSL2WxZO8z/4BvBxqSTwDHxY8wKE7PKSPEL0p2ce8wlc4u74sJj3UhBK9vXYpvf9XHj1NcMY7MKiePIYrA71C+Cs9gK4OOwxjgryTvTS8hdCEOwgs9Dwcask8+UfgvPeRYzxzPxA8UtMjvZsKvTuVD5c8/mA6vbnS5DxPZ6q8FNxZvFyVwbu8R3q8P0tLPUoNabv1VJm8oevLPJieQ70PMxa8ZaFiPWTr5bsUVQw99J4cPahBcL2zc6Q8E/qNPRursDtXfGe8vvRavOV5oTymi3M8KZhguwhkvzwF+MW7buVOvJBROz1Vxmo9/HLyO7rJyDttL9K8jeVBPUkrHTxjLE29yuUnuoPiPD1xki+8nEIIPM0QOryhquQ7ezEavD2zgjpAyfw8hhbrPKhB8LtdjKU7iy9FvGdX3zvSMjC99ZWAPXqeUD3BYNQ8QArkPEiY0zy/Iwq86+F9O5O9ND3vfCa76aQzPBJnxDxmK5C89hOyOngpuzvIcJK80RiZOhurMDvYpog7SiIBPRh3gjz9/B89RuLWvHZQizoxJtA8F8GFPE15Yrw/KJi85EryvEsEzTw+VOe8VcbqPLhUM71W9Zk9hiuDPOSCPb1c1ig8zdjuvKHiL74QjhS6yMuQu5jfKr1IbAQ96K1Pu9F8M72C61i9fEuxu37ARrwe3968gutYvYdFGr0zm2W9iUH9Ox8OjruxxsO8vTXCOwHNMz3NELq8B+aNvG7CG7uAdsM96UAZPZbx4jt46FO8cFFIPN9pYzvHOEe8rpIVvU9nqjx1tKW8SceCvCXmAD2EodU77capuj7NGb216Lm7UpK8OqKhSDzLm6Q8KdCrPeV5obx5p+w4HWEtvLNzJL3P/gE9ox96PP2hoTv6/Vw56aSzvBQUJTwz0zC9qyYcvWF20LzPo4M8/x9TPXuVtDwLmO27hTSfu7AHq7y1IIW8wo8DPR7Wwrrw+te70XOXu6n37DotPKU8o2DhPFNRVb1bnt08xcOxui0ziTyuGWO8xzhHvAfmDT1iNWm9v+u+vJ8SnDz12+a9tDK9PIlB/Txbnl26hTSfPJld3Lz+KO+7dP6ovF/J77zK5ac9m+eJPle0sjtySKy84d74u70SDz1QXg49EmdEPR3o+jwrhii9eGEGvWyxoDypsQY9q61pPBnSgDzysNS8Q66oOwni8LuArg49QvirPQtsHr2mzFq7hY8dPRNeqDtrurw8X94HO/yHCr1aICw9qi+4PDYHX7teS768Ym00vOv2lbsflds8FxyEPNZdQjyx/o461Z4pvNBZgDydf1I9hJg5vArZ1Dzfoa674d54PQfmjbz+/B88j9MJPMrlpzscIMY46lowvUVkJb2LDJI7Ax8WPee2a7sNIhu9cJtLPDiRjLx0hfa86aQzulgy5DsVyqG6peqOPQTVkjxq+6M8oCyzPIsMEjtv3DK9gQmNO9TorL0eF6q71G/6PH6dkz28R/o87mIPvZVqlTtFLFo9OXNYPWjMdDyHRRo7T+73uy+xurzGuhW9VduCvC3D8ryouqK8WWGTOxq0TD3zp7i8lTJKPZhm+DuyO1k8JIsCvZjfKjzGuhW9ANZPud30zbzQhc88XJVBveRK8rxIjze9JO+cO5NZGj0TXig8jy4IPJzJ1bkAsxw9CeLwu6SPkL00Wv4858uDvEy6Sbywz1+9/x9TPdLOFb1cco68S8PlPGvyBz3qImW9jtwlPdz96bzs2GE9A0LJvMGhuzx09Qw8L3DTvPcKlrxgf2y8vyOKvMjLEDzrURS9HWEtPXkgHzylDUK9lfp+vflH4Dzkgj09z6ODuy3Yij0LTuo7vXapOz7NmTwrDfa8GpGZPHnfN72BLMC67r0NO+lAmTuwB6s6G3NlvBULiTrPYhw8E/oNPddUJj0hS9g6v8gLvaSPkDsU0707q61pvHYy17x5FwO9DI9RvKfDvroelVs76lqwO20v0jzJrdw8v8gLPHPPeTyG6ps82YhUPQZ2d7zsEC09nEIIvVlqr7zN2G49e0uxOvl/qzzuYo+93ocXvUy6STvBmJ+8FNxZPJHGULz5GxE8hZi5O7kTzDwSZ0Q8WrwRPJiew7zorU88rFpKvS661rwn6/89bDjuu0RtwbyZHHU9iwySum7lTj24VDO7U1HVPGgN3L1ySKw84qmNOjj1JryUtJg8PRcdPHZQC72V+n689J6cPKfDPryHDc+7YMDTu2iGDr2E2SA9Vf61OyIB1bzdcn+86aQzPSCMvzufNU+4Udw/vZyI7jtQuQy9OasjPDaAkbxhf+w86CYCPdPxyDzUp8W7UtOjvKDImLxqgvE7R9m6OoVXUjydf9K8jtylPOcvHrwQjpQ8/mC6PFNR1bwIZD+8cJvLPKovOLwsBNo7Hw6OPfKw1Lz/3us8U1HVvLG9p7ukV0U9jy6IPGS/ljwO2Bc9I8BtPJzJ1bwt+z07lTJKvLrJyDyGTja6iUF9vehsaDw1iS28dbSlPKVFjTyJuq+8XNYovf/e6zxKRbQ7JmQyvKpnA7yJuq+9dIV2u8xaPTwcakm8TTh7vYzu3bzPYpw8db1BvX0BLj09cps79CXqu2gN3LwBlWi8DYa1u0sETbuLL0W8L7E6u3FaZLx8S7E8jeXBOnzS/rwp0Ks78Ds/PGqXCb0zb5a7Db6APDTKFDxfQiK9Vf41PESlDLwbMn47VQdSvJEHODxZ8fy5P4yyuwvQOL3bdhy9Nj+qvHV8WrxImNM5VOSevLNzpDx+Aa68Ti/fOVXG6jznihy9peqOvFXbAjxkv5a9PyiYu8NOnLzoJoK9p4LXujj1pjumBCY9X94HvR3o+ryS/hs9RuJWvXqe0LtgwNM8v8gLvEKUEb1a6GA7BMB6up81z7xLw2W8dbSlPE3yFL0UVYw82EuKuyih/Du1sO68qHk7PaDIGL1FZCU9898DPdjJO7w+lc68RSO+Owgs9Lx5p2w8qmcDveSCPby0agi9PN9RPCqPxDqRxlA8G6swvaYEJjzKpMC7IzmgPBtHFj0RqCu8Ep+PO6kMBTw1JRM8A4MwvHzS/rwRqCs9ZRqVvJtLpLxloeI8n66BvA2GNbxLw2W9QQFIO2HvgruJui+7BfjFOthLCj2pONS8CeLwu8cA/LxC+Cu8yqRAPE8DEL1l4sm8bx0aPOe2azz1HE49CeJwOsVflzwhHwm9dXxaO7G9J77LNwo8QrfEPD0OgbyIBDO8gxqIvGaYxrwYP7e7rB2AvK2bsbyeUwM9oPRnvI+SojsPMxa9rB0APTi92zzGupU8+IjHu5HPbLz9qj08Bu8pvBCxR7rx8bs8SYYbPBULiTx9Cko6tGoIPXcGCD3GuhW8hk62vIwmqTwk7xw9yoENPKKhSDxV24K7Ym20PBHpkruhIxe9Nj+qPIFtpzzcbQA9jO5dPHpd6bzSzhU7t11PPf2qvTz5R2C9sw8KvdOwYb1V2wI9UF6OvJNZGj3N7QY9fIwYvN8o/LzlQVY8PRedvI0djTxl2a08tXuDvLkTTLuWxRM8bS9SO5O9NL1loWK9uBzoPGcW+LxTygc9DX0ZPPzrJL2DGgi8qLoiPXW9QTwjOSC9qmcDPLZm6zxEbcE8J6F8usWL5jsYB2y9djJXvKn37LxN8hS90/FIvPNDnju7wCw9kj+DvOPMwLvAfgi9TXliu+2OXr0ViTq93z0UvZwBIbxjZJi9G0eWPIcNT72fNc+7WKuWvJUyyryqy52869jhuxxqST1wm8s6Kw32vJ+uAbwNfRk9nAGhOlkpSD0RqKu7FsohvUL4K73LN4q9dIX2u0pFtLun+wk92Aoju+TDpDqr5TQ8U1HVOhsy/jsVktY8+UfgvBdI07wBqoA8qHk7PckmDz2frgG9QQHIuyi2lDth7wI9JyPLvEsEzTw1JRM7N8Z3PKKhSD0HpSa982ZRPSpXeTvL3Au8SI83vAGqALyRBzg8rNyYvLUpITwOumO8B+YNPUL4KzyF0IS8frcqvcxavbsgjD+7tYQfvUBCrzyh4q+6aA3cPKVOKTzdLBk8s/pxvKhB8Dw4fPQ4EUQRvaQNQrzyb+28NJLJvD6VTjtzxl08Zxb4vGhOw7zxMiM8GAfsO/NmUT03/kI8SccCvd+hrjyRxtC83SwZPdU6j7xKDWk9nX9SvOhjTDtYBpU9R9k6PbNzpLvntus8Lfs9PS9nN73tBxG90L2aPBn+zzvIJg+8g+K8u83Y7jyHzGe9dP6oPHdqIjw5q6M8ebwEu6KhyLztxik8FsohvRm96Dv+PYe9CwiEOzqiB73iDSg8JHZqPKLZkzyUO+a8bl6BPMcAfDjJJg+9UF6OOvG58Dy6phU9aA1cvHEulbzhTo88tmbrPPEph7wbc2U9J1uWPP6YBb3Rc5c8BDmtvL/Iizw+lU69bLEgO+V5IbylRQ29DsP/vBk2mzwZ9bM8l6ffPKn37DxxWuQ7xzhHvKUNwrzK5Sc9djJXvFX+tT0wL+y8uFSzvGKumzw9Ue67PesrPZcVdL2Ynqa8wrh7vLGHMb0s/g297gbMPHsmmjxYoZU7VinuvN/sWzyO4Ja8RsWCu31O/zxvKQ+9SYelO0XnmLwyTzI8EOcSvGVD3jy46WC7le0OPGbdmzyjXDa7er99Pa0aRr1X1La4u5r4u4bkqTwaM4a8l3wQPVqFzjz4/Qe9BD8/vOiknLwlEyy98mIsvRQ9aLzSfTQ99gK5vH+1GzoDYVU82YqsOwOaATsaM4a8EfgduiQ1wrzeH308GmYnvRxKYL2jS6u8sVSQPX+TBb09aAQ99H8RPXfbRL08Hk280cFgvc1Udb32Ajk8YbTcPG0dtbxt+547BB0pvZpgyT1/xiY8ocL4vKeWgLxhgbu9X78YPFNnyzy7whk9uWGIvdw7RL1pnz48u4ltPJFvmLz+ywS91tkUPXtZuzyjOqA8RAmvOxe1jzup4Hs9J+ZZunYwfDqiyIM8lFPROj1A47zSbCk8eueevBp3sjxUAYm9qovEvBqIPbzqwQE7m0++vLGYPD1JmLA7K1PFuyC3S7t6xQi9EzeZvcnFc72Q9/A7VsMrO9l5IT10GSK8s6QWuVf2TD0wryU7MHwEvAF9HD2eM/e8EJcMu9jOWL0BfRy9cpDvPB051Ts2EdU7frUbPAQMnj0Dqww9NkqBvInIYr3DMCM68bdjPHO4EL033rM8bymPPF7hLjz/8+m8tRYzPFYYY70Vh588QK3OOqxN5zyRork878KfvEwWpzyqi8Q7jEbZPKNLq7uBVSg9AY6nvEuN9DzDdM88FWWJvBxyAbzPuxE6Zt2bPNDjdj0Im5+8n7wpvUcmFD13/do80PoMvG8S+by4lCm847SJuxju/7zbpxG8vCOrPGDnfbpWYhq8k3VnPF7QIz23EQI8jwj8vLvCGb328S28NhFVvBqIPTw8L1g8fBUPPb4Ybz1ACBE7AGwRvYmmzLy6mni8VBKUvFtBojwmQZy5xjZyPCuX8Tyu1pm86eOXunh1AjwDmgE92AcFvRb5u7x3yrk7Gd30PFLTGD2lUXq9l/NdPFNnSz214xG8HCjKvDyKmjticLA8OqBWPXfKOTv1E0Q8k66TOfVGZb2yQ4W76sGBPOp3Sr1zbtk86ojVvJ0i7Lx0O7g8wuCcvIRK7DzOEMk7d9tEvMVvnjym/MK8CrgEuw5YET2Bqt+8K5dxvFswFz2WJv+8RQkvPSGmwD0SjFC89UblvCD797zkBBA9CL01PBlEETzyYqw8fgrTO9SaGTxvzkw9b85MPZ4i7DonHwY9D+xDvQDjXj2eANY7envRvKGg4jx0TEO72XmhvAs7LDxIdpq8BfsSO7wBlbxazwW9m2DJPEG+WTy7Z9e8juCWO11eBzx/17G6GLvevCiirTz/82k9aX2oPCxCujpF+KM8tgv3vMK4+7utGsY8LhVovGjB1DwO2zi6s0nUvJQxOzzClmU962Y/vZstKLw2SoE8GO5/uzYzaz39D7E7zRBJPdbZlDxpsMm8+P2Hu9pGAD1vKY+8XvI5vdR4g727eGK8Msb/vDHdFT3UUGK9239wPW8YBDtMJzK9LCCkPDJPsrzv0yq+MI0PPDerEj2giYi9XtAjPT7JFbqMRlm9v9TCvKfJobxxaIo88N+EO9J9NL3zL4u842rSvPJzt7vYGBC9BD+/OnrnHjtX9kw8PUDjvG8pj7zjFZs7uxKgPdHS6zyp9xG91HiDvDCvJTwW6LA8jEbZvP8E9bx320Q82pB7vJ4ibLtETds6iaZMPWa7BT1pn7681S5MO+OM6DzDY0S8mrsLPXYwfD1S05i8v6EhO8VHfbyQs0S9ppYAPOC5OrsO/c662BiQugtdQr0+yZU8dUeSPO/CH70Xxpq8puu3PK74Lz2qerk8U3jWu+m79jzqqmu8AAuAOy4VaDx2yjm962a/vGjS37vH4bq8YA+fvF7hLjv24CK9gojJPGzqEzyLaG+8ozogu0w4vbt7SDA9OykJveiTkbxMJzI8LDGvvcssEDspb4w8lDE7vDnT97t2Noe82YosvM+7ETtCRwy9ZGV0PX4saT5e0KM79JCcvFsfjDwkRs084Lk6vCiiLT13yrk59TXavHQqrbtHD368CKwqvKnPcDxsiYI8My2cvEipuztLpIq8Y3b/OiOymj1UIx+8OlwqO3Ohejxrcuw8LEK6PA7buLu7mni9d9vEuw+5orv1zxc8bGFhvZDVWr2c+ga9CKyqPKJ+zDwY7v85GjMGu/x1czu3EYI6ZswQPTeahzx7N6W5skMFPPUTRD0dBrS8bxgEPdjwbrvNWgC9XuGuvKUvZLwsICS9UIOSPLuJ7TxQg5K6garfvCztArwK2pq81ykbvSCmwLw8L9i8mpNqPP+eMjwn9+Q8UxIUPRCXDD3JcLy8PXmPusBugDsn92S9x66ZPOtEqTx7SDA9LhXoPC49CbyJt9c86plgPUF6rTw7KQm9qno5Pdl5oTnjalK9D7kivSABgzvbO8S8PesrvYb1tDzRn0o9JzARvEp8aT3d5gw9jTXOPA+5oryYwDw79DVavPnEW7z/njK8Zu4mPRmqU73EDg29QZzDvM7/vbyu5yS92XkhvBKuZrybcVS85PMEPaYe2btdR3G9L9E7PfNAFr21BSi8qmkuvZieJj3SOYi7FT3ou6i+ZT1MFic9x4wDvcZNCD2lUXq8YJJGPWG0XL0FI/i6XV4HPZivsTzNawu947QJvYmEtjzRn8q8AMFIvGbdGz2B0oA8HFvrvKmcT716e9E7u5p4PU3jBb0uFWg9fgrTPPCm2DzMMt88GncyvY6+ALyUMbu8maR1PNmbt7xPC+u8WrjvO3CbK71AGZw8Wcn6PCAjmTwewoc9oeqZvBb5O71zTEO8Z+Pqu8CQFru7eGK8xhTcvE8igbxlEL28My2cvMK+BryFYQI95QrfOyFilDwDmgE9FYcfPW37Hj2X8927X50CPft187yPMB29RfgjPNs7xDyO4BY905qZvdxd2jte0KO8flQKPJtx1DyfzbQ8w3TPuyD7dz3MfJY6z6oGPHcO5jzvsZS80NJrO4xGWbzcbuU7deYAPr0Yb7zdCCO8J7M4PXC9QTx4qKM8v9TCvE8cdjzO3ae9mK+xPFswl7xv8GK8CtoaPdcpG7ydEWG9ngBWPFp0wzxhxec8DjDwPM7dpzpo0l88A5oBO20Mqrxgo1G9o1y2vOQ3MT1IhyU9xiVnvHqMXL0e05K7TwvrvEllDz05oFa8zv89PSAjGT1EXmY9VDQqOl+/GDxgDx+8rF7yO7Rrarpwmys9K66HvDJPsjqpvuU6xfLFOpcV9DyThnK8HGx2PJ+8KbzO3Sc7aY4zPcB/iz01bBe90MHgO2uaDb0uFWg8XSVbPVQBCT3AboA81S5MPSGEKj137M+8JDXCvG0dNbzV+yo8tdIGvHCbK7itGsa7A5qBvDVbDD3dCCM8ExUDPQALgL1dWHw8qZzPuhNZr7zNVPW7aONqvcChobwOWBE8hvU0veKMaLzAf4u82M7YO1N41ry7mng9ze4yPFDHvryI2e27XV6HvEG+WbxAz+S8CriEvLR8dTz+ywQ9TDi9PEc3Hzw6XKq8+A6TvPmRurx7WTu9uNjVOxMmDrwl4Io7oIkIvclwPD3yc7e7WnTDPH+kkLzyUSE9qM9wOuNqUrxrLkC9SKm7vCQkt7yQ1Vq9BB0pPaLIAzyQojk976AJPBmq07zNfBY9tJMLvHYw/DvZm7c8kOZlvdJKkzuJhLY7BxJtvWl9KDtpfag8Nu8+PQfOQL3LTia9XUdxPLUFKLw27z69le2OvH5UCr3C4Jy8GlUcPBMVg7w5seG6zWsLvQqhbjz9ILy8T/rfPN+oLzlX5UG7JCQ3vatvfTxl/zG9hQZAPYJmszuV7Y48LCAkO0ReZjzGTYg7+Pf8PCQkt7y3EQK8u8IZvYfq+DyEgxi9n7wpPPJRobzBluU8HChKPN3VgTzNVPU8Jxn7vCiRIj0zPic8+A6TPBboMD2NNU69NkqBPWxh4bxTRTW74a5+OzfNqDxahU68Yl8lvRVlCTx65547tGvqvGAPnzso1U492kYAvYx/BTqDIge9beqTvFQSlDw6Sx875jIAvbf6azyYwDw9w3RPPUipO72DIoc8VmIavVYpbrt9ZRW+ZUPeO2xQ1jzAoSG9WmM4vVqWWbx3/Vq7OlwqPCCmwLx8BAS9x+E6u1w25rxX1LY8vkAQvOZDizzO/z09eKijPNgBerwZzGk8qOB7vNbZlLsGzsA6JGjjOxUsXbxpsMm7MqRpO/jV5jzv0yo9GarTvFflwby145E8ohgKvTwv2DzRWx68MsyKvExJyDzqwQG6Ll8fvVnJ+rxlEL08jwj8PEjcXDyhwni8YcVnvN0Iozp/k4U8BgHiuxpmJ7t1MHy88x4APSz+jb1IhyU9OeoNPXRMwzs1SgG8XYCdPKbarLzjjOg8bPsePON73TyovuW826eRu4b1tLyf70q9uKU0vYzxoTwWG1K9LCAkPaCJiDw+2iC9A4PrvN8O8jxrcuw8My2cu9GfSrtpnz474xUbPLGpx7zAbgA7AmFVvY8wnbxzf2Q8lCAwvTfes7w2SoE5Goi9PMlwPLzcbmU8osiDvBnMabzrZj+9IXMfvcs9Gzz8QlK8ypJSvYU54Tw503e9KYCXvJjRx7y42NW82AcFuKbrt7zakPs82YqsOzxi+bzSShM8UXIHPaLZjrxowVQ8skMFPXO4kL1bQaK8O4qavW/f1zyNNc6840g8PaJtwbybqgA9bxL5ugtdQjsQ0Pw7HEpgPNmbt7ws/g29m3HUPP3cjz24pTQ9NgDKOjCND702AMq8d/3aPMBugLxLnn+7kYCjPBUsXbxMWtM8HGx2vcntFD12Noc89r6MvDREdjw7OpS8Fvm7PFY6+bylL2Q8y06mu9wZLj0mCHC8dh/xvIFms7zHv6S8JCQ3vJOdCL3YrEI9mNFHvCGEKj16nee8jTXOPKbarLurXnI80NLrO+qIVb1KjXQ7RRo6vRVlibpowdQ71fuqOxUs3bzDUjm9dfcLPbRr6jn5okU9u6ADO/sxR7xEPNA7eHWCvS4V6DxQxz69PGJ5PdU/V72P5mU8z+P2PDZKAT3BuHs62AcFPHGKoDwaiD29NgBKPHf9Wj0Awcg8PtqgPJTcAzvrIpO661W0vFQBCT3eH/08E0gkO3N/5DyeOQK9Wx+Muw/KLb15rvI72L3NvBpmJzv/82m9BymDvAGOp7w6fkC75CYmOqJ+TDx++Ue8njN3vMtOJjzKXzE9n7ypPGGjUbp4qCO9u3hiPFJWQLyMJMO6f7WbPF3yuTxgkka9SVQEPStTxbyyVJC6rQk7vUp8aTxMJ7K73BkuvXbKOT1/1zG9QAiRvNJsKT21Jz48INnhPHiXmLw56o28tGtqPeYbaryp4Hs9qmkuucCyLL3jSLw8Gv7ovGGs9Dw4vJS9nK0cvYcZeLxwa3+9U796vDWdwzxsrYm7vUoDPAqbvLwTuBk9o7jSvHd7MrvLcha8FMXDvF1FYLw71ui8uB6IPLOJBL19hui7SZVzOaqaljys4tk7Q7isPItz4jy0li69wkiPuykm/LvwNvu6ZGK9vDCftzz46s88KOtiu6xeg7xCFAu7ajLavBynB71h2uM7oasoPVPSm7y2iIo8lRkTPSXRjrz2dB082LbxvJDtF7xhFf280yFuvChUa71oUx+9J964vIfDkD3bPsu8UQ4vPW3oIj24hxC96pTNvPi8YL1aZiW9eB/UOwZvwTxa/Ry98rEqvBgfLrvwNns9n/Vfur7uJDwOIxa9w4OovfYLFTz9f1M9An5fPZU0Yb1M4jO9w4Oou8PssDx48WS8IaUTOtFwojzqSxA8tqNYuYKE9DnwNns7mhcfPZS+rrsmOpc5dteQOwuo5jms4lm9KBlSvcytL73j8p88BZ2wva9dibzQNQk95dFavDGs4bwwccg82pqpPB7B27sRpvK8v8A1vLXRR70Ul1S9rKdAPFHgvzzmdfw8MAjAO9x55LzE3gw9tC0muz/HyjyB4FI9YRX9vHQucrulBZO9qjEOveU6Yz3uHKc7MhXqOM4IFD1qm2I9zl77PDHa0Du6/UK9wrGXvbJJbrz96Nu86s/mPHtsFD0kv2e7EOcCvdsDsryVsAq9izjJPIKyY7zeiws8p+TNPNgf+rzNf8A7ptejuTaq7TvNUdG8H5PsPD66ILu/shE9pLhSOzGREzzTIe67SfHRu2quAzwdSyk9wxqgvJ4jz7z2C5U86+IHPHd7sjxM4rO7QGtsvKUzAr3XElC9gpcVvStmEjw7P3E8cUKNutfk4DtJw2I98+zDO2RivbxmQXg7lbAKPc6fC7zAn3A7fh1gPCwXXj2h2Rc9hxn4O8AIebxTv/q8783yvFrPLbzfLy08ZGK9PIlZDjvOXvs7p3tFvL9kV710LvK7jleaPLqUOr0a/ui844kXPe93izwe78o8BtjJvGCSIDy/+848H3ievB/89Lve9JO85JbBu8lg7zxOPRg6GaiBPCxFzbwKBEW970kcuxUAXTxYsFy9UXe3PMPssLyG3t68FHwGPT6MMbv/jH09TljmOypmkrweWFM9RFzOvC27/7xRpSY9RJfnvM1Ep7vb1cI8H2V9vTL6Gz1M4rM9N70OPMSQ0rzj8p+70ubUPMO+QTswn7e7aOoWPbaj2LwE+Y67MQhAPSVoBj0xkRO7ywkOPR1LqbyrPrg7hqPFOwd867w4Uww8GRGKvFF3t7w8bWA8O1KSvCY6lzuYgSG8vYWcvLXRxzrqz2Y8gDyxO8mO3rpcwQm8RC5fO0A9/bzceeQ8d+Q6PfcYvzxjvhs8ZcvFPDL6m7yXGBm9zX9Au5quFjsaZ3E8ZxgGOmjqlrsLbU087RwnPaapNL0jpBm7uVmhu2RiPTxz81g9/2MLPA8wQD0UxcM8sfOGPIXECrzgPFc95Tpju5T5x7xXGWW96IcjPKs+OLx+HWA8VyyGvZA2VT1m2O88+SVpvbBqszzqlE27E4oqvhAiHDzWqUc92faHvfGkAD0tgGa8vletvUr+e7x8py29MM0mOwuo5jsHYR29v2RXvKRvFb2K/S+6ohQxveaja7y3R/o8saVMPZCED72PzUy8+zeQvPPsQz0L1tU8OBP2vLbxkjzzvtQ88hqzPBrjGr1Nawe9I7/nvOfjAT1fZDG8P36NO0k/DD0xkRM83vSTvCsKNLxXGeU7fUvPuzrJPj0eWFM9yLzNvDnqA7zqlM27hqNFvQIV1zxuFpI7nESUvA4jljtzilC6fOLGPB5YU7yURwK9wrGXvNzi7DwxkZM9FMVDPfkKG7uHsO88rbTqOgHavbwvkg08Ug4vvD9+jbyiFDG8tlobO2Cfyjw59628V4JtvcNVuTx2bgi8I1bfvHMhSDycFiU8RFxOPXksfr16mgO9hxl4utzi7L1NtMQ8ima4PC3pbrtcwYm7UhvZvOHzmTwroSs8pFx0vDDNpj02VIY+PvW5PFKE4bzSfUy8Osm+OwmOkryj2B09fQKSPLrPU7xxq5W8znGcuyNW3zz33SU7aLwnPY7AIr1O79086B6bvGZB+Dw7UpI9T5N/vAHavbtsRIE8NZCZPJi8ujw2b9Q7jsCive7utzvtha87UNMVPD8wU71CFAu9JjoXPGUG3zyaFx+8RHyZOsi8TTzXe1g8ohSxPBpncbt51hY9LymFPGXLRTsjv+c89qIMvdZurjyHLBm9O7savV2A+bxBqwK9nK2cO8n35rxjvps6NGIqPB2GQr1A1PS8rMcLOisKtLzT8348WwrHPBrQeTwGqlo9AM2TPCNW3zx0QRM9vim+u8NVubsPXi+6yiVWvYuh0TxsrQk9H3iePf/6grsYHy46rbTqPI7uET2+wLU8KBlSOz/HSj3qSxC8qDIIvSOkGb2O7hG8/K1Cve5XQLxXLAY8M1UAPYIb7Dtbc089KDmdPLBqs7wnR0G7/WSFO/CSWbxJPww8INOCPDaq7Tzbp1O9yOo8vTn3rbuj82s8uVkhvT4jqTsMjZg8gknbvB/89Dw+jDG7k1UmvWi8p7zwNvu8FQBdPP1R5LyMRXM9HqaNPDmOpbyjfTk9lxgZPcRHFb38RDo9FTv2upiBIT0aehK9SaiUOfsJoTzACPk7QyE1vVEOL70oGVI8C23Nu3m2SzzdS3U8YDbCPOQtubzST1297+ATPIxFcz3LoAW98rEqPcNVOT2kxfw8ZQZfPOSWQb1EXM47GcPPvDRiqjvHGKy8SPHRvLBqM7yM3Oo7P8dKPD1/hzvceWQ7TUu8Pfihkrwo6+K8kdr2uzWdQ70TuJm8Vf8QvRd7DL0CFde3ggCevKs+uLyAARi9SagUPY/NzDyK/a88EabyPLDTOz24Hog9RHwZvVBqDT00Yqo7jEXzvAL6CDxcrmi7ck83PYDTqL3hihG9NfmhukcSFzxlBt886fCrPOrCPDxNhlU9oauoPCwXXrzn4wE8AZGAvJ3otTqOKau8eG2OvM718j2jBg28affAvDGsYT2CsmM9hTo9u5RiULyFOj08kdp2vf+MfbyjuNK8LK5VPPevNj1gn8q7FFw7vQUGOTwx2lA8fTABPOr91Txg7YS6vsA1uqIUMTx48eQ5xN4MvdMUxLyHGfg7bozEPPi8YL1EfJm8n8dwPIlZjryF0TQ8HbQxvQ/HNz2sEEk9KDkdPQs/Xjs8beC7YUNsuTYmlztRpaa8VdEhPVw4Nr1ckxq87OENu1Ky0Dv7cik9vsC1vB7B2zwf70o8gpeVPPO+VLqqyIU9agTrvBi2pbyw0zu98aSAPGEVfT1X/hY8B058uwL6iD2jnYQ8TtSPvNJ9zLx2qSG8chQeuz1RmDruHCe8ouZBO6aptLulnAo8992lO3RBkzyhQiC9rTCUPLYM4bsFnbA7KL3zuzT5ob29HJS83rR9PO/N8ryJwha9xMvrunPYijxXLAa9XJMaPWQnpDwjOxG94/IfvYFqILzs4Q08u2ZLvOajazwdHbq8v7IRPddgCj0Q1GE8ENThvHk/nzy9s4u8P34NvagEGb1Xgu27J0dBPDWdQ72sS+I7pqm0u38vhzzwklm8oAcHu60d8zpfzbk7lJA/vfKxKr35Cpu87/vhvJT5xzrbbLo8eSz+PGT5NLqejFe7I7/nPKynQL2x4OW7j/s7PR4Plr2R2va7begivBmVYL1hVo07IeCsu+qUzTw1Bsy8apvivG8wZrweWNO8edYWvGZB+Dv/Y4u8oAeHvFhnn7uVnem8MDavOL9k1zsmo5+8ysl3vMjqvDxMeSs83McevJwWpbyUYtA8OgTYvE0dTT3xpAA9TtQPPAoExbuySe46+6CYPLdHejwC5+e8uVkhvGqAlLyF0bQ81tc2vfKDOz1vx927b5nuPL+Sxjwisr08DOP/PCNW37zHGCw9dFzhuR7vyjzRq7s8CY6SvfzbMT0vKQW8flj5vGFD7DxEl+c8kUN/O3bXkL0n3rg8k1UmvKjx97rJCog8/iP1PFwXcbw5jqW8sXfdvAHaPbyZ3AU9qDIIPJ5e6DsYH667pFz0PHk/Hz1XGeW8WmYlPD1RmLzq4oc7Sz4SvrEO1TyLc+I7ZZ3WvD5/B72sbKe8H/z0O6iIb7wBcbW8IDyLvO9k6jo4E3a9lJC/PDYml7zN6Mg7DowePXcSqrxJlfO8lZ3puVtYgbtULYA8zggUvHvVnDzVBaa81QUmO2i8pzxExdY8LenuPAyNGLwLJBC9tnVpPU2G1bwMene7sht/vDtt4Lwj0oi7vYUcvEr++7xvrI87nBYlPbF33TseKmQ8LNzEvD1RmLyVnWk8lUeCPbq0BbyLWBS9l6+QvCKyPT3EdYS9uwptPcugBT2sXgM9w75BvLABqzuLc2K929VCu/kKmzv0y348Vgy7O4sK2rzXYAq9KSb8vGytib21aL88oUIgvQ/HtzxSslA8MUNZvRO4mbxaZqU81kC/PKPYnbsjOxE8GIi2PIqUpzzLoAW8KDkdPGA2Qr3Kyfc6LZOHvJzbC72Bd8q8u4YWOwDNkzwa0Pm85FuoPAZvQbz3rza8OptPvbIb/7yjiuO7pcV8vKiIb73OcRw9REGAveYMdLwn3ri8RkCGu8fdEry5WaE7gcUEPAK5+DuiT8q8PoyxvFBqDTyBpTk9zBa4O5jqqTxJLGu96SvFvGoXjL2XRgg8Sv77vFXRIT3LoAW9Kv0JPVkrDLyejFc8VyyGO28w5jtRdze9T8HuvKgSPbzh8xk9rvQAPWytCTzJYG88hWisugzj/zw5YLa7o9idvMmOXrw9fwe7CyQQPUQuX73jtwY98yddPGEV/byF/6M80au7vMncGD2NhYm8898ZPAwR77vbPks92jEhPPjPAb3maNK7y6AFPMPsMLvqz+a8D5nIPEjxUTvZ9gc9kdr2uzu7Gj0gPAu9yXMQPX201zwGqlq9w+wwvPMn3bwsF967Hu/KPH0CEjzI6ry8LWUYvZytHDwxkZM8aWBJPdZurjvJjt685JbBOyyu1bzAGxo7THkrPOo4bz2Kz0C9JqMfPGoEaz3c4mw9aptiu9+YtTueI888YSgeveDTTrtCTyQ9ydyYO2FWDb1gNsI76Vm0vHla7bzuKVE9D14vPCyuVTxBq4K8u6HkvFF3tzw2QeW8Sz4Su/wWy7z8rUI8gaW5vGPsiry/ZNc8w1U5vKxLYrsfk2w85qNru6xsJ7zySCK7ajJaPUDnlTwGqlo8ghvsvBXS7Tu10cc8KzijvAK5eD2CG+w87/vhvEx5Kzxcrmi8srJ2uztSkrzIgTQ8Nm/UO7BqM733OQQ9rBDJPL4pvju6/UI9eIhcPBC5Ez1hQ2y8IoTOvCfeOD2Bpbm7Tu9dPclzkDwwNi+97sBIPBq+O7wNd1U9Hcddvf3vRb0lnJQ66c2ivWOqr7zXFA09eCc9vAOvvDwc/mS9NGjOPCcFIr0GuN65z+wIPL/vTTpnRcO885U7vRCAdzrpcri8P1TKO+MOrDuQgwM9KUXLO3+vrDzfj149x/sLveBzmLv4tJ28t7mmOtb+zLunaZ48AlTSPN0YrrziRbM6XjgAPL/TB7y4DHS985U7O9FjuTyd9FI8mUscvPXV5Dy1Xjy8C8mdPAQzC70CHUu8DglHvUqu1LySP9684m4XvQ6NlbzAPJU95Cpyu0ybMD3O5Gs81xSNvZX1Mr09Z2697NZEvVf1ujxWHh89OifFvBqHtDt0jCk84AWKPftBjrxfDxw8+XD4vN1Ptb1UtRE9IStqPaGqJz3UbFu9i2QhvSl8UrpMQEa87NbEvIY3nLiONjw9A2oSvA9WjjyEpaq615C+uhmwGDx8wlC9DJKWvCY8KTxnDry8HcfduzzV/LwVTAy9yYBfPLKoZ72IMhu9mP5UPLn5z7tMjQ27LcQYPZTnDz35D4i842F5vGwtnjwJpTq9dKhvvIK4TrsLyR09CNxBPTx0jDwNQM68t4IfPfjCQLshYvE7/CZNPISXB719VMK8sowhvVwiQL2kfEI9m7QpPA0kCDyZkMY8Lh+DPYuA5zvGaRq8v5yAvKAYNr1mYIQ8Z0XDvJwPFD2PyC087uwEPGSPbr2tKJW8VAjfvN6qn7xz+je829gEPQxbDz0fpha94CHQPEIzAz1u6fi7BQonve6E/DyWhyS97Wg2PNMR8brCL/c7wi93ua4N1LnpzSI96PYGPWLhtrz5VLK84M6CPM1S+jy28K08pLNJO87ka7wQLSo8r9bMu43b0bxQUQU9DtK/unMW/rw9MGc8PNV8PfMZCr1HpbK8hoppPCEr6juYdIC8yhJRvIrSrzzTsAA9MXtyPQVd9DwJbjO8o+rQvBWt/LweIsg7RS4CvKKPZrzrKI28990BuzW1lTuONjy9pvNyvI8b+zzaD4y87xZuvS0XZj2s6fA7WRmeujHNuruSCFc8SckVPTpezDq24gq77NbEuzK6ljzYdf08zRtzO2pOZTyGimm8fwJ6vYrSL71jZYU8lOcPvZjHzTxqTuW8JwUivOI3ED05Qga88XFYPbBovjyCJt28IJn4PDRMCDxMmzC9mZBGPRq+u7x9i0k8zf+sPJW+q72EpSq7qPuPPffdgTxEnBC8KLPZvEScED15DPw86rLhvNFVFj0XfhK9D2SxPPWCFz1dtDE95vuHPOwNzDxnDjy95vsHPHFMALsv9h69Nfo/u5umhjypqUe8m7Spum7NMrv978U8c+yUu9k+drz7QY47dXHoPDyCL7vUo+I7PRQhuhpCCjzgWFe8abzzPH1UQj2jIdg7jBLZPBCA9zwnIei8YuE2vZo+/rwtxJi6V/W6PI5tw7ug04u82QdvPPLMwjwMkha9i2QhvAcuiryks0k6f6GJPdQZjjto17Q8y1+YPJQeFzwmPCm8i2QhO74Kj7t5dAS9pUU7vY2kSjtyMT+8uEsYPQSUe71FLoI9rF8cPahOXb0Q9qI8pQCRvCVzML6P8ZG5Bu/lO1iHLL0LyZ08jja8uykphb3XWbe8ep5tvFls67uGimm8tV48vZ0r2jtCeK28LRdmvM3/LL3S5we9vB2zPF2mDj3ZPva7cmhGvY+6Cr3Im6A9j7qKPML4b7xz+je811m3PKe8azxS5Pu8XCJAvIfl07wLyZ28o+rQu1N27TyEzg494wCJPIkJN7tsqU+8/AoHPNnQZ7w4sBQ9nr1LPWRzKLxfYmk8pzIXPC8EQr1WY0k9Edthu87kazw1+j88+8viO8C4xjxJHGO8BHi1u7KMIb0JbjM8hKWqPdg+9jwHgVc8aPN6vPHngzuPyK28x9InPDyCL7zKEtG7G6P6vLM62buZWT89CgAlvAUmbb0K8gE9DSSIvCL04rzs1kQ8WqsPvM8/Vj1hhky92HV9vJmQRjyLt+69eXQEPeW8YzybpgY8muswvOepv7wXmlg8yYDfvFBRhbzq6Wg9ImqOPhw1bD07q5O7fVTCvI2kyrs0TAi8lGNBPbgM9DwwlrM7N1WqvJaHpDwpKQU9MV8sPLJVGjwnIWi8Nfq/PMxtO7whK+o81FCVPX8C+rxu6fi6hcFwPFBtSzy/04c8ZwCZvEcpgb3HxIQ8FJE2urHDqLyMEtm8CikJvUbcuTtulis9f6+su9L1qrwuctC8kj9ePPYUiTxTdu080xHxPH7YEDzvFm67G1AtPQopibtS/zy8vl3cvPvLYrw3qHe8Nt9+vKsgeLw5eY28mj7+PA4Jx7zAuMa8eCe9vIAKlzsDahK9t4Kfu97TAz2bB3c8Qst6PSFi8TxINyQ9byidPLerg7zvjJm8t7mmPGwtHrwxXyw9n0GaPOQqcj0G72U8KskZvHVx6DzamWA9horpu+Tzajyx+i89BQonvSB9srzF5Uu9S/ubO2pOZb1PEmG6eOKSu43bUT2FYIC7EC0qPRY/bjtd67i8M4MPvcLcKTwrDkS8eBmaPPqvHDyfT708drCMvEMmZb0PVg68kXblOtv0Srwcqxc8m9BvPMKlIryQWh89nA+UPCwyJ70k05s7l2xjvPcwT7w3HqO8Qsv6PPcwzzyJxAy8R/j/OxpCCj3H+wu7avsXPTODD7z2Z1Y9un0evc6t5DywMbc7aKCtu2qFbLsDrzy8jxt7O6xfHDzOreS8iUA+Pc3/LD3SSPi8pqAlvYHvVTuZkEY96SDwvKngTj0hYvE8zRtzvCEPJDyqO7m9xjITvfkPCL1w8ZU8fwJ6vPUM7LwmLoY86QSqOxyrFzy7VDo8zuRrPAscaz1UtRE9zf8sveNh+bxoyRG97vonvCz7H73gBYq9Lh+DvDu5NryoxAi8Rty5vPh9Fj3VNdQ8wRMxPLeCnzqaPn4852SVPR/rQDzre1o9/AoHPK17Yr2bB/c8Nx6jPJ300jxQUYW95k7VvK2yaTyQrew8LeDePPW5njzQ0Ue5ZI/uPNoPjLkQ9iI9UuT7uxAtKrz62AA9KLPZvNQZjruwIxQ+slWavCwyJ7w8nnU9pqClPE239jwf60A8b1+kPA9Wjr2B79W7hcHwueBzGD3yA0o9BQonOnBEY70xe3I73Wv7PPlUMrrDweg8m7SpPGigLTwTNsw8dgPau6Q3GL2UHpe7jxt7PIqNBT0DoRm9j7qKvAf3AjvTf3+83Wv7PMxtu7zYPvY8H7Q5PUPTFz3bK1I8PD0FvTX6v7ztaLY7Dx8HvMLcKbzZtCG9UpGuuyugtbzPIxA9bpYrPUbOFryQg4O6QwofPYK4zjzV4oY86C2OPUzSt7yrIPi81xQNvfmnf7wftDk93zwRPO2fvTxZbOs8kK3sPMTJBTycDxS82dBnPGm88zuWhyS8hxzbvGNlBTzLpMI7iK5MO0UFnrxWHh88ebkuvfo58bsjT807/ri+O2Z8yjsA+We9/0owvQQzizudK9q8etX0vKUOtLx4Jz28EC2qvLn5TzxrjYk88gNKvAQzC70KNyy8dszSPOVpFrxtcki8IND/vDHNOj0Izh48FRWFu8fSJ71VmlA75YVcPH0PmLxA2Bg9BEGuvMBzHDvJZBm9w4phPHPDMLrHxAQ8mwd3vDcQADysliO8aVsDvIu3br2ZWb+8HKuXvH1Uwjl9i8k75bxjO/mn/zsEeDW9Kw7Eu/E6UTzRYzm9SiSAPNLnhzxyMT+9yklYvLZDe7zvw6C9+VQyPIVuIzxG3Lk810uUvOJ8urz0Q3M6MVEJvVs9gbz6Auo8hlNiO8mAX7wTNky8Goc0vFNaJ7tztQ28exQZO6GqJ71NgG89Xn2qvLieZbzOrWS9YPTaPMLcqbz/Eyk9i7duvCL04rtClPO6N4wxO9kHb7p/Avo7nr1LvbbiCr3laZa8sGi+PNy9Q7zre9o8bs2yO5jHTTxKJAC8m7SpvEMmZTyv1sw53uGmPChgjLxGlw88GSxKPD9USr1NLSK8Q9MXvcr2Cr1hCps7RUrIPOlX97sf60C9F9FfPN1re7y/nIC8loekPMKlojyhcyC8i7duvdL1qryN21G8R2CIPBwZJjy5pgK92CIwPRqHtDzaYlk9FXb1vDFfrDwjT828LzvJvCKhFb4FJu08/CbNO/jCQLx9i8m8H6aWvMIvdzyfCpO6wDyVvJcZFrw64pq82CIwvZ8KkzwOxBy9scOoPHqebT2te+K88KjfvCchaLylDjS8HT0JPKbXrDt4XsS8B0rQvDEaAjuULDo6uBQRPWLhtjxDXey72CIwve76Jz29eB072bShu5jHzbtWY8m8Nx4jvLG1hbruMS+9vl1cPPt4FT0VFQU9KOpgPNy9w7vO5Ou7y9tJPWxWgj1ve+q8xQANvb/vTb0+b4u71eIGvYh3xTyqZB08sfovPKUOtLzgWNc8etX0vNAIT7wNJIi7bs0yPHBEY7xMQMY7FMg9u7zmq7xtcsi7Xn0qPGqFbL1yMb88tic1PddZN70QLSq99CetPMXlSzvwqF+7lRH5ux+0uTpJHGM7QB1Du0PTF7y3gh+9ADDvu0zu/Tvk16S79Hp6vNJI+DxL+xs7iu71vAQzizvDwWi8gJTru7Lfbr0xUQm952QVvRUjKL3JgF+9CWAQPb/vzbwwiJC8By6Ku4cc27w6J0W9R24rvOAh0DsVTAw8abzzuzEopTsxsvk8W5DOPCl80juxFvY8074jvdA/VrwVFYW9r1obPSwyJ71jqq882kYTvXFMAD3DimG8R/j/PMZ3PTw2Rwc6kXblvNeQvrzre1o8un2ePKKPZjxfK2K8i2QhPfYUCTwH9wI8hM4OvXawDLxEnBC9iOVTvH7YED1Cy3q9TVYGPQYmbTwaeRG9dR4bPGypzztL+5s8M4OPvAcuirsvBMK8itKvPBS6Gj3UUBU9nZlovERliTurzaq8IvRivVN2bT1jxnU856m/PCQYRrwGnBg9ifsTva2yaT1P29k82X0avRts87uDEzm7vkEWvZCt7DwtF+a7LIX0vNm0Ib1iGD65YpyMPN7hJj1o1zQ8Rty5uw7SPzwLyZ08fGdmvDceI73nqT89fkYfvFniFj2Vvqs9vB0zPS3gXjz/E6m75k5VPQqKeb2y3+47ML8XPfKHGLwWP2689CctvKFzoDxYo3K8QkEmPeI3EDzfj1489p7dvMibILybB/c8DsQcvX+vrLwGuF697Z+9vASUe7xax9W85+DGPLM6WbwZsJg8uw8QPdO+o7z/nf28dN92PGIYPj2g04s7cdZUPFV+Cr0pfNK8/nOUPEMmZb3VNVQ9GGPRPKsg+LxTWie8pip6vEsJP7vSSHg6qE7dO+kgcLwBwuC8V7AQvIK4zjwLU3K8uaaCPWQ8IT1bkM48u0YXvMCBP7uwMbc8vpTjPCxObT1FBR475k7VvFs9AbsX2Ku83sUgPdRNT73dOd68oQ9AO68TYr1yOqa6AAsPPfifCDsNVZI7rPtOvFWDCz1jzQ67LEeNvEJaCz0X43M78zTJOoDtHr0zPh083WfzvKE91byejjc7CA1nvGoVAT02Yfg8NITFO6sp5LtRXnS8sJ8kvQNRfjjQNTy8E2LruxAEMDtyoxs8Pe9Luwb1UzpOr9a68e6gvPu3m7xkh/Q8BYxePCoBLDxpQ108J644vAxgkzwtsMm8zEs+vEwuTr3STYg8cNEwuw8P+LxoCH27fGyWPbGUI71Oaa48zEs+PAWBlr0WkgO9n2CivXrgjL3S5BK8FMvgOrs60TwiOPg7SvPtu4+VFj0pu4O8AKKZO5Ot8Ly7aGa9CQIfPb9S5Dx5DiI91zeGvOFGKb3sm608j081OtkJOL1uUKi8fqc9PUwuTrpv3Hg8ZfBpPCT/mjv7KxI8VfeBvIhNpLxeV845pZDIPEHxFb1RDQS9bOeyvFonKLuPlRa9JiJ2vLB8V7sjxDq9EASwuzx7jjxwRW67llFGPAlrFDx/p708eVSDvbIgLbzueGC7zpFmvPorEjvc0Og8seVMvZJnSD3dOd48tGZVusV3wjwu9vG8R0TQvFaD0ryJKte8ZB5/PKidEzsHMLS8i0IjPcV3Qj2NCQ28PVhBO4JLE7vtD+u8yjOrPBw2Z7tY7Ec9rfvOuw/h4jrUQoe9uzpRPGzEZbx0u647tjhAvEPDAD3LnKA8hKkHvYK0CD0WkoM9mdJOPPRvKb0nXdY81mVivZD+0jzAGYe8b66cO07d67xNADk8s2YOPYsUDj3IPnO8ktC9vOIYlLzws0C84AtJPfuUh7ymbXs7FJ2EPL51Mb2AEDO8wzEaPLvR2zwk3E29XPkSO3aNGT3EvSO9D5s6PLXPSjotpYE8chfZvJOt8LxGRIk8XD+7PC+aAD3UtsQ8MFQfvJvqYbwuGT+9Bzv8vBe1F7xG/qe7F0yiukouBzzzKYE835cLvTiRkLxhBuw8quM7vKcRir31HoA98zTJPLzGkzwkc9i8BfUMPQ6bOru/u9m5eYJfO7fnXb0Ty+A84LpmPFHqtjyb6mE7eesNvZJnSL1xgIe8z+8TPRqfFb1mfCw97njgvJx2pLxCFKo7+J8IvWZZXz3nSLo7j7gqvWgIfTsuX+e8X8BDPHcZIz3Ij1W8LzGLPAWvKz3G+IO9uFDTu9ytDT2bUxA9brmdOlgycLvxhSs9JHPYPOwP67oGDSA8pzQevEg5CDuJKlc9lKIoPd1cK7wALqM8sHxXvaX5PTzM4ki8gb9QvTq067ybGHc8GvC+O+wPpLySZ8i7b64cPWZOFzwjxLq8NsrtPOvJQj0iOHi8E4W4u0ZyZbyj7PI7F2+2uw1VEj0e2jw9KwGsPFGZDT1Fw0c9Dr4HvfGFK70qo/65Ym9hPMj4yjvrVYW8mjvEvByfXLqb6ho9zh0pvcf4SjoKSEe5dmpMu7L9mD2da6M89QY0PXbTQTwngCM9llHGuz2e6Tuim4I77z8DvZJEe72mbXs8UV70uwuxPD3pjuK8k61wPRSdBD2MN6K9VWs/PMS9o7w9WEG+AaJgvGCSrjxRgUG9DOwcPKY/Hzy6Ij697z8DvdA1PLwazfE8yqfovJt2JL1U1LS8G/C+vDa/JTyxtze9GNgrvCRzET3JMys9nN+ZvNY3Br1AcFS9yxDePcsQXrzCpRA8b5ZQvOr3VzwT+fU8j7gqvUp/MLvaRJi4ajgVvU0jhrzpjuI8+FknPPJXFrwZQSE8pz/mvF1XBzzQWAk8MxsJPQlrFDzX8SS8EOFiu91cK7yXjCa9YSk5PRpkfDyIk4U7oNTfueKM0TwPeG07B1OBvHGjm7ymYjO9DslPuznXOD3LedM8r+UFPXW7LrxcPzu8n/csvd3zNT1p/TQ8ftVSOqCmg7y1oTU8Zk6XPMMxGjvW8aS9PQeYPAILVrx8mvK8GzYgPDNJZb29dbE8DIMnvRZ6fr3F63+86Lz3vSPchjzcIUu8nFPXPA6+B72mP5+8wCTPPAWvKzuCtIi8K7CCPaWQgT5200E9852+vFm+sryXurs8JArjPAO6czyt8AY9R9taPBpZNL3J1f085TvvPCVokDxPO5m6uv9wvCOWpTuXuru8xDEaPSYidj1fepu8mGlZvOTSebrrgxo81ZN3O/HuILyAeSi9cEVuOzx7Dj0kc9i8oKaDvP6JzbsACw88uzpRPRiHgry+DDw7yxDevDqpozy9gHk8lDmzPGlmqjz7CMW8hJE7vBqHST0Q4eI7ong1vDNsMrxJrcW85Tvvu74MPL2WUca7eyY1vTodmjz4nwi9+c3kvFtiCL0qUg47MMhcvB+3bzyc6uE83wvJPH1sXT0iCpw7MrKTPNfDjzz82i+8YJKuPDJ3+jyj7HK9UQ2EPUmK+LpfV049jqAXPX8+SLrzNMk8PwffPI5a/bugPY48rkF3Pb+7kro5HRq92nItvKqSkrsngCO9GLXeO6fWcDwrsAI93P59uwRpAz0iW8U79Qa0O658kLwiW8W6dmpMu/CzQDx4pSw9eOsNPB+Jk7wClxi9m8eGvAYNIDvwHDa9rIcRPFyz+Lk6hg+9mABkPen317rfl4u9SDmIPInB4bzWZWK8I6FtuZo7xDxRMJg7Fp3LvPrldzwmIvY8/onNuxfYKz3mmZw8qQaJPYurGL2SXAA9NRtQO98LAjzJhA29B3YVvadiszsQStg5i6sYvajLqDzguuY83DkXvfUGtLyig/08kGeBPSJbRTzHJmA9wzziPJ28zLsYqpY8fGyWvUrzbb0Uy2C9iE2kPO5tGL17VMq8Y/CivBYGwbxrrFI6dtNBPOdIujyrwG49t3MgPfxO7bxjNgS9aAj9vG65nTkq3pe8Lhk/vcntgrzAJM+8UZkNPANpA7x200E97UoEPflZpzu+DDw9jQkNPaJVaD3uSoQ8OoaPPdnm6rtFw0e9MMhcPXaNmTxlWd88k61wveDdMzs+cA09wV8vPZSiKD3O+hQ7tcSCPScXLj1AcNS8OJGQPPGFKzzt4dW8FwZBPTrXOLypV/m8eOsNPmUrg7xQGMy8QojnPK5Bd7g7QC49D3htvFgy8DxUAkq9B3aVvPk2WruA7R49wTwbPROohbywcQ+99x5HPPZBlDzIj9W7ELMGPe2brTt8JjW8rjYvPDrXuLwsR1S9Ym/hvJ28BTuXLvk8Nu06vKl6RrxYvjI9qx4cvKv7B7vg6Pu8rfCGPS+aAD3tSgQ9Ym9hPB0IUr27aGa8D3jtO0Wgejsj3Aa97Q9rvFLH6TykSiA8vrsSPcsQXj1U3/y7fGxdPBPLGT1TmdQ6Pcx+u767kj1mK0q7Pcx+PLTyF7wPeG081zfNPENaizyoy6g8JApjPQ2Dpztzxna88zTJvD/8Fjut8AY9RnLlu3rrVL3OHSm8uHOgOy0ZvzzKnCC8kP5SPPorEr2OWv28Y6pBO767kjxfTIY7AcWtvOTHMTwj3AY6SYp4OjJsMr243BU7muqauxGzBjzgAAE907ZEPRPL4LwDRja8aEMWveSknTxCqzS9w6VXu5zq4bwY2Cs8niVCPJBPtTt3aky9G/C+PMS9I7t3ghi9A93AujzvBDxdEaY8T6SOvW1QqDskliW9E2LrO3kZ6rz8QyU8J4AjvIq2GbzvJ/68/dqvvOV2iLxZbQm9S8VYvfwgkbyDbm48AyOivZGV3bybpLk8VPcBveFRcbv1BjQ8m+qaveKM0Txu/0W7PyosvY+VlrzZ5mo7zmMKPdaILzyAhHC5Ki9BvLY4wLy3c6C8QxQqPeoaJb36Ntq8VxrdvDbK7bxBtny7E4W4u/txOjwDUf67nwJ1PZo7xDwvX2c81ZP3vIVjJj12akw7ZnwsPdA1vDvosS+92U/gvLmW+7lKXJw8kvOKO7mLs7xYeIq8/EOlvBxxAD15gt88k63wO2V8LLtnIII8j+a/vIiTBTijeDU9kCxovJsNLzzirx67/34FOxYGwTv8txu82eYjPAA5a73ZT+C8NsrtPOzhDrrxYpe7tc/KvOkapTzGjw48/iDYvEfQEj17MX06/bdivEvFWL1BzgG9j8Nyu3ZqTDyYIzG8wqWQvOBRcTy9dbG4Lo38OKnju7zSB6c818MPvZ/UGDzbRBi+o3g1PYnB4bt4PDc8cBcSvUsuTjwvMdK8mdJOPFFedLxhKTm8wWp3OVw/O7wfQzK8juY/vTuGDzuPw3I9yI9VvLIgrbwMGjI6CUjHvKO+Fjt/7R483fO1vEmKeLxmfKw8W2IIvFtt0Du+UmQ9rc05u5LQPb2S0L08GYfJvLHC/7tH/ic8CxoyuyxHDT3dOZc81WUbvagRUTyesQQ90wcnPMVUdTy4cyC8VAJKvBKzzTwjoe085XYIvd3zNb1QOxm9RFrSO5eXbr1sLZQ7wzEaPLBxDz0mRUO8Fp1LPfIRfL3BjcS8PIbWvKPscjtQ6ra7bH69PGsVSLwY2Cu80+TZvNBj0TyPcoK9MkmePA3Jzzw1pxK9+jbavHW7Lj1TmdQ74QCBPGUrAz0QswY9GROMPCAVHTyZ0ge7+wjFvFQCSj2fsYS8viSIva0TGz0j3IY8Mnd6PODdM7z8iYa8VuyAvIcSxDyoqFu9viQIvWEpubyr+4e8olVovX1s3TmmP5+8wl+vPL9HHLwni+u7UsdpvYv8wbv3+3k84FHxOohNJDybdiQ6NlYwPUmK+DxJXBw9kvMKPeKMCr2FqYe8ErNNvdX8bDsoxku9H0MyPDa/JTyHezk8VEjyO0aVMj1akJ28LvZxO8VJLb37Tm28GUEhvYSROzxh2A88vQw8vBzCKT3NtDO8pSfTPH4+gb18mnI8B3aVu/RMFb2lkMi8RH0fvQ1VEj27aGa8/EMlvbHC/7tvIhM8AC4jO+3hVbwzbLK6ujoKvcayojzFd8I8CyX6vK7NubwoxgQ8Dw/4O93ztbxullA9Bl5JO7m5yDyivha9wsgkPeixL70tX6A8CHZcvPJiXr1BH3I8Mnf6uaZt+7y+dTG8rLWmvHN1hrxUJRe9+PAxvHQBkDzgumY9yGFAO/R68bzJyrU8vF2ePMJfr7vEvaO8kYqVPRPuLbwALiM9/ImGPVOZ1Lq6izM77A9rui9UHz3Se2S9hNdjvMa96jyks5U7QEK/vGEpuby9gHk8qynkvGLYVj0m0YU8xUmtPHxs3TuuzTm8uEWLPNKeMb1f7li8VT0qvVjsRzsBdMu8bbmdOzecWDwQShG9cqObOiuwAj0h5we9Kt6XvEmtxTxFoPo8xUktPFw/u7xH21o8z8zGvGUTNz0s3l69vrsSPbe5AT2/JE+81R86vJy8Bb2ig/27ZSsDvJFnSDw4Bc472KDCvEnFkTxEoHo8D+GbvI7D8jzmpOQ86SVtO4Ht5bvUQgc84owKPc/6W7t308E8k61wO0DZArwUy2C8IsnAO+ns6zzZvAS9DYOzvEUbR7vEUAO9tSY9PCMNAj2GVyQ8u/dePDsHpzvpoca7Oi0bvFthVLwMXgI9a2WmPBERV7wKZWa8yd3jPOzkxLwPN0u9Hh1QvIq/U7w8LNg77SiGO5Q9qTwzPWm8lPIDvXPFLr28hsU88kUQu9kHqrxcO+A8qM+ePCN+m7tcO+C7bD+yOofmirwaj6y8C6knPISQkrpuPu+7g19LPAEGIb1E9pU8n+AvvBNU1bz0RE29XcrGum6oJL20TDG9KCqMO8XmzT02/Ra9IbeJPGNQQ7tXm4W99Pmnu7EuZL1VHxm9S6HDvDzhsjxouHK7K20KPET2FTv/wd88kGvEvNI2CD3M+zC9YVEGvJwzfDtWRMo8OMQoPDpAFb1Qvk29D44Gu72r9jyfqAS7P7r7OvJFkDywn328zCDiO4hWYTsYAMa8rqBAPHZTUj2tew+8VWo+vHlLKzsuRlO9o7IUvctG1rwEBd685M/hvF3Kxrsu+y28YTJ2vRaXU7qaNL+6s+L7PDyWDbtwp+E83SQ0PE5VW7xSJ8C8tEyxPAAZG7lLocM8J5slPSh1Mb0nPYY8Pbs+PIGGAjyHMTA9D6EAvdXEq7yn9RK9ROMbusiABz1+jeY7BN9pPGNQQz01gSo9xXW0vP+cLj1AxhG9FnKivKleBT0GxQu8wn1bPdDNlby80eq8XcpGvRxDRD2Xy8y8lK5CPbw7oDwK1v+6o/25PDfqHL1S75Q8OA9OPVQmfbsCgg293dkOPQv0TL2XgKc8GkQHvYopCT0zuhg8BSMrvCIU5jx/Z3I9OA/OO90kNL3umNw8IMqDOz5dHz2zFIa81mYMPBYBiTuS1La8E596O+cTo7wwZCA9nFKMvC8gX7xtGT4954+PvPqSnrxtzpi6t4+vO7v3Xjt3nne8DEsIPQXYBT3RY2A9YxiYPFvLCb0rTvq7f2fyvLEu5Lyqztu8n+CvuVVqvrxOVVs9+Kz8vJSITr2Gokm8JMj9PBFCHrzIuDK9U7amO6yC8zwIGwQ9iZoivYd81Tz9DUi7Ie+0vBseE72bDku8sAmzPNtwnDr5O2O8ACyVvBBoErsifhu9STjRvK1c/zyaWXC93W9ZPYo8AzwgFam8IhTmvJCROLxcO+A8kLZpPALgrL0gFSk9Y1DDvOwv6jyJrRw9z/OJvGtlpjufqIQ9BJTEvQ04Dj0cQ0Q906bePGEydjyWuZU8BN9pPLodUzzytea8KQSYPCAVKbuU03M7MK/FPOFBvjyDyYA7qjgRvSnAVr1SJ0C8LSGiuzCvxbxzxa67UidAO37+/zwdHdC8THvPvCNrIT2K5Uc8OwenvKk/9TxDHAo94C+HPPK15ruh3+y5LrCIvJFF0DylsVE95M/hPLhpuzxdFew8tlcEPUKNI71bFi+9IBUpO4Q5V7wrgAQ9PpXKvIrlR7xqIWU8EVWYO8mSPr0FblA9fEMEPKf1Ej2Kv9M9tkvuu08v5zwP/x+8pbHROiXnDb3srJk9Iw2CvCkEGL1tGT696tKNPCYxcLzCMjY8u6y5vGR1dD0erLY8/mSDvYopCT32TyC9fWg1vuSEPLq60i08In4bvTUXdTw+4O86oVwcvR2HBb1q1r+8TlVbuzhac7vbu0G9xJsovTKJUbwukfg8HdIqvRUIbbxv88k8uGk7PQ04jrwhtwk8d553vAb9tj2qzlu8gauzO+rSjTwRoL08z4nUPAlmKbyWuRW9ByLovEH+PL2EOVe8xk9APBcmOj1epFK8fv5/PET2Fb2DtgY846owOtm8hD38+5A84LLXvBNU1bx9MIq8xk9AvampKj0X25Q8Bbl1O2rWvzjXeMO8R4S5OrUmPb0aRAc8ijyDvNyVzTwPN0s91ulcPX2z2jx0VJW8mw5LvGMFHr1iwVy74tAkvUXQobzTIw69AJzrPO6YXLp8jqk8ZZSEvWUE2zuAc4i8qUsLvSreI7vsL2q8KQSYPIZqHr1NMKq83caUu8Du9L2Chb+8+pKevFO2Jjtm3ua6/udTvdctnrrC1JY6I1invOowrTz/UYk+gtDkPPfScL1+Cha9XKUVPSjAVjyJrZw87TsAPQbFC7zjcgW9J5ulvJa5FT0+4O85kpB1PLzR6ryqzls94C8HvcDu9Dya6Zk9xFCDvKQia7spTz29ITraOkXQITwYAEY7GrUgveftLjoG/bY7V2l7vKuDNr16cNw7vat2PAnWfz2ggpC91cQrvMH6ijz6ysk8nOjWu4/cXTyQtmm8HdKqO/ZimrzRPWw8AivSPDNjXbzbcJw7FyY6PBlXgbxJ7Su8/VhtvG+CMLwbaTi8utKtu41N97x+/n+8W2FUu4xz67wqKck82QeqPL/JQzw+lUo9HEPEu7mO7DsnC3w8ChrBPAeMnbzkz+E8OnjAvUip6jyJMG08Z0gcPWObaDs4xCi9otiIPEOyVDyn4hi8cf4cPQhmqTwgygM8Z5PBvE17T7zfjSa9wH6evJCRODxPL+c8k3aXPMhtDT3gL4c8VkRKu1ICjzwpT727FOM7vK7r5Tqj6wI9hO6xPBNU1btyjYM8iFbhurZL7ryKv9M8HWj1u6T9OTy+tww9mBZyvBq1ID3q0g2999JwvYkw7Tz3PKa8/DO8O+NAe701gao80xAUu4cxsDwL9Mw8h8d6POu/k7zA7nQ9vTsgui7DAj1XHla8DYMzPY3doDxE45s80T3svOePD71wXLw8UgKPu+0J9jupqSo95antPFo8o7z38YC93ODyPBfujj0k+oe813hDPc2KFz08Ukw6/H7hPMh08bx+QsG8z9T5vDE+rLwX25S7C/TMPB9Ol7vfQgG9jAOVvNQ1RTwYS+s84tAkPZLUNj1pkv68Utyau1JyZb2JrZy8xDHzvBxDRL1Ab1a873Lou1ICj7wYS+s39zymPK/kgT1OCra6Mz3pPAv0zD2NfwE9wn3bO2uwSzuJmiK9k/lnvVnSbbwlDD+9CGapPAxegr32+OQ7J+ZKvIPJADwc+B491XkGvIMUpjxbYVQ9oG+WPDUX9TuKv9M8DM7YvFzwOj0nC3y856KJvHct3j0Kzxu8SbUAvYNfyzxoxIg8YwUePDTyw7wTVNU82J10vVInwDua6Rk7oIIQPVqHyDws3WC7TdIKvfOP8jza4bU7eRMAvY4C0jtKx7e8kLZpvAGogbwDbxO8OMQovbod07wd0iq8h+YKPQ0llLwajyy9iTDtPJil2LysN048s3KlvFSQMj110AE9EnpJPfG2KT1IXsW80GNgPJTT87seYZG9S+xoPAKVh7z9DUg89vjkPFitvLyjSF89o+sCvSopSbzBo888RIxgumGcKzsx1HY9XJIbvep70jyu6+W8tXFiPYMUJj2ggpA8Ie+0vFNrgTyKCvm7FQhtvJFF0Lv+ZIO7Xlktumw/MjxmbpC8zvrtukfP3rv6kp68IKtzuYBziDyzciW9pNdFvSUMv7w2WzY8MT4svMYXFbz6ykk81mYMPSebJbvfSWW9ufghvMnd47u6juw8o+sCPUKNIztCjaO8j0YTvP1Y7TpvSoU9m8Olu21k4zvzj/I79Gl+vE5VWz2LFo88Zm6QvLAJMz1ZT528jgLSvG3hkjwq3iM9HdKqPA//H7154fU8uGk7OiAVqTyoGkS8uo7svCRrITwBBiG9UZhZvZa5lbwQewy8TlXbvG9KhbyTdpe76jAtOd/YS70gYE48n+CvPLVx4jzyakE7I2shPZXTc73Xw2g8VFgHPfZiGrx0VBW9/Q3IvFNrATubwyW7QMaRPId81Tzs5ES8LkZTva17Dz2DyYC8E76KvLod07uk10W8YTJ2ulzwurxckpu76sZ3vKdAuDxJ7Su8Qo0juwb9trzjQHs9MWQgPJ/gLz2j64I8dEGbu4gLvLxqkn48f2dyPHH+HD39wiK9h/kEvYQ517yenG66OZ60PErHtzzBWCo7bWTjPMRQAzuxmJk86tINPfnwvTsbaTi7C6mnvAupJ72f4K86EFz8uHGB7TyOtyy9THtPvVqHyDymi1075oP5vDLgjL0zGDi7/8HfPOVeyLyObAc9c8Wuu1W147yvxfG8GdpRveysmbrNd508FYUcvT9v1rx/HM06/mQDvEuhwzu1ceK88ViKu/fScL19s9q8K4AEvpfLzLof0ee7mw7Lu1AJ87zAfh48co0DvS8gX7yrXcK86jAtvBPRBD3IbY06h3xVPCVXZLz5O2M806ZePXlLK7x9HZC8f/ebPEDGEbxL7Gg8qjgRvJ/grzzSga28u6y5PFVqvjzEUIO6LANVPBSrkDz91Zy8jrcsPUDZC71q1r+7A7q4PPIylrvs5MQ97KyZO4f5BL00p54801s5PMvDBT1VtWO79q0/O7ZL7rwGxYs8nJ2xPMSbKL2DX0u9JPoHvR10izss3WC8bWRjPTGJ0Ty9YFE9WdLtvJilWD3tKIa9WodIOzZbtrwy8wY9IaQPvP0NSD2c6Na87OTEvAJ2d72xLuQ8yVoTva6gwLuBTZS8BkjcvOOqsLw6eEA9xObNPOvGd7oy4Aw99K4CPZ8r1TxOCja6S6HDPCAVKb2sN049lcwPveGMY73jqrA8D6EAPXct3ryU8gO9JdQTvPFYCryWPGY76ezrvOrSjbzhCZO8SbUAvAZIXL31iI46z4nUvCBgzjxZYhc8q6jnOxLFbryT+ec8t0SKPMB+nrzXLR68tXFiPKWx0TwsR5Y8LyBfPfC2KTwsRxa9W7iPvOD9/LzuAhK9f2fyORGgvTxAJDE8I+5xvPk74zojo8w6YQ1FvZXfCb1gWGq9hcg9Oneed7wJ9Q89DBn+POP11byvxfE7THvPOgO6OD0xPqy99q0/PIWEfLyYpdg7TlXbvB6sNr2+Ot08aUfZu3pwXL2FyL28L52OvPOP8jttGb68o0jfPI8zGb1HTA49iFZhu4oK+bxjGBi8sAkzPOWp7Tnq0g28g1/LO3ZT0rr0roK7apJ+vJTT8zsZJXe6bD8yPDc1Qjv/nC694ByNvAgbhDxJOFG894fLu+4ohroSLyS6YVEGvYhWYTxXiAs93v4/PcQxc7wowNa8h3xVPJLUNrw1F3U7Nv2WO62CczxBs5e8PKkHPTwsWD0x1HY9M2NdvHPFrjy2tSM9G2m4PMSbqLzTEBQ9QxyKvPuk1bxvSoW8lrmVPNtwHLyhlEc9zq/IPM3VPDwT0QQ9sAkzvKGUxzxJONG8FYWcPNFjYL1bFq+8J5slvXJbebzj9dU8EwmwvI1Nd7w6w+U8IslAvR2HBbw6LRs8zPswPZfLzDwQewy9vIZFPCjAVjx8jik9XDtgvRfuDj2SiRE9K7ivueKMYzxepNK8GkSHvCXnjbypXgU9qM+evH0wirsuwwI87yfDPAlANbzi0CS8LrCIui1sxzvrv5O5bAeHvDwsWD0wdxq9+biSPDZbNrd1ecY66Mc6vZgl7btt8hw9ub2KvZnAaLzHesc7LRpjvLCLebx0AiQ9eK/ZO+8Jfzxktbs7EYaHvEvhjbw/ZZi7A15Ru/bYvjq6/lE6/0uXvKYxjjz1PcO8odBvvKiDGrwQ64u8ZOIVvLyqkjwcHpI83UXYvARvlrzjXQe8cp9Su2brsrw8Z0u7+U/9POaCOTtVaNM7vPMBPOBO9TvX0Ey8KQgpvIY0bDwlLpk8z1KkvKEqJD0pNQO9sK82vB/CqrweVIm8RD8ovSuHjzvWYiu9MVl3vUoZOLtWwoc9YElNvY6epzxApt881P9ZvbSJRrzJeBS9IfihvBWH/LpArgc8j3FNvHKUgjwBKFq7g8j9PE8gIr1kKwU9QKbfvE6ygLxpIao8ZIjhPKTOPD2TS129h3KLvAOWe7xh5Eg9MeAFO4MGnTrhhOw8OkKZO3s/hTww61W7JHcIvIBiBD2DY3k9YKOBvIDsurwWqYY8pKFivYf8wbzuyDe9zYpOvLrRd73/Sxe757iwPLdaubx0AiQ8XJwXPNoXCT1Ynkq8XqU0PLaSYzxpBRW9b8OPuwRe0Tz0sww8OfvcPO7INzyogxq9ExnbPI6CEruwrza81Cy0PI85o7wyTic8t1o5vUoZOL0tdJc8kULAPMOp1Dyy5a09SBAbPRHj4zs9Z8s86OWKvBf7EryEoRi8UsS6vIUrTz0djLM8q0NIvMdCnb0eJy89cdd8venupzyOghI94E51vD4CxzzNXfS8giIyPGzFwjwcxN088zSmvMFz3TzABTy9oLyCPCI5aTxVlS09V55KOwKCDj2RuIk7l7dLPTC+ezxrKke9QW61OxuDFr1b1EE8rhS7uwRe0TzzGJE8QW41vaC8Ar1ktbs7pd8BPVBhabzyxgS8iw78PNdGFrtXnsq8MzISvFMy3LxXXYO8kadEvJsjOj0ObCU9Vjt5PQdn7jy5Y9a8nJHbvFWVLb03uhW9mH+hvLgijzzI3Zi8BwJqPfpxB73BoDe9waC3vKgNUT2SFWY7UzJcvQDy4rtiUuo8eK/ZPLDcELzHQp08Eqs5vA2kz7zbD+G7/V4PvXlK1TxCCbE8dhyGu2Uj3btOhSa8yUu6vDN7gb1hESM9XAo5vd1FWD2ja+u8rN5DvOGEbL13twG9GSDFPPg7ELo18r+9tr89PYw7VrztLTw8zV10PRXhsLyp1aa854tWPR2Ms72mBDQ9EUhoPUDTuTxL4Y07p+gePLr+0bvSIxe8LUc9vO6bXbsuGuM8VgNPu0l+vDxoswg9dQtBO79qQL3DqVS8Lb0GPZaurjzvCX+7Ka70PKU83rzO+O872D5uvAw2LrzUEJ884rHGOpe3y7zYPu48uTZ8PfU9Qzw18r+8u2xzvBiWjryC9dc5XhPWPManIbuJDQc9qXvyPLPuSj0YhUm9jdZRvRtWvLtAOL67Zr7YO8cVQ72dvrU7NLxIuxrzajwkEoS9noaLPJeSmbpnhq48VPqxPfbYPrunctU87VqWPExPLzxwMTG6JG9gPeKxxrykRIa9d9MWvRS01jzgTvW7UsS6PIY8FL25vYo9ujb8PDqnnb3bob888WxQvKefL76SFeY7lLl+PBhY77xylAI8myM6vNkGRL0Fiyu82zw7vaTOvLzPUqQ83Nc2vTv5Kb20XGy8TCLVPLaSY710AqS8g5BTPI0DLD0MNi69ADACOwdnbrzYa8g9YVqSvLts87rPk2s8udmfPO0tvDxktbu8h/zBvD7KnLxj7WU73AQRvBromjsQ6ws9dZ2fu64Uu7sMCdS8dUPrPCNmQzyaiD49FQ4LPagN0bzDqdS8gVrcO4WhGL0QdUI9wAU8vP9LlzzGpyG8KdtOPGzWBz2JMrm8ItyMPPLGhLzKExA9VPoxPQKWez0x4IW7SOPAvEFJA7z++Qq8Dj9LPKpwor1CNgs7/5QGvVjLpDw7Qhk8uMjaPJEVZr1pBRU82s6ZvBdEAr1BbrU6GyliOzQq6jznuLC8LuK4vEpa/7vzYQC+pgQ0vDdgYTyF8yS7Lb0GvfMYEb0VDou8zV30u7ctX7wUcw89/5SGPtf9pjyRQkC9G1a8O7sPFz1zAiQ69qtkPFY7eTzoi9a89M8hvS9QWry49bQ8IjlpPNNkXjwxhlG8gBkVPc1JB72Occ08p8yJPXY4m7zPwMU8MevVvIhq4zwj1OQ8cdd8O9Vte71FrUk8+kStOw3RqbwRED69kAxJvMGgtzzRbAY9cRUcvdFshjqVri47MevVPGPt5brNis48DAlUvAOWe7zGpyG7UI5DPP/xYjtx+Qa85/BavAMdirtK7F088n0Vu3KUArsNpM+8CMq/PMpLurtKGTi91jXRvP75Cr2rsWk7lkkqPNcqgbpNkPa7vAdvPdORODu0tiC6w6lUPM4lSjyOnqe8DhLxPDIhzb3cTYA8TE8vPYO9rTwObCW8zCd9vCH4IT3XRhY9Slp/PMjdGD344Vs9LliCu7zzgbxSl+C7wDIWvTqWWLwJOGE8u8YnPBI9mDvfOgg8GuiaPPl8V7zEF/Y7UCCivKbXWTyemvg7IcvHOku0szwjkx08KxHGO3H5Br0dX9m84KipPIShmLxYcfA7/5QGPMAWAb1fJBs943mcvD54kLw2Hxq8G1Y8vJ3//LqGNGy9D9pGPCmudLxif0S8EHXCOz9lGD3sCIo7CtNcPdoXibvdGH49tSRCvN5WnTxGG2u7uZAwPDPporxHdZ+864kjOyhA07zwRx49Y0caPY7LAT1ylAK9xjmAvTyfdTzDA4k9Ts4Vvf9Llz1ox3U9HbmNvChtrTx2OJu9UWHpumFakrxt8hy94UMlvM63KLwylxY8v2rAvO6bXTz2Toi53A9huXq49jx0AiQ94KgpvRB1wjxYcXC94IwUvcd6R7zmHTW9qQIBvVCOw7xiUmq8CduEO69BFTxYcXA9xQwmO4Iisjz32L491P9ZPcIO2bxNvVC8jQMsvW9pW73m8Fo7m7UYvbmQMDr6RK29dqY8O16ltLyKXxM7QUHbPK5BFT0djDM9DmwlPTQq6rt/UT8996CUPKLQ77zlumM8lECNvIBiBL1A07k9BMzyO0WA77tQBA098tpxPMvmtTvC4f67410HPc1ddL2lPF68Vjt5vL1FjjztLTw8kN/uu6iDmryKzbQ8X4H3O0DTubpYy6S7utF3vShRmLy8B++7VPqxvFAEDbyU5li9fRvIvE0XBT2F/vS8bJhovRN+3zyX5KW8dAKkPJjIEDzRW8E8a1ehPDw6cT0vDxM9eK/ZPMbwkLzBc126t9ACvXkJjjxXFBS9wjszO863qDyh/ck8o6kKPady1bzaoT867aMFPXrAHrtDd9K8mH8hPQrT3Lzryuo8BVMBvZ5ZMT2ePRw9uCKPPCiah7zsvxo8P51CvFOMELxQux07p8wJPY0DLLzUEJ+7jTCGO0Ptm7yLoNq8gsh9vOttjjxFI5M8QUHbvD2UJbxbQuO7q0PIO0OkrLxXA0+8d6a8vJ/HUj2kM8G8Kz6gvDPpojwPByG9/vkKPLUkwjyWkhm92OERvGSIYbo0zQ08Xd3ePDqLiLxdeFo8dt7mPLw0SbwAMII8joKSO4G0kLxI40A9VCcMvJTmWL3HTe08DDYuPbCvNjw/C+S81P9ZPYShGLwgXaY8mC2VOurSkrw6lti8k3g3vYyVCr3ULLS8V9b0O+WvE72y5a08MVn3u3be5jwWqQa9KG2tPCUuGTwXF6g8ZusyOnyAzDz5T/28sRIIu41E8zwnpde8VpWtu3t3r7s9LyE9lkkqvcl4FL2H/ME8MzISPManob0dX9m5A15Rvbw0SbxFI5M63ladvIIisjyCIjK919DMvOaCubuZwGg9XIACPCDCKrxgSU28M3sBPUNK+DyZwOg8jQOsu8Z6x7wtvQa9/HokvFXeHDtox3U9y4GxvPUQabxox/W8wDKWPAzc+bxL4Q09Mk4nvfSiRzywLp258SsJPY6Ckjyd//y7e1NyvAllO7wUtFa84BbLOqkCgbx5Hfs896AUvRRGNb3HFcM85PiCO+Dp8LweJy+95vDaO5h/oTwiOem8+EbgPDmnHb1pBRW8lxEAvFKXYL2BWly7fSyNPE6yAL0Z8+q6b/u5umq8JbsbgxY8vaLqO9ZiqzwCw1W9FcWbvPlP/b2btRg8L6oOu3PVybsduY28U182PPpxB7zJwYM7vTTJvNp05bzcqtw84BbLO1GfCD23h5O62QbEO7w0ST1ktTu8mH+hvLS2ID2zwXC8mog+PKefL7uvQZW7+yiYO/pELT31Tgg9/IV0PDv5qTwx4IW7XDeTvIv6Dj1OhSa9W+UGvBLj4zzbaRW9xqehPaVpuDwUh3y7edwzvE290DwRSOg8EYaHOVzdXrsx/Jq8S7SzPJS5fjxsV6G9y66Lvc4lyrxQjsM8BF7RvHH5hj3mgrk7XYmfPdnZ6bygNXQ9unSbvYXzpDvVq5o7jeeWPLImdbhmkf481ZpVvcanobz6F1O99U4IPR/CKr1AABQ73Rh+uDQq6rxoWdS8mMgQPd7gUz3yxoQ7VaD9PBromjsdjLM8CMq/O8RxKj0V4TC9OgR6PeZKj7yaW2S9ycGDPIkF3zxmUDc6UGFpOzoE+jocZ4G6xqchvPvfqLx5wJ68jal3vG3yHL2k+xa99ti+u3ytpr38hfQ7VwNPPJ5Zsbte5vu868rqPM4lSrzhJ5C8CZIVvdsPYTxj7eU8moi+PM747zx23mY8HnAevWJS6rx6dy+9Y5CJvB761DzERFA8Q+2bvLfQArzLuVs8QgkxuzWEHrxWaFO8Shk4vXIVHDocZwG90gcCPMR8+jyjYJu8Ts4VPA9QELzUEB89zBytve0AYjuRQsC5sR3YO/pErbqvFDu9hsbKPI6eJzytTOW8Q3fSvDj73Lobg5Y8IF2mvGaRfjy0/w+9TyAiPborLDwPByG9Xub7O09pEb3e4NO7hP50vEmPgTyO1tG6BLgFPBkgxby49bQ8AecSO0hRYjzeDa47BVOBvS7iuLwtdJe8BqUNvcjdGDwYlo672w/hu1fW9LwB+/87KxHGPHamPD0dX9m6av3sPJRL3bp7U/K8r/D9PNPJYrsUtNY8P53CvHQCJD15wJ487VoWPXv2lbzGpyE9NcXlPNhryLxOWEy85BQYPSEwTLzI3Ri9l7dLPKdy1Tsqdkq8NYQePZG4CT03uhU7NfI/O0/zxzjk5708jGgwPI8dDj2P32690NGKPMjoaL31EGm89hBpO56Gi7uZ7UK8JS4ZPborrLw5ltg6uiusPMuuCz1sxUI8pTzeu2FakruZ7UK8O0IZPIdhxrzes/k8t9CCPOQUGLypDVE8hfOku8l4lLtlULe79U6IOw/axjs7JgQ8S5ieO4UrTz37DAO9upAwPcHhfjvRiBs8RtqjvFEpv7sAjd486IvWvHkdez12OBs8dJ2fugSLK718pcy690QDPUyGNL3CvuK80hmxO9jwWL2IBD46JKX7PAh7HDw2AMo8xErPuwgs7TsGGao80vT7vL47L7xmNhk8JeasvPcMi7zyHiw8pCSTvJptir3EUwg8eeHnvCbmLLz1qpg62ETNPPq5uLxDe7e74eiSvVElZDsocpk6oFIwO1KQDz2LT3k8bzMYPAI0hLxSno28SaEOva4Y2TjELlO8lUezO69Q0bwv8Sk98vn2vDngKjzfU2286oOfvCIiSL3PegG82WkCvSr1TL2uNFU7ehngPScxaL17dg08i5AqPFnlJb2ZHtu7h7BJvbuvwrzm9zK8WzDhuzxeGbwvubE8D3w+O+MgC7y0J3m8vzL2ugSpOb0FvPy88h4sPKZhUDwZa7882ChRvfXiEL3hw9283jfxPCihWDyhwqA8TwnoPGKAsjvdQKq79rgWOx+W27x46qA8kZ9KPdLhOLyn7by8C+uMPMp+JL2FJN28mObivLVf8byC2aG8HEugvK9Q0TzI6f68EjfqO9lpgrleoFE91rjgvDngqjwoqpE8mlbTvLL4Ob1u+x88mh7bvC+5sTyfSfc8xw40vYBg+DwRQCO8h8eAu4ysJj3y+fa8H5ZbPMlGLL1VIUE8VelIPVxjlDxrU7c8JzFoPfhSAT0a26+89r3bPHFiV7yBhS2919TcPM5sAzwAyVg9dkI4OsNTiLxiW3292PDYPB+W27x8iVA9hnjRPGTUJrxQ7es8oFIwvQmXmLu0J3k9dnowPDUXAb2D0Og8uj9SvU1qODztPku8tZdpPGFktjtZpHQ9JvnvPDhwOj1BJ8M8T/YkvY3yHD2BabG7gDE5PPgtTLxlA+Y8bIuvPGAsPrzka8a7GaM3vJKoAz24HhG9w/Zau3BiVz02VL68xC7TvOgvqzrwrrs7Ul1cPKjRwLo+lhE98K47PZoeWz2ZNZI8e4QLvR/XjLzuWke9XcWGvPuw/7zMreM88Mq3vB+7kD0m3fO76pEdvfHd+rvqgx89a2+zvOESjb0PmLo6eI3zPItYMj1doNG8KriPPGr/wjoa7vK8IlpAvPcoB7015E08Btj4PMQuU7xz7kO8cWuQu2QMH70UeBu9NRcBOymAl73XI4w9UAlovF2pirxJ3su8fcqBvHiyqDqy+Lk7QSfDvRsK7zyKWLI8l5LuPIsz/TzKfiQ7kFQPO6GBbz00w4y9H+pPPFOsiz246908ttiaPNp8xTzzOig8H8mOO0ivjLzpSye89YXju70Dtzui3pw8y6gePdLYf7xEz6u8e3YNvSdNZDzn7vm74JSevF/hAj1PEqG8HWecvADgD7z86Pe8pqIBPVtjlDvUZOy8KaHYPBqafj3LxJo8Y5yuvP+Q4LqODpm87UcEPVF5WD34UoE7D3w+PWAQwjwNYMI8mlZTvdbdlbyvdYa7IB0DvK91Bj3d7LW8R5OQuwHl1DtDezc6y3VrvdbrEz2RcAs7aKaJO3Bi1z0KwZK8eloRPWPnaTzYW4Q8tAv9vAsVhz0wDaa86pEdvcISV73ELlM8Gb+zvOle6rnUiSG8pX1MPVorHD03cLq9NeTNPG7y5ryqeSm+mP2Zu5pWUzycjsu831ymuqpBsbwv8Sm9fsHIPJkC37qRu0a9bGb6PG2C9rxrSn68Cpzdu7MwMj3gopy9b9ZqvCwRyTw1F4E9iejBvODaFLyfSfe8sKTFPfvM+7zru5c8jIdxPGUD5jxYySk9A0ICvBAIq7qC2SG9L+hwvPNWJLwR7K48TX37PEivjLzZRE28mTpXvcQu0zxyh4w7HApvPc5eBT015M28/mEhveDMFryPOBO90eE4PfqBwLuYyuY7OzSfu0TPK7zUUSk8TaIwvevzjzzEYYa8H9cMPeL7VT2s6Zk92E2GPNbBGb1OojA7TWo4vSrZUDxRZhW93hv1vLL4Ob2QS9Y8pZQDuzTRijwyPGW9GwrvvM45ULwfyQ69JgIpvEn1Ar3MrWO7pX1MvWJ3+bxvCR46uM/hvVKejbzY8Ni8WzDhOwdRory35hi9wHOnu8kh9ztMMkC7xtY7PK9niD62yhw9mBkWvUTibrx1Qjg9UCAfPP+QYDzhvhg9YUg6uzEg6bwNKMo5U5VUu7bYGrxmYJM6Z3NWvJebJz2vg4S8lnbyPFKVVD1Ir4y7ft3Eu8gOtLwdL6Q8FMwPPeMzzjz+mRm9kYPOO0ZS3zwZa7+7c9JHvd0bdTucjss77M5aPTs0H72wbM06CYDhO01qOD3m2zY8TX37O170xTuz+Dm7bt+jOQqlljyMa/U8U+SDOw58vjzOXoW8DShKPFElZLxvJZo8gqEpvXeWLLqlaom8zRgPvebu+byFJN28I660vAEdTTx3liy8/jxsO7lWiT0KwZI7+WVEPJ82tDysqGg7bw7jvMaCR7wW+869Bv0tPTioMjzdJC49WcDwPBX2Cb2abQo9PpYRPRqa/jvkh8I8AgFRPbQwsjqy+Lm8lT56vMCrH72rVHS8LBFJvPa92zw+3Ac8B1EiPYLZITvAhuq75GvGOv905Ltj52m81IBoPKe1RD2wkYI86EsnO4FpsTssScG8lWOvOUFfO7vVpR29fJKJO85eBT2u/Ny8OKgyPfNWpLwyPGW9gqEpPG8zGDyQg848vOc6vbCRgjykKVi74yALPCOSODxz2wA9gpjwu+hLJz3g2pQ81IkhPToYo7yVPno8m4mGPPq5uDxU8gG9Lp01vZ9urDs+zom73AgyPSXmLD2NyCI9VLHQvDSZkr3lv7o8cCrfPO5jAL2U8z49faVMPYQIYbz2vds8CGRlvfvxsLlcfxC8r1BRvcIbELz+RaW8f/nAOvbGlDpBJ8M8v3OnPMhGLLrX1Fw9Qns3PW9BFr0nOqG8IOWKvVik9Lyy+Lm8NRxGvdp8RbySqIO8XGjZO+hno7xv1mo841iDPRYuAj3EbwQ9jJCqPfM6KD3/kOC6cn5TPAa8/LsG9HS91aWdvLVMLr0onJM7VLFQvaQpWLuZ5uI7VLoJOxcXyzy1l2k8mh7bPC2BOT3D9to6DSMFPCTKMD0CAdG8u5NGPaPxX7yllIO8TtqoPcGi5rwIZGW8VLoJPXOxBj1aHR66p6KBO1ik9DzfXKa9AK3cu02iML31od88Ps4JPCihWLp93cS8R25bPFkBoruh0J68ySF3Ow+0Nr0KwRK8/A2tvKe1xLuX0x+9t89hvGZgk7wzixQ7UEHgvFZZOb314hC7hOzkvKZh0Dz+PGy8Rk0aPeIgizwf8wg9LrkxPWJbfbw15E28mBmWuxxLIL1lNpk8rksMvdb5kTz9WOg8PwaCvF/hAj2WdvK8b/JmPHtR2DwVw9Y7AeXUu4uQKj1u8ua8wbkdPIt0LryVPno9ovoYPayoaDykRdS8/SDwPJKog7xnbhG8VenIO28JHrzhw128m4mGPPcoB7tysQY8TDJAvHpRWLwA7o08gtkhPXkZ4LxgEEK8+Z28vK+DBD0WIIS89/6MvMRhBjzUiSE9XIRVuhczR70gBkw659u2vPcoBzyy+Dk9Ylv9vG8zGDx9wUi7jtvlO5gZlj3rzlq8C7hZO7p3Sj0kpXu8CwcJPRDsLjvMyV+84egSPTmf+bzxFXO8hUkSu6glNT23vJ48rcTku0sWRD0BGIg7wxJXPNQs9LuGV5C8e3aNuxSn2ry2e229DD+BvJpyT7s0mZK8KICXO8Qu07uBmHA8ySowvX3ByDtbTN279hqJPCwtRbyCmHA9wvbavEd3lLvZP4g8yn4kvbuvwryfSXe80xD4PHt2jbzzcqC8wuOXPNLhOLw4cDq9c78EPYBNNb1OorA6tV/xO3Z6MLxV6cg8Y5wuvMLVmbwtZb27oynYPDX7BLxL+ke8VAAAOiE+RD1pwgU8d7IoPUSqdrwTah28eeHnvL5OcrwsKIA8kGdSO/+Q4Lxytsu8e21UvFJYlzymfUw8BeExPaLenLojkji7FvtOPHoimTzr8w89TE68PHs+lbuMh3G8yWIovblICzxNorC8ELS2PHZ6ML2FXNW8VAXFPONKBTsJsxS9/Txsvb47L7lV6Ug800hwvJG7xjwvuTG88jFvvPa927xf74C9/6eXPG2C9jzNNIu8c9LHu17YyTtdcRI5bvufPArU1TtJ9QK8mm0KvYQIYbwKnN29Ne2GPK8YWbw5n/m7wv8TvaMWFbzoE6+8ZjveO9L0+7zVgOi8acdKPNb5ETywpEU8M8OMOiAPBbzzcqA8uOvdvLVMLrwmMWg8jgAbvJU++jzVbSW8/jxsPOvq1rxYra26FvtOPNL0ezyT18K4ATQEPHnF67z7sP88EMd5vVJdXLxMYX88pXgHvQEKij2s6Zk8c9sAvSYeJbuWdvI8Vlk5PaROjbzsAY67kZ9KvXswlzwl5qw8Xyw+vYUkXb32vdu8p9FAPBSn2rwb0nY9nMbDPMP2Wj2WdnK8l5JuPTDMdL00kFk731NtvLf0ljyj1eM7/6cXPZfhHb2C0Gi8ETdqvXBrkDzgzBa9WtxsvC6UfDt5FBu9mScUvXiNczxytks8j/dhu6Mp2DzeN3E8JzohPMjp/jsUi948mALfvN9TbT19pUy9mlZTvS/xKT0rKAA9Vlk5vIK9pbzAc6e7XaBRPDxeGTyt4OC8uCNWvOwPDL2QS1a86CbyvESq9juBYHi9sGeIPI3IojwOfL68y5FnvH7KAT1Esy+7lmOvvEYjoLzc0Lk7zkIJPTs0nzwUvhE9tqAiPMRvBL1++cC8xH0CvQDgD73M7hQ9rNubPGY2mbt0CsC8h7mCPJQrt7v2uBa9+/GwvPc2hb0Vp9q7/VjovMliKDtj8CI900hwOugvqzpj1CY7D3w+PWUDZr0r9Uw6fKVMvAvU1TwMI4W8mK5qvaCKqDzYMQo8AgFRvYBE/LvUUam7ZUSXOpo617wwDSY9AO6NPHUmvDyaOte7ISuButNRqbrDU4i8wr7ivOIuCbyWdnI8HpGWvOlLJ7w6u3W9lUezu/Sh37sekRa8azc7vJKahb18oAe94ftVu2Y73rsIUSI89uKQuo9iDbzBuZ28FxKGOre8Hj2E7GQ94i6Ju8+NRDzYDNU6ziaNuxwK7zuY0x+8aKYJPDYAyrwUb+I8EmodPQu4WT0RJCc7H5EWPWnegT1f74A7rKjovPvMez1spyu8AgFRvXkZ4LoJlxg7sxQ2vP99HT2Wfys942tGvGxm+jx3cfe7qUExPKMyETyLT3k87QZTvQq4Wby39Ba9VAAAvIK0bDzLdWu8UO1rPEZSXz3gi2W9AjlJvLuTxrmVPvo8L521PADSEb3xArC7L9WtO44clzzyArC8XJsMPNgMVTwZv7O8ZQPmPBrbr7tysQa87SLPvGTn6Txe4YK8azc7u0FfOztJoQ490xB4vN4b9TxgSLo7cZUKO9SAaLzjF1K9L/EpPaGmJL2uNFU932/puwl7nDzAcye9Wf2TPKaREj3esSm9dP9cvLhvlrpDREa98xlkvK43OD3MUcU7nJ6aPFTVdzn2dg68Megiu5hFsbzH8O+7gYi4PKFp9juxiLW8hdV0PA4o2rypkXy9Dec0u280AbwwJR07XpcivK8z9zrXhWK8wiWUvBTK1LyxiLW6RZmEvEO6+bwul6U8Ogxouw3nNLxkdpe8IIT9vM9pibxW5c+7FQt6PNobxrsAagY8ozToPOx7Kr05EKk8HDdBvGxhI7xhozm9BGpwvOTJV72Soza9+ccLvEUPuD38GAm9815KvGElmjpD/1+9wp+IvEz2GL1f3Ii8SeqBOt+t6Dtu5y69FlBgPFxCZLzWiSM9X077vDLwDjy+h0S9Pu8dvN83tTthozk98NQTPW0Y/Lxx80W8yk2avNDvFD1/eGC8pAsHPD3nMT25sLs87YMWvFl7M7t3UFq748lXOyJPbz315NW7UM2hvKTGIDvWzom9sAIqvbbhHr1CeVS8ovPCvJZBBrygsp08o740vS+fETwhUzC71f/WPCj9FrcX4pg8aM+APBbaLL0iT2+8C2EpO/Mlkbz0qxy8l7+lPMBStrxEiSw9g5gQuzW/qzyIMh89N88DvU8CsDz/poC9+Ho5u7ombz1BNO46cfPFO+XZrz1LbEw9/pJnPIp7sDz5u967ibC+vGDYR7w8HEA6LVI/PID+67mJOou8uG+WvcVqZDyN/fq8b206PYhr2DqkunO6tdmyPBpsT7zH/By8GaHdPHO+NztiXtO8ibC+PCYqubwZcJA8a9uXu7l3gjzorA28gENSPQ0sGzwENWI8KsiIuanWYr1gYpQ8XcwwvMTk2Du59aG8FVQhPEDzyDs8Yaa8hSYIvbYa2LwvYhc9jAE8vIRjgrw8HEA95iaCvJi75LyzU6c8wl5NPFDNITybUcg7fGzJPGPkXj1qDOU8hB4cPGLon7xYa9u8kE54vcYlfrxhagC9S+J/O14Zg7xfTns9DuPzvKG6ib3BTnW8l78lPWkQprxQzSG9elxxu+CEBz3orA09/tfNvIJTqruK8WM815EPvUJAG7zo5Ua9qyshPMTkWDw9oss68Z+FvE4zfTu59SG9IcljvdR5yzzWiSO9a5YxPXJ5Ub2iOCm9kqO2vG2mCb0sVoA8b+8au+v9ir2YAEs9KrxbOxw3wTzGJf48Qr46u7Ya2Dzpb5M9fnyhvSpGKD2bUUg9kuicPNulEj2hrly7XE6RuVHVjTv6Rau8x/Bvu9H3gLyXBIy7s8laPZ2mBj0L19w6eJF/vPWzCDroKi08GXAQPAM5o7tj5N48WfHmuxQPO7uureu8G/abvDV6xTxgHS68WsCZu2JeUzzkmIo9pAsHPLo6iLwxLYm5iqz9uzqWtDvseyo9uG+WPJmKFz2S6Jw8GeZDPbwBOb1Y9Se9WndyPKRIgTuoXAQ9emieuwa7bbyC1Yo851+7PJPk27wqyAg9a1HLu6uhVDxCvro9ibA+u4BDUj3kmIo8D/NLPPWziDy+Tos95+kHvaaFZb1mNVy9hJTPPP4cNDxho7k8qJU9vZvHez0hmBY9R5XDvRFAHjx/M3o6Dec0vmFe0zn+HLQ8eOISvV5SPDt98tS8AKO/vIBDUrsDavC8ZjVcuitCZzxgHS69acs/vfdqYbw6DGg78U5yvR4CM7wZKyo921xrPVu82Lxoz4C8PuNwvADopT3QLI+8YynFumYEDz2vhAo8ppESPZhFMbx/eOC8HcGNvWKf+LzkmAq8363oO+isDTxXJnW8QLqPujbHl7zoKi09NgQSvJPwiD07niA9SisnPGNuK72zDkG8ljXZOpFikTxbRiW8sAIqu3yxL7wKIAS88ti+PAP0PL31s4i8pg+yvPDUEz3fwYE9tE9mPXgXITxsnh29UIi7Ov4ctLx1zg89/tdNvRfiGLx8J+O8g1sWPaH3g7umheU8uWtVvTlVjzumyku7QGn8vAM5ozuvwQS9jU6OPCuLDr1LsbK849UEvPuG0L02u+o8SyfmusFijjwgzSS7L2KXvKqllbwDOaO7cbqMvKO+tDyh94M+asd+Pbt7Lb0cfCc73OY3PYxGIjtEiaw8P7KjPD3nsbyQ2ES95A6+vKuhVDyAQ9I7UIg7OxZQ4Lyo2iM9NH4GvTBqAz1phlk9GOqEPA4o2jYcN8G8PjQEPaLzQj1/Nzu8r3hdvTbHlzylRMC6moZWu/zHdb1JrYc7/pJnvL6HRD1hozm9K4uOPPKT2DxXbxw9O9fZPBmh3TwsEZo8jEYiPGpVDLxeUjw9fze7PKtcbrvseyo86vUevG9tujwS/+K7uvHgPMavyrwU1gG81UQ9vL1GH739lqi8kE74vHwn47xaBYA8Zr+ou/kEBjxLbEw9XRGXO41C4Tur5ro6DKLOuy+fkTuSo7Y8jw3TvYt37zxCeVQ9mYoXPehbejzSdaC8gsndPB2EEz0vYhe8LRmGPMgEiT0Dfgm8vAE5vNW+sbxnu2e9lOTbu8kAyDyzU6c8QwsNPXBp+TzuQts7cX2SvNGyGrsX1uu74HhauaZAfzn1bqI8SiunOzkQqTyh94O8UENVvbwBubwSSAo9d1Dau+zAEDwx6KI8rHAHvOKIMj3td+m8DrImvVh3iDza1l+7lLMOPXsrJL2wvUM8LVI/PID+a7vswJC65187PbGItbxbRiU9MF5WPESJLD1gYpS8agxlvF4NVrtZe7M81QsEvbrxYLwjY4g849UEvWzX1jwtGQY9IZgWPd0zCr2DDkS99/StPIVfQT2uN7i8LchyPXFpeT3ui4K8YWqAvGmShr1/M/q81s4JvUilG72WNdm8nZJtPDcAUTrKkoC7gc2eu8fwb7pphtk8YylFPQN+CT1wafm8SBtPvMlFrr0D9Ly8dLr2vJvHe70Dr1a7YRntvFp3crzYF5u8PeexPNK6hj3Uecs8jhEUPQFqhj3rNkQ99q9HvIn1pDv2auG8Erp8va94XbstDdm8WndyPEjWaL1hJRo8Pu8dPCRfRzyuuRg9LBGaPIXVdDzPGHY9v9SWPDKfezznXzs9nhj5vL4RET1AOC+8+ccLvSLJ4z2yEgK8ZTmdvPDUEz3BHag7kWIRvGBilLzYUNQ8H0NYvcdBg7zXD6+8Opa0PMTwhTzCXk28vk6LvJElFz3MUUU8Wf2TvLeskDxs44O8E86VOqnWYrw2u2q8Dee0vMCXHL0dwQ28WsCZPIflzLwfQ1i9JKStPK2xrLxe1Bw7XIfKvIOYEDwYXPc8eqHXPLlr1TyqYK+8bucuvL39d7srThS9pcagPGLwi7x3lcA8WsAZPR/+cTyqpZU8R9opvU3+hDwqyAg9dIkpvA/zy7vJx449wJccvXfapjzHQYO8Bb+uPGjPADssEZo8UM0huw5tQD03ANG8kuicO/8koDyFX8E8l78luwKzF7qJsD68rbEsvRw3QbwdhJO76Fv6PD2iyzy3oOO8U1uZu6pgL7xozwA9/2GavLdb/bxeUry8V7QCPVxCZDvRKE69iv2QOpJe0LzoW3q8WTbNPK8zd7wP88s6q6FUu6H3gzz6RSs9wVI2vCoBQruMRqI8kqO2PEKFAT268WA8MB0xvF4N1jx89pW8Tr3JvHkbzDvfNzU9bV3iO5oQI70mKjk9hukNOt/yzjz9UUK8+PDsvLRbkzxHlUO9X9yIvUpwjbz39C28SNbovLkynLxw9wY8vsyqu0Zcir1PCpw8OYbcPFWkqjwfCh+7NXpFPVyHyrwevcy7BgwBPQ3nNL0ndwu8L5+RvB/+8Typkfy8SNbousFOdbxmQQm9eB+NvcFOdTzBHSi9TXwkvHQLCrxM9hi9mss8PRbarLxEiSy9jEaivCrICD37y7a7+8u2vGmG2byQTng94IQHPFtGJT0y8I48Jio5vIo6C7xdzLC8OIbcO1qDHz3kmAq9kA1TvOYelrzEbiW7gAqZvPZ2Dj1UYwW9BQSVPI3MrTzGOZc8N88DPR/+8bquNzg8k591vB9PhbsX1us8fzN6vD7jcDzVvrG8Itk7vS5O/jzfwQE9zFFFvbs2x7xeUjw8hV9Bu+PVBLyRJRc9r3hdvDcA0bzFauS7u8CTvadUGDzl2S872pH5vDLwjjzf8s67XE4Ru7nlSTz2r0e7RlBdvI7UGb2AQ1K8ffLUvfMlET0sh028wR0oPJCfC73RbbQ749UEvOPJ1zqHKrO8fGxJvJ6iRTzr8V283SddPJIZ6rpUGt66ZPQ2PXfaprwHkgy9jf36Oz+yI7wX4pg83TMKumSvULxbvNi8RZmEPHjiEj3zXkq7EH2YO2rH/ru7wBO9UYR6PMvLOb0wGfC8Jyb4POPVhL3nX7s9sAIqPE9Hlrx2VBu83/LOPBfWazwevcw7psrLu3SJqbx5G0w9H08FPPh6Ob3Bk1u9GXAQvaXODDyWNdm8byhUPejlxjyurWs9iHcFvbFDTz3/YZq9vAE5PPDUEzz/GHO8v8jpuyJbHD1/hA29UIi7vHF9Er2DWxY9fGzJvFj1p7xphtm7s8lavZzbFLxe1Jw8+ccLPcb0sDtfTvs8yccOPV/cCD01esU7AfCRPIqs/bxgHS49tuEevRF5V73ccAQ9jIuIPBTWgbzCGWe7xq9Kuxzy2jwDOaM8e3AKvY7IbDt4kf+8yUUuvcgEibwQfRg9PjSEvcwMXzwjYwg87xGOOnjikrxJrQc91w+vuxzy2rlGXAq9U9k4ungXoTyi88I80q5ZPRG+vTzllMm8kWIRvZLoHL3S8z+8rbEsPCFTsDxyNOu6D7qSuhon6TzJAEg8d1wHvff0rbzH/Jy9B4ZfO7n1obs2u2q8XREXPdfKyLtPChw8q60Bu5tRSD2lxqC9dlQbO2T0tjrc5rc7EYWEPAFqhr3FauQ7X5PhuQmWt7ygsh08eJH/vIwBPDpRhHq7dYXoPE03PryK/ZA88U7yvO0Btrypkfy7+00XvaCynTs3z4O8LdSfPGT0try5sLs7kJ+LvDV6RTu9/Xe75FOkPHO+tzoSC5C9Fh8TvV0RF73f8s68q+a6On3yVLxjKUW7815Ku9R5yztUYwU9Itk7PTWvU7wf/nE8kJNeO3wn47yT8Ag9SydmPF4ZAz165r28byjUPEK+Oj0cN0E9/p6UvEUPOD3wUrM8+oqRu+x7KrylREA9KcCcvOQOPr2NzC07yrvhO6tomzvbpRI9dP9cPJgAyzt3UFo81s4JvD3nMTzf8s67pkB/POVbkL0l5VI8bWkPvVNP7LuH5cw7t6wQvXBp+bwyKUg9UpgTvY7I7LkLpg88A7sDPQP0PDzOYR29PaLLPOfph7uJsL48z6LCvNyh0Typ1mI84L3AvBnmwzymD7K87osCvGY13LxV6ZA8nJ6aO3D3BjvvEQ49rDMNPeKIsrzEq588o0AVPGJeU7sx6CK9lwSMvN83NT2Hbxm91HlLPUorpzx7odc7ZHaXvB5EAzv9tWI9a600vcVc/rwYMiE82TbSvJ7mB7te3Yk97cucPEdfCD1kgbc7AcLOPPJ1QLxNf5m8oD82PIM55boeDSk8du1WPBw+DT2gyUi9eusTvbOrVTySfTo84AkhPMO+xjut84K7EqRbvYzNILtSpSC7dB67vIQ55bs6L1i9HZ/0O33ApbvcQr68Ja8TO1zfzLwaRka9jjR+vNp727sKvec81FtKPCtLiDuHuz69NgeOPAy1LjpQp+O81m9vvLXoJboXCfa8j5QDvQuhCTwGxoE9ciZ0vMM0NDxS5LM8cc3FveKn2Dyy3Dm9sMiUvH48CbwHsfs8tNSAvUxWbjrJaOq7/T91PYgUbTyHAMg8GXcqvbOr1bvypiQ8cDUEPTgbMz0fq2C8qLj1vH/UyjuJxyo9kN+CvCiSVDuuPgI94AkhPGP3JDsFSh69tF6TvCgc57z0RFw9Vr+7PH3AJbsdUrK6G9DYvAozVb2p5xa8aKFIvJfAAL1/o+Y6bGgrvFe3Ar08O0Q7BFhNPKXVtDxaEDE8y+pDPFb2FTyxzoq9L6osvQexezxWbIO81EelvAozVTyRyvy8c+HqPBz5A7xok5k7DPo3PU6TPrvw14g8RFMcve/fQbtmZHg9SaoHO3UQDDwoTUs9wu8qPd3vBTvNud88UqUgvXZ3abzypqQ8gq/SPIXsIj1JuLa6sZcwvDvilb0el7s8rDIWvQDCTj3l5Ki78qakvADzsjwfIc68G9DYO/mpdjyb2ps8w2sOvONiz7ufPza969NVOz1ynrwEE0S8bpB1O4FWJD2+njW8ZdplPGMLSrzdQj69uMvmPN8l/zsaOJe8geA2vZD74LzZe9s8xLYNvX+jZrpH8VO8Up8qPV4cnbuj3e28PPY6PeLYvLyQ+2C8S1buPIgUbTtVZg07ciZ0PKVfx7t7g1U9Iy26PB/cxDvnguC7rbyou33ApbzmYIy8uk1AvCe1ibzgxBc7O7ExPTz2Or1Wvzu8YDDCvIv+BD2kX0c8Z9IsvWH/XTsRSy09ZHMIPZkLAL2tfZU8UTH2PEJbVbw8sTG83LgrO+hmgjxU+Fg8XN9MvAUFlbxRMfa8F/VQvWQLyryuPgI9yd7XvCzjST1aELG85hsDvZS0FL0McKW8BsaBPJHfAru2H4C9CB8wPUz1Br1mA5E7ew3oPP2ZhLzBqqG59RN4PQaVnb1Ugus8EhpJPTpD/TyZ4lQ9DlPmvKwBMrwwaxk9NHeFvAMb/TzfJX+8wNsFvICHCD3qScM7eW8wvOwYX7yIFO28fY9BvCS3zDl/GVS8EAYkvFxp3zyQLEW6oZjkvIqCIbs6dGE8ot1tvAO6lbxNxCI9YzyuPS/hBjxOk7688K7dO9DogLwBkWq8/iMXPWAwwjxAfgo9YYnwPNrpDz0EiTG9CalCvTjqzjwEe4I7K57APPF9ebrdeRi8jV2pPOjHaTxAfoq9mbHwPEACpzzy6y085/jNPWXaZTyXBQo9Oi/YvI7TlrwjJQE8WfyLPW7qBL2uPgK9KNfdvMdURTwyjW08fY/BO1uMFL1rrTQ9yWhqPK04jL0xSOS76QS6vFoQMb5EmCW8C6GJPJcTubyBVqQ8wqohvQwrnDxMEWW8T+xsvbTUAD1Jcy2995XRvPNnEb1c38y8/KE9PV7rOL3KkRW7FvVQOxzk/TwS1T+9CeCcvG9L7LuiwY89l4kmPKnnFjxTGw49PpRyO+4Qpjya9vm8/OZGvYgUbb1dkoq9iM/ju1LWhDvwrt08SaqHPI3vdDuVkd+7YLpUPfEckruwyJQ90ArVPLn0kTtsKZi8oIQ/vMloarxJ7xA8i4gXPFeO17wSGsm6yCPhO6JTWzz5qfa82fHIOhquBLzSHno8OrnqPBFLrT0lOaY8K1k3vPMiiDzhTiq8m6m3PDtsqL13FoK8dzJgvLAp/Dwu2xA9B1AUPa1GO70xcY88tnK4u8Kqobw1ARi8E3P3vJqxcLtJc629EAakvJAsRbv1bQe+kPvgPEDZe7yPorI85W67O7scXLy6ksk6UuSzOm7qhLwWohg8ItqBPlVmjT2kSyK74ZOzu4+isjxI6Zo7h0XRPH/Uyjzs/IC8j5QDvWKyG70YTn87Sbg2PAUFFTw53J+8xRd1PRo4l7w4Ug092CItPREaSTwz+yE8PpTyvEuHUj03kSA8U2CXvITDd70pzyQ7noz4uzP7Ib3URyW96QS6utIzADzCZZg9fAUvvSMlgbxdrmi7l4mmPHo+TLvXtPg8dndpvNICnDzn6h679YllPW3BWbtRdn88HVIyvAXiXzzBgXa8aKFIPCU5prwWohi997gGvQDzsjonfi+9zv7ovN24q7xqVIa82vFIO3imijwz+yE85m67PNxCvjz+3g07alSGvJKunjySfbq7yhuoPEr9v71IwO88Y4E3PTS8Dj2Ah4i8HxOfu79tUT3hhYQ8zJcLvAnuyzvDvkY9fo9BuqldhLwskJG8hwBIvQTOurwRGsk8buoEPSKjJzyYE7m78X15O6DJSLvTw4i8hnY1vI2OjbwVsEe8/CvQO8e8g7wtbdy7XK7ovOmxAbzPsSa9cpxhPX3AJb3qBDq7Rd2uPMEgDzy+njU9eW8wvbp+JL3eVmM87t/BO2remDrgTiq9jjR+PJzuwDowJpA8ZdplPI9xzjxr3hi9AOUDPQoz1btK/T89nO5Avc0nFDyQYx85nkdvu8101rymEgW9pdW0PK/k8ryz8N47MUhkPetd6DwuIBq9xY3ivNICHD1e3Yk9EJC2vKAxBz089jo9Lu81vMGBdjuZsfC8uvqHvE1ABrwSpNu81NG3vOLKDTtAjDk9kmkVvbTUgLyT86c5JjkmPZ29XD0xSGQ7rJN9vVb2Fb3a6Q+9+o2YO6D6rLwEWE29aKHIu77jvrz3UMi8ufSRvAngHD0x0nY9OViDO4UxrDx9j8E9stw5PeNiz7uHRVG6plcOvXEST70cPo07PS0Vu0QqcbwmOSa9X3XLu3lvMDx7UnE8u5JJPQ98ETywKfw8eAF8PfpOBTwZAT083yX/PKtO9Lyq9UU9hmiGOqi4dbw+xdY9GgE9PfJ1QL0RX1I9wwNQPPSsmjujwY+8fJf6Ozr+87yjBpk7geC2OxNz9zw0mdk7ACqNvIoMNL3w82Y9f8abOqVRGL3CqiE9HOT9vGAik7zOJ5S7ZMbAvIHgNrw89jq9eAF8vDyjgjy01AC9YbrUvH/USj08bKi8mh8lvK4+Ar2mc+w8R8BvO1e3Aj2pXQQ9lLQUvdp727p+Sji7rbwove3n+rroDHO9ew3oOuZgDD1rIyI8t+4bPXn5wrzX3SM7+o2YO3XtVjuBERs9NFRQPSueQL2psDw920r3vE9iWj2HAEi8JIZou2G61Dw+CmA9Ov7zu0PJCbw4pUW6Axv9PC337jxH6Zo8sVKnvJlsZ705WIO8QNl7vJfOLzszQCs9qJwXvTlYg7wTzQa9VILrvPCuXbyYE7m7eoPVvLf8yjwFJ2m8APOyvKRLIrrzdUC6j5QDvW/V/jxUx/Q8/JmEO6n1xbxsN8c7f9RKPDjWqTs53B+9iccqvAEH2DscPg09kbZXPFU1Kb30iWU8ZwmHvJcTubx5b7A8rTiMOppsZzzox+m8AG+WPDO8DjwWaz48NMq9u4sMNLwOydM7TPWGvB6JjL2deNO81EelvJofJb0u2xC83yX/O3Z36by711K9pdU0PJofJT3Tw4g90cVLPHiglD00yr28oDGHPKjhID3ngmC8mQuAvdXlXDx7UvE7/iOXvP5ooLmwiQE8AZHqvKnnlr0mcIA82+kPPDFxj7zuECa9OJcWvQ0xkjxg/928Qw6TvE9i2rywn2k6FbDHu4NqybvuVa+8e6yAPQz6t7wweUg9ADg8PErMW7x/xpu6GQE9vCKjpzxwzUU9Ym0SvWhOEL3qBDq8IqOnPLeG3TuHrQ88mCdevE5ABj3Uw4i56b8wvOirizy7HNy89sa1PHWozbykGr47p/1+PA/d+LwKM9U7CjPVvKUaPr1q+vY7Pk/puzpD/bwntQm9xEjZPPgLv7y8pu67eKCUPOs7FL1Xjte8z2wdvdLZcL2XBQo8CanCPHXLAr0g8Ok69ws/PKPBjzx27VY8P70dvM3+aLzrSUO9shOUuzet/r1xeg09tKMcvMWN4rvNdNa8TpO+O+irC71jPK68tBkKvasyFrvCNLQ7GE7/uyNywzv2xrW8ZMbAvInHKj1mA5G8ytYeO0DRQjy2crg8sQ2ePK8+gruwn2k8CGQ5vKWk0DyA6O887hacPNfdozyRaRW7vhSjO8KqIT0pYfA7JjkmvfgLvzwcPg294E6qPaGYZDvOiPu8SaoHvBgyIT3XU5G7jyzFO6gmKry08F68yvL8PElCSTt5Kie9XZIKvUCMuTtOk7471rR4vEr9PzxxvxY9YzwuPdmsv7yV1ug83TSPvXcWAj0bOJe7XdeTukSYJbwDG/08QRZMvdXl3LyqqIO90ngJPeAJIb2v5PK83xFaPBqLz7zsQQq9qLj1PFCnYz15bzA8phIFPegM8zwxvtE8kEDqOpYbcrwWOlq94qdYPbAp/Lx6MJ29OA0EPfyTjjxkcwi9heyivIP0W7w7sbE8ALQfPd6Hx7zB92O8I/xVvIn4Dr2lDI+8w2sOPRd/47zhHcY84xWNPDADW7sZMqE80cVLPU3EorvZ4xk9VQx+O1SCa7wHUBQ9BeJfPJ6MeD2KUb25/oR+vE/sbLzcLpm8/NiXO2v6drw/2fs8Xus4vTAD27uYWEI8TcSiO7yKEL1CoF688NeIvCmm+TtvLw47JEFfPPXO7jyTKoK8l86vuqOQqzwfIU48YLpUve+auDwJm5O74AmhO8Vc/rynuHW90U9ePEfAb726w628vNfSPJEkjLxmjSO8yA88O9Fykzxza328rsKePJM4MbyZncu8ADg8vL+yWjzF0ms8eaYKvUrvkDzfEdq8J03LO604jLy7HNw84AkhvcYX9Tx8NhO8KyjTvHOUKLzHvAO9D934vOzT1TwqFK68CeAcvOY9V7uftaM8WUEVPdRbyjxGNt07/ZkEvdukBjz9P3W83f20PD6Ucj3+3g09lroKvBFLrTz7XLQ8PS0VPXw2k7xmAxE8BIkxPC/hhjycqbe7x5lOPQRYTTywKXy8sYmBPCcIQrxNf5k8uK+IPDFxjzx7g1U7GXeqO++aODsSzQa8S1buvFNgFzzVoFO9rj4CPEQOE71n0qy7DHClO7DIFLykGr67QRbMPCqKG702aPU7+B9kOzudjDw/eBQ8e6yAvPCu3TxVDP47xY3iPOLKjb2DHYc80U/ePINcGrwN7Ig9eGEBvDudDL2V1mi9pccFPaSQK7zFjeK81w4IPfJhmzuwKfy7YSiJPH48CT0Yd6q8mFhCvF1hpryWuoo9AAfYvFpVOjzaBW48lAdNPA98Eb0IQw06DUx9PARMFr36Rba7qRlPO40lGrxgFfM6FWIPPXZ8SzyznHK8qfjTu/TTW7zblde8BeJ7O/J4wzw6AQw9fmo5vJLTcby4L8g8C1TWOGZMgL3x/K+8+z1dPetPCD2w5sE78tu0vNsYFLxmRVe9cQpxuZp/6bvs5e08oFOFvDPRp7yrEXa8dWOpuoDF0bu57VE70K9CvJ8SP7wmL2k8t5I5vMhmPDznWBE8MJcKvBOltTyhTFw8dt88vALyLb3nWBE60m1MvU2surzq7UY8Do5zPWM0Dr1Uu6M6VHmtPPKZPr02A2y8jz48vdzWHb1Umqi7OUMCPUuTmLwbD7e7C/m9vMNP+jwdKFm8hvW1PI89jLqQmVS7ygPLugLQgj2KJ/o71qWJvCslML2vrKS7VPXAPGvghbyWTaU70ivWPGwaI73JJEY7txamPMJX0zwgwwc8NOrJPIyIizylCIa8GpMju4mKa70+lRG9gpz9vC0dV71K1Y68uk+TPCVXDb285Xi9RQBDvFvKDDzD9OG7NG42vOlQOD2aPXM6qN4BvTngELw2CpW8EBCAPFZQWTwqiCE963ADvfTTWzwveO88AXYaPezl7Tw8dca8DZUcvTd//7xQ//m5kVdeupinjbyOwii646MQPZinjTxGQYm76u1Gu0b4abzGbpU7Xl/CPOKDRbyC3vM8FMWAPI6hLb3l93+9/OEUPY7CqLwObfg8YfT3u8hmPD2CnP07Ih4gvehxMzwhogw97yUEPEZ8VrxP//k8eLbovOvMSzxEY7S8mj3zPNIRBD0VYg88vOV4PMNP+jw+dBa9b/HOvBX/nTzAmcm7+CwUPT2WwbwcDoe7oNDIvMaPELyqGJ+8wlfTPLvl+Dwd7Ys8jz68vF4dzDyrz/+8v4CnvCWSWjyKSPW8AtGyu3l08rz+Vv+7d3zLPG5UQD3wHas8dWMpvSYVl7zCNti8Zuq+u+S9YjrD02a9FCFJu/1W/zxIdH29uLM0vaAyirsakyM8JbPVO6CO0rx3fMu7y+EfPZB42TxmRVe8b23iPH0wnDuI9IU8n9BIvATq1Dsacig91yGdvMlljDwJniW9/MCZO7L/Y70l1FC8Q8YlPcK5FL1R3v48s73tvF3jLr1fFXM8w3D1vCHDBz09lsE8HQdevW+2gbsOr+67Z8FqPPpFNj3ritW6Z+kOPATqVD36ZYG9x8ktPa9qrjsFh+M7ATSkPNOG7jxUmqg8hVgnPIyphrxt2Cw94CgtO1lpe7wacig9CCISPIyIizs914e8PrYMvdrXTTxGIA48Zuq+vBh6Ab2PHUE8TubXO69JM72cngS9Vw7jPBNCxDw0bra82L4rPeBJKD0ZtJ68ZiRcPDF2DzvDsmu8QWsNvMlFQT14Gdo8NE07u01qxDx43ow7pwAtvR0HXr2oW0U9/MAZO3i2aDxEYzS8aOLlOjQswDyygqA8bnU7vXYAOD0Mthe5w3cePGeHzT3DkfA8DTNbPC6gkzpKFwU9SfYJvOKkwDxE38e8GNUZvWk9fr1EhC88X38NPThDAjyIDti8MVWUPc4aDTxa64e923RcPIppcLwyjzG+IOSCvH0PIbubHPi8d/hePL2IAD0Qzgm9JBZHvTm/lb0BE6k8o6f0vBY6a70x2YA7FSCZuzzYNzxGfFa7bpa2vNzWHT3X3yY8zlwDvU//ebw+THI8FCCZPaq23bxOzAU8+eqdO6hbRTkuf5g8aKDvvAKwN7ymQiO9qjJxvfduCrxmJFw8S7QTPddCGDyQV967d/8HvTOPMT0L+T08ATQkPb/CHT2lpZQ7oithPBh6AbyHcUm7Xh3Mu13jrjw2ReK7JVcNvH0wHL1jVYm8gEgOvaZCozwqyhe9VfVAPM/YljwmUOQ8hXkivIW7mDtGvsw6xrCLvFM/kLwQrQ690PE4vB1J1Lvs5e08uA7NvIAGGD2IUE69PDPQPDYKlTsQEIC8/dprPBswsrzmuwI9cykMvOPlhryb+3w8+qDOvfsc4jzHqDI8wLrEPBvuOz2RNuO8Rd9HvKIr4bzVI/28zzOvPBwvgj7T6d88JJmDvIgO2LyYZkc9RKWqvFjMbD3sSN88VrPKOzy3PLwVW+a7EyFJPfxe2Dx4OtU8ZLAhvP2fnjyp19i8ZPKXPPwjiz16Mvy7ejL8PMH7ijyJcJm8ySTGO5o987y5sgS95EAfPSyASLwLGjm8rXIHvRq0Hr1fFXM8xHB1PQ5Mfb2cngS7TsVcPN8PCzw3f3+8A488Pd/uj7xM7jA9/xoCva0wkTxX0xU8PpWRuvUNeTtulrY6VTc3vTzXB70kFke8JTYSvBswsjsczUC8oUzcvCQWR7tOSUk8Te0AvQKwNzwi/SS7fyhDPD+v4zoYOAu8M7AsPF5fQjw2KxA9nparPGbJQz0NbXi8j5lUPaIr4TwFh+M7JbNVPHl0crzo1KQ8VtRFO/Sy4LscrEU8oUxcPceosrscLwK9uS/IOkZBCb2qleI6mj3zO/hNDz1bqZE8BCubOvtEBj0kWL08lBOIPODFu7xooO+8Z8HquzOwrLtwK+w8yIe3PGA2bjspLYm88B0rvU9pFD2e2KE82loKPccLpDtsfZQ6YBycPCOaM70WGXC9DdDpPMA9Aby13Ag83w+LvYjM4TxfoAg8p527O+mSLj1OKE494aTAOdsYlDw0C0W9jKkGPbrM1ryR+xU9Q+cgPT11RjxF38e7skFavavwejx3W9C84CgtPBIIJz20Wnw8S3IdvEtynbyGFjE9fHKSPcP04TsMVFY9IOQCPQ2VnDxkC7o8kRwRvQ5t+LxsGiO9E0JEvBbXebwCsDc9DDoEPIEgar2wKDi96XGzPGHT/DzL+/E8bbcxPEad0byCvXg8LMI+u/A+pjvsSF+9I3k4vYWanbt+arm8v6GiOjPRJ7sEyVk9osjvPC0dV7yH1Do9PZbBPSFgFj1GfFa8d3zLuzPRp7w5QwK96JIuPD4S1bvDd548KQyOvW9M5zymhJm8XcIzPCP1Sz2+BJS6FRlwPCL9JD1nKwU9h3HJvLiyBDy+4xi9d/8HPYyIC7zoki48MBX+PSVXDT3pkq68ejJ8PYezv7yRV149yz3ovNDQPT2PPjy7+kW2vMiHtzxUeS09dt+8PASoXryRNuO6ykQRPcCZSTwzsKy85fd/PFS7I7xK1Q69SReFO9tT4bw2A2y8SLZzveuK1TyS9Gw9+kW2O7JB2rzwXyE9+cmivBxqzzu85fg6x8ktPGueDz0z8iI9o6f0u58zOr28xH28wD0BvBQgGb2qWhW9qRnPu37mzLtGfFY9pmMePRswMj1U9cC8w/ThPMlmPDt43oy8LT5Su/iHrD1P//m8kRwRPWinmLzsqqA8PPkyPdIRhD0DqF49hZodvPzhlLyp19i8WGn7uqcALT3TyGQ7aQGBupmgZDx+ST69GfYUvRa2frxF/5I6mcHfOJp/ab2YZke9LAMFvf8aAj2Iso+8EM4JvVvKDLuAxVE7M/IivKARj71HdP28d53GvASvBznjIFQ9RKUqO+KDxbxlTTC9Gu47uxjVGT0FRe27fqyvPBq0Hr2wJwg8jqGtPBAQgDwIhQO9ZkVXPURjNLxh9Pe8DHVRPdwR6zw8+bI7MZcKvXa+wbl3exu8M9EnPJDbyrfq7ca6sIPQPN4whrwcL4K9jqGtvHyTDbwsocO8Po5ovUu0kzkbMLK8jqGtvWVNMDyg8UM9DfHkPJ63pjuAaQk97cRyvTzYN7u7J+88Po7oOwNuwbyIso+89FaYPDsarryASI67BQogOxq0Hr0kFke9ofCTPF5fwry6q1u9DPgNvbOc8rziYsq8W4iWvG7QUzzwoRe9TuZXPRswsrzqDkI87wSJvcHbPz1Gvkw84IuePHSlHz2IUM68RjpgvHNKh7twbeK7c2uCPS9XdL1a6wc6yxztvMjqqDzattI8jSUavRX49LuhjlI9hP0OPLsnb7sNEmA9fHKSvHi2aLxXshq9kFdevNq20jxOKM47cymMPPI2Tb3QdSW9Tu2APCnrkjsufxi9yKgyvdNl8zzSjsc8Do7zu0+DZj2GNyw8h9Q6veovPb1wK2y9Ff8dvPE+JruGNyy9wds/vV8Vczz5yaI6PtDeu4eSRL0iP5u72lNhvS82+bytkwK+497dPOX3/7ur8Ho8hy9TPFKBhjrSK1a9wPw6uU8gdbwMEuC8CJ4lPNbGBL2QXge7oTIKvZYsqrt4WiA9lm4guwOPvLyU8gw8S5OYOzs7qbuCnP07TDAnu17BA7z9Vn88R3T9O5/xQ7y2uw07EK0Ou8peY73PM688VnHUO4BpCbxPSJk9ANmLPFuIlj2ygiC7UoGGPKm9hjwxl4o8qDrKPDy3PDydXI68qpXiOyO7rjz74kQ8gSBqvfBfIb0t4gm94IuevDQswLx05xU92vjIPK9qLj0/be28h3HJPJZNpbx5lW28HoPxvH6srzw2Zt2855qHPFiKdr3Gj5C8pwCtvNJtzDxfmd+8Llf0OykMjjyqtl29LKHDvK+sJD1MMKe8vx02PHARGj3Y3yY989qEPGVNsLyFWKc8ZNEcvemSrjyizxi9z5YgvUk4gLw1qFM9XCWlvNbGBL3WpYm8Ftd5vMB4zjouumW9X7ravNIRhLyLqYa9lk0lvQieJbwDLEu7EGuYPCV4CDw0LMA8wlfTvGwaozx/xVE8V/QQvW5UwLxOpGG8RkEJPS5/mDz+d3o9HQdeu9NsnLw+be27vgSUvBm0nrx/xVG9GnIoPT50FrzLIxY9uVBDuysEtTy7aeW8w5HwvD0zUL12ITM7ssSWvIAGGD2gbdc8XEYgvaLPmLtlLDW8U/2ZO3Tnlb0LGrm8BiTyPEzNNbs/TPK8nJ6EvQ5M/TwrRiu91yEdvc8zL7w7XCS9YfT3Oppe7rvMufs5sINQvGckXD00Tbs8ZyuFvWbqvryQf4K8RQDDPPpFNrxLUaI853mMu/tEBj1nCoq8w5HwPHEK8Tr8AhA9gEgOvJZNpbssoUM8HeZivESEL702Zt26Z2bSvLfUrzuGFrG8BgP3PN+smTyI7Vw9ymUMO6d8QLwfQXu6yUVBvXAyFTz74sS7yxxtPS3iiTzHC6Q7TihOPZp/6TybHHi8g2CAPFxGoLyE3BO7Hebiu2eHzTz8wJk8GReQuYiyj7x3W9A7jSWaO4yIiz0cas+7FUEUPX8HyDw+bW28lW6gPEwPLL1vtoE84cU7vXu0iDyxpEu9/BxivK0wETzsqiC9imnwvCYVlzw3A+y7w3eevNv3GDy9iAA9z5agu3ZbULyjZX49sIPQu5lEHD2PmVS9RSE+Pb/CHT2FeaK8TM21PPOy4LxsO568st7ovBpyqLuXyTg7E2O/u/w9XTydXI47BK8HvXfXY7zrDZI7wLrEPJE2Yzt3GVq8TyD1PHedxrvrq9C7FrZ+u8hmPLwGJHK80uf7OuDvJz2w4yi9A3qHvJ7b8rtYy9K8gdezO9uuHz2pohs7mZpqPP80W7wav5I6uWWvPHWS2juEFP88o57PO8vri7wCeoK85a7RuhwAjLybnie9ituOvGaSCj2bnic9jFm6PFjL0rzJpmm8GfzOvCN+1boow4u8fBRXPFPLPrzpspM8ymX/vMXnvztkURu8En4Fux/8bLzhrj282Gn4uolZMLwnwwY9/nW7PIpZsLzGaR48i5Z7u1mK8rs+CBK9qqIgPAe7Cr2Z3we9e5J4PGNNYz0wAPC86DA6PI/XeTxazw+9qCC4u39VS71MDAu97nHCu4BV1TwjflW9/LaguhD8oby/5yE9Hz3XvBR+Dz3s85G8A3oHvPAwYju554M9e9cVPYIU9bx0UWa9lllsvPCyNjwKOcC8wmkKvISaBj1902y82qrsPBD8obspAMg7/PePvAR6DD3e62q7clFcu8Wm1TtDBH292K4QvacguLy9ovq85K5HvXqWoTywor67oRznvDGCzjukns88dJaDuUsMhrzoMLo7qyBMvM/ncb02Rau7Vkl0vGcQwDxkTW08sySiPJVdGr17GAA9BbsAPVQMszw6gvY8/LJyvJzb6Lstgjq94e+nvHnT2DzU6zg7oV1RvLHffz3b69Y8dNNEPP91Rbxq05K83+tqPLnjUDzW60K8aJIZPf3z5jt/FOG8TwyavY6auLt6liG9m9vePKphNjymYR090OukPFQMs7z8tqU8TMuWPCfDAT3c75O8YMt6PKSez7w5BEs8kF2BvBx+NzxGCDo9LYK6PGjTAzz581I7Q4bRuucwsLx1UfA7gFmDvEMIJj0sBAq9BruFvNLn+7t6ku68SgwBvZGawjz3ceo8DDnKO6JhDrvEpss8RcdFvRi/jbz+snw8kVlYu3nXBjxpEEq91m0XvF0QDj1y07o8zefnPLrjWrwsBAq9LQSPvPg0s7yAGJm6qiBCvSOCA7s4xwQ9lhy1vCjDi72U28C8mt8MPcWqAzz+9xm9MEFaPIaaED1y07o8iJbnvPzzXDzIqhK7TQyQOjxFybv28z68QobRPKdd77v7sug7zWm8vAo5QDxvkjy9G7tuvXOSUD1mkg+9uucIPVkMR7vNqia9QAiXPJYctbydIAY9uqYZPO5xQr3eMAg8ueeDO0VFcTqi3y89lBwrvJOazDwGNXk9jxhkvXrTYjxFSSQ8EzloPERFcTspgiY7L4JEOLdh8juwJBO8m9vePD7HJzvBaQW6ml0zPWrTEj0xBCM6Ucs0vTcEwbzEKCo9gVkIO72i+rx7kng7HwCbO0IIprpzVRS9xSgqvLiiZjx9GIo7Vkl0vB784jzR53s9PQTfu4jbhLsKdve7vuPuvGIM+bxWSfQ8ZpIPPVQMMzxTjgI97/MbPGlRNL3f62q9ll2fPGwUB7pojms8X1GCvIPXPTz2stQ8uiRFPEjHWb0WeuY8fNPsu8uqITzCpsE9TgjiPG4QXj3WaW47Hbv4PCsEBb0Kuxk9TQjYvGdN97xARV29GHpwu2/TpjzWqlg94O8nvUnLhz32stQ8vSiHvQS3zTsiAKq7GT05voPXvbx2VaM8MADwvMAoljwkADS7hVmcvCBBirzO52e9sSQYPWrTkryl30O9yudTvC0ED7x4Ufo8WI6bvJFdBr0rBAU9BjX5PC0ED73tcbi8wiibuwY1eT27piO8qSBCPCIAqjuinkW8AzVvPPMw7Lw1QXi8l54TvX3XGr1ajiW8ot8vPGfTgzxOyyA88fOqO8Mk7bz/9x49pmEiPLWmhT2554M9g1kSPIvXZbxQCOy602lavPm2FjqcIAE8DvwXPJHbrLxSDCm9ac9Vue/zIL0QPQe82u+EvBi/jTxFx8U8ScsMPd0s1bwWfhm8y6qcujMErbz480g7PAgIvRB6yDv1ssq8w6ZLPUoMgbzsME49CbuUvYBVVTyAGJk8NgQ3vM5pxjyhIBW8hxi8PJQcK7z4cfS8hJoGPJbbyr12FLk8axBUPDbDzDyPHBI9PggSvezzkbye36C8vyRZvNauBj1gUYc+ntvyPIwcA73u7+28EfhzPcSmS7wkv0k9Vgy9PB27+Lwtw6S8KX5zvDqC9jxwz/07i5Z7PF3PnrwwAHA8+fPSvM1pvDy1ZRs9CPhLO17LcDs6RT+6NIJYu4sYUDyHWaa89HFgvfW2gjzL5907YRCdOw+7Mr0CNWW8J8MGPdXrOD2wYdS8vSiHPIiaGjusoiq75jAwOoBVVT2looe87jDYPGLPt7zIKD49mJpqO7imFDsOuyg84e8nPBM56LxOCOK8YlERPB89V71w07C7YVGMu0NJGr1pz9W8J8OGu13PGb2YHL88ot+vu2jTiDydnjG8oRznO1mKcjvBJGM9Fz2vu4XXxzxeEBM9NkUrvdauBj0qv+c8/PeKPNYsLTwzBC28ymX/PHhVrTz7dbE7BPg3PXLTOj22poq8U44CvV5NT7zxNBW9b899u4lZsDvKKMg8b9MmPNBp0Dva7wQ9iBg8uuQsczzeMIi8PQTfO5hdqbzIaai88LK2O3QULz3WbRy9APgjvKFdUb0PuzI93m2/PO/v7Tsvv3s8EHpIPA+3fzzTLCO9ctM6vVmOGzzf63Q8mZrquym/Xb1dEI48l1l2PAo5QDwqfn083zANPUvLkTsX/MQ8/veZu6zf4TzS6668v6a3PGuSKDyUnoQ78jSavOyyIr3jcQa8BbuAvI6auDwRuzw9DfjfPDhFNbzaqmy8oyCkPQR6jD0iQRS8RIoEPVAI7DxHywI9FPwwPOYwML13kmS9y+sLvRf8xLt60+K8QwT9PGdRqryoXfm8ctM6vWSSBT1514s8k10QPYeW3TtVjgy90qrEO4VZHL2CVV+80ywjvf44BL2641q8GL+NvEWKDjzyMGw8Zo7hPKEc5zzIKL681SwtPWkQyj2KmiQ9ZFEWvC/DrjsiftW82SzBvOLvsTyLGNC8p6IRPIyaLr12VaM8APgjvCNBmTx/VUs9wyTtvHRRZjze7x09mZ4dPDVBbrwaAAI8uWH8vEME/Twtw6S7PscnvRa/Az5Ihu87JoKXvGCOQz3W68I8NcNMPX8U4bykogI9JAA0vdRtkrwe/OI7DXq0PBv8WDwsAFy6RIoJu9OqRD3RLJk8/nU7vMDjeLsOOdS81es4vP22pbtTDKm8DrsovNNtDb1yFCU8Ys83PbTjvDxjECy9+7JoPPi2Eb31ceA7tSSnvAV6EbxPikA7pGEYPQJ2TzvBaQW9NwRBvJdZ9rszQeS8RIoJvd+us7v3NLM7wSRjPS9FCD3IaSg90OukvLwkTzzOqrA8HH63vAN6h7zqca49dhS5vFbLyDwIt+G8yabpPAr8Az1GRXs9DLd1PYPXPTxMDAu9JIINvTwIgzyUHCs9rSDWPKDbfLzZrpC6WgzRvL9lzbznsgm9/ravu8WqAz18kni9QwT9vEoIzrzF5787Q4qEu8rrBr2DFHW8/vPmPKMc8bwvv3u9uKYUvDSCWLzSqkS7V4poPRZ6ZjzSqkS8CHbtvChBsjsnQag8TAyLOuJt0zskft+8UU2OPIZZoTw3hho9L7/7vAo5QD0aeno7a471vLii5jwfQQU8dFHmu0AIF71wkjw8a1G+u4eaFT2554M8BrsFvV6OuTu75w29jByDvZbbyrw3hpo7Fn4ZvWVRIL1XjpY68LI2PJuep71xFKA7xig0Pcgovjz7cf47+DSzPJ+eO73OKFw8wecrPQg5trw+SQG9oiCaOPV1Ez3g7ye9EDneu7nnAzsvBBS9PMNqveRtXTyWmmC8RUkkvV+OOb34st684W1TvCpBvLzL5128lNtAvKJdWz02RSs8XsvwOU5JTL0OPYI9eJaXO33XHzx/Vcs8Skm4vL5lw7s0hgu8dZLau0JJFT0aenq9Ifz2u9UsLb0Lu548DfhfvAh6IL0P+Ok8RYoOPaqiILssBAo88zQaPfl1J7yo4wC9a1G+vLVlmzvkrsc8cZLGuvqy6Dwnghy9PUVJvdRtEj2WXR+8m9+RvNvvjrw5BMs8OMeJPGKOTbtUSWo9/3VFut+uM72WWey8CnqqvS+/+7u+KIy8TwwavYEU67wEegw7dVWeO/3zZjvWbZe8+TS9u4MYqL04hh+8paIHvi0EjzwTfoo7ScuMPHSWA7wI+Ms7mF2pvG3TobyUHKu8J7/TvFNJajysnve8cxD8POyyorzVbRe6XwzlPGVRm7ykns+8M8PCPGgQQDys4w+8Hbv4O25RSDzKaTK9riSJPAq7lDu+426887LAu0JFZ7wEt029u6JwPFfPAD2mYR07bc9pPVOKVLz4daI9Zs9LO/n3ADzmrtE7vueXPMrn0zzAKJE8ohzxO2cQwDsN/I08C7sZOrWmhb3BJGO96DA6vcUoqruCWQ29aZKePCuCMDtVil49e5YhvCxBxjyuojS9oiCfPIxZurzYrpA89jSpvA/46TzfMIi9V0l+vMxpPL2fIBA9wCiWvNrrVrvKKEg8eNeBvZ4gC7wC9Ho9PwiXO5GaQryN2508R8sCPUVF8TyyYd68hZZTPCq/57xzktA806rEvDKGAb3BaQW6I35VPQD0cL2eIAu9YFGHvCzDHzw0RaG7IkGUvQh27bzuNAa9sSBqvd+uM73XLLc8fBiFvM5pxjzeLNU7j9d5PL8k2bwiACo9iZqfO1eK6LwlADS8cM/9u/s0xzwgvzW8+nF+Pfl1ojy8Zbm8ScsMvevv2bxKCE67pd9Dve00AT1gUYe7/TTRPMhpqLohvzU7a1G+vA16tLyp31e9J8MGPHiWF70OPYI8yihIPUwMC7zc7xM9vmXDvDUEtzziMJy98jQaOshl9TpkkoW8Gnr6vMHnq73nrls8U8s+veVxlbxOCGK7FT0lu8ppMjw8hjM8QwimPIBVVbySHCE9gFVVPMVplL2Clsm82ixBvJZdHz31NKm7t2UgPYDXqbzDpks9nCABPA96vjxcDNu6iNfRPP22Jbv388i893FqPCnDEDyJWTC9/bYlPI4YWju+ZUM8YMv6vIlV/Tx008Q8RYqOPZFdBrv/NNu8KkG8PG4QXr2dIIY8U00YPehxJD3nMLA75zCwOwl2dz2x3/88UAjsvOdtcTwzhoa8EX6Au1nLXLzF5788D3o+PHDTsLxkjle8c1UUPYdZproXfp49GLvaPIAYGT0WeuY7vqYtvBl6cDzlbWe9dJaDPK3fa71p0408J8OBvQi34by7pqM8gFkDvTjD1rw8CIg8IkGUu3rTYjzVroG6vGW5PEgIxLzbLMu8sSSYPYxZOrofQQU9KgSAvRv82DxxVQo9ALe5vPA0Cz3/OAm9glmNvGrP37wrANI8KD3/PHwU17u6phk8a5KoPLVlm7yuYco8ihhGPIXXxzyqoqC7Efjzu/z3Cj3b69a8NcNMu66iNLzx86o7FHpcvLoMBLwAq4o9N3MovdHq37wFjJ87tc4TvT8LIbxMvGs9Azr9PJYzIT3Sr887TOzCPNT+Hj1wADa8ReniO7TZzDxf23278BIFPOZYQbv9Wzu8wCVWvWejTbyyT208LVFQPfgSEryFSXm7ZFT+vJ2eFb2g9Uq8QZUAPDyElLqGDmm9VUmrPCzH8LvypMq3/sD8O5kte7z0/tK8L9uvvJgllTzJgr48FonmPAHg9Dy7rFW9dUlfPMVuf7s0JFm8zWYmvY9gmLqtNhu95ljBvCnYTzsE/2w9WvICvaoXI7toXQQ629xgve/lgDvSdD+96acQvE5Gy7wZqN48ETWEvVE1bLokX0+5M8rQPPiyY7wUL148KAgnvXwRLzwwcEi7A8oCPY8A6jzTOS+8xSsJvbiN3bzwEgU9ercmvb7AlDwMvIM9/StkOnuHzzyum9y8zHHfOwUkC73CrzU92OIGPXn9bzsl6S69P6OMvaC9Db0aYpW7rzB1vKxxK71no807YJgHPGwczrz6DOy7FfRNOwEQTDxjWqS8X2sDPV9rgzzgSii9uSJ2u5q32rtno807Jq4eu3ej5zw6Ysm8AHszPSMnkjunmPy6NCRZPeEPGLtFGTo7Frk9vWGVNLo87Cg9clq+u0zswjz37XM9vvskPUCgOTwLyg88rsuzvJ+QCb3h6vk6ck8FPFVJKz1iKk07vTa1vDjQg72YvQA9H9sVvaC9DT1GdpU8hg5pPFfTCj11Sd+8AtW7Ov5QgjxT7yI8jQaQvGFlXTux6iu9Gj13O/J087xTv8s6Rg4BPRzHVjy2+5e7glrYuC2BpzuImEi8iSIoPCigkjlYaKO8xp5Wvb+FhLpKwhG7dT4mu0SEIb3roeq7kxQpPFYOG7u02Uy8AUAjPZ9r67yJ8lC8pgPkO9wug7xsERU8c+/WvL7AFLs7VxA9nExzPa77CjwfIV+7YKBtvBAIAL337XO8npvCvIbTWL1oOOa7DJdlPfOkSrzD0YC9lQadvGU+jD29NrW6vliAve/lgDzq1BQ9MHBIvBgTRjsQS3a7QsKEu2zkELzU/p48hg5pO1GVGj0eUbY8sbrUvJrnMbzh6vk6tc4TvQjjVL05zTA9A2rUvHuHzzzTaQa77MYIveiC8jxlScW6CBMsPaTZsrzjOUm9kPUwvMmCPru3+EQ8UTXsPP7wUzyfYDI84d9APSXprr1s7HY8ODiYPRbE9rrbaRM82Q+LvCWBmrx4XR68N0PRvPTO+7s07Bu76tx6O+psgD2vYMw8SydTPEQcDb1zv3+78nTzPM7L5zvFnta8zsvnPIxBoDzmIIQ6GmIVvfEPsrzv5YA7Frm9u6iNQ7x1eTY9DemHPa9gTDu0oQ+8CgWgO4Pkt7yZIkK6rsszPfQ5Yzya57E8jzv6PAgTLD3Sr0+9e4dPvVFlwzy7OYg6a1dePMftpTzydHM80Bo3PDtXELtUtBK91AlYPV/b/TrhDxg7KZ2/PRBLdjxHQ2s9UTXsuyTsAbwl9Oe86UdiPbQUXb1lGW680EoOvfAa6zvjaaA7s9wfPS/egr1gAJw9Oc0wPVJair1yHy68wq+1u/sBM74dXO+8BfSzOxjj7ry1bmU87JaxvG4DibwGiUw8ax+hvGrCxbtyTwW9FcR2vXPv1ryImEi8GZ0lPYS0YL2nyFO99x1LPKSpWz3H7SW9nptCvPYgnjtoXYQ99MYVvD0cgLq1nrw87VshvMl3BT1RNey8fmu3uidO8LybRA29nzDbOigIpzzAJVY83TbpPPsBMzvc0Se9MvonPXTvVry8Zow9wepFPZusoTrZR0g8clq+vBnYtbybrKE86UdiushKATx3o2e87Vshvc1mpjxhxQu9N3OovCy8t7xpmBQ8kk+5PFLCHj2LfLC88T8JvL/tmDsvq9i8+XfTPN+1D73y1CG9Isq2vFGVmjyzRDS9gh9IPeZYQb3IshU9r5CjPLG6VLzrARm8Cj1dvfQuKjwbjxm9jEGgvP0r5DteRuW94nTZO5PkUbySfxA9LLw3PLTZzLw87Ci8hUn5u8WeVryEtOA76tx6PsiylT3oskm9v4WEu2U+jD3NNs+86gxSPaDF8zxAcOK8qSLcvPLUobx1hO87k+TRugo93Tyscas7i8L5O1YOm7zSPIK5kPWwPRFwFLzZDws72gw4vUZ2lTv6DOw8RIShvAT3Br1DvzE96aeQO+9Nlbwtgae9Twu7Oxr6gDtVGVQ8Q1edvCgTYLz6bJq7vTY1vI4zlLu5GhA9pW5LPMm9zjvPkNe8apJuPTQk2TuKfwO8GAiNu0Bw4rs+3hy9fnbwu/BKQjv6BAa8nHERuyE1njpxZfe8lsuMvKYDZLzSdL+809GaO3Javrwf5k4800RovFpalzy9Bt46sq8bPcYz7zpKYuM8MHDIO4rnl70SYgg9m0zzPFIqMz3b3OA7Y1qkvCIFRz0tgac8Pt4cOzFAcTwgq747zGamOtkPCzv8Xo685P44vYVul7zroeo81Z5wPOpsAD1/MCe9KdhPPXxMv7pf2328I5rfvMvnf7zftQ+9/iArvHYOTztTv0s9P9vJvBr6gLxz79a8DSz+POrc+rxI0B28fmu3PO7AYrwI49Q8rQZEveIPGL27fH48ek+SPB4WpjwqYi+9ixQcPaVuyzzL3MY8HVxvOtoMOD21nry8eS3HPAd+k7vAsgg9/vDTvOiCcjyKfwM8oheWutF3krx3mC69M5p5u/lH/LzcLoM7fKkaPU87kjv3TaK8KycfvaDFcz22A349EEv2vAmoRD1VGVQ97SvKPEEFe7ma5zG9RFTKvNWTN70CBZO8mVIZvexm2rocvB08QvpBvaC9Db0RNQQ9XzusPOe1HD24jd06Q78xvQBL3Ls0VDC9e0w/vKD1SrxbHwe9ERBmvP5QArzR36a8dLTGu8vcxjyLfDA900ToPAnYmzz8lss9GwJnPYUGA71p/VU82UdIvM+FHr0fId+7PbEYPAhDgzyUcYS9tygcPUgI2zwkX8+8CONUPZwR47woCCe8mSJCPbYz1Ty2Y6w84JBxPGrynLywVZM9w9EAu8hKAb0MvAM+oYrjvMftJb0O8W096HqMvO3zDD1Z/Tu8FC/ePMKvNb0OjKw7QsIEuxE1BD2CH8g8YcULvI8wwbwO8e08LOyOPJ9gMrx0tMa8oPVKvO0ryrwzvxc7rzD1vM+FHryILeG8nBHjOyigEjyaF4k8R6OZvTOaeTx/O+C8KzLYu0Bw4rxIc0I8aDjmPDO/lzzwGms8wq81vb02tbubrCG7Vq5svdbwkruIaHG83TbpPLoMBD0Ae7M8WpLUPCzsDroabU48ZO88u6D1yrsmrh48OBN6PS5GF71oXQQ98d/avEBw4jyGAzA61M7HPHU+pjsB4PQ8HLwdvHfTPr0qkoY7AqVkPVFlwzzSr8+74zlJvMRmGb3clpe8ukeUO4kiKLzaDLg80FVHvSXpLr3u+/K7muexuz7enLyPMMG8BC/EvKqvjjwa+gC9+jxDvaxxK7wHHmU7GvqAPCllAjsV9E08z/u+PBEQZrynyNM8VXmCO9KkFj1s7Pa70d+mvEsn0zz61wE9DMe8PK+QI73iPBw9KvqavFamBrzFzq08n/idu7YDfrxjv2W9U79LPX6bjjuMQSA9Cj3dOya5V7y5giS8VqYGvQIFk73+8FO8ZXmcPApttLxAoDm8Xna8PISpp7nYsq+9DyFFvLN0Cz3QJfA8zSuWvIny0DzdZkC8/7VDvLm9NDzfhTg6qYIKvaC9jTvNNk890d8mvXejZ7wyNTg8pAkKvVL6W70v3gI9pNmyu4Ja2LyjRJq8+jxDu+/lADtDVx27lHEEveoM0rvxDzI9ixQcPKJP07yvMHW8Kah4PRAIADtxIgE8rvsKPcPRgDyAxb+8DJdlPB6ukbxM7EI9mF3SvGHFC709Ueq83cMbPVsnbbyRUgy9WGgjPIS04Dz3TSK9XXmPPABL3Dwi1W+8J07wOiaunrwPtl28sq8bPVLCnjxcHLQ7/Vu7vPk/lr3WKFA9PhZaPPo8Q70poBK9GwJnPXYOT7wl6a68RFRKu7Vu5bwXTla7qYIKvYm6k70/q3I89cPCPF/b/btiKs28aYoIvF2xTD1zfAk7OmJJOlLCnrl3yAW9aGg9vVxMC75no009EHtNPErCEbwfIV+8/SvkPF15j7x23ne7jBFJvdxmwLzmY3q77fvyvJwRYzztWyG8X9v9uwHgdDwKBSA8+mwavMHqxTxnc/Y7mucxu6i9GjypUjO8XeGjvNBVRzybfMo729xgvAB7s7oGicy8on8qvRsCZ7vpp5A8ZO88vCCrPj0tgSe8rEFUPdNEaDy8oZy8Vq7sPEzsQj3LrO88M1cDPJ7LGbyeY4W8TzsSPXVJ3zuf+B29esLfvPLUIb0Z2LU70d+mvA1cVTwXFhm85cMoPTy80bxLVyo8qq8Ovccotjxt4T28H+ZOPDauuLzy1KE8GONuvbmCJL0XTtY65P64PEbeKb3NNk87H3MBOiy/Cr2RWvK8ixScPUCguTwl6a68TkbLPLWp9TseId88cYqVPPlHfDxvC++7+jzDPFsn7bz9K2S9FF+1PDTsG7zH7SW9CXjtvC2Bp7vxPwk7kYrJueBKqLwhNZ68dKkNvRAIAL1ephO8HYzGPPXzmbwJ2Bs7x+2lu+3zDDxBZam74a9pOxo99zvAsog8aDhmPPvRW7pqwkU9C8qPvCFAVz3/fQY9EEv2vKeYfLyoXWy9DYwsu5G6oLx8TL86ndbSuxk1kTwSBS09W1fEO2VJxbwrMli8XeEjvfsBMzvUloq6IKCFvGbeXT0OIcW7EKskPGmKCDxbJ209QZWAvTn9h7yUcYS7E2puvHAAtryzRDS9R0NrPPft87ynkJa8uYKkO/OZEb2pIly8s0eHPHbed7tkTBi90q/PPAizfTwv2y+9MKAfvP1bO7yLrIc81M7HvJf4kD28ccW8l/iQPGtX3jybrCE8OWUcvHN8iTzu+3I8qSJcu7xB7rvCDBG8kMXZvDgIwTzuwOK7u6xVvD52CL1sqQA9seqrPC/bLz13AxY8tKEPvRKdmDzcZkC9Bx7lPI0GkLtvC289NFQwPN1bhzwGiUw9u3QYPEn9ITxyWj498mwNPS8LBzy/hYS8xP4EPdyWlzw8vNE7gZXoO5iNKTz/5Zo8EHtNPfQ5YzyyT+270CVwuqlSMzzvTZW7sCgPvciylTzk/ri9s0cHPalSM739Wzu9s0Q0PF9rg71cHLS84zlJvFy0H73J3xk6QvrBOyr6mjwPtt28FF+1u6D1yjxsTCU8WvKCPQ0s/rzuIBE9l8g5PfsxCrw+Fto8E5pFvXnyNrvcZsC871X7O46bKDyojcO8rtZsPI6bKD1EVEq8TrGyPHBdkbzJRy48h8gfORzH1rya57E8+gQGvW2xZrq/YOY8AqXkPBsnBbyRIQC8qQ/PPCul3byFR5G88SFiPFmVB73DfRg9h31IPUAiezxS7RU8S8QVvVkWljvUAzM8XEowPN7h27tCmO87QF31OrOuQ7yagLc8RJuVO6Doa70dFka7F+uoPKDo6zyKNZe7PXKVOuHbBL3w6Q29yp+4u3zjFjxf/1i8y2IhvQnWv7xt1Q29T3JePFOpHj2Opki8+oXcvPpIxbx+nYI7RwzHu7Fzybxkrqo8sDjPvKMmjDxCHsE7IgRMvIGPQr3Rjb67IQZpvbkW+Ly618O8LWSMPTMLdb2UGAM7VZ37O6WZWr22ZpK8LGapvYh7q7z++TM8d/WQPPlNiL271aa8Jbn0u2wZhT3pvee8FXOXPLSsprzngm27a9lHvN2pBz0PAd07ls2rvIq2Jb2LMNS8ZfAEPWcmPL3tMb+7x2j4PNe4W7qxNrI8IQbpOXN/HDvDeNW8Q1k7PU27mDyqSsm7RVeevJq9Tr3HK+G817hbvKlM5rw3f8y8kw59PJ70Dr1N+ky9QmAbvLKzhjygq9S7PG3SvHLDkzzG7sk8rjpsvF4EHDwuIJW8sHVmPBwY4zs3f0w9BmDLvLzTCT1kriq8H8tuPFYfEz2jIck6Z+eHvAToOb0Klwu9V1wqPS1kDLv9ABQ9ZfAEPRueND1EltK7NA4bPE46irxP9pK7a9nHPH2fn7yjIck8bozTuyqxAL0fy269P2kYPR6QdL1HTqE8Qh5BuSV/AzwFYug8iLhCvSorLzugLwk8QV11O4PKPLxVnfs8Fq6Ru9OJBD1HS/u70c8YvH4ZzrvI7Cw9vU24PC4glTyawhE8EEGavL+Isjy71aY7uN6jPGfnB71mY1O8pZc9vIPKPLzQzHK9tCjyO82ReDzpvec7DY4OvTxvbzwu3rq8hUJOvPAjfzxf/9i6pJv3O+l+s7zFdJu8Pi4ePXN89jwuHe88DNKFvMaxsry+BP68W4lkPGbpJLxMN2S9oam3vOw4nz1mY1M822lKvWoYfLwK1CI9e95TvGgkH71wQfw6xDmhPOOSyjqrhUO8Mgt1PHqldrzvLYW7DkoXPOiAULyfcwA9lkdaOx+OVzyCUA69+8UZvMWzz7zLnzi9pF7gPFkRU706uCk9Aq0/OvCnM72dOAY9oyHJvNe7AT2RW/G8WtIevRfrqDvYMO28WJckPG6M0zwXom681QEWPZXPSD0sKZK99F8CPFBwQT1CHsE7BSO0O1jW2Lt73tO7NkRSPHI/37yM7wI9i/EfvAG0H7wC7PM8OzJYPDv1QLskgaC8DY6OvKDo6zxQcME8tG8PvUpFpLtl8AQ9eimrPNY+Lb2jm/e8K2hGPBzZrjshBuk70BMQPVeZwT0XKMA7qg0yPNIHbbwTtOi8Fe/ivOIYHD20KPI8G560PAKtvzz6SEU8hQU3vTxv77y80wk9E3dRPPgNSz2cu7E8OECYOyyogzw2gWm89tJQvR9RQD0T8f88OzebOwmZqD0Nics82S5QPbsXATwXKEA7dvBNvJbNKz1ujFO92ywzvbciG70e15E8CZkoPGpfGT2J9dm8J3ijPbbnoDwiCQ+9hUeRu2D9u7tXmUG+khogvbUmVbyZglQ7GOkLu8mmGDx6qBy9xbPPO5m/a73vp7O7xHY4vbzTib0hBuk7WdS7vPgSDj1Nu5i8cj/fvPbS0Dx9nx89rcA9vfdM/7xksMe7TX6BPYONJbxr2Uc8TnehPEpFpDs3BZ64ObrGvNLIuLzzXFy9x68VvQWffzvAAMQ8eWhfPLoZnjzFN4S7tChyvSxmKT0ZJiM7r/maPbTuAD1DHKS8hMifOkJb2DstZIw7gI/CO0u/UrvWuvi8o2MjvdTGG72J+hy8DkqXvJq9Try8Er68GiSGPEfPLzxrFt880kLnvLZmkjtaDzY7nzEmPIe/Ijw5fS+981xcvHf1EL31lTk8RpIYvTbIBj08bdK80sg4PWE4Nj2P5gW8utfDuy8bUr0fy248VSEwPLE2MrwzCVg9tCjyvZXUizyMqGW7IcnRPOFXUD0Y6Yu8SUfBO5qANzuS3Yi776nQPNOJhD642/08xLgSvRF5bjt4LWU9VV5HvcWzTz1rmhM9LGYpvJOUTryPIHe81rp4PMlmWztXngQ922lKPAJwKD0PxMW8XsJBPW0SpT0rpd077TG/PPScmbyWkJS7hULOPN4ec70Br1y8EMIoO9gw7TyeM0O9SUdBvTHagLw0jYw8BakFPfRfAr2Q4UK8QVtYPFfbmzy/iDK7EEEaPe02Ar2QHlo8dvLqvAMqFDw5uCk8cEsCPNJCZ7yK87w79teTvPScmTouHe+8ijUXvKqMo7q/iDK8LGYpveUIv7srKy86/XV/OlkRUzxzACs7msKRPIxwkbygqbe6KPJRO532Kz35zhY8Ww2ZPNQDszyMa069q4fguk+v9TyFxgI9U+a1PA6HrrvSyDg9UHBBO+30p7wEJVE8q0isPB6Q9LyOpki7KfA0vZlDoLzoQ7m7dvLqPLflA7xsFMI81UBKvdl3Cj1yfHa8fh6Ru6sLFb0M0gW9JT0pvdprZzuPpCs8bRIlPfIfRTxk7d67wAJhvXloXz2O6CI9cj/fPC+fhjzvqVA8QSMEPRljOr2d9iu9+8LzPA8BXTzVAZa6FbCuvRcowDyYhPE8rYEJPMnqjzta0h49RpIYPItt6zyWR1q77vKKPbkW+LyrSCw9jeX8vHzjFruR3yW81oAHvYZAMTs3QrW8YfsevISLiD2olSA7YDrTvOSQLTu0bw89jGkxPTr6g7xRbqQ9bBkFPSRECT15qBw8axZfvcS17Lx+3La8DNIFvZXUC7yrhcM8at6KPPgNS71rFl+9WBPwunI/3zynEew8nLsxPA/ERb3cKha8iPd2vLvVprzubta8lc9IvWxWHLzPUsS8ZihZvMvcTzxaD7Y8y97sPCHHNDlk7V49i7SIPQnWPz37xRm9Aq0/Op51Hb2HfUi9kBw9vMufODrPlB65mIRxvdUBFj2kXuA7TfrMvPAj/zwUsC48ClBuPOOSSj06uKk8n269PMbzjDsSOrq8kB5aPY9nlLwZYzq84dsEPvmHebrmyye9yWZbPRSyy7xHCio96UGcvGSwRz1M/w+9lg+GO2mezTzgWe08SUwEPSW59LwUNgC9dLfwPESWUjwTOB29c3x2u8U3hLoQBAO9omqDPK2DprwBtB+8NUZvva3FAD2nWIk9PKppvCgvab0qKy+8ULKbvJFeFzmUESO8kxiDPP370Dyp0Bo9mQaJvFVjCr0u3jq9xbGyuwMlUb1dAfY77i+iO5HfpTxrFEI8224NPQ0NAD0ylgk8nnBaOGA6UzzaLlA6IoiAPK79VD23Yc+8x2h4PSHJ0TsC75m8JHzdPNATED36ip+8B14uvN1nrby+Sxu9dXi8Ox6TGj2EyB8941OWO0y9tTyZBgm9IIy6vH+TfLqbfpo8BOacPMqhVb24nEm9+c4WvE72Ejy+x+a8hIsIvTm4Kbv6SMW7QOPGvOm9Z71qGPy8/juOu0NZuzxxB4u8jqbIuXprhbv6SMW8sbDguze84zymWiY93eYeOCJB4zxDHCQ8LOBXPIMMl7oLUxS9f1blPIl5jryxc8m8iralPZv65TwraEa8ZK6qvLQrGDzjz+E6MFuPPHnsEzudOAa9ADWuvDd/zLxYWg29uhmeOEbRTDxt1Q29vU04vb1NODzKppi8MFuPvSKIADwiQWM9MZNjPQtOUTu610M985nzOq2BCTziGBw9Xzzwu1tMTb1FVx69Ovfdu7XpPbxXXCq8Zumku5z9i7jQToq9RVeePJOUzryTV7e85kqZvE53obym1FS8hQU3vObLpzuBzna8JjuMPb/KDL0to8C8GKLuvI7oIj2oFBK8IIw6PPqF3DxLQwc87XMZvdV9YTyll728CZkoPQegiLzhXBO9OECYvK/7NzzNVn67O/XAvBokBryRXpc9E/sFves1eTsrbYk839++u2F36ruGQLG7w3jVOw8GID2IvQU9khogO2E4Nr3wI3+9Fi8gPT3xBj2CUA69dP4NvYe6Xz2frfG7IYodvTj5ejsiQWO8QeGputIHbbx3dIK9fKG8O1Vex7wekPS6+4gCvYTInzzBw6w8+E0IvD6tD718ZCU8pVxDvR7XEb03hA++aaMQPQibRbzgWW28+c6Wu/pIxTzPUsS8BOg5Oxrd6LvF7km8ULIbvAfdH70iQWM8y2KhvDm6RrqYCCY9qQ9PvEmEWLyz8B27H1HAu8WzzzsJUO46+gmRvKuKhry3nmY9G9tLPPfQszzeoic8i23ru1nUO70cVfo6ZS2cPA0DerxJhFg9qUzmPPkLLj3QzPK6YvmBu8EFh7uyNJU84tF+uxSwLjyS3Yi8wzs+PA5KFz1M/Gm6aGG2vPWX1ry618O8jWkxu/kLrrw3+fq6QOPGO11IEz1WHxO8iLhCPM9SRL2okwM9ckSiPDVJlTzJ6g+9Aa9cPYd9SL3F8Ga9/zbLOsbzjDs5/CC9aaOQOp51nTwp8DS9mITxvDwwOz2ZQyC7U+a1uuq7yjzogNA8hoKLPAKtv7vJZls8jC63u6uKBjyYSoC8FyhAvYxpMT0HoIg8X8AkveTNRL1uEAg8E/F/u8ufuDxhODa9YXfqu0cKKr06uKm8NUmVvF/ApDy4Fni8g42lO9MKkzxh+x48xi3+uxfrqDwKE1c8039+PDsyWDwwWw+9i21rPdV7RLwluXQ9xvMMvLQrGLynWIm85UfzvKyFwztp22S74hgcO8bzDL2ZglQ8fhlOPLQocjyqDbK8dbXTvAVi6LznyYo77fQnvBA+dDphd+o8QKYvO4e/ojyg6Ou7hAfUPPEhYr35TQi7jKjlO0oIjTz+df+8WBNwvSizHT2fMSa9yWkBvQegiLyzrkO95wYiPM9SRDx/VuU767mtvHW10zx7o9k8D8RFvdATkLufrfE63eP4PIZAsbxoJB89sTYyvZy7MT2VDOA8BmDLvMdoeLtM/w890gXQud8c1ry63IY6W0zNO2/J6ry6FFs8YzYZu2wUwrtfPHC87HBzuqQfrDyrC5U8RJZSvB8SjLwlABI9Lt66vNY+LT1ONUe8jquLPebLJ7tCmG88t55mPdtuDT03hA+72bQhPSnwtDwTtw68yqFVvM5U4TyiaoM8S4K7O3P+DTzXeSe8G9vLO/SXVj36hdw7eW2iu3E/XzwfUcA8jC43vFoPNr02gek83xxWvZ6wl7vh2wS9mzd9vL4E/jyd9iu9Kqf6vDl9rzye9A69gFRIO9DMcjxfg408bNcqvUPT6brHaHg9GWO6PHwbaz2k4pS94pTnPONTFj2804m7iLhCO/cPaL0oMg+8DQN6vCKIgLvyH0W86vjhu8M7vjymWqa86MANvVIlajz++bM7OX0vPHgt5bumnIA8+A1LPId9SLq4oYw7Q1k7PBcoQLxjc7A8Ig97OXgl9Dyh89u8JujkvBHvKjtQv2+9ipvhu4tGMD32Evg8kJAgvPBhkLzAW/66/tiMPDobZ7xGNR68TZHUPMzmOzyinqq8XRuDO1TSobyjGFS96SDDvMwDoDxr+fY8DSqCOsKLlLxDzbo7YoFrvJ3OYzyaVDo6qD3MO5Ymn7z3tKO8YNiXvHl7kTs/vIM8F6KNvIS5VLyp8T28vdgxPBKjHDyDP6u8E30VPNkSubscvOc8rcGEuxBE3LyOdEu9X8RWuzzPWL3XqlU7rpBfvPqWsD3AD/C8t1R5vAxiz7ski5+9i/ohvJYmn73k6QS9bPDTvC/UgDxbLli9ezimvLTaTzrUMCw9qq5Sve+2QTw/qMK8KJxWPG8VzDsIRno9/f4TPCx1wLs0cyK9/RDavDfbhTwcvOe8eNnlvO0L8zyWci27F4UpPE/KjTpUjza81O3AvK8yiz2DPys9oyH3u34as7vsTt682FUkvToJobuhbwC9dlaZvGi5FTy7Z6u8hcJ3vfguTTzhnoU7CDQ0vJsacrxlY/g8OxvnPIjMBr3x+B0886FxvPbG6Ttn/AC9o2RiPV5KLbxigWs9VwA9PFp6ZjyY4zM9cwD8u3Wip7yXABi9GI5MvfbRBz0a9i88gxABPVziyTxDzbo8djCSvAx2kDsIRvq8Iw97u+LNLzuXQ4O8/hDaO3MxobyZlyW9jnRLvbKjET1lbha9bZsiPXpBSbwjsSY9fMYQPaaAt7wq+xa8FTEHu2jU/rvLKSe8S91iPdrGKr3ZvQc9MJo4vOnm+ju/STg8gMUBPAHqQzvhIuG7jcl8PPYS+Lzh3/U8R8MIvamlr7ralwC9i1h2vFBqvrtigeu8SnV/vBH4zTwPmwg9SK/HPBr/0rt7Eh89GEK+vEIibDxvDKk8hiE4PIc+nLwW4/28eY1XvGmI8DwAShM9kNyuPBYdRrwZS+G8B8xQvct1NTpjsYE6pysGvcspJ7wK8Ug9DWLPvJ3OY71yQ2e85vtKPPuWMLxguzO9pcxFPLdCMz3OkYo8y4f7vPRDHTxL1L+8mlQ6OxlL4bq1jsG8PXqnPCUZirvcQNQ8xejZvEe46jt9eoK9hPw/vRRp1Dyhu469txMJPfLSlrup+mC98GEQPZ3FwLwROzk954CSvGZaVb2M+qE7L6PbOyFS5jzGkyg9Nu1LvNahMj3IIZM9HuFfvW1h2jxBGUk9WYUEPJqp6zxNiLG70RTXugRJhDyg6ri8kNwuPX5dHr0Vcne6iMwGPWjCOD1T0iE8ufYkvWoqHL1CIuw8Yyy6unVo37y0FBg8rdPKPBeOTLuU2x+9ZgWkvALqwzwB/gQ8kwEnvKXMRTxEnpA98DDruwKetTzuv+S8VY+2vHovg7w0hWg7i1h2PKHz2zmp8b084GXMPEhsXL1RFQ28J9/BPABwmjxnBSQ9R/IyOx7PGbynUY08iwNFvJDl0bxlY/g882CBvAA2UjwPwY89jzHgPBBEXD1AseW8L+ZGPLqzubt9qSw93esivXz1Or0O01W9WyU1PN9u7zsVMQc97r/kvNK2gj0VC4A8aHYqvasfWTus54s8LSkyvocz/rwS+E08xpzLvBRpVDqxtVc8DFksvWDEVjy4/8e8RYEsO+9z1rxr5zC97fksvD16p7z2q4C72RI5vWZRsrxz99g8Af4EPap2Bb3DNOi8zCAEvARviz2w75+8qD1MPKaJ2jw9VCA8bLiGPF5KrbwOFkG9OgkhvXDJPb1VhpO7oAedPKXDojzgXCk8cMCavK9YEjyFuVQ9hz6cPA1rcj1E1l09rcEEPYs9jbyib4C7KJMzPK3KJzxJFys7V/eZvK9YkryTVti8ZWN4vDFFB7319448aSqcvG8DBj1djRg9ZLEBPYZ26bvcNzG8CUZ6vNLIyLvh3/U83esive35LDz3jhy84z62PL6Mo7qh89s86GMuvRVy9zza2PA8yQSvO/1caDuR7vS8x6VuPGPy8TxDzbq8vc8OPS11wL0uII88+SUqPFCkBj1EzTo9QVw0uwAtLzzDP4a7fLtyPARJhDynK4Y+rzILPQvCHr2kD7G7AHAaPWp/zbymiVo99tEHPSxsHb2yrDS9ei8Dvb9JOLmFp448bPDTPCIP+ztzvws9Y7EBvAh3nzxodio953X0PFcAvTx1aF+8Sg6IuxBE3DzjPja9eXuRvLdLVjyHIbg8Z8vbvMwpJ73/uyi897QjPPhxOD0GlAO98DuJO3WiJztVjzY9yFC9vNNNED0OFsG8r010PByEmrxNmvc8I84KPUEZSTs2MDc8D5sIvB4bKL0PWJ28/ge3vKqu0rwgg4u7R/vVvBLmh7xs8NO8DFAJvczdGLyx+MI7xqXuOrTIiTyUCkq88qyPuvYS+DyI1Sk9i/qhPDPcFDwsbB09nBFPvRRgsTw2AQ09o2RiPVJz4TzkR1m8KUclPchQvTyRoma7PTe8u7ABZjzLbBK93v1ovFY6Bb1+ZsG7zk4fPJYmnzxqPOK7AT91PWM13btBXDQ90Au0vKnxvTo7z1i8p1GNvECoQr2guw68YW8lPUY+wTyra+e6uyRAO7K1V727cE49SYAdPeeAEj2zOp88J5MzOyzBTjxqf029K9UPvZ9KCD1sm6K8ZLGBPEfpj73urZ48RNbdPOqa7Dsjw2w8fbJPPXl7Eb1lncA8pNXoO9qMYj0dcNm8S9Q/PTVNG7z3tCM9C5yXO/4HN72iW788pA8xvWPycTq02s88YWYCu69YEr3riCa8UnNhPSOoAz0ZS2G8eXuRPQUsID2ZoMi86ClmPHcTLr15oRi8ofPbvIM/q7wxHwA6J4qQPWPXiDyEBWO9z04fvX5vZDvcN7E8IvSRPLKstDyDEIG904XduotGsLzTfDq8kx4LvS4gD7082Pu7iPINveqabLxhZgI9ezgmPW8MKT179To8OiaFPeLEjD2AxYE853X0vDVzojqmgDe9W/YKvXGaEzwdcFm8JXfePLXRLL0AgmA7wz+GOj03PLzIUD094FwputAU1zyiUpw9BtXzPD16pzt1oic93rr9vAroJT0xHwA8TjMAvLAB5j1CIuy8BhhfvcacSz3VQvK8R/tVPWzejby6efE8y4f7u8t1tbuMA0U933mNPNeq1bqwAWa8qlmhvJQBJz3qf4O6UifTvC/UgDttan0873x5vXcTLjvLO+28yASvvAeJZb3V5J08DSqCPWZRMjyw+EK9W9CDO2JJnrzm+0q8C5yXvCIG2LsK8Ug9E7XiPKszGry9zw69F9G3vG5YN7y7LWO8L6x+vFlxwztyj/U6AT91PCOxJj2vkN86vp5pOlp65ry4/8c8PXonvBO14rx9qaw9TVkHvXWiJz19b2S8WhwSvUPqHj0yvzA9NUJ9PCohnjz9Gf28HLznvNN8ursoWes8GRMUPWDYlzwwV008coZSvYfVqbyo+mC8ZZQdPG8VzDyFsDG9E6McvX2pLLzZl4C8C67dvFVgDL0a9i+9PgiSPL6MI7z0Q529uy1jvGl/zTr5sxS5K68IPA/Ksrw8z9g86prsvCiTsztORca6xpMoPWMsOrzIBC88om+AOUWT8jx5exE9r030vGFmAj2HIbi8VZjZu9uM4jyRouY8Q826O2FmAr1Hr0c8cX0vPOb7yjyc2YG8vqmHvckEr7tlY3i7KIoQvf0QWrzuAlA8hYEHvQeJZb27OAG6Uh4wvc2arb0/qMI8Ct8CPWIjFz25xX+6G8eFPWsElbzlD4w8000QPUItCr0K6CW9CTS0vGzeDbtny9u8Ogkhu8tskrzwarO8B4llvcMrRbyEwve8toUevYGLOb1ZhQS81eSdvLqqFrx/18e8+HrbvMXxfD3STZC8k1bYvJGQIL2KYxQ9qD3Muq6QXz3mrzw9IgbYuz1A3zsJ8Ug8kx6LvFyWOz2EuVS8ncXAvPxTxbtCbno8F6INPR0SBb0P3Hi8Af6EPSel+Tv5JSo854ASPbTRLLvoY667bK3oO863ETzoYy49gYKWPIZkozz2vca8lb47vSBdhD1zvws95QTuvDV8Rbxowjg98pjOunHSYL1mSI88WkIZOyLOCrwJPde8p0ZvvRr2LzzDbrA6o2RivRrHBbw5Va87cwB8PE5FxrwXyBS9xN82PK6QX71Fis+8co/1vQ/c+DyVaYq8x1C9u5ZyrbyQ3K48OgkhvV8HQrz0Q528+Dfwuw0WQTy/Ulu8+5YwPHjkA72LF4Y8U6waPS/UAL01c6K8nnkyvF8QZTyrWSG8xehZPAiJZToG4JG87EU7PTFFhzyYABg7JfMCPKzni7w6Z/W8fyPWPKTghjy/Go66TZr3PGZaVTw9eqc9pjSpOhiX7zthbyW84d91PGy4BjyWcq08gjaIvFPvhTz62Zs8c78LvVcAvbwu+ge9unnxvJQTbbxgeEi9eMefuTPRdjz54r48yRZ1vM+jUDyA64i93EBUvG5YtzxlncA8aW2HvMXx/Dy3QjO9EQFxvR/YPLdH+9U8JujkvFCtqTyDPys8vep3vRkTFL0NDR49VY+2vKNbv7t3JfQ7mDjlPIiJGz27OIG8T/k3PbQUmLzJyuY6E6y/vAroJb0xTqo8yzLKu8I/Br0oihC9kO70OyFS5rzuh5c857hfvZNNtby+lUa9hLAxvFVMS7296nc8FWnUu2znMDx05RK8kDFgPCUirbxowrg8a/n2OaQPMTyLT9O844pEvXzGED3kDwy833mNPZMeiztfEGW8Hi3uvEYPF708cQQ8ZZ1AvUWTcjxHpiS8PVSgPHMxoTtH8jI9awQVvTihPb2twQS9JT8RO8NljTpHr0c8IIwuPSYrULyinqo8hipbvEoOCD3B/Sm98DDrPEvogDq7LWM8ZiKIvCvBTr2EuVQ84z42veOBobyAxYG8ETs5vTlVrzvjikQ8pOCGPN9u77w35Cg7xqXuPKc0qb1hbyW84s2vu9HciTzWobK8eXsRPfhxuLzPTh89F9raOwuu3bxdZ5E6VGAMPJGtBD2aoEi8ZOCru58tpLyKYxS9g1HxO0idgbxOC346jAzoO2GMibk2MLe7cX2vPJtd3buIM368BhjfPLskQLxO+Tc8+eI+PbJ9Cj1zOkS8K7grPOuIJj029m47obuOPIWBBz1HBHk8zAMgvJn1+bwld149Ee+qPBHvKry+g4A7OUwMO9LISLzQKBg9NjC3u76DgDzq1LQ85OmEPESeED3h6hO9jAPFPIqSPr08xrW7W9ADvSU/Eb3inoU8dLRtvTfkKL3axqo7rcqnvLdCs7zpKea62oO/PH83l7wu+ge9wzRoPcH9qTyMwFk98phOvbNgpjybS5c8IIwuO0ItCj3+Bze9bwMGPGozP72Uj5E7TYixPGWdwDtFis887DwYvDfbBb3W9mM8y0aLu2Tpzjxz99i82sYqPGfL2zxhb6W8WyW1PN+xWjwG4JG7PINKvOWJZLuY0dg8ZJcFvbkqUrzBdim8wzHbumdn/TsrRjA99t20PMm05zqQ9we9OQjrOiwCUjvcjpQ8xfqlPEKXsLxPncm7gwa1vAApHDyGR8M8ggY1vWwuaLxe0Qq88o/9O2xx1juVTOy79VfYOTdNuby1kQ+8DJUCvE0lBr2ZmiO7KCahu5sgALzvv4W7bRmiPPggo7xClzC9wbmXvIQFxTwTOY484DQAPahcXjyz6rO8cnuvPNdNhrx7dn+830lGvUmTcLwiPje9uzUbvR/8OLzkzUI9OlgCvc970rua/pA8N5CnvcP7FbydH5C9safFvPvGDjwgMn49/ecNvWbZA7zdges5rWY3PUFUwrxSZaQ8E2/TvAOhX7xYLI88OQhrPUzilzzFPRS9+pjmvPqY5rqVTOw8HfD/vMufIbz+HOM80nnyukWV0DyZmqO8oRzAuz1WojtWY0Q951Kvu5IXFzqEwlY8rKoVvT5Jebysney87VwIvUG5H71o+oI76fkKu700K72Fwea8bnBmPFPrAL2y6jO7dHo/PQVqKjxzN1G9k5DKPHj+uzsNLzU9qOK6PI/WCD3pyvK8PHkBPVrnwLsY8888NYRuPFyjYrxUZLS8KCYhvYXB5rzN9mU8joZxu5XTODzLwCA9f8Q2PaskObwLMCU8N5AnPA61kbzlieQ8oxtQvSHFgzx/gcg6k5DKvI+Tmr0oBaI8LgFivXMBDD2d2zG5v5iYPE+dyTwtRcC8MXGIOkehCT0jt2o75RAxvEaVUD1QRZW78dPbPNoJKLsD5M25S5+pNzhMST0kKIE7CFOEPNcKGDwzcBi8aO1ZPNO84DzEHJU7wzFbvUoZzbwfQJe8PRM0vT7QRb0ZNj68ZWjtPLDeery6r767yX6iPHE4Qb1C/I28o+WKPH0qBL2qntw8J3/FvHa8PTwdujo9fSqEPVpMHjweM267NgrLvJjRWL2fgo28Vx/mvAGNCb1F2a68VckRPe0YKryGR0O9oYGdu5hXtTzCdTm8v7oHvZmaozx3eN88K6sNO220xLyXvQI9InR8uwjvFrxrPIG8fYI4u97QEj0zT5k8eaaHPPTepLp9CQU8IweCveeVHb3ew2k9L4c+va8vAj1r6/m8VwsQvYA96rxWY8S8uRUMPTwUpLxtGaK9anJGPLzyrLxjdoY7o9hhPYXOD7w3kCc9H7lKPa+otb10ABw9EhgPPRe9Cjx2Q4o8nR+Qu6PlCjwceLw7InR8u3ZkCTwpig48L8qsu46GcT3QN/Q8+h7DuNbHKb3/oj+7WkweOzBQCT0pig69i3MLPPHgBDwyQ+C6ODcDvTAvCrw405U8jIfhu2mpe7yoaYc7PlaiPSHFgzxapNI71f5evMCs7rx1ec+8yrTnPDeQJz3HL/s8H/y4PJZ6FD0ACB29sesjvU0DlzxmdCY8Rtg+PQGiT7wBSpu8ocSLPEVS4jz82mS9wrinPDqOR7vHPKQ8fcWmPfqDoDx/gUg8wXapvOr4mjxAmCA84M8iPb00K709V5K9CmdavSy/4zzqkz08+6QfPbxrYL3jEaE9QJggPcg7NL2oRxi9ShnNvNwIOL6CPHq70CMeO3hjmbxapNI6o+WKOxVajbxg5HC86vgavSH7yLtm7sm8DKlYvdGHCzw49JS8z3tSPAswJb2JAvW8PngRPXB8nz0DjBm9cL8NvPmEEDyY3oE9h8D2vI6Tmrvz35Q8rcsUPHmEmDxv9sK8VAwAO9huhb2uL4K9MwwruF7yiTw+E7S7kdWYPBjeCb0D5M286FE/Pata/jxTIUY9OjYTPeLOsrs9ViI8N7KWu2z4IrwtiC48t+fju/OcpjtTm2m8y+IPPGmp+ztX3Pe8jA6uulJlJL0d/ag7Ce4mPYXBZj2kG1C8M3CYvNcKGLx2vL28ARxzPFXIIb1aYWS79VfYvAOh3zuWFbe8zPblPMjCgL0NciM9GvLfO220xLsmf0U8j7QZvT2aAD0tiC69eLtNPIvLvzwQp/i9Hf0ovC1FwDx6xwY9hoqxPKpb7rtd0Qq9HHg8vP/mnbymoDw97VyIPqcZcD2QTzy8+5f2ucEySz1vObE734w0PXP0Yjwvh768P1WyvN/xkbxlaO08z0UNPFSnIjwHn/+7DS81PZn/AL16Qao8YPGZPeDPIryeEfc7h8B2vYsOLrxQFn081oS7vHC/Db2cVdU8LMyMvIDENrzoUT+9pxnwvH77a7s3kCc9mhNXvbTpQ7zThhs8gmuSOpXTOLwYNj49bi34u5SQSjyyLSK9b1sgPVAW/TxRnNm79VdYvMvAoLvfjDS9fsWmu9RCPTzuTu+83Esmu5WP2ryNDT69vTSrvK4i2bxRnNm8X68bPUoZTbwvh765ZjG4PPthMbw2TTk8F7DhPFcf5jvtT1886cryPMt9Mr1EHJ08t+djPf1gQTybmbM7taVlvMHalj1eKb87iswvOvEWSjwHMoU8h8B2vB7w/zpK1t68VeqQvForH7wuvvO6H6SEO2/2Qj0Bos+6JCgBPTeDfjwzcJi71KeavNttlTtaYeS8pqC8OqLEizqKiNE8Jzvnumvr+bvlEDG9m5kzPWhztjqgluM8LL/jO4iJQbuUCf488dPbvIV+eL0LUhQ8M4VeO+pQT7s+jGe98E1/PO19Bz2Qkio6kPeHPKCWYz3/5p26EbShPJWPWjuCPHo9bnDmvPPS6zz/B527OcV8vGmpezuKUgy9X2u9uQsj/Ly4bcA8jIdhPcUw6zxr+CK9xy/7vBw03jzkELE9FDievGfuyT09EzQ9UCOmPIEHpTzbCDi9fIOovBx3zLzfSUa9Y2ndu5n/ADx0ej89umxQvWnYE71A2447nh6gPIkxDT0wyiw9uCpSvdywgzrPRQ29YVUHvX8pFL1FlkC9XyjPubZuMLwHn387PtBFPFemsjyCaxI9Hro6PPwdUz13eF897X0HPSB17Lyw3nq86FG/vDJCcL3xWig6ILlKvBmbG73hSFa9sCHpPEoZzTzrUE+8PlYiPREtVbxKoBk9DXIjPdpMljx8CQU9tivCPHCy5LxmuIQ9y+IPu+qTPbwEzwc+UamCvIzKT7xS30c9YGu9vGpyRj14/ju78L+FPWov2LwjPUc8NgpLPBx4PDzTvGA87xe6PCTDo7xvs9Q6kheXPKrhSrxfKM+66A7ROwzttryMchs7rssUvSU8VzyMh2G9wx2FvIyUij2d27G810BdvTNPmTzx09u8aal7PGd0pjqWvYI8xy97PM4CnzxGG608JLZ6vJM4lrwsRrC791bovIQFRTzv1Eu8lr2CPAOh3zrkUx89hwPlO7ek9bzKtGe8bzmxudZBTbrntwy8Z6prPZ6YQ71e5WA9fIMovWa4BLxz9GI8qp7cPNfpmDsIaMq89d4ku63tA71UDAC71YUrPbmwrjzTQ626M8jMvN7QEr01x9y8ry+CPKrhSjxi8Kk7hMJWveLOMr1IXhu8MgyrO9TImbwcIAi9ZjG4vKShrDoA5q28k01cvTx5Ab2vqDW9Nk05PFilQjw/z1U7YvCpO+YPQb06S1m84BKRPNluBT0NtoG7f4FIut+MtLstiK48azwBPfdW6LxGXws9cnsvvBEt1bwBos88JzvnPMm0Z7scuyq8k5BKPbpsULt5pgc9qomWuwOMGb1wsuS5rma3vFpMHr2cEuc4o9hhvIkPHr2cEuc7L+ybPNvFyTqzLaK9mv4QPLx4iT3tGCo9Wm6NOjFxCD0Y3gm9ARxzO3zoBT2R9he91f7evLMtorwjgaU8METQvHuDKLtSZSQ8y32yO1yPDL1ElsA8JsKzvAeff7xfrxu9/hzjvIfAdjyzY+e8NtSFvPBNf7z4Y5E9yjpEvIZHQztGlVC9ByVcPZi8Er1hEpk8i3MLPY0NvryQ9we95g/BvNWFqzqCSSM9IrhavZGRurysWn68mZojPUQQ5LsIEJa8y30yvNrFST3r1iu9b7PUuLYrwjslwyO8zyOeu1gsD7yWj1o8KEiQO2kbgju/8Mw8czfRvM++QL35YiE9yjpEvFCIA73V/l69anJGPT9VMjz8HdO8zjhkuaUGCrwRGI87KTr3vEPaHr2VWRU89UOCvCgFIr2YV7W8dzXxPB13TDyxcYC8crH0uypHoDp7QDq96pO9vP4pDL4TLOU8XbCLO9B70jqX0ki8UOC3vIN/6Lxo2BO8EOrmvBNv07u0byC8ENaQvN+MtLp2ZIm8DmX6OhVajTxvs9S7jlAsvJdL/Lrx01u66zuJO6ShLLsJMZU8R1FyvO6RXT1G2D688eCEPIyHYTuPT7y8y+IPvQ7XALv7xo48XG2dvLxWGj2G7445c74dPe3VuzwhP6c6aDBIPPKcJj3p+Yo8pAaKPDyNVzxElkC8myAAPd6vEz18gyi92o8EvJ+X07xLXLs8ktQovaHZUT3ny2I73xOBPLXo07x95xU9LYguvRUr9TzwTf886ZStPNrFyTdp+RI9/aOvvKEcQL0tiK68f8S2PEdR8rxGgIq7zb8wPB5AF72Mchu9J/j4PGOsyzsUOB679t20PPmljzx9xaY8Gd4JPD5JeTyMURy93gbYPJi8krw50iW9WmFkPDiPtzzSQy07IDL+vPSbtjz53ES8jQ2+PLWl5bxV6hC9E2/TvIcQDr1O4ae8JIC1PCPmAr0Ca5q8P8/VO2TvuTsS9p+8FTgePIyUijsA5i07PI3Xu8fCgDusnWw84c+iu6BgHj03xmy8JMOjvOIE+Lzhi0S9QhHUO3q6XbyDjJE8ikXjvA1yozz23TQ99Js2PFgsD72A+vu8QdsOvW9boDvWQc28dL2tvHV5zzxyey+86A5RO/djkbvRvVC7KMFDvSB17LsdH5g8uPSMu7+YGDtN1W69zMCgPEL8Db2Sx/+8EXBDuwEc87w5CGu6dHo/vDIuGjyxcYC8RVLiu4nMLz2eEfe4cDmxvOfYi7y8a2A8xbc3vJ4Rdz2/Mzu8YDQIPfVX2DyYvBI8HnZcu0jXTj06S9k7SBo9vfrb1Lu2kJ87s6ZVvQok7Do2Csu7BibMO8N0SbySx/87zr8wPbFk1zxDU9K7rJ3svOXM0jw6WAK9VcghPQQnPLxK1l49IcUDPA9xszyKRWM9yMKAPTxXErwvDos9WQogPYXOD72IiUE8/+UtPRzx7zwKqkg7OBYEPE+dyTzBuZe7urAuPeeIdDzkdQ48RJbAPKrhyju6rz46qyS5vJV7BD0/mZC97AzxPGd0pr3Cdbm8rqmlu4KuAL3h8CG9Mck8PUASxLtyvp28kQveu89FDTw80TW840dmvCU81zyNlIq8CKs4PZVMbL3lieQ8AAgdPXKxdLwpOvc810BdvVnosDtnquu869arO3S9rbwuy5y8zXxCvFMhxjw11AW9XG2dPHpBqjwXsGE7fcWmvGRUFzwP69Y8ByVcPA8uxTytI8k79xN6vF+uKzxdWqY8ZWglPbGVYb1BvOS8PtFuPFnTJr1MoM88itg0PYW1qzzpW9E8ewsjvS1yCTv3eR494jhIPDV20jx45Ps7NBSrvEvxirwMf8M8mVgpPBM+Vr3giQM9DsxgO+7sBjtmLPS7mwduPKklu7wfNfy7eDPoOnynrLv9nKc7lNGpvIZk8DsnMMC8rV3OPLGCJry0z8O8gH0YvaDIz7x15ko9WOgwPf9L7LtY5mE7nd+ovKfYHT17KBS82d2rvAsdHL2QSqo8gZoJvdmM8LxdWia83OWSPT6Oh73CTzi8Bwt/O4HfP70yPPA5XVomvbpBubyXHke5+bMAPXo9nry635G8Ig03PNS40zxlt5G76pWzOiDylLwfIkG7xnQQvEygTz0xPHA8YeElvaSeO7xJVQG9RZJQPBh2abtoyP27gcwEPRVIDLxBWr08KsxJvMYlJLzL+cC8B6lXPU+LRTxuid+7UcWnPIJoDr3r99q7h6ChvNYF8bxFQ+S8ZWilPD9vx7w2/yC9TKBPPJZtszzcKPo7b5OVPIcCST37T4o8U/8JvcreHjwi3Yo8C+FqPM60ijxp7yQ9TotFve0eAj3pqr28lYK9PParGT19pyy7/5rYvG7YS7wjeRS83BU/PTlMPjzl1FE8nS4VPdvIIT0NffQ71/K1PE0Cd7vmrAy9L1NJPQda67znv0c9DDDXO6sj7LwuQI69rA5iPMFPOL3uHDM9flZxOz5vRzwwDhM9dKzovFtvMLqbVto81FYsPDV20ry635E9msQGvbYmlzxCRbM8JwCUPNndqzwG+hI9sYKmO2jIfT0/DSA9NhLcu/uxMbwbTNU8WdMmPS1yCb1Loh6923m1OnwJ1LyXz1q9aT4RO153lzygyM+8MKDmulszfzxexgO9/+lEvVDY4jz1jqi7wgDMu637pjt7WEA8qXQnPXHBcj1r7VU8egujOg3roLzj6Vu9o2RZvJlrZLx89pi7fLrnOu1EeD3l3ge83Ch6vMM6Lrz4lg89XwlrvNndK72HUTU8pFEePcRNabu4EQ29A4T/PCmcnTzyo7K7gPJ6vGGl9Duz4v48FxRCPF0LurtXrP+8IMCZvAfliLxZ0ya93WSrPCUVHr3vax89CeM5u/O27bw4HBI8IHEtvSYyjzx6Hl47S1OyvTHv0jxPeIq8sJVhPIrYtDyRDnm8BMAwPAvOLz3HkYG9o2RZPLvKBz1mLHQ9Pj+bPC+iNbxbM388+hWoPLnfkbsp64m7/5pYPDJ4oTz8HQ89nN+oO6HnDzlQ2jG9JZYFvQJBGD2sv/W6TjzZvLPi/jxFklA8SWi8PPsAHr3ORt67JEcZPRcnfbxyX0u6ej2ePPKjsj2NdD68jnJvvIIZIrv23ZS86b34vHAl6TyOcm881cKJPPWh4zzyJJo8OBwSvT3m+LyQSqq6a1uCOwvOLz16PZ68A0EYPPU/vLuoOHY8ODmDvTqGoDz3eR68jGGDPNJ+8T2e3Vm7HP1oPXLBcrz9TTu7e1hAu1HYYj32KjK9aLVCvV0e9bxdqRK85d4HPE6LxTyUgj29y/uPPbrfET1GnIa98bi8vNDi57zvHDO+sp8XPHcz6LvUB8A7aSEgvFuCa7okC+i8KeuJPEOnWr0yi9y8TotFvWMbCL1Jt6g8BaumvFX9ujyR+z29EXKgvMbpcjxzSkE9gt1wvaJmKLyOEEi8fPaYPal0J7zWVF08pe0nPBAGQzsvU0k9J5Q2vdt5NbyG7429CLONvcIAzDqFZr88B+UIPbA1Cbt7CyO8oBc8vTRjlz1ltxG87ICpPU2NFD1M77u85PORvAflCDuiZii8bcUQPdZUXTtCRwI8iuvvuipqIj3eALU7JAvovEg4kDyfju28YaV0PKklOz21CaY9NrC0O5BKqrzZ21w7eOT7vDn9UTx6bUq9mfYBvXsJVLwx+Yg8sJVhvEXhPD3eE3C9NsNvOqtfnbx7WEC8XsaDOr/G6byvZ4Q8C+HqvLhWw7zQMdQ87n7avcGeJLzX8jW8L1PJPCNaVDya9LK8gxkiPG2oH7wanRC98Qepu4UhiT7RO4o9EcEMvNc/07p2hCM94U1Su3xr+zzII1U9LSOdvB9xrbuENhO9tIBXu2a3ET3PMVS8CLONvBXHpD24EQ28/a/iPPJzhj0woOY7tM/DPF7Gg71otcI677oLPZinlbxbgmu9DX10unxrezyOcm+8+hUovbryTLyfyh44F7KaOyBxLb0bTNW83HdmvEIVhzvCYnO7ogIyPV0edbv4d888O5nbvHaX3jzqFhs91Br7OsHtkDhzSsG8Z6IHvSWWBT0yKTU8U/+JvXwJVL2pJbu8U3RsvKtfHb1pUcy8rF+duOGa77o2Ety7thzhPEEL0TuX2ZC8zZVKOoAuLLvQMdS84jjIumgELzwpHYW9J5Q2PUnKYz2QyxE95MEWu0/t7LvF6XI9gC4sPXNKQby/FVY84zhIPceRAbxlaKW8TY0UvRqwS7ytv/W8PyoRvDYSXDyFtSs9WjXOOseRgTxJGdA7Ojc0vHUFC71hkjm8FRaRvMsMfDxdWqY7jl80uyrMSbz42fa7agwWvZ3fKD3YXhO8lYI9u0Ft+DzeTyG9SbcoPTn90TpdqZK83dCIPF7GgzzQUJS8S1OyvT8qkTxexgO8h1E1PJFKKjzih7Q8W/CXvApF4TzGON+7v8bpPGa3Eb396xM94K/5uS+iNbwSosw7G658vJI1oLwT3C47/4cdPUkZUD1EMCk9hbPcvPGlgb3aeTU77h6CPZkJPbzeE3A9lCAWPVjoMD1H3208y/lAvfTwz7pY6DA8BasmveD+Zbsxjau8H3EtPOLp27zvflq7kuazPPKjsrwgwBk9C2wIPbLkzbwoQ/u7UHa7uxnPi7x38AC9DhtNvYaz3LsyeKG87ZPkvKJk2bxL8Yo8orPFPC61cLttOnM91gVxPYTIZjwokme8dTW3utyzF7zyc4a9iIuXPIx0vrw2sLS8X7p+vZ5LBrx30UA8NXbSvBQrGz36E9k8yMEtPVMxBT0uQA49bpMVPDLayDvaFw69jESSPY5y77vCYnO87y/uPR3VozwvU0m8XbxNPVDaMbyAQec7uvB9PCKOnjyjoAq9QvZGvCan8bwEccQ8+0+KPMJi87tsT/28VV/iPL7bczx6bUq8S2btPOFXCL2TSFu9aBfqvIUhCb1Lop67/0vsvFfosLwxjas8/ZwnvOe/R71Y6LA79T88vA3rIDzKXTe8BxcEPT3m+DsraqI8JkXKPCjh07wUeoe8kZmWu5VvgrziOMg8mvYBvCAPhrz7gQW89A8QPSYyDz1HLto5TVHjuryOVjxVTCc84jjIvAj4Qz1cvhy9pE/PukbMsrsYJ/08S/EKPavghDy1zfS78bi8u8yXGTvsz5U8T3gKu4qJSLz/6UQ893meOxvqLbxP7ey8Gc+LvGuLLroOJYM7BCwOPfnGO73/hx29a4uuvG8SrrwFqya8NLIDPBKsAr0ZAQc8ogSBvHgz6LzqMwy95yHvvIhP5ru8yoc8vN1CPIo63LwmRcq8WTVOvG8laTwfhGi8C+HqvJ8Zizq1urk7ukG5PCcAlDzcFT+9lx7HPLCVYbwSXZa8m1baPCBxLT2S5jM8lNEpvTLHDT2De0k8hRfTO3NKQTuALiy9omaouiN5FL0P8we92F6TvIhPZrtBqam8vxXWu2khILwRQKW8P9FuvSiS57sEcUQ9ghkiPb40ljnE2IY9sZXhOaJmqDxoZtY7UCdPvIAuLL1dWqa8ni4VvCK+Sryj0oW8lZX4u2yeabtk31a9nnuyPJhYKb3yc4a8Oje0vO+6i7zyozI8zjOjvEy/Dzyvquu8Ck8XPbr8Ar29F6W8jl80veVyqj2S+W68eSAtPYyHeTywlWG8jl+0u4g8q7rLyZQ7mbrQPE88Wb3J3h691KUYPM3mBT0sGec5/B0PPD01ZbxCRbM81kEive1E+Luz4v47nxmLvG33C7wV+R88LbVwPFWbkzzZSQm9hHn6PN6xSL1Q2rG8xunyPLi46jvmIW+8Im9evQPAsDxxX8u8MY0rvVqEujtQiXa8PMCCvKrUf73N5Da9a9oaPO1E+DtjQf68wzquvJKEjDzHkYG8HujePPPynryGs9w6DH9DvUkZ0Lz5swC+2KF6PCh/rLtoBK875PORvGs8QrymPBS9VM2OOxnPC72uGBi9vZgMvHMaFTy0O6E7jGEDvH6SIr3vzcY8NGMXPD015bp30UC82fqcvKJmKD318M88NsPvPEUwKbxVX+I8azxCPBtrFT1zrGg8Ojc0Ob9Rh7y2a808QQtRPGuLrrzOlUo8fPaYvCKOnj1Urs48Cfb0vOFXCL30D5A8a4suPDnqljuVlfi7juCbvBOgfTxyTJA89fBPvQMPHb2swUS8CTKmPEzvu7zcsxc9CeM5PJXuGj0TjcK8CkVhPUWxkL0yeKE8n93Zu/+aWD2rI+w7Im/ePM+fgL0NuSW9Kxu2vA4lAz3J3h69FNyuOptW2jzHckG9pFEevU94ij1UEHa8l9kQPMFPuDwBN+I8QW34PByufLs+b8e7lx7HvIUXUz3cd2a9NJUSvVB2uzxCFQc9DiUDvYrr77yrrok8Dhn+PGZ7YLzN5Da9DX30vCkdBb2DyrW8C2wIvdn6HD3tMb28gixdulB2uzsAObE7faXduu8cM7vQMdS8/ToAvIQ2EzwXxVU83OWSPJ5LBjyvqms96EiWPKfrWLwtt7+8XW3hvCqcHTtBC9G8LXIJPVISxbyv+de4Ww2JO8tILbwJlE29DhvNvKNkWb3hCBy7Oa5lvPG4vLwKlM08Ig23uxKizDzt4lA8ELfWu6RRnrzORl48iNoDO2P+FjoFqya8qiW7veTzkTxdWqa8sjM6vcbpcjwBJKe7OoagPBJTYLwkyIA8m5ILvd6xyDuTUpE7BCyOuyLdirw9NWU8aMh9O62/9bx0XXw9NTGcu4MZojy9F6W7DDDXO0P2xryI7T492I4/PBcUQr2Kdo07DB0cPCp93bwehjc8zKrUOzuZ2zv2+oW8tc30PMr7jzwm46I8CKnXu9VWrLzqlbO8yV23vOmqvTyis8W8V7iEPGvamry2dQM9cCVpPeKHND24B1c8ulR0PK/51zxVTCe80eydOr55zDxtxRA9yF+GvF0LurvK3p68xnSQvAvhaj3byCE9ASSnu8JPODxbguu74YmDOrGV4bzEnFW6JFrUvEnK4ztiQ828m0MfveQjvjxmLHQ7hMhmvL4qYD07hiC9oXnjOt0ChLzdFb8786OyOlfosLw95vg8pouAO3tYQD24VsO9CeM5PUFHAj2hF7y6sEhEPbwsL71dbeG8c2kBvPfIijufLEa8Ir5KvIIsXbwI+MM8stESvV28TTx9xB09lW8CPeCJA70iDbe7IMAZPUoGFTwOCJI8azxCPMRN6bqxgia9BBwHO+N6IT2Ixx69CX6Ju3GVPztdnoi9Xw02PJUqJj2TvCS8rZmFO8R4vrwHigg8UejaPMhhbLp+QcY8UmGvPNuqHbxOeS281Q3zO72oOrzbqp29gilIvO9jKD0ZUL48jGYhPG0ykbyx/V+8taYJvf5LgzyOoyG7kMr7uiCmQbxUVbC8BFozvR03lDzoDtE8VReEvG0yEbxVzzC88N2oPLXktTwwO3a8kMr7O0sM2LxR5648vC2OOz9fpbwrX3O9vHaNO1PbL71FttS8rsqGO9puyT0lgkS9sIKzvAs2tjzdV3e9wJHou0BTpr3ghqC8jVx6vPgnLTsaEpK96A5RvFyfNLzMw+48kUR8uxlcvTwQl4y8u7Q5PG25vDwfLEE9rwlfPLLwtLwUdLu8vC46vDIv9zxm6Ay99brXujcVIT2zarW7F13pPCjxcbwrX3M7BRyHPNMXGj3vY6g8iQSfu18OYry1pgm9HnQUvfa5q7ySvdC8AmYyvIEq9Ls1nfi8yCIUvdttnbtqxA88Xw02u+DF+LtwGz88hotKOzQiTL3VVBo8Vc8wvPwPL7wj1pa7APgwPWz1EL0kCfA8P9klO8GPED2ZEig9FHOPvF+U4bzs9/68VRcEvQMoBj3yTFa76gP+O9h6yDwkjkM9Z1aOOz9fpbvJ2ZS7et6XvAeKiDyedKq8xP2RPPc0WDxvrb282ySevY/UojwQjDm9Z1c6PUoXKzw95/w8O3ejPEuRK70YXWm8WvOGOSOPb7v4rli8Bk40PZamfrxBz348eOqWvIpzzDodOMA8nu/WPP/FgzwBcrE8GZiROoNlHL1Q8608OQmiuh6yQDuc+1W94MX4vI3iebktmhu88N0ovdbOmjscBpM8moyovCClFb3I5RM9J3dxvM0KFrxziuw8OMyhO1DygbuydQi9nIHVvN+SHz2MZ008vS66POt8Uryvg9+8Fx4RvegOUbxUVly8qSwwvdSSxrwxtEo9p4CCvIPrm72e79a83s8fPV8O4jtgDTa9EQUOvM3CQj1uKGq6tGq1vNMZcjxVSl27t1ELOnQCFTzCUhC9fA+ZPFXPsLwMrwq7qXSDvCPWlrucBim9zngXvYGuGz1yEGy9zzFwPaQSgbxhATe9pUSuOyEgwrwKvWE86YhRvFuqh73qDaW5ydvsvI/VTjwzqEs9F2i8vEHNJj2xvoc9ijWgvW8mkjyqKwQ9Qc7SPEYvKT3H5j88GFuRO8Cd5zuq7gO9Cby1PGL1N7ypsYM8Ae1dPbdStzyOW0684MX4vKa+rrx3cBY9xMARPP4E3LwHyeC6mJinOzG1djxFOyi9lLAlvbpFjDwNKQs89bmru6NR2TwA+LA9hRL2Oo3gITwIQQm6wcwQvT/ZpbySQqQ8WzAHPSGb7jwIyeA8kr3QPEqdKr1rPzy9ag0PPSrlcjx3cUI9F+GQO2NvODwayj48E4C6PFwkCL3NhBY9DuCLvIFxmzxP9Nk9otfYPBERjT1bJuA7KWpGPFbE3byVK1I9cg9Avdm2HL0smpu9oePXPG9jkjwwvx09VkkxvZcepz2bB9U8QkhTvdGpmLt6WcQ6Z905vkW21Lz8llo8qbNbPAGuhbtOhIA8NZxMvYIpSDqq7oO9fsYZO+9kVLxlZGW9+awAvdUN87uHip48s+8IvWbe5bzw3ag8N5F5Pc3+Fr3LkJW8yGBAvGdXOj3s9lK96YhRu+9jqDxBz/434zEiPIIpyLxa84a889GpvcJSEL3qDaU5UG7aPJcf0zwLNYo8yhaVvM8wxLyE35w9Ri+pPE/+gD3CkDw9t8y3OWoNj7tNCoC8EY1lPAo2NjwSyA28FHS7u0PBp7zZ9Mi8Yj2Lu7dSN71/upq8bDTpvE3/rDtbMAc97m8nPYaLSrwdvr+6lSvSu6VF2jpDw/87e94XvbJ1iLtY/wW8cZZrPcvNFbzokyQ9ga9HvZcgfzsiXBY9HEOTvAv4iTyVK1K9Mi93PC9FHTzZ9Mi8svFgPdKf8b1qQGg7sAcHPHb47Twm/XA8nu9WuyxdmzvdVku85SUjO4RZnbnhP3k+JAhEPaBp17tLCyw8olwsPRy9k7znnyM9/FeCPLUgiry8Ljq8kr3QvCEgwjuO1vo8N4+hPMfmv7tmYzk9Gk8SvSEfFj1bbYc9+5baOrRpibfMSMK8V8OxO9DylzzY9fS8v+QOvbhGuDwZXL08sf3fvCeBmL0LNYq7pBKBPLTkNT1bMAe9v5sPvNGpGLungAI9bLk8u0uRqzxO/6y8q+IEPLcUC723U+M8ItaWPA2lYzyEHB284MTMOzn/+rz8lto7sIKzvOQne707d6O7R6mpvPnpAL0o8MW8tV42vAyvCr3s9aY81Q1zu/a61zt1fu06wBdovA1mCzuCKUg8CUEJu8BeDz2L7Uw8wY+Qvf8CBLz8VwI9xXcSPTVeoDt708S7pzlbPRZoPDxaMl+8HTeUPOYbfDwIQ+G8X88Ju4h/y7xWwzE67PbSPAPrhbwNHji7kE/PPAzsCrzEeeo81JEavKulBLwhm+68tl0KvVswB72nOK87OFIhPD/lJD0O4As8A2devFi3Mr0Y1j09LJqbPFVUBD1LCyw8dnJuPOE+TT3rfFK9BlkHvez1pjxOANm7jVx6OQbTh71ruug8JvxEPPuW2jy8OY08HEMTPTNqn7xKFys9cg/AvHPRkz1QtQG9Cby1PLdTY7x9yPE8cd2Su78X6Lxv6ZG7UuhavHV8lTyiXCw9JAjEPMbxEr1eDuK8APgwPYs1ID2TvCS8tpqKPSMUQz2XHqc8ZauMPDA7dr37la68taYJvXAbP72xgYe8svA0PeoCUjwwwEm9bbm8vBR0uzwPE+U8VVUwPXknFzzTFxq9Zt05POiTJL0sU/S8A2devKruA71AU6a72ujJvL8jZ7wX4ZA8fchxPOE/+Txie7e6c4lAPUgjqj0iFe881wBIvYxmoTsZEpK8qLNbvRP5jjuzsoi8FPq6POz2Ur2kEoE84MTMOxnXabyN4U09Ov5OO6nuAzzlbiI9LszIPDIv9zxlbow8t9i2vLLwND2JQR87/YrbvLnB5D2OHaK6bTIRvbfYNj33rti6vanmPMAVEL0pasY8svC0vJM4fbwvgp08ZWTlPKJcrDxtexC913v0vOYlIz0sU3Q7ifr3vGGGCj2ZE1S8Nhf5vNk8HLwCZjK8+qLZu7fNY72N4c08inNMPcbyvrpQtYG9vqi6N8vOwTj4Jy08Ov2ivHgzljxVVIQ9WMIFPfuVLjvlJaO8sEQHvEmdqrsqphq9WyW0uy5RnLt290E89MUqPGlLOz0vRR09fkAaPH5C8jrKUxU9AmfeO1RVsLyEmHU9U2ADvXV9wTzBkDy7b6G+PPTFqjwpLBo98N0otz5rpLrHqJO8pznbvO9jKDziACE9wdiPPC9Fnbx71HC89MUqvfFY1bx1fcG8uztlPMEWvDy6O+W8oluAvXV9Qbw2F/k8aNAOvL5qDr0nvpi80p9xPBP6OrxBz369uEY4vDOp97wwO3Y8sfuHvGuHD7yMaHk8zcLCvA2ktzvSn/E8gSr0PO7r/7vbY3Y8ucA4O8wKljwgpZU82fRIvdOdGT0cQ5O8ucHkvL0uOj0haJU8FyqQvFqs37xJnlY8WTEzPO7pJz2nv1o8vfANvVIjA7xeDuK8W6qHvCWD8Dr5oS08W6szvSMUQ72gaCu8OMyhvLuzjb1468I8IxRDPYRZHT3LzkE7asZnPfa617vDwJE8ISBCPX3Gmbyy8DS9mo1UvGVjOTu8OY28VsMxvB+zbLx700S8yKiTvaVELjzDgxG94jP6vCh1mbwzap+8kE6jPNnzHL3XSBu8a4cPvbF3YD3QLxi9gqR0umCIYr0gpkE9gDZzu2AC4zxHJNY8XRrhuyaBmLyGjPY6Z1jmvAD4MD1yDhS9oePXvGrEj7xuJz47TgDZO4pzTLzfz5854zGiPG8mkrymRVo85hpQPKFcLLwHTrS8jCmhPIaM9jseskA95ht8PLjMtzwgpRW9cBxrvayaMT1SYS88CrHivLhGuLz73QE9BdSzOwRas7z8Dy+6DaQ3vBpPErwV7Y+8Vs6EvRLIjTw3j6G81QzHvF8O4ruRyCM8mo3UPOAMIDtw3ZK8K17Hu9El8bymgAK8+xoCvlPbLz2vgjO8vqlmPG5vkbztb6c8P18lvRfhkDwHiog7ZiUNvfFXqbzhPk28NZzMO90Yn7xZMTO7i+1MPdtiSrzIIhS9tGq1vGP2Y7yf7qo7GFsRvLy15Tqos9u8OIV6PbH8szxrP7y8HUMTOwq9Ybyg4iu92qqdu/8/BLzGbeu6x23rPL6pZjw6/aI9IO6UOq+DX7ss2XO6MMDJPMU6kjwMr4o8R6rVvF6TNTxNANk82ujJuyLWFr2g4iu94T2hvDF2njvs9lK9hox2u20zPbwAc9081wDIvLu0OT3s9lK9EYy5PBmYETx0imw8taaJuczD7jzUkka9CTdiva8Is7zTYBk8lLwkvYH3GjxDwlM75hpQvW7pEb1vJhI9n+6qvFTcW7yOW8471JPyPFBuWjtse5A7MnYePVdIBbzJ2+w8cZW/vG+tvbyUsCU9U9svPPDeVL3k9CG972Oou3GVv7vSn3E8QFMmvcoWFb1aMl+9jqMhvY6jobzAkeg6JziZvPgyADz3bwA8lLAlO9j1dLyxvoc82m7JO2rEjzx46ha8hk2evGjROj0PmeS7ucuLPbZdCj0X42i87PbSvMU6kryngII83VbLvOT0ITy22Da6zQqWO+eU0DzSIxk8NhbNvKpoBL2XIH+9uoIMPPetLLy+ao46wcwQPSQIRLy8OY08nu/WvDcL+jxLCyy9xHg+PFdIhTvKU5U7Dh9kvAaWh72yOAg9yCIUvV1hiLxruug6e1gYvSd2RTytjjI7dANBPMU6Er34b4A7hhAevAuwNr12cm68gnEbvKZErjwU+rq8EU4NPUBU0rwMKjc9jeFNOmT0i7x46pa82ujJPMpUQTypLLC8sYGHPBCXDLx9TBm9OIV6u7s75bv46QA8IeIVu7I4CDz/xQM9c9ETPfTFKry05DW8Qc7SPK2OMr1xlus8NCGgPPFYVT28LQ68/A+vPEPCUz1A2SU9EsiNvLwv5jx46pY8PebQunMQbLzSn/E8Ke8ZPWXq5LvG82o8UG2uO6VF2jqosYM9gDbzPBEGOjzzTNa7YIe2ur4j5zwfdBS85SbPPGs+EL07eM87izUgvRERDb2dddY8CjY2vRT6urw+ayQ90PIXvWuHDzsB94Q8uI4LPHxO8byQT8+8DHKKPUQ81DyzajU9ag2PvS5H9TxFtlQ9NZugPBfiPDxWSTG9PebQvM6ElrtVC4U7EIy5O8V3kjsBcrE8q5vdOotyIL2o+gI9X5KJPKBoqzxgAuM8//jcO0HP/jxaqzO8ylTBPIEqdLvAFZC80SVxPJV6uTz6lhk9IaKVvAgVRLtw4pu7/AwUvTu/JLxFGXk9Pq41O0gFbjutc/K82y7COwwH8Twj40o7IWq0O4pU67x0Yeq711bYvGnMGL01Af47hvJ7vRvHD7yD6ac8u/iTPPYQVDqs47S8SZkGvARelLwcH2y7v+pAvN8aNzus4zS8ijqoPKd+Kb1bDPo8rHBWO8T6C714Nri8F7rgu59EUDxmGAW8FiqjPL2Lbbu4DB+9pBy6POCq9LsziOe7E3YPvW0uCLuvX2e9SZmGvLL2G71h5389vgHovLgm4rwo8xU9eMZ1vSd9mztOPCu98DjquzB/kzrcu2M8ggBPvUoPAbxwbz285ms3PUSjfrs7MgM8QNKLvKG9ZrsM6pE7VaRSPaGjIzzfjZW8IWo0vf5k8Ltrl1M8E8izvCQEhTpaCd48VU+SPPOXPTw2dFw7dboFPBJ2D7wPTIE9WHaEO2skdbxT2Zc8s8FWvebelbyabOa8fLLqvDfqVr3EUmi6/kotuzsyA71GchS8yUF5PGW8TbngIG84oC2pPLJL3LrKKlK9/01JPK5cy7pg5OM82rUru5CIjDwx9Q29qPQjPebelTvtMjI9xzvBPLJL3LyoDue75vhYvaAWAr1VxQw9cOIbvITsQzzKt3M9Zr9pPTzCwLscH2y8ZzXkvBXsiby8+688QNILvWmu+jxlSe88LB0kvAp0l7344oU7a32QvPA1zjxCnca7ZaKKPFMrPD3Fxca8Psh4vAp0l7wbjy48DtaGvNHusDyabOa8hhCau1JFfzoXuuC7SZkGPf7XTj29/ss7YFfCPAuR9rveFxu9+1ucO0yIFz0tIMA8tpOIvdWIAb2hM+E7Y9P0u8lBeb2byB27vIhRPGHn/zv6dV88EsUXPTL4Kb2MIwE84yoCPQBR5bunfqk8fUYDvQefyTpIeEw9d1B7PIPppzwLkfa8dvgevcqgTL0lWcU7cpOTPB7uAb036ta70HtSPZZjErvn+3S9aKveumsKMj0I+4A7vf7LvChIVrsqpI08rXPyuw/z5bw47XK7527TPNNkqzyJ3nA8dGHqvK99BT1Cg4M8IGcYPGYYBby/6kC8bS4IvUv0fr19gQA9qmqeu9bgXT16Wo68rHBWvbxujjvyIUO9dNTIPKOp2zx9KGW9xuYAPE3dVzwPZsS7ULIlPWSiCrylrHc969BCPduehL2nmOw8LZOePBZEZry7hbU85fW8u5EYSrsiGBA84nwmvO3W+jxK8WK61GfHvEMTQT2hoyM9GL38uhlRFb0rwWy8aKvePGa/6Tyuzym8Aq2cPL7nJLwO1ga8LSBAvbQ3UbzpBQg9uEQAurqf+DuZigQ785e9PXhuGTv1gJa8AyOXu2+nHr1MTZq8sIAhPejkzbtVpFI8IGeYPHNEizqmInK994ZOvUatkTuWCnc8tTptPGHNPDzilum7+KeIPPzr2bqHSxe95H9Cu3wLhryetJI62iiKPTbnujynfqk9nkG0PJ+3Lj3bYwe8xPoLPfaDsrzO/5+9Pz5zvdnM0jtZBsI81sYaPf3UMr1yWzI9BLNUOxa3RL0efr87z3i2u8LWNb55rLK7LwmZPLNsFr1Eo/47vIhROfYxDr2byB05icQtvQOwODwRbPy8uCZiveIJSDxPVu67xTglPCU/Ar3KKlK9dkrDPPeGTj30mtm82kLNvHkfETwrNEs9md9EvKUFkzyIaPY81+N5PHLo0zwzHIC9o1QbvXk5VL0lWcW8CBVEu+3W+jxnqMI8LSDAPH4RPjvT8Uy9PHAcPU48Kzzvwm89v3diPT2rmTtgV8K8VKG2PG32prz0Dbi7bYNIvEh4zLxpzBi9MhLtvO5MdTyNs7689A24uq2RkLzTEoc8ATciPVUxdD0yMAu9p/EHvS1YoTycy7m7yUH5PIfbVLyrh327SOuqvPYQVD1s8wq9pMoVPebelb0qMa88i+gDPaxwVrwh3ZI8gBd2vRW0qDwskIK61uDduwwH8Tzlgt69hWI+PeWjGDw5Y+08le0XPSVZRTtrfZC8T1buvIFwkTwetqA8Yl16PsTcbT3yIUO8wta1vPhvJz16PHC8ZC+sPYo6KDzsRj28Vx1pvILmC70ZMNu6X1SmPAoBOTyTASM8uQ87PT7mFr1DE8E8tKovPW+nHrxydXU7gnOtvEfojjxgyqA8j5+zvMQ1ib0mz788pwvLvOADkLyVejm9mYqEvMzBBrzMhgk9v+pAvWHNPLyzbJY8LpY6vMbmALyguko99oOyvFIoILyUd5288ZEFPcVS6Dxy6FM8Yef/u59E0LsEJrO8ecb1u+MMZLz0mlm9Z6jCuenKiryV7Ze8BixrvUYC0rvKKtK88w04PM+PXTz/wKc720XpOUjrqrqntgo9MhLtPJ9E0LxBSAY8NeQePXk5VL3C8Hi7BizrPH4RvjzVamM8g+mnvCXmZj1oq948cXJZPGoHFj2Kcok9tOKQO4lRT7z869m88DhqvBijObxx5Te8go1wu+p7Aj2JUc88fp7fPE90jLyZ3Ki7EGngvDw1H7x2SsO8D9kiPGYyyDuvX2c8Wnw8vEIQpbxiXfq8Dn1rPPS7E7xWjas7T6+JPAob/DzH6Zw8zTcBOWkhWb2s/Xc85YLeOSIYkDcCOj69t7DnPJZjEj1P6gY9zhnju7K+Oj2gLam8yMv+PLszETwwmVY9527TvProvbvfGre59A24uxSxjDsVzuu8bA3OPJYolbwjUw091d1BPRwFKTxI6yq9o6lbvRoZND12SkM91uDdvF/HhD07MgM9s8HWO5AVrrs2lRa9vYttvdiyD708NR+9cc4QvS6w/TzjKoK8cB2ZvD47V7yRwwk81E0EPVrvGj1DE0E8SmRBvcRPTDs5Y229LFghvc+P3bzr0MK81d1BvA16z7zYPJU6cXLZO2UvLD1oVh495fW8PDd3eD04Sao9r0WkPHNEC71t9qY8a5dTvDNuJL3ep1i8iq0GvCdFuryPLFW84T6NPP3udTtFN5c6RRl5Pa5cSzy0N9E7wmNXPbNO+DztvDc8jpyXPE3DFL2Vejk9m+JgvPCoLLu3sOc9G4+uO64Hi7xSRX89Hu6BO4rHyTxK8WK78atIPeEgb7zyrmQ8eawyOh8L4Tx1+B67p/GHPO3W+rwPZkQ90/FMPASz1LtrfRA7AuiZuXBvPb1itpW5UUJjvOkFiDyCjXC9yxOrvOJ8Jj3T8Uy8VqduvRGKGjtI66q8Kr5QPHnkEzvC1jU81Wpjukd1MD0g9Dk8HJLKvDxwHL1XOwe8TIiXvAgVRLwg9Dm8RIk7PBUnBz33hs48eayyPLaty7wnRbq7iVFPOhXO6zsaplW8RRl5PUaP87yx1eE8/tdOvLTE8jwDyvs8Vx1pPV6MBz3CY1c7AG8DvO5M9bymCC88dUenPA1gDD2b4uC8Yl16vPaDMr0sN+e8wJicvP3UMjwuzps8YVpevTNuJLxqlDe8XGgxPSTJh7z/Tcm83dydu3bXZDxca028vKmLvSVZxbziCUi8TVC2PKlqHjwKAbm7JVlFvDNuJL2/ev46R+gOPaWs9zye7w+7yhAPPbUdjjwmXOE8VBQVPZlPB729/ks9PVL+uzT+4bx+SR89rcwNvIPsw7oVQUq6lmOSPHH/ejpxzhA9r32FO0nUA72KrQY8pI+YvCAOfb1bZRW9ijqoO/5k8LzjKgK9irAiPC6wfTz4b6e9he9fPIPpJz1HdTA9q/rbvGeoQj2n8Qe9cujTOkWMVz3t1vo6EgCVvBBp4Lxa7xo9OAuRvOjkzbxRYAG7akITvS9Elr0nX308a5fTvOZrN73WUzy9/03JvIjBET2t6ey8v3diu8XFxrxcgnQ9GTBbvGyALLxFGXm9eR8RPZOORLxL2rs8sIChPCLgrrwWt8Q6HB9svPp1X7ygR2w9piLyvPSaWby/6sC8O22APLwVc7xhBR69BLNUvHVHJz2TPKC6VKE2u6d+qbumQJA79Z11vBZihDz3hs67OYGLPBXO6zvv4A08JebmvCuqRb2kyhU9ob1mPN3cHb1jRtO81VAgPbiZQD1/+ha8K6cpPO0vFruBqw69TVA2vRwfbL0hajQ7zxx/u7z7r7xTu3m8ayR1vBFSuTw0cUA8NByAu93cnbyUBD+9Hn4/PCyQAr5E/Jk8888evKUf1jiOQ3y8KNX3u/9NybyG8vs8RTcXvb50Rrs0/uG7TlPSvBYqozyJxC28gnMtvD8kMD2AF/a7VqfuvIhOMzx2vaE8WZZ/vKgO57pqBxa8fCVJvQp0Fz0wDLW72iiKuzZdNbxx//q8bfYmvSD3VTwOfes8NlqZvMknNj3Kt/M6mWlKPfogHz0kBIW8bS6IPPMk3zw1Af48BZytPNVqY7xaCV471m3/PLHVYTsqpA29CKJlvb3kCL2s/Xc8svYbvVmT4zx2vaE7ySe2Or1xKr047XI8Lyb4vFsqmDzqQIU8tDdRPJfzz7yy2P08Ls4bvb4B6LzqzSa9icStPI8SEr3UZ0e87LmbPGmuer3Fxca8zwK8PProPTppIdk7pax3PHVHpzxsuA08B59JvGHNvDwQ3L68sktcO7z7r7woS3K8ySe2vCNTDT27hTW9Vo0rvX+/mTwsN2c88gcAPeEgb71x5be8La3hvOvQQr3ET8y8zhnjPDv6Ib295Ai8yxOrvCe4GDwPZsS8nVv3PI2zPrxlv2k6LKpFvKttOrlJ7sY8fhE+vCi7ND1qBxa8vucku26kAr3ma7e8gnMtPG32Jr08wsA8sdVhvNfjeTzT8Uw7iVHPPJ+3rrxXkMe8p34pvZ3OVTwEs9S8hvL7vFz10jx7lQu8ageWPLmc3LzDZvM8ZbxNvQ9mxDvZso87fCXJO40mnbgbj6695+GxPC0gQL1ejIe6o1QbOsCYnLwMJY88/dQyPK1zcjy9/su80xIHPe5M9Txaln+96QUIvHhuGb1KDwE9Q4YfvNCSeTykyhW8pR9WPcm01zzatas7b/xevBmjuTygR2y8sjEZvVWKjzvPj927wvB4vRi9/Dw/PvM7QoODPA3trbwFKc88zhnjPGyALD2EXyK8/OvZvO28Nz08NZ+9YUCbPL9dn7wEQHY9RgJSPMTcbTyUkWA93KEgPSwdpLxDhh88Td3XPKaVUDzSnAy8bYPIPGeowjwusP26Se7GOn0oZTwg9Dk7ejxwPZBNDz1smu88H/Gdu9tFabt9RoM8GaM5vaxWkzxrJPW8LDdnPEtnXb3yIUO9hZqfPAKtHL0LBNW8FeyJPVQXMb30J/u7dGFqPFxoMTrbuEe97LmbvKxwVj1oVh69PMJAPcLWNb2f0fE8hWI+PYZlWrvB0xk9CYs+veK0h7zmhfq8kRjKPCUHoTzEwqo8GqZVPAobfDxcaDG9twkDPVsqmDx8C4Y8kYsovIN2yTvkf0I94yoCvW6kgjznGRM8zKNovJAv8Ty2Ipe70J2OPKAXDL2CLKi8SH0ovOg2l7wuf4A8xrJoPSPq4bqLVSU8xjybvLYiFzlMY+I7QsSXOuPK9TxMY+K8f4Z6vNjXubxA5nO89QB1vBZASr1blZa7JGv8PKF8Kz10ZhW6FAQJO+Vwo7w7RRO9vaGbPHTA5zs9HLU8GaXpu0EaHz3vJ568VYxfu97IwDsz17y7aTLLPM7bZbxepC475XCjOxUI1Dqcwxo8vYUgveXmcDyRvHm8fXMXOxf3Jb1wUHu8uuzVvGDcJLxooAK93fGePRR2C7ygFww8YopoPOtyWL0E0lQ8Sxo+vfBHZLs7SV46s7IqPJu4Tb3zf1o8r4vivHGIcT2Q/Qe9wkL8PJ9x3ruy94O8IYVCPDeQTT18vDs8eOevvG8jUr0LTY675f4gPV6kLryZtAI9JciFPHJbSDqKy/I8hfZmvI9vijuG5bi8V8RVPbKFgTyd8MM7gDmLPJQom71Nf1293vXpvKmJLb3qcli8YkFEPEx7krtIJyG9nyi6u28DDD3aVIk8ocEEPaltsjz7XzM809WEvR8EqDuyaQa9jakWvCe/bTzc/gE9FxMhvYIsqDyhqdQ86lbdO34F4Dwndkm84UWQvJwd7bywejS85FQoPcehOjqgjVk86Q05Pb1cQj1LXxe9pBlBPJic0rxzvJy81bBxPEr+wrt6yR49VBaSO0vRmbxh+J+9Ji2lOwY39LzkCwQ9zpLBvNviBrwmLaU8CPkcvUDmczyVtpg8P53PPB569bzL9as88n/avHESJLv4cOE3cD/NPFs0Qrz6jFw9mwFyPOAplTwFwSa6cK0EvM2jbzyMukQ8OrcVPdSUdr3ru3y8DwYfvTeQTbwEXIe7tGDuvBE+FT1ROO68vUDHPPzx+zxKtR69L7B0PMJC/Du4Wg275f6gPPIJDb2HSli8Vw36PI4ONj3kOC08AlE6PChJIL13Xf28IGnHugkxkzvfyMC8qdJRuuAplTxu5xC8Bjd0vSjb6LyBLCg9aEN5ubfMD71wP80803h7PXSTvjxmlbW7zUmdO5wdbbwivbg8T10BuzrkPrw80xA8NqF7PHpoSryxw9i8q6UouyUiWL1SbJm8HEL/PCZaTr1Y/Es9c6Rsu2guAL1t61s8jLpEvT5UqzzoHmc63tluvSHO5jyQKjG9+zIKPIJIozwrnRG8Lh6sPNWwcT3GPJu9lkQWPUC5yjqRYqc8DSj7PGfNqzsANb87E+zYPAO2WbwXoR49TwD4vDxFk7x02Bc9IYVCPLijMbwqD5S8skTzvE4AeDzNSZ08y6yHuj9wJrxYRfC8M/O3O/9F7bwUBIm8e6BAPHESJDzUlPa800vSPKulqD0/cKY8AiSROzVY17uhqVS9/Q13vA2yLT1YRfA8zFrLO0iZIz22T0C8S18XvQJtNb1ooAI8yjoFPGaVNT0M2ws8rVNsPMr1KzweLQa8E+zYvGEJzjytJkO8s/vOOhWuAT7SL9c66vwKPfNSsTwUCNQ89EEDvWyGvDwWrgG9v5Q4vSHO5rzJItW62ysrOsnZMDx+BWC8wEuUPUh9qDzerEW9vqEbPMR68rwCbTW+XJnhvKT9RTyFgBm95VQoPIa4D7yRc1U6b9qtvHfLtL2u+Zk8iYLOvFNDO71ooAK9p1E3vFt95jxIfai8TxxzvGexsDuCSKM8MOQfvVXACrzlnUy8BKUrPQY3dDze2e48oXwrPfqMXDxDOmU8P+ZzvSwrD72GuI+9cPYovTopGDrNSZ08hfbmOZwd7Tx3ngs8eNYBvfNuLD1CDTy8byNSPZ4MPz03vfa8QOZzuyr347vRyre7e6BAPP2zJDvLh/S8Rdd6vD3vC7wtHiy8//zIvDfZ8TzBg4q8BQaAOl2IMz1oFlA9trCUu57fFbzzbiw8Xs2MvECMIT2c8MO8ZcLevGXCXrzn8T092qF4vAXuTzwhhUK90x4pO9x0zzvgt5I7Hnr1O4Fxgb15lXM8/ZcpvULEF70DQAw9mSYFvjZ0Uj0Kp2A7wwQlPOg2lzyZb6m7qtLRvOw0gbzKHoo8I+phvPvAhz4n5IA9RFbgvLHfU70zOJG5KZLEPFOIlD059ew8THuSO76l5rwprj+9jR9kPDrIwzxG83U83qxFuzrIQz3pDTm9/HuuPBilaT07Sd68A0AMPD+5yrzZxou8geMDPGf2Cb1jimi9KdcdPOWdTDw+mQS9W5WWvNk82Tlo6Sa7CV48PX6rDb37qFe8pP3FPEjixzzyNra8E+gNPaJPAr0hypu8EGs+vIUS4jz7ey480keHPOa5R7tf7dI7W5lhvVGmpTx12Bc7W1A9vdrzNLwAfmO8CELBvPNurLyb1Ei6yzqFvZnJ+zuimKY7b76yPGOmY7wj6uE7dfSSvKxrHD0Vvy+8O+Q+PdtwBD2sJkO9EHzsPHfLtDwLejc95XCjPGeEB700DzM9qbILPJb/vDzqVl08dp4LPWxZE702Rym8tBfKu3gDq7x75Rm9JREqvJrldjx6aMo7FHaLPKlcBD2QKrE8AZaTPBv5WrztYaq817u+vEHVRTw1cAe8MIPLPChJoLue+5C7iuftvKPhyjuo//q7hy7dO6EzhzzHzmM8FVH4PKVeGrwyjpi9eDDUumuvGrxUpI870uYyvekNuTwEiTA81YNIPY0fZDxfdwU9P51PvXaCkDwzOJG8AOwaPdriBr0IFRg8gnVMPFE4brtOQQa7o5gmvZpvqTjAZw+9839aPAA1Pz3efxw8TuT8vCGFQr0vZ1A9z9tlPSCya7sq9+M8Bjd0Ow7qo7welnA7bqI3vZwd7bp0k768nVEYvT19ibysCkg87+LEOtEPEbxUpA+9eh+mPK+jEjwsR4o97Q9uuxZt87wZlDu8qc6Gu2V5Orx4SIS8a7NlvH4dkLwTNX27SH0ou/mIET3p4I89+8AHPYyNmzvCLYM9Ji2lPUUpNz3xY9+6kKD+PEINvLuy2wi9y6wHPRzorLx/an+8TGPivLP7TjzdRyY8t5jku1VfNj2mXpq6hYCZvHfLtDwyu0E7ZZW1vBpnEjzFacS8xASlPe8rabzTZ828PWEOPhBrvjzYBOO867v8PPSbVbyQvPk8zC2ivPNuLD1m3tm8T9NOvOR9hjykQh89Kq4/u7F6tDvwR2S7doIQPSvKOjx2FNm891RmvO+1m7zkOK28sKfdvI0fZLy50Fo7cPYovQ4XTby99yI9NPO3vDPXPL3a4oY9RkWyvAKa3jx02Be92ysrPSN0lDwYXEU8ocVPOt6sRb1qTsa7Kvdju0+3U72RGQO93qzFvMpP/jyKnsk8t2u7O8Itgz0Cso672w8wPAmL5bwrnRG8RFIVOw94oT2SYie93P4BPSwv2rz0m9U88XsPvNETXD2WRBY8Hnr1O3+G+jo7RRO9PguHPGaxMD1IJyE92g+wu/lw4bxSVOm8S9GZvP8YxLynmls87yvpPDb+hL30m1W90J2OvGRdPzxoQ/k74mELvT9wJjzSR4e78peKOxv1j70L24s85hocPM/34DxcmeE8t4e2PAlePL0+VKu8ElqQPGFubTwteH48jY0bvFfgULxcUD08aOkmPaYIEz0XiW68WnkbPYJIo7x+9LG8rCZDPXAjUryJgs48CqMVvMD1jDxLR+e7ErTiPIStQjr9TgW91p9DvAz3Brz7qFe9GZS7O/KXijthCU69xWlEvTnIwzsFwSa86B5nvTtJXjyULOY7oXwrPaO0ITvQrrw8wp+FvSxHirvkmQE9KxPfvN2QSr1lTBG9gr5wu+7GSTtY4NA887MFPGohHb0teH69pn7gPEVyW7kla3y9fz1WvaS0Ib03Ryk91TqkvKi2Vjzo8T08VqjaPK4VFbwfSYG79jQgvT/mcz39aoC8wwQlPRm9mTyh1v28Ksq6vJm0Ar3THim8O0UTPQPOCb1SbBm9rm9nvCaH97tn+tQ7NA+zOtMeKbuLcSA99RxwPJLYdDx5TE88QHAmO/pDuLw0PFy8t5jku5uLpLoteP66I5CPPFp5G71bBxm9hck9PSqBFru1fOm8rfkZvX0BFT3X6Oc8sMNYvHD2KDygiQ685tXCvLEoeL0ioT29geMDvN/kOzzgKZW8aKACvHcQjjxP00486MSUPMnZMLyTx0a8hK1CvUVuELxcsRG+BQYAPf1qALyk/cU8AH7jvPc4azsFwSa9GaXpuoDjA700PFw888h+u8MEJb2GuA88T9NOvIEQLTtm3lk9wp+FPFfcBb3vJx49Kq4/O0M65bvJHoq4ktj0O4Uqkrz6pIw85v4gPG++Mr2oQIk8skRzvHNKGryXGzg8qu5MPfXTy7y+XMI8J1rOO00liz23sJQ8CqdgueDkuzxW8f47p5rbPCudkTvXu768DPcGvC7xAj3iRZA6DzNIvdqh+LyxKPi7QHCmuuKSf7sLv5A8BcGmOrP7zjxm3tm8y/UrPboI0bysN/G5wd1cvBvd3zz0iie8ZxIFPe+1G73ZqhC8EHzsvNrzND14Ayu9RCm3OydaTjuIHS+9UM8DvJrl9jzLa/k7+d6YO28HVzwpZRs9PjiwPKsb9ryhMwc96Sk0vYLWoDz2NCC99aYivboI0TxWl6w8zbsfvE0lC71KXxe8lSibPN1HJjz//Ei9MiDhvB+uIL0du4O9TuT8vCmSRLzs1/e8iGbTOmbeWTl/av87cRIkvCmSRDyzzqU8ZpW1O/AauzviHLI8P7nKPMo6hTzefxw9c6TsO5ZI4TufKDq8uRn/O/S3ULwz17y8bevbPBqUu7z7ey48XCMUPMi9tTzp4A+9sd9TvWOK6LxvvrK7Ic7muyaj8jyIk/w8hx2vvBgvHDwxu8E7JPUuPHzpZL1vvrK7RW4QPEq1njzB3Vy8aemmvR8EqDyGEmK9LCsPvbwgATwG3aG5mJxSu3E/zTucHe08ow50vbyJaz0Msq08VYxfvRvMsbx2XX28R/N1PULEF7zff5y6ZcLeu1t95jxdzYw72yurPMIV07zwR+Q8Eoe5vPgLwrwIb+q7dss0O6Z+YL1rs2U86B7nPKCNWTzXuz48RjSEPOr8Cj3TS1I9ko/QvHIuH71Fu/88rxUVvYy6xDzzJQi8e4RFPcLoqbtrl+o8sSh4Pbq/LD1P0868FiAEvJGPUDxNexI7ZKKYvAKyDj1ZYes8qLbWO3JbyLv4VOY6QIwhvFgpdT3yNrY84mVWPO1hKjwb9Q+8s84luoBZUb1DOuW6EloQvf8YRDwUkga90wIuvBLMErwJXjy9tBfKvC0eLD1Gjla9HBELu7ijMbuGuA+70rmJu+w0gbyub2c9Q+ASvQqnYD2Sj1C91TqkPP6zJD0NKPs6ONlxPMUgIL2Rc1W8kn4ivfNSsTxdzYw6AZaTvFgpdTxrrxo79bdQu2WVNbvaofg87fPyOT59CbzBZ4887GEqPSmSxLuxw1g7lkhhPKEzh7zGPJu7OT9KPFtVNjyP2EG9xBCsu0zLBTuyVKG7WECTPEjkTD14Ocg8pXNxPO7TiLyu2Yq8spt4vGmURTzV0IA8EkZvPABDjbwuzga9SQGEPMjzGjzKoOW8GwzNugE/wzxHM7g87SCPPBV4yTy20Zy8bGAsvRH/l7x9zUs7A1bLO4RlGb0y+jE8DRhfO5xqBrwiV5Q7GwxNPNpJMr1S9cu8fRw3OrtnhTyX0ri8HMErPaffk7xY78K6o2KYvG15Gb2H3sq8hjGAu9guYL1dcIi85tcsvRKwrD35RMw8ixAlO50bmzxA6lW9k1FzPDtWUr1NGIy8FGWLPC0Xwzwf2LO7Ekweuz1xpLxHM7g8saOMvEUYZjxdcAi8FcPqvF7SMby55Fo96wFzvHMPgr236KS8/GGDu6/T2zxo47C8y1VEPaeSjTx4Oci8s1BXPAiE27yVISQ81GqNvDnw3jyGfga7foQPPVTDF7zwnYq9gDM/vaFLEL1neXO81s6bvDfZ1rqkEci6aN9mvbMFtjx4hGk7AIrkPKqplTxQ3kO7hRLkPE7Dcb3Smlw8z9YJvWKazrttxp88Gl8CPRQWIL3Hjww9W1HsPCbUDzyA6B08u2eFvI4nLb1K/x689yl6Ox/U6TxwinI82OO+vP5y3DzUsWQ9T+KNu5y1Jz2+fo28j40gvYqqMTyOck67kwyBPb18qDsYlYC8saOMvfuqPzw9bVq9S6zpPNNqjbpSX4k8cvQvPe7TiL2iReE8t35nPU58Gj0ZRpW8P4isO1GP2Lt4Oci6735uvC7OBj1winI8ewcUPTBJnTqFfoa8XiEduwNWyzwPL+c8zSErulYnJj3tzVm9Q0z/vJighL3WyGy8NihCuwGnm7vWyOw8B9PGvA/kRbxFHhU9m7cMvW7dp7xqq828iEgIPBAzMb16BS+9Tcc7vNwRzzz9DOk9tn5nPPxhgzxx9hS9nWLyvPn1YLz8W9Q7/namvGY0Abz9eIs83GA6vUaCo7xYjZm8zR3hPGbI3rvA3lG9kqBeO/fkBz0Q5EW6l85uvKk/2DwbqqO8nLUnumpFWrsX4oa7Ln22PJ7ML7v1y5o7D+gPOw/oD7wzq0a9FcmZvMDe0TwZQGa9oUmrPIXD+Lsssc+8kUCaPGFL47wOghw9dHOQPNUXWL25Thg9aJTFvDnw3ryVIaQ8IwbEvIr7gbxdaPQ83XsMvVXBMjxo47A8hy+bPIDqArz5lZw8QIisPDpcAT0zYCU7d9mDPYpAdLvYmB28x4ndPAy2NbyQiVY7pXuFO7gvfL0OyXO86wFzPA7J87xJmxA9AT9DPCE63bzUtS69gJkyvcYntDtlYuu7/F8evZ7MLz2LEoo9CgFXvPhIFrvHiV28Y7cFvQ0eDrxksVY95SLOPPmPbbzar6U80prcPCv8cDvrAXO9+vuPPOKpHLy6tAs9xyNqvGGemDynKNA7qvBsvNv2/Lv0Fjw9+JO3u0gvbjyjYLM9rh59PFu9DjqNJ608Jh3MPDH257xRRLc77WfmvDy8Rb3u0SO9VicmO3c9krxKSkA8Kktcvfxhgz1pSwk92kVovS1/GzoTspG7qloqvuTAJL0vLss6ZjIcvaMVEjylewW87SAPvQH2hrySpCi9NywMPLwYmrzaSTK9Bz0EvRmP0Tv9DOk8kqQoPM7OdTx5owU9GUaVPBpfAr3jDxC7tWffu9pFaD0GHui84T/fO+TCiTyVISQ7MZgIPKpcj72f5Ry9xic0vXYedr18bYe7kIlWvKwLPz1ZpgY94auBu0Kbar2u2Qo9VyNcO8GPZj3qm38946XSvOtQXjxUw5e7GJUAPPZ8Lz3Vzhs98rQSvVBGnDtu3Se7OvQovCpPJr1Rj1g8xBKRvMu/gTsFJBc9Qp80PVk+LrtlzCg9ywqjPLmdg71/L3W8qI7DvNKaXL29FjW8rXGyPGbI3ju8GJo8HScfvRV4yTsCoey7/thPu9Ox5DyXg028ClBCPR12ir0EC6q8UvkVPWn+Ar5QRLc8mKAEPMGPZjv5+So66DlWvEd+2bvjWrG7i18QPOu8gLySDIE+ifmcPIcvm7wR4Pu8N5AaPdHtEbwNZ0o9u/tiPGWBB7pPlQe9J3/1vJjpQD39wcc7EUq5PCXSqriSVT27RLJyvBwMzbtH6JY9qEMivQVt0zuD+9u8SkpAvOy6Gz0qADu9yaYUvUtdfjuQiVY9R37ZvCfOYLuZTzS7XHCIOi0XQz2KX5C7eZvxvFYnpjzG3BI8ukrOvF4hHTtQRpw8zbftO5S9lbzEW808rcICPL0WNTzEwUA8xie0u794Xr3uhoI6MJgIPeE/X7twivI6UwzUOoAzv7we2DO8K2LkvLc3EL0raBM9Cpvju+4Ye7xFzcS5IIV+PLywQbzbZAQ9wvmjOkbRjjz+Jzs8JAZEvQGh7DzHjww9eITpPPGZQD3p7rS8h5UOPACK5DzkwCQ9pMamPJJVPTyTu7C8ggGLvLVrqbvtIA+95tcsvW8oSbvA5IA8U6wPPDBJHb3kC0Y8vGcFPdgu4Dt7AWW8J4M/vPQahjvn0+I8y1F6vGFPLTwOyfM7r9elvP4nu7wg8wU8JAZEvKL6vzxh5W88e7bDvPwQMz3YLuC8GUQwvWHl7zxteZm8yaSvO7KbeLxeIR09k70VPM0hqzxlF8o88OgrPYAzP72p+AA9VSmLvAfP/DxHftm8RG2APIfiFDweckA9wfVZOqrw7LwbDM08iJMpvepUKDtktSA9Ef+XO5sAybvn0+K8IaBQPFmmhj2Xzu67VyNcPICZsjwy/Ba8XtQWvJ59xLzHJzQ8bcJVvb0Sa70JoZK7iEgIvEY3Aj3TS/G8iJMpvQQLqjyiReE8mDgsPSIKDrt0C7i8Bbh0OgwcqTvuzdk7BXMCvaKvHr1/L3W8ErAsvFL5lbzySlU86lQoPcTFijwHO5+741ZnPIzFgz1JmxA9MxOfu5HzkzwzFYS8S7AzvHBFADxp/gI8X87nu8V4hL3asYq7ye9QOwsFITxB8IS641bnvPwQs7zhP9+7a/ZuPGn6uLwlcAG8sZ/CvNY0jz1FHhW9K/zwOVZu/T3jC0Y76aMTvKr0tj0cV+68rAs/PbiZOb3ewmM9ONlWva/TW7x5nzs8J3/1PPmXAT3ec/i8mDgsvMcnNDxGhIg8ATv5u1Zyx7wDwIi8+6Z1vFu7qbxzCzg7P9eXPCpL3Lzmbe+7yUKGPPV8L7zzZwy8b5IGPWn+Ar0R4Hs87WfmvEJQSTyf4zc9rSJHPLCEcLy4M0a9y1mOue4gj7r3LUS95MKJuv8j8bx57qY7/L19PXUmijyVaHs9UxKDuyYdzLtlYuu8KOsXvZntirxe0jE9VFf1vEmZqzyokg29dh72O8RbTT0AQw09DWdKPJsAyTyQQBo7fCCBvKwH9bzA3tE8NA3wPM0jEDx2IsC7oN/tvMfYSL2oRQe94JIUPQg9BDyuIke9QwUovSti5LyVt2Y9Ty2vvDH6Mb3MBtm6jnaYPE58mryP2EG9XXAIvIOwOj2yUFc9hsdCO0wWJzk3kBq96TnWPIQYEz0gjRI8g/8lvAH0IbytvNO7kwocPY29bz1DTH87aZRFvHmfOz1kF0q8MqvGOhzBqz3+dqa7f+oCPb1+DTt48Is8/cHHO9urWzveLCE8WlkAvdRmw7wbplm8QDlBvT0mA7xmNIE8U1u/vC3OhrvP1gm7qEOiusDim70BO/k8J4O/O8H12Tz5j+07ueTaPIJGfb3YLmC70KALvLHurTqTu7C8sIg6vTCYCD0B9gY9aZD7PJW35jpMFqe8eIRpvRKwLD11Jgq81c4bvbgv/LuYoAS91zQPPYwM2zoHioq7zbdtu7xloDy8sEG8u/vivAQLqr3cXHA97WfmOw9+Uj2HKWw83MYtvbv7YryWzu46lR3aOtQdBz1fg8a88UrVvJlRGbvzsMg8dtkDPKYsmjylewU9qqkVPbQBbDxKsLM8aZgPPNDpR7zP0r+754wLvQbXkLskt1g859kRu19/fLymc/G8/9hPvXNWWT3ar6U8CaESvZigBL0dwSs8W1W2PJLrfzfLDAg9fhw3vYAzP7xe1Ja96TlWvS/jqbwzp3w73nfCvIfiFL1Eaxs8Ce6YvNViebrIjae81RfYvDeQmrxCUEm9oOcBvhYp3jxcBks8ny7ZO+TCCb0/0008F5ObvFKqqrwWw2q7BAsqvDqh8zumLBq86p/JPLDwkryZ6UA7Ln22PC7Mobx+hA+9WaaGPXVt4bzxlfa54UUOvOiEdzzP0r+8NiyMPEIHDTxuLBO9FGFBPXsHFLy7rPe8iJMpPUg1nTyjr568zLs3PRTJGbmP1Hc9lbdmuqTGpjoLtrU81BsiPNS1Lj1Fa5s7c1qjvIumZ7z8xRE9qfiAPHLwZb3wnQq9kwZSvYtfkLzMvwG9FilePS3MoTsAji48v3jevFCTojz+dqa92JTTOVwGS70DB+A8grQEvGYyHD1y8GW9biR/vHOh+jp31x49FinevGYyHDwlbpw8hBYuu30ct7nCqjg9LcjXPA/kRby7YVY7r9clPBx2ijz7X568cEMbPWwVC70a8fo8CaESvf14i731EnI8WqDXPIlEPjtMywW9+ZeBPDr0qDwe2LM6SUb2vGUXyryB5NO8Eko5vMtRer2K+4G8Z99mvFnzjDzmbe+7u/8svLRtjrxg6566/FvUO4SscDxVwTI7QwUoPctZjjx57qY8TMsFPSg4njyokg08Ly7Lu953wrzFvXa874K4vNVi+TxmyF68KgA7O7thVjtplMU70DRpvRiVgL2TChy9qD9Yu1QM1LxMFqc8HScfPXOh+rsVeMk8TnjQuswGWTz9eIu91GoNvUoBhDrewmM88OqQOrmbHr1qSaQ8vKx3uzGQdL2j9nW8+1+evDMVhDw3JHi8eDnIPGA4JbxktaA9pQ3+PA3NPbykyAu8cfYUvbKbeD3p7rS8nGoGPIwM27tNx7s84amcvMV2nzwbXR293XdCPTJF07xGzUS7wN5Ru0GhGbv1EnK8X398unDZ3bvar6U8pGCzvGHrnjwNHg49qYp5PYeVDjw1DfC72JgdPYXDeDxCBw09pMiLvOsJhz1XI1w8ewcUPAoFoT1X1HA9AfShvJmeH7zgjkq8jcMeveYmmLvJ79A8dm1hvCeDv7zbYLq8hi22u4QWLjtOw3E93iwhPG15GTyq8Ow8BiIyvbidAz32y5q9X85nuq85T72X0rg8LsyhvDCUvrw8B+c69sdQvaKvHr2LX5A87hj7u6KxA7w0YKU8SkrAPEXJ+jrgkpQ7HiNVPHJciLz0rH49u/vivJKgXj3BSI88BXEdPO+CuLsf2LM7IaBQvdbOGzuyVKG8CwHXvCYdzLxh6Tm8y1kOO+0cxTtktaA8UqyPvO0gjzxRQO26EJsJPFQQHj0rALu72UXoPGn+AjzUtS49ywqjvJX9nDx/jsk8RAc6vbDSo7zRhKy77CBmvMcIKjx1OCU9HgRBOV/J0TwdeC+7lDi+u80LirymQzI8/XnqOxWunDw9KQ69Ge7xu0oyTLv+d5a8aDARvYrPqryD3g87pLn0PH3Jajw47DY8tq8lvWdrMr2Nbiu9YY6wvGgfdrvmGgi9jVu8uhBJE72Rwe87ifUIPCpHdrsJgKq8fD1ZvKSkMTyCP487QMiOvC69Gj1dFQ69wCsoPIW527x5dia9pMoPvZ3GhTvI4ku98jWLumu+9rwKRYk9cOc0PKPxlzzBFw88EEmTvUeA3DtCjhe92GAEvdoTHjxzmSQ8XSrRO37uHj2yhme8ezuFPDclBL0gAxc8koZOvJ7Hr7zTS188ToM8PRxlQL2VJU+9GP8MvTgB+juiGvQ82hVyvDAiJD3t9wk98kv4vFqevzwN5l08XtuWOiDL87wXOYQ8NK41u/4r2jzjjyC8vnk4vYMH7LwdPY68sL80vKxuRLyfe3M80yOtvDxjhb1foZ88WMQdvLQl6Dw+BNq7emO3OoBTKD3+K1q9BhxLO1H6Cr0rH0Q87qz3PM7kgTz0wRy9XSpRPT4XSTyi8kE8QaPaPPac6LsIzjq8jkjNvBug4brMRis9YHtBO3mxRzu8x8g8Ge5xPTL8RbzwlzQ9lRAMvWu+9ry773o8GDquvKuUIj0hy/M72ihhvNrslb3eZuI8GDouvcPM/DtUiHC8C0UJPAKQuTzGLoi9eXamPGIshz2Fuds89pxovDZNNjynLxm8DqqSPMO3Ob1pRdQ8ILawPKSkMT0dZcA8M8EkPBqz0Lws5vY82DvQPKEYIDwlHGQ9xkNLvZsC0bs/3Ce9lDi+vMnP3LqNNV67z9GSPLQjFLyBQLk7emO3PD0pDr02J9g7IN7iuv4pBj09P3u9TnDNvI8NLLxuWyM9YHvBPVcn8TxGuak83MfhvM7kAb2ymda8PwRaPNNLX7zlaUK8BuGpPA+YTbyD8ii9eYtpvKEYID3aKOE7zuSBvZQlzzwGCdw81OpfvOjNobxqHSI9fD3ZukMtmLwYOq68xjDcu/8+yTwxNZO8uwJqvEF9fLx/tKe7pkIIvb54jrvrRRo9WZ2VvXb/1zxrvKI8cee0OgtHXTwy1BO8qPUhPW9INDsEQim9fsnqO/TBHL3u0AG8jIPuPNlOP7xPSm88a752PfCXNL3op0O8FNZOPV0EczyejI68GQFhPepZM7u1/As97DNVvF3vLz1f7gW6ypORu+LJFz0JbBE7cOaKuxIii7wN5l29BuGpvPko+jx8Ari8gWjrPJztDTx6Y7e7WbAEvQimiLw/3Cc9S9FMvFnG8bxq5NQ7HI1yPSzRMzy4YZU7sb6Kuka5qbyPIu+7irw7PVLp7zzxSaS76ZKAPIBTKD0pbVS99Op4vW8i1rxvSDS6BC+6PBPpPTtVX5Q7M9STPMcbmbzKpyq9Js7TPBxlwLvN+u66vMfIPf8r2juK5G088kkkPBj/jDyW/3C9sKxFuoupzLxk3yC96M/1vKj1obu/Ppe7lSVPPLzGnrwzwaQ945H0PBL8rLyFkam6bYGBvMLKKL6mQoi9luqtOUa7/bxS04I8MTdnvK/Ud7ynViG8CM46vAGlfDtWTc+8Sh9dvV+j87xIWKq7k5iTPef107vvv2a8HwTBPA3RmjwqRSK9Rt8HPAlsEb372mk9Fk/xvOLwnzy6TiY8VTrgO0C2yTz72mm9bki0vB4qH72w+IG9+uuEujt3njv0wkY8hpN9PFtQrztEBpC927TyPMxsCbxGpZA9is6APWvR5byp4rI6FMGLu7QjlLyDB2w9VIhwPaSjh7xKDG48d+xovBL7AryX1768pMxjPG2oibwxDgs8KViRPNrtPz0dP2I6/XcWPWMH0zz06ni9PwRavFLp77wboOG88+gkvBvGvzxoaoi7EiILPBWag72MlIk8L4V3OVSb37wU6b08FzkEvRZ1zzxWTU+900vfvNlOPzxS0wK+UPzeu6WRwrtUm988PVLquz4Xyby9x8i7cq5nvJQ4vjzz6KQ7/imGPhrsnTxL+f68MQ6LvfXCxjwDaIe8z79NPXb9Az0Eatu5z9I8vcR+7LyZdZU8AMvau9FeTjzHMFy8TZarPP1kp7xmuBg8eXamPZeecbzySaS83J8vvb3HSLvKpyo9C1rMvCUc5LzQrF67bIPVPDEOi7w0rrW7U67OO2aREDy4YRU9eXamvOLwH71EQIc8T0rvOzBwtLxZsIQ8FZstvEQv7LxR5xu9InsPPH7HFrxZsAQ9ivfcPLQQJTwOvYG9CM46O915UTu77aa8j/q8u2y8ojvJzQi9xJFbvCRCQrwpWBG90kkLPTViebxzm3i8XhUOvPMjxjzYTZW8WMSdPfI1C7wkVbE8sktGu7M2A70m84c8A2iHOS6Y5jwCkDk9q4AJvQioXDzXnM88sl61POOiDz1ai9C75gjDvEeTSzxjLTG8bki0vHU4Jb1rz5E8OBTpPJUlTzzozSG94fLzPFY64DwjVIc861iJvCG1hryv+tW7RPRKPRuLnrygQNI8avfDOTgB+rsGCdy8CzIavLectryEpuw7ZN+gO6Irj7zwhEU9migvvUsMbr2CGls8SjLMvEFouTwhyZ+8WbEuPVWGHLy6Jx49mImuPE6DvDysWYE75S6hPBc5BLxUhhw9GuydvOHdMD3NDd47+8d6PSQJdbtq5FS9IMkfPWQawrxAtsm8cec0PQ3kiTz5E7e7UDUsvXUkDD1F34c9v1PavMZDSz1NmP87Mg4Lu1f+lDsKWky9H95iPGeTZL2kpLG7ztK8vIW3Bzx5dqa7EiRfvWhYQ70r9xE8CKjcO1mePz1cY548vYwnvYyWXTynVqE8GdgEvJ7Hr7zwhEW9snGkvFnXjDshy/O7/XlqPHwVJz25O7c8/xYXvAbhKbzrRsQ9+CYmPTVgJbwf3mI8eYvpu/PopLwzrYu7ZqbTO+Lwnzz01Iu90YQsPN8Y0jwYJhU7v1Pau84LCrmHVog72hVyPIW52ztDLZi8jJQJPMLf67yo9aE9VGC+vIdDmburgAk+ViUdvCsMVbzdi5Y9JBzku3wolj2Xrwy9vYwnPeOiD72jtyC9+RO3PFtPhTwxDzU7AqOovE81rLyyXjW7qArlPNyeBb1SwJO8UtOCurh0hLxvNcW8GdkuPHs7hbwqMjO8w90XPBgmFT2qpxE84AXjvP4r2jyrgTO8cPqjOzEPtbxlywc9xKTKPHOZJD1S6e+7fAI4vVqL0LvP5386jiJvvX+2e7xWTU+8TYKSO6j1IT226ka7yqaAPcZpKTz72mm8Op4mvFVfFLzTI607dv2DPQltO7wYOq489a0DvNGELDtTrs48PGVZPUMaqTxdAh888YRFvGJAoLsmu+S7gkC5PGMtsTxCZ4+8MEiCPLsVWbxvNBu9PT/7vNFeTrs0m0Y7k3GLvQVEfb0ie4+89A6DO2kKs7uUOD69x/U6u3OGtTzZTj+7PSmOvf8DKLy0IxQ9ZN8gPbhj6Tza7JU8vNkNvYBTKLz8src8ftzZPDqz6TsifWO83lNzvIW3Bz3NIE09dSSMPGW4GL1zrBM9mxSWvHjEtjs8Y4U9TKmavIn3XDz5/5274D0GPS9cmztjLTE8HSxzPBrsHb3/Ayi9HJ6NvHLB1rxDVUo7tDYDPJUS4Lwt5KI7lRLgvDVi+btgo3O9cOYKPON8MbxOg7w82HZxu59mMDybPXK9e2KNuuYHmbx7UMg8uk4mvaVpkLxy0xs8LOSiPAsMvDyVEmC8pxsAvTgUab0lCfU8aUVUvDxQFr05/yW8LNAJvaPywTz+UI68WotQvDAk+LpTwT09rVmBPCpFIr3+K1q96ZKAPXl2JryUJc88terGurNKHL2E37m8AbYXuylrAD2ycaQ8mxSWu4dF7bz9ZKe8k3ELPUd+iLss5KK8OcbYOjH7Gz06xti7NYhXPJwCUTxcUC88uGGVvLQQJb2lflO8pwplOq0gtDvUEL48t4gdvfFxVr2rgIk98YRFPJiJrrz0wRy9OsZYPBWw8DugUpe7jTXeO2MtsbxiQKC8YHtBvRTWTr2IRW28MQ81PHG/Arx1Eke9JEJCPK8MmzxHgFy7UtOCvNMiAzyW//C8ESTfvK/lEr7pkgA9jJQJO5pODTyQwe+8xzBcPAb0GL0bi5681egLveLcBjrn9VM8CX+AvPntWD1TmYu8MQ6LPN5RHz1uW6O8ReHbvElFOz1UiPC8Rrt9vDAipDwiavQ8eXYmvSUHoTzvv+Y8xWkpvfuxDT1pHSK7EV0su0XfBz3GQ8s6A2pbvBxkFj1svCI8/mZ7PcqBTDxNq+67R5PLPD8E2jw9Uuo8ifWIvIBVfLuoHdS8UDUsPTEOC7zJzQi9QaNavaVpEL3Qme+8bki0vEFouTxPSJs6jkhNPK1ZAbx0YNc8xVY6vbzZDTwA8I69SUQRPRL8rLwSDxw9E+k9vWkf9rwjQRi9HyqfPEvjEb3U6Au7bjXFumlF1LyZY1A86ZIAPbzGnjx1SxQ86272PF4EcztzmaQ8tekcvDxjhT1d7y+91dWcPIBTKL3jkfS8r9KjO3LTmzwas9C8GtkuvY4zCjyZdj+8B/bsOcLMfLwYOq689q/XvKj3dbwho0G9ifdcvDWI17tuNUU8F2JgPOHKwbtr4oC82GAEPIrPqjz7xaY7HHeFPOADjzxDQts8OBRpPHiwHT3/A6g8kMFvPKcww7ygQNK8YwfTu2TfILyHfZA8nqHRvNeulDyfZQY95GiYPMEXD71r0eW8/wMovLk6jTp6Y7e8r9R3PHRgVz0MDLy67fgzPIxuK7zqWbM8m06NvXfXpbwvSla8eMS2OzuLN7xDQtu8t4gdPVVzrbw5/yW9M9bnu2MawrsxD7W8uVB6O96MwDxA3Ke8HXgvPTOuNT1L0cy88Ta1u2r2mbzcny890V5OvJ6h0TzgA4+8habsPKcww7yZdr88G4sevQiVbT0lL9O7n2YwvHHnNLtR5xs89MLGuTSGAzwpkgg8uHSEPF+j87z62JW7/HnqOjLngj1+yeq76OLkvLfE6DxTmQs8X6GfPI5aErzAU1o97B4SOTBwtDwABnw9yPU6PW41Rbyc7Y08NJqcOzL8xbwA3sm59nS2PJNzXzweP2K8NzmdvBnsnbr/KQa89nOMPSHLczwGHEu7ltYUPVj/vrws0Ak9f45JvVAivTvQmW+9SGuZPM/4GrybFBa9LNAJO4gckb1vNJu8QKEGvb2Mp7ouq1W8FZutO9r/BD12EZ07PSq4vHfXJTqFkam7gHmGPVY6YL3KgUw9IZBSPfhhR7zBF4+8ZpEQvF/J0bx92gW9LpYSPHpjt7xUhpy8PGMFPGlF1DxuW6M8aR0iPG41RTxTrs67YVMPPCpaZTyZdj89sl61vBZ1zzs7oPo8fAI4PRIR8DolA4c8xcUAPQNTh73BrNi8wc0TvFQwqjrqq0e8jgeZPcELbrvQ66E8KzG7upD/5LxOYYs7oXjPO/fNL7zqjoe87GmTvBEvwLtlJWo8yBwDPJ/8WL0fi0m83Q2KvMOoHzzOb6s8U5OZPEsGL72dYyK8M4AqO7TtgDv7QXK8NngXvWl8bDwYH5q8j+IkvFK0Mzwz/H+7IsVqu/fq77wTTCE8YS19PCvSJTsC8PY8rB7BvIqwFj3RCIO8/7XVvLQr27w4Mom76BKRvVG4Db2tt/e8azo4PZvnq7tQ2Sc9jmauOwIyzL3PKR08CYWVvfugKL1StDO8/P+9PCb/LLwm/6w7YRA9vfukgj1mQku78VnMPLn+07xuT2W9kOKkPFpiOD3IWt07EY5VvevMgrzku468XfsPPSKoqrwV5dc8G9mLvPN2rbqS/4W6ifJKvfaL2juCwDy9FCsHPdEIg7va9AI9QL/SuQbo47xpHde81ICfvPxBE71kDIS8slBPPEV1Czwa+qW96mnyO6fk/rl24Ck8epZBvG8RC710gXM9Os+ZvT2i8buNagi80KnMPIoPrDwtDEc87MiovO/AFT3t5Qk9dVz/vKqFCry1Bue87GkTPGXG1LwET607rxoIPaP0xTsC0zY9MQQ0PYJlAT33bho8puwyPHo3rLyRwYq8nz6uPBcCObziP5g8iXKbPDbXrLy/cre9EHEVvFM0hL2hWw87d78Pu47FwznzNNg8kcGKvbKvZDzOzsA8exYSPT8FArzJNek89bDOO+QaJDwm/6y8kEG6OjgRTru34XI9DTfTvN9k67xRuA28Y4yzvPfNLz1PXbE7IOrePKWykb06z5m8cqbnvLJQz7uHNP+8KfcZPGNKXjyXTlS8VSj2vKQVAT3dDYq8z8qHPE1AULx6s6K5LLGLvOqOB71StDM8APgqPeBkDD60K9s8Os+ZPIxJTb22yIy96grdvGUl6jrXmaa8lNoRORib7zwxY0m9BGztvDjPeLthb1I9GDzaO/Vueb3XOpE88Bf3PPEXdzzxF3e8Jtq4PKvDhbrZMl081CEKvDwJu7z5B9E5NRlhuyJmVbwgrAQ8E+0LO3jY9bsI6AS8CKavPGHOZ70VhkI7QtwzvEWSy7w/v1K8JznOvMQDWz0Lu1w8cqZnvbSvBT3Ff9G8qkO1vH1MWT3dKkq8b2xGvGmhgT3XOpG7NLrLPK6aNz1s+AM8Mz5VvH3QAzy/cjc8B6qJPF81sTyJzVY9DNyXORHQqjy72V89Jt4SvM9OkTlXi4a7hxe/u/OT7bzRZxg9mG+PvMyxXz1c3q48cCpxvL7RzLxZf/i8RdQgPde25rxKaR69Xrm6PDmRnj03EU48rGCWOyvSpbxpfGy7CuDQOiAsND2U2pG8KHPvvAbLozyUVuc8QKISvdf4O702NkI8b64bPN2J3zuwdcO8w+Z5PLtdCrydY6K8X5TGuxg8WjzsRP68TYIluwo/hz0HBUU8F6OjPJTaET0Xfq88VO5UO2KQDbzMlB+9019kvaKZCr09ovE8++JcvBOrNjxJiji9mkqbPQhkWj1Y5kG9UNmnvJul1jzfRyu+9JOOvUL5cztpvkG99bBOO8xSyrwR0Ko8t2UdvLbIDDv7xRy7j0UUvR4PU70R7eq8eXkBvDuqJT2fgIO7I4cQvK8aCDxYpGw9GN3EvJcxlLwmXsK7Y0pePVzerrydBA07La0xvNDrIb1lJeo8qkM1vTUZYb3OEBa9mQygvZ1jIrzo0Lu8Vgs2PajHvjyFfog8L0ZovZ6dwzy1SLw8cGxGPcSkRT2q5J+8AnQhPEO3P7ySvbA8yLnyPMV/0TwHqgm9ldLdOokThryBREY8PCZ7vCccjjvxWUw5q8MFPVjmwTwck1w9exI4vDpwhDvVOnA8qUePvJsE7LsTqzY7nvxYvDOAKrxeubq87n5AvCJJFT0kJCG9rjsiPGeEoDxNn+W8v3I3PbKSJL0m/yw9xEUwvYyLorwkJKE8ubz+vd3LtLw4cGM7tsSyO5rrhTwKAYy7jqiDO3aBFLzpUIy5etiWPO88az5f1ps85bPaPAYqOTyumrc8UvYIvY1qiD2S/wU9bRVEu6qiyrzfZGu972EAOin3mTubiBY8bk9lua8z7juJ1Qq9M9+/PJkpYD2DH1K9SgqJO72XK70esL07/jnfPN6JAL2wdcO89upvPEXxYDwne6O8oB0Uu8MoT7zVfEW8avhiPfeL2rxcnNk60kIkPSTiyzxhsSc7cqbnPOLggjr1sM48Fh95vNOhuTxCO0m7OkvvPMHNkzvtpw6615kmvYcXvzqINCA8mWs1veA/dzyGG5k8kOKkvJspAbzcyzS9jKhivLfh8jyLLA29ZSVqvaQVAb2bBOw8Y6nzO4bV6TyXlIO8K3MQPLDU2DxNn+W8ltJdPJjvvjwR7Wo8rB7BPNHGrbwdtBc9ab5BPfH6tjx1XH88FgYTPagmVLxcnFk5+yQyvFSPv7yUtfy8xKRFPLXppjwr72U8xGJwvajHvjw6z5k8hxe/vH9pOjvuPGs8enmBuyb/rDxF8WC8exYSPMNJijqZysq8d1wgvF65urs+5Ma8NfRsPHzxHTzOsYC7zFLKPLofj7zG3ma9zLHfO/xBE70dzX080ePtu2FSkjwm93g7o9cFPelQjDw7qiU9a5lNvW9PhjwOVDQ8WiBjPcSHBb3qq8c8/nu0vMo1aT02NsI8WsFNvIpuwTyFWfO8WCiXvKlHjzw2eJc7x/vHvD4mHL3IWt08w4dkPcicsrzVOvC7wO4tPDf0DbwFLhM7dCJeve9+wDz20Ym9pBUBvV41Mbzqq0c5b2zGOwOyHL3VHTC9UfZnPJSYvDp/CqU8tIpwPJzf97zOsYC8EHGVPNb8lbt7syK93YlfvYvukbxLSIS838OhvOA/dzxVKHY8K3OQPL9ytzxzaI08Jl7CPVGXUj1eubq8K+/lO0EeCTxjSt67p2wDvZSYvLxc3q68265TvReCCTryNFg6oTZ6uUQ3EDyDApK8np1DvC/n0jx9jq47tadRPAkmADzI3ge96yc+PW7TD722I8g7Gnb7PRdEjjsTq7a73M+OPSRBYbyXMRQ7Y4yzO/STDj2PoM+7c2QzveBkjDxkhP88Hg/TvOEBnbuMi6K8qOT+PO5hgDqnbAM8wE1DvF/Wm7ylcLy8LqV9vPEXd7zoUIy7R68svXgay7uKLOy7YpCNvHo3rLwVaQI9Y6nzvOCBzDxVKPa8zs5APHaeVDylshE9A7KcvJcxFL1CfZ66Q1iqOpRWZ7wMfQI7+wMYvTPfv7oK/TE9xGLwPC/KEj19TFk88fo2vJvnKzyDH1K9pbKRuxmbkD1GDkK8/dpJPDPfv7wm3pI83omAO5vnKz2u+cy79VG5O4PAvDt+yE+82/CovO/dVT2jU9s8jckdPDKdarqoR4+7ThvcvKcJlLzg4OE8foZ6POhxJr08x2W8w+b5O1G4jTzGwSa9tG0wvCRBYTzTQqQ7GDzavA15KL18koi8+4NHPB4PUz3M8zQ76C/Ru0+8RrwiqKq8++JcPdeZJrpr2yI9j0E6vQtcxzwSrxA9IoeQPe1EHzzkN+S8+4PHPHaBlLxhb9K8NTocPdElw7yfPi67rZ4RPWOMMzvxuOG7KVavPBjdRDzrKxi9BssjvbSK8LwpVi+9/1qau/G44Tz4qDu8T3pxuyvv5TuDApK81fyVvdZXUT1lCKq8vo/3PJTakTvNcwU9YbEnvYHlMLwxIXQ8fPEdvBXIF71CO0m8bfBPPQQNWDrvYYA8yN6HPINhJ73Gwaa9pS7nPDwm+7thb9K8l5QDvSb/LL0K4FA9Q9T/vKxgFr2Pg487ypT+PFITyTpUMCq9VE1qveSWeT2fgIM79bBOPXr11jx24Cm9UfbnvHsSuLwN2D08Jtq4PBPtC7twy9u8WsHNu6pgdTwCdCG9GvqlvNNCJLxJzA093gVWPJtGwTx90IM8XpRGvNVfBb1AYL28xSSWPKy/q7zs5Wg8GhfmPLD1E71bnFm9j6BPPF77j7uOBxm9tUi8u1jJAT3Q66E8XPtuvDFjSbvD5vm8AnShO4nVir0YPFq94IFMO8OoHzy7OHU7RhIcPMQD2zxw7BY9pqrdur8TIjtpvkG7OZGevGPryLyxDvq9UnJePWeEoDxN4bo6tUi8vCTFizxyR1K9bxGLOwYqubyHuCm8zBB1PEB9/boSrxA9DH0CvGEQPT3o7fs8VqwgvdSAH72hW489rjuivAJ0obysv6s7zPO0OsGs2LxNn+U86C9Ru3e7NbyNJNk86I7mvM5vq7xC3DO8LymoPCUDh7wK4FA9S6cZPBjdRD2KLGw8jmauPHyrbjxpfOw8COgEPEZt1zt4XCC9C/2xu+b1Lz1lqRS9Z4QgvYNhJ72yr+S8PiacvIyLIr1eOQs9rZ4RPSbauDwNN1O8m6VWPJ6dw7z1bvm6AhWMvFRNajwjhxC8qOR+PBqbEL1cPUS90eNtPJvnKz06Li+9SgoJPfO4Aj0FLhO9UbgNPIPd/DwiSRU9ODKJPG3TbjwPlgm9fPGdPFH2Zzy7GzU92lOYvPuDx7tuT+W8ckdSvS5GaLwzgCo8Glm7OmdCy7wLu9w8F6MjvPsc/rdSE0m82LaHvEXUILwxhIS7ICy0vGFSEj0jhxC9bRXEPJQ5JzylcLy8bjIlvXgaSztcPUQ8SYo4PDY2wrze6JU8C56cPKVwvDs4cOM8vJuFPB/NHjxwy9u8fY6uvFYLtjuJNCA7PMflOiZ7ozsviL07np1DPUB9/Txtti69Q1gqvbaC3TuG1Wm7Y4yzOtzPjjxurvo8dIFzvKG6pDwCMsy7yhgpPW22rr2SvbC8wQvuu8v3Dj0GKrk7A1OHvXl5ATxkDAS9lLX8vDT8oDwt7wa9Hc39O1hFVzuKDyw8HzAOu99kaz32MJ89Y86IPDU6HDtFkku9TUBQPUazhrzk2M48+yQyvZM9gTxUTeq87MioPI1qCL3ToTk9JEFhvKM2m7yWFLO88VnMvEtIBL2/cje7JIM2ul7zWzxcnNk5pwmUvGEQPTzi/UI9F34vPKjkfrvfw6E8waxYOhcCOT3zdq089fKjPd9k6zwAV8A83YlfPWGxpzyKbsG8HNUxvIX63buoxz69Q3XqvO5+QDw216y8rH3WvJRW57o8CTs77mFfPKdsgz3shtM7Z8IbPKsewToDshy9sLcYPSlzb72dY6I8VE1qvQcJnzwjhxC9V4csvdsNabyjlTC95hJwveb1LzxxR9K8etgWvKG6pDzT4448vzDivFqkjTwK4FA8lPdRvVz7bj1WCzY7qoUKPXe/Dz3jfZO8lJi8PK95nTy+MGK8v7SMvNsNaTuKDyw8/dpJvHzQYjwDspw8fS8ZvM2M6zzeSwU9vzDiPCIHQDrZdLI8T12xPFqkDb37QfI8rvnMPK7cjD2YDP+7vQdqPPxx0TzJ7mW9nqzHO/hCwzvb+8q8vLuMu3AZfT0njYu70dwbPO5sFru3cZq8CeKsvLFEdzz0JAS9HV2NO832D7ytip68XdsePZHp1Lo63Di9y3dFvAwROzxxjjK7B6xkPBs4lDwagRa9YAAYvVeue7wTAdw8gpGCumqDLb3hYKE8BPygvHQXErxZHHc7PtOTuBN2Eb3+38y8YJV3PI1nLzzjhRq83g/1PGPLP7yuMM08vEbXvI972bxx4cm87ZN6O88bib3ISLe8PtMTvYbAkD2dPkw8k4MDPNd5pTyX2XW951DCPPAcWr0Ofza8TxgsPA0ROz04br28CMdIvEDM2bzrR509Q/tnvMeA6jx1vUC8K/5hvDdT2brcTmI9d0YgPEvOOb1WCE28X/YCvEsyID0zJEs7oZkNPfKK1bo1ksY6n1J2PH6J2LxhtxU8tla2u0wh0TyLCoM4K/5hOy2/dLx0oly95HRLvL0OpLzznv+8/wuAvJi8pjxq1kQ8TJaGvVwTUjzXeSW8Wv8nPIHaBDv0S+g71rFYPSQfkL2gxys8NMp5O3lhBLyknOg8h1XwO9hy67z98Js86tkhPM04WLwFYAe8JR8QvNQBlbxbGgy9Ou2HOmJuEz3Im047B3SxPDF0Bz0i+hY9mSoiPDhuvTzCWBa8T1DfvEP7Zzz9xGi8s4sOPYUJE7uCC/686iy5vftW7Ty/M529A6kJPcE9sryA91M7NVoTPZVrer3ZqDM8q6ftPCNNLj26lpO8tmcFPYTurjxVxgQ8St+Iu67dtTywnsg71l5BPYKAsztQa0O8w1FcPMf1n7xTLNY8jWcvuy1s3TwYS069GtStvOosOb398Ju7UyxWvd0xE7zhxAc9fTZBvNKCyrzxilU9KJDmu8042Lwk89y82HJrvKoSDr1P/Ue9sJ5Iu4LkGT2/4AU+RHCdPC00qjzSkxm9LBlGvbjVgLz0JAQ83oQqvPaBMLzis7g8nbOBvdAUz7yJizi8dtgkPCuryjsey4i9gWXPPGWM0jvhYKE7xi1Tu91pxjzFhyS8eezOu9cf1LyOORG8B6xkuwBprDyK3k88M9EzPLjEsbptDA297GIBPHkYAj0ZDGG9Hx6gPGrnk7wFPmm87q5ePJ1Pm7wqBRw90Wfmu+Y1Xr0czfM8eP0dvE9Q37wpkGY9+rA+vF+tgLzSnS49KJegvD1DejpfgU09nJFjPNIvs7t8G906Tcd/PPqwvjyLTMu7vgdqPRXC7jujBwm91PBFPRs4lLzffXC87q7euVnkQ7x6BzO9ZB7XPKnm2rwvoiU9nqzHvNtwgLwrIIC82HLrvF4utjx0aqm8QgIivQrb8jwnfLw9KOq3u1qskLtdZum8y4gUvUfXXrsK2/I8sbksvDrtBzzgDYo8Cv0QPR/LCDpoMBa9NeVdPEx0aDuGr8G68lKivI26xjz7L4k5GcqYPIASuLzFhyQ9iwoDPOWPLzz5CpA95jXePEa8erxGhEc8RjEwPMP+RLySV9C70NIGvTimcL24F8m8f6S8PE6qsLqSaJ87SJhxvVYZnD0OJeU8/cRovahALL2hNac64yE0vjkUbL2qric7WORDvTatqjuxRHe8ftzvuwT8ILy9mW69g9NKPJehwrwGBja9jQ3eOkiY8bp0aik8nJidvOMyAzvEfQ88db1APZ//3rxdE9K7leCvvEDMWT1BjWy8Z28Dvd99cDw/ihG8dBeSOZDO8LwbJ0W9nOs0veBgIb0lRvS7GfH8OzovUD3e10E9Mn6cOuej2bxMdOg8hwLZPKJQiz3zpTk9UyzWvFViHryhwHG8Bs6Cu/jvKz1T9KI8u9hbOm8gtzx0aqk7x1mGPDK2z7ysFWk8TlcZvDK2TzxYPhU9QB9xPYcCWbzsYoE8DiXlPKyACb2FlN27hHn5vNpVHL0hjJs8srJyOxcJhryJw+s86iw5vXqS/TuzzVY8rqWCvMI2+DycI2i87iOUPaunbb1JYD68EFGYPAOpCb7mYRG8fW70PFYIzTwxYzi7nT5MvGEKrbuqrqe7WoryO60V6bvk6YA+1x/UPLCeyLssGUa7eezOPIFlz7z4U5I9aWjJO9283TuaKqK851DCvKOc6Dsytk+8P7H1O9W4krymXXs7k8wFvWrWxDxYyV89+y8JvazToDxB+Ay9r1yAvPno8TxRM5C913mlvFeHl7uh4g899EvovG3q7ruDSIC8PbivvDWSRj1bpda8qhKOPIjlCT3K0RY9Njj1uz5e3jxWIzE85OmAOi00qrwZZjI9QTpVO4tMyzxDqFC8+h66vL+XA721TKE79dsBPdsMmryu3bU6zxuJPItdGr0LtA69kbEhvWZUH71Y5EM9JimlvMt3Rb3cw5e8M5mAPBZcHTyuMM08kmifOcuIFDwWpZ88db1AvUxNBDwUHEA9tmeFPPYM+zxZ5MO8ND+vPGKw2zz0EzU9ZHFuPEyWBj33J9+869JnvF9JGrwo+4a8IfABvXUQ2DzyUiI8yWObu4mLOL3HWQa8MgnnO7xG17xBjey8WxqMup0+zLx6APk7YCf8u35RpTyWhl48TCHRvKtUVryoQCw82Tq4vFAYrDvwycI8VzQAvB+pajzuW0e8DiwfvfRL6DvOAKW80WdmvOej2bzC42A85v2qO5JX0LxkHtc8UBgsPdWW9LzG2js8t/zkvHBzTj18G928X9TkOwTQbbs/H3E8Ve1oPGxEwLzznv88uMQxvX3jKTz2gTA9QmYIPZyYnbxwGf28zq2NOxcwaj3Gogi80rp9vNDSBj0N2Yc82Z6euZj02bxwhJ08VJpRvfaBML0uTw68CjXEvIF2Hj1CZoi80oJKvcibTjt2K7w82Y3PPHQXkjzdMRO93WlGOocuDDwP4xy71l5BvV+BTb3daUa8MXSHvIcC2byuME08i10aPd8q2TyvXIA8rO6EPKclSD3iszg9UBgsvTPRMzz1DPs7bcOKvItMS7sDfda75OkAvRRvV73pvj08eexOO/kKEDvk6YA85v0qvIfKJTmi29W88t1sPD5eXjyV4K+7W1K/vPnocT2xHZO8BT7pO0E61T2fUvY7BgY2vC8GjD29YTu8xBJvPNpVnLttDA09hwJZvXfziLwdXQ08PbgvPcibzrxc+O27AYSQvK9LsTxNj8w7HjtvOj8f8bzZOri8nT5MvFg+lbzno9m8X60APZE8bL1tXyQ8tEKMPCOxFL3HWQa9l9l1Pe/akbz/+jA9QgIivUa8ejzjzhw9mEdxPGenNrytFem8ikxLulg+lboVwm69TuJjPCj7Br3ztog8AKFfPYLkGTzmiHU9xH0PPFjJX7nYlIm8U/QivcRsQLzFv1c9uE/8vOBgIT27K3O9857/PC6HQT2p5to8l9l1ueCY1Dy7BA88flGlvAMqv7wo6jc90p2uPASpiTsYS067VbU1vUaER70z0bO8GEtOPaOc6Dub4R+93tdBvHZj77uPlj08ocDxvEBBD73SQIK7S3siPHnszrxW0Bm9r0sxvIrezzzOrY09q6dtvKfSMLyok0O82/tKPBRvVz0k89w8pWS1OyfP07ykvoY8Njj1PPAcWj2RPGw8BheFvJBDJj0RQEk8gQt+vE5XmT2CuGY6Q6jQPDtKNDz6sL48DWTSO9meHjyatWw8/jLkvONZ57zMkqm8IMROvSNNLryWM0c7ybayOwltd7yiB4k6/t/MuxfAg70pPU89Rd4YPFg+FT1uBdM7l04rPalbEL2CkYK8joITPYK4ZrwN2Qe9X4FNvct3xTwRCJY8K6tKuwltdzwvm2u8Adenvem+vTu16Lq6KU6evAVgh7xAlCa9HV0NPQ6QBb1MTYS8xKTzvEUWTD3nYZG8FG/XvDk2ir2P8I492jP+O4UJEz18yMU8IMTOvJT9/rwDKr+8AKHfOzC9iT3sYgG9iwqDvPldp7ylZLU6Q/vnvPYuGTzz+FA8vWG7PFSroDzSna489WZMPBxCqTvgRb07rjDNvP5UAj0Sv5M87iMUPP7fzLuuME285eJGvZIEOT3r9AW8K3MXvaVktbxiA/M8y4iUPHfRarrOACU7khUIvRCTYDzzbYa90BRPvfAc2rw+Xl68t3GaO7SVo7w/sXU70YmEPJTFy7oULY+8cHPOvJ0Gmbzx5Ca9nuT6vcm2Mj2K3k88sl9bOz4mK739jDW70i8zu2spXLw3U9m7Jimlube6HDs8ncu8H6lqPfoeOrzJCUo8BmocPRlmMr3Mkqm87Jo0PWrWRL3W3Qu8QlW5uWf6TTwzJMu8Oi9QPZ6sR7zVb5A7egczPQI7jrwkoEW9QgIivGCVdzwsKpW8HrAkPdULKrxV7Wg9XG2jO0CUJjwcQik8U/SiO928XT0tbF08z6bTvKRJUbx0F5I9y4iUO0qzVb35ChC9o/Y5vRJbrbxS2b6886U5Pf3wG7xMIdE8b80fvaRJ0TxhQmC9klfQuj24L7tRvlo8ytGWvM9TvDyW+5O92JQJvct3RTwI2Bc9rt01vWQe1zwtNCo8IfABvSlpArys7oQ8vPM/PeMhtDscQik8stSQO7BmlTzcFq86wjZ4PQz21rzXBPA80ME3vfjvq73Oi++8ijFnPN1pxjxt6u68gybiPEaVFjz7Hro7LWzdvHkYArsViru6yLayOYtMy7zJGhk8qebavJQ6ATyRsSE8iYu4vO4jFL3uIxQ8820GO9PV4bnPptO7lNaaPKHijzxx4ck8O0o0PW4gtztDuR88aE1lO9rg5rxGn6u7xTSNu7EnKDwNEbu8icPrO6W3TDyKMWe8C1AovbjEMb1KBm27K3MXPMKrrbvRZ2Y8Y9wOPfldJ7w4f4w7u00RO5i8pjw+05O9NOyXvC6ipTtpu2A9l06rPNKCSr0xY7g8zovvvOJ7Bb2oQKy8BEUjvQI7DjtD+2e8NVoTPN4P9bx6da49pzYXPbYDn7wsxi47BNDtvP3wmzwZZjK8K1H5OsWHpLynNhc8nbOBvFiRLDyzzVa8zxuJPSKF4bzUbxC97Jq0vNOdrru1O1K8XG0jPJIfHTxlOTs8k4ODPF3bHjxkcW68uBdJPfacFDyJizg8QgIiPKV1hDzwyUI9wqutu1OroD3xb/E88/jQPNKCSj3jhRo9JtYNvfXbAbwAFpU8dmNvvQ4l5bxt6m68qEAsveHra7wZyhi7flGlvGFC4DtR2T49+EJDPEiY8TtHnys9GMCDvGSTDD2zzVa9MccePImmHL1vILc8PJ1Lvf5UAr2CuGa8q1TWvIUJE72Hd4488Tc+vK2KHrw4bj083MOXPOpkbLsmKaU8GziUO+OFGr1dZmk9NhGRu3HhyTvCqy09qECsul+tADxVYh48GoEWvVeu+ztV7Wi8l6HCutDBtzw1o5U7VbU1PczK3LxdiAc9IkMZvfecFD0J4qy8ViMxPC8GDD2Av6C7UHwSPTmJoTuDJuI8rO6EvL4nqjvLeZg8lUx8vYCpNroIaQY8OInTvLOOhDvLfAY935kQPDVl7DtnTSi8MSnWvCFF9LzXm2c8XBwzu3YlUjyqlre6+OxUvOzHlzwrZBa8N/rNvM0FMLy/qvc715tnvO1K5TxBpYc8TDL1vFdLO72TLnG8TEEbPBWRMbzl8MO8oX3xOuNDs7wSZ268+PIwPOb2H7qBOLy8e2FovHefFjxfz5+7OInTuyRp2zx3nKi8nE2Tu+vKhbzXp5+8LYIhvQfRtrzL4Ui9fAICvUoaxrwgNo89hg+QPBwPOjz6ELw82KefvdCywDyW7ZW9vAkfvVEPJTxiggw9et4avfO2mruIIWO7udl/PXFaNryiGx090LgcvFuTibw3ACq83vtkPWJ8sLtetIK9jd2ZvKCDzTv+Uq67+hC8vLU4pzx63po8xRBRvOd/yTx3Lhy9mZRKOtRlrby/S5E840mPvO7fRj08YCc8fw55vfbXE70Put28BCQmvPInFb0XRJ482jyBvAY8Vb2UWLS6bJIIvPRFIDyRn+s8XByzOvO5CD2vT4C9DitYO19Yybzwd5Y8e9LiPOmpDD1aARa9bI8aOyaH5jwXrzy7EwIsPCteOrzE+KG8BkgNvcUWrTw+Y5U9OBJ9u7+5nTwOxpU96Q5PPc4LDLtcHLM8R2H9vDpCHL28mxK7adwtvLBnLz0NN5A8dQ2jvBrxrr1SA227ZKOFvc6O2TuJMAm9fw55vB6kGz38NKO9u/3mPCG8Sj08Wss8kaXHvEiFZDy1Mku8brOBuwSzK7yiDPc89LA+vIV6Lj04GFk87ME7vIHHwby+Jyo8iJi5POgah7zl2BQ9YnwwvWMRErxRCUm9WG+iNrOOBLz6CuC8NOKePFZRl7xExoC6PNEhPVCDjbu6bmG9hO6WvMpYHzx89km9NXEkvcWfVrzu5SI94q7RPYzghzyhElM8zYj9vFwcs7xi8Ji8ibwgvOzHl7wWr7y8j4c8PLU4p7yPhzy9xZ/WvGyD4jxTkvI7gj6YvevHlzvXDGI9v0W1uwQkpjupclA8hOuovKIM9zqW7RW9rbTCvClALzxvraU8tTJLPKObfDu+LQY8K9UQvWWau7uDXCM9mAVFvRUUfzxx0Qy8xHtvugl4azxnTai7oO7rPNkwSTw2a0i9vJgkPVOYTr3Ldiq9QyvDPHjAD7xBnD28ylJDPV/PH72EVsc6wWkcPSixqTywbQu8xQp1PGBS7Tw5HjU9+PKwvIs/bj3l6uc7foXPvO93Fj3lW+K7W4H1OyixqTzT0Mu8fPwlvf/V+zsAa928mp0UPUS0bLxew+c7YeHyvDpCnLwotJc8+PgMvIknP73qnVQ9xIqVPfmBtrodhpC6eti+vBWRsbvm+Y28Wo0tPeAlKLqnWqG8dZDwPD/1CDy8jOy5PWMVvaKbfLrBaRw8LnxFPPqKALzpqQw9tZ3pPOqdVLwa8a66b60lPbnZfzvHOpQ835aiPY7sfjsj1Hk6nmXCPEZn2TzyIbm8EwKsu8DalrwJ+Au9Up6qvB6nCTsJZhi7MrL/O6wrGbw4lYs9g1wjPeEfTL38vcy8CNoAPJ/6I74dDzq9FZGxO3R+Hb2jm/w7unqZvNFKEL2Cx8G7iTCJvZgLITzztpq76qMwvQbF/ryKv468KLQXPU5lgju6dL07VbbZPFOS8jxmKcG8GvScPLt0vby8jGw9WgQEvXaiBLswlPQ768qFvA43ELzA1Dq9Xjo+vaQ/BL1us4G8GD7Cu+xWHbweFRY9AHcVPUVPqrqFbva8MC+yPKoB1jtrA4M9viFOPeK3m7xtGES7j/g2vIE4PDyUyS49IVcIPa/YKb3CbAo94bQtO+xQQTxW1OS8qH6IPOCK6rtlmrs8HHrYPGYpQT0s9gm8g18RPS2CITzeewW9YwXaO/O5CL1i7Sq9dy6cvIieFT33Zhm8r94FPZmObr2mWiE8fP+TO5I9lzx0fp08+ooAOY+BYD1i8Bi9NgAqvc6O2Tv/1fu99D9EPKSnNDyF5cw7EE+/O/OwvrxKqUs4+xYYPGDhcjxyTv47y3yGPkS6yDy1o8W6XbEUvJiUSjxIi8C8KslYPcUKdTpnTag8mimsvMHUOrxYbyI9Rd4vPCNvtzzUawm8S7WDPD/vLL0SZ2475WqIPdLcg7yREGY854sBPJEWQrzFENE8dA2jvW+wE73pndS6L6MaPSRjf7wxNQ68dqIEvMSKlby7/WY9OjbkvDVxJLzvAy497uWiOz7p0LzoGgc91omUvLwDQ7w+43S8WW8iPG0YxLv9vUw86iZ+vMFpnLzgJSi9Le2/u4CvEj37Lse8UIMNPEENuDxcEPu8m74NvFB6w7rLdiq9PelQPd1sX7whUay8ohsdupbwgzx1lsw515vnPBHexDq8mCS8UglJPMt2qrxAB1w89D/EPCaTHj0OxhU9l3a/vB6kGz3vdxY9OI8vPRlllzzRO+o8fAKCvD71iLzUX1E77FYdvclYH71H9l66+OxUOiHIgrsmkx69bzwrPPiHEj1xWja8S6+nvLhKerubLBq8xPihPL68C70Es6s77wMuPN775Ly0nWk63Wxfu6wrmbzl2BQ8UQ8lvK/bl7xPXDg8ekm5u15DCL3115M60LicvE04UbxcHLO8d58WPWuD4roepBu91GWtPFF6Qz3KWJ+8IuAxPSFUGr1yWrY8YeHyvICpNjtoUBa8rS4HPPsWGLz3Xc+8s4W6PDm2BL2hjJc8VcIRPasf4TxjCza83nI7vSHIgjz4gTY9QaWHvPso67uN3Zk8WxwzvKbFPzypDQ69OkUKPfbagb0t52O9YGGTvCYiJLzzqmI8awODvJbnOb1xv3g8dx/2PBpczTwMDc06OkUKvZAfjLtmMos7JfhguqOh2LzoFxm9w/LFvPGSM7u3VrK83woLPNFKED1llN88tZ3pPLLwWDzkzFw9iJg5Pb4nKr3gKwQ8Z7Lqum6hbbxDK0M6/lKuuhdHjDsSdpS9UPGZvI5vDbyn7wI953ltu106Prt8/xO853ntu8UQUTxp0PW67Urlu3eflryn40o9QAfcvDgY2Ty9LQY+ZiPlPK2uZrw+ZoM9sWodvMSHJz21nem7p1ohPQhaYL1nTSi9i0XKPJGlRz04idM64SgWvFbUZLuRFsI8MC+yPGQUALzl8EO8JygAvXHFVDwmIqS8BbOrvILHwTvD8kW9l/CDOc2UNT1RgB+9Xau4vNrLhj0SdhS9rbTCPNYYGr0jb7c6oh4LPdLcAzz7KOu7I2+3vN+QRrvWgzi6bqFtvRHkoDyDUOu8FSYTPCerTT1CpQc8g1BrPegah7wemOM8t1DWuni6s7yjodi8fxoxPbL2tLwyTT08CoQjvROL1TzaTlQ9I3gBPeTM3LsJ9R09JhxIvMSBy7zIwz28p1ohPQqEIz0vFBW6Ba1PvBWRsbsvoCy9+yhrvBL28zxfzx88nm4MvSk6U7xsib68FRR/PHvYPru8mCS9PFpLPD1mgzwnJZK69EiOve5o8LphXiU8qX6IPb9FNbprA4M8fxRVvbOOBLx3Lhw9wM7ePGKCjDxmKcG8plqhu7DqfDmrJb08o6HYu0S0bLzgJSg93vtkPI7yWrwYR4w9ZZo7utzX/TwKfke8UHRnPKbOibws9om7wNqWPKXOCb2e3Bi98YZ7u2MUAL2y9rS7Z74iPJiUyrxDK8O8B8V+vJ/6IzzDgUu9nLJVPf5SrrvSym87CNeSPNzX/TycUIG9GNMjvNJBxjuiGK883ngXvbU7Fb0XR4w8um5hPDLHATy52X+8205UvADcV73itC09L6OaO/bOybz9w6i8vS0GvUdh/Twi1Pk7tKmhvBv0nLsZzUc9EeSgOezBO7wgM6G9QjGfPX3w7TtgXiU9zykXPebq57zK2+y8xhwJvHJatrm52f88RtJ3u6497Lw3AKq8l3BjPNcSvryO7P47taNFPHLyhT070aG7DivYPMHUujswLzI84JYiPPXaAb0rWN47p+NKu1KYzrumTum7qH4IvbhQVr1cEPs8c+k7vBJzJr3pqQy9gJ3+PG88qzxh8wY8Tc2yPCaNwrxpa7M8awCVvWhThL2+Kpi8NNZmO5GukTohwia8zQWwuvB3Fjzecrs8yMO9u3lPFbs4idO8aFCWvM4LDL5p3C09D8mDumSgl7v7n0G9EwKsO7hK+ryTNE28NFYHPPdX87r6GYa5REPyvLYySz1Lo++7DitYPOo4kjzvbsy8UOs9vUogojyP/pK8jFGCO5PMnDteyUM92jyBvKlyUD347NQ7fZEHvbMO5DyBOLy8TdMOvWey6jztWYs86RcZvPl1/jxW1OQ7NmtIPR6kG7qLThS87egQPUiLQDxDJWc9NWtIO36OmbwI2oC7p+kmPSRj/zwb5Xa9YedOvdFHIr2rJb28RMAkvfU/RD1KFGo7OBJ9PbfHLL0ysv87eK77vITxhLtoR0y9K1heOwQkJrx70uI8y+2AvbY+g7ykv2O8uu6BPcFjwLzzuQg9YxSAvBv3irwJ+As8IcImPar7eT0LGQW9v0U1PD94VjuJvKA8D8mDvNtI+DyiGx29d5yoPBJ2FL2n74K9l3+JvAW5Bz2eZcI8MSnWvPw3kTt9/KU7DZZ2u5ovCLw3+k28xRmbvDZ0EryeX2a98ZIzvA2lHL15urM70kFGO03H1rs80SG93gFBPOPM3DxKFGq8P+8svOXbgjyq+/k8fZEHPbfBUD0+6VC7X88fPGey6rvEhye9+yjru3lDXbyHkl08K2QWvX2FTzxEukg8heXMO6XLG70pNPe87LtfvOK6ibtSnqq8dA0jPQ2iLj3QssC7MTWOPLMUwDxFUpg8L6OavW0eoLyebow8vzl9PADiM7st52O9hXquPDxgJ73E+CG91hgavb4thrwEtpm5ObOWvCAtRTwkB4e8lMmuPfjyMD0/7yy8KLSXumpf+7wcgLQ89maZvPdXczwTc6a8fG0gPcJd5LzqnVQ9SYtAvVF0Zz2KSya9EE8/vWJ8sDv1Oeg71oyCvLFhUzybuDE87/1RPItLprwClaA8ZS8duivPND3D+488BCSmO9LZlTyQHB48w+zpPLKOBD0CmI49WvJvvO/39TyW8IM9VlSFPYm2xLyrkFu8WW8iPHSBi72Y/+i8TcfWuwn4C73ZKu28HzMhvDJHYTtBExQ8iSFjPeVbYjwuC0s8DTG0PN5yu7zTWXU8IMiCvX32yTyAsoC9NFYHPAOPxLxVsH261wxivNq/Tr0Ulw29w/LFPCT44LsVKQE84zd7PBL8zzysKxk6NnGkPMvbbDzzqmK9SRpGPeElqLxnsuo887mIPD/ymruGdFI6avo4PERDcrxLr6c8amVXPFwW1zsSbUq9RVUGPBWRsTxjCza83nK7PBnNx7wFs6s83XuFPMT4ITxjFIA82sgYPPoQPD3glqI85FviOr4nqrycnOI6gvHCPP4rIL2vqo47BgGpuoOV0bza2T08vuYAPRBeqDvDJDS8wNwWvSfBKrztUBS85ZIuPAO0ljx0TKY87p2mvP0wFbyJtB09JEF4PGanCb3/j1W8Kk4WPeJFnDwhot48xg0RPN1rHjvUunG954NPvPtHuDtr2AM8QWdVvasdI7rhoQ28wyQ0PLoZvLkcDa87a47AvFCWDr3yN8s7OeGEPMi5Y7zIYuc89npzu3FbhTvPb4W8kjX5vJqh17wVnFs8nJdtvVGRmTquZcC8ELWkPUQBertSOp28DmiSPH2zj73DKSm9HfuAvel5ZbwB2PI7j+CiPNMW47wCuQu8dUexu2UY+Dx26z+8S7wQPV1AoLj7TK28ow02PG5/YT0buye9bs4ZvWAxwbxgMUG8UjodPGAkCLygFyA9lrogPfHqOL0Hk4k8Ad3nOz52tDusb6q82YyrPJiwNrweVUw8EVkzPI6gSb2kWki9SnfCvFOHr7xDC2S8vuaAO2J+07wMOme99mABvEANirxNv188EkcFu5n9yDxYc9s7x75YvXaZuLwpDj291z+Zu6xvqjs3/Rw9xWQNvbFW4TtawO08886gPPzjAj310W+8HvYLvaaaobz6o6m73crePEAVzjyApDA82tm9PAqRYzw/w0a8IycGPbT1eryHNOu8NbjOPEMLZLylSJo9zd0kPLQyBb26GTy9x2zRPAw6Z71SOp071paVvDf9HD1EPgQ8hxWEvXrXaz2Fi2c9M3AxPXRMJr3UuvG6NLCKvMw0oTw2piC7o/uHPGw3xDz9MBU9B+qFO7V/lzw2YVK8YyLiPGyJSzv3CQU8ppohPXXwtLyIEI+8eOFVvYylvjvnzRI8maZMPOXktTw7hRO76x30u1fPzDyJYha8gZ+7vG3b0jqhaac80XLUvBSZjLt3h4q7xMjCPOWNuT3Nhqg8cqgXPP7m0bvcfcy8bc6Zu6SszzuomPu8FKHQvD9kBjxCtGe954PPvEBsyrtKGAI9Q13ru28oZb2FOWA8NqYgPVBEB7pgMcG8EvAIPcs5lrz01mS8bdvSvBwNLz1tzhk7ZRh4vNG8FzzgpgK8WHPbu+YpBL0+u4K86NXWPGhGI70XO3U8b9ZdvL0FaLw63I88K0mhvOQ7Mj0V5p68LPpovUtllDw4rmS8ccf+u2w3xDzmMUi8ur3Ku9neMj2pQf+8svpvO3c9xzzKr3k81z+Zu+WAAD0Y5Pg8dUcxPfLlw7s8KaI9nJftu8kLa7zm0gc9rwELPOusBTpMYB882ytFvdjjp7xKzr482OOnvEnTszyrdB864G5tvIbdbr23da28z8aBPGAxwTxLG1G9sPwVPRkcjj29XOS4AwsTOz/Iu7vQJcK8/T3Ou1GRmTy+qfY8Q6/yO8ds0TwawJw8mU9QvNDORb3zgY67NAeHvFe9Hj1Kd0K8dkK8Oc7Yrzu11hO8KWDEvLlrQz21LRA8CTwNPbFb1j1AFU49o189vBQ9G7zC0qw8aEajvOl55bllxvC80HdJvdmMK7ylWsi7KWBEPY6gSbw9JK283HCTPazGpjzxjke983yZO9IOn7y5GTy+GOR4vQS0FjxNEWe9SsGFPK0TOTxElYC8sKUZvXiClbySNXk7XjurvI33Rb1h2kS9lWMkvNt1CD2lVdM7/Zk/vN3CGj0hS+K7JOr7vGJ+Uzs5+/a7GCGDPc/TurwdCDo8mFk6OsIpqTyPN588xHY7vexVibwI8sm81kQOveki6Tpxx348KfyOPFhz27p4OFK7rMYmvdiRoDzkkq68x75YPdowOj2Yq8G8PSStO4m0HTydeIa8nnMRPU8Mcj0DXRq97aKbPOU2PTxfjTK8XpInvSyo4Txe5K68JxOyvEtlFDx4OFI9WGaiPLKo6DuqeRQ96wOCvV7krrvRGAm95tIHvTJwsbwGUzA9ppohvMYVVTx44VW959rLOwIQCDyYq0G8Yc2LPLoHDr3EEoY8B/c+vS1McLyaPaI7yAvrvRoXmTzNLyw88diKPPZ687sU89e8DONqO7BTkjwBvgC6KGW5OvKBjj5wzHO7oMAjvYI7Br2+rms83hzmvBVKVD3oyJ0840AnPFu7+LqXWbq8kJZfPSr3mTywW9Y7yQtrvFOHLzzcK0W8IEMeujZcXT13Pce8SiW7u8cQ4LtvKGW7ay8APd0hW72IuZK8gfa3Ow1tBz0xHqq8Jm+jPHRMprzgTwY6eylzPRnkeLymomW8l1m6PHvSdjvng8+8TLebPK0Tubu+APM7vGHZvBu7J7yPjpu6q3SfPJYHszwKiZ+7AtN9vdW1fLxSPxI8dpm4u3WeLTwoWIA8HQi6vNS68bvMNCG8rq8DvcbDzTzoH5q80XJUvEbiEjtHhiE8etfrvD8aQz3+5tE7L3+QPP+PVTwjQfi8Ry8lPcLSLDsSVL48NQ9LPYQxnDuf5H871kQOPTUPyzw9JK07WMXiPGvYg7weVUy81z+ZvPh1frxOaGO8W6GGPNnesjwH6gU9fCT+vA5okjsqTpY88uDOPCTLFL2D3xS8ca0MvILxQjy5HjG8azy5PAFnhDzz29m8KfwOvBNUPju7uFW7g5XRPNrZPTxsfJK8KltPPVC1dbyF4mO9AC/vPBP4TLz8QkO8zoEzvQzj6jz8QsM5qn6JPKVaSDwMOuc8kZFqu4AAojsi7/C8TrrqPGzgx7z5+iU9x77YPPI8QDwBKvq6bYRWvThS8zzFDRG9Eqs6PBoXGT1o+RA8Zmp/vGGDSL30LWE9RJWAPVZ40Lz+KyA9tISMPCDsoTs1AhK8gppGvJKMdbv2CQW9DxGWu1DtirsuR/s65yxTvO/vrbxm/gW9c/oeOh6fDz3Y4yc84fgJPeCmAr3M4pk80MGMPLEE2jsldBi9u7jVvJS/lbxpmCq7l0yBPD3NMLxm/oU9EbCvOoKSAj0JPI08AthyPesd9Dxy/xO74Gl4O/LTFb2mUN67CuhfOotYrDtawO08PSStvaSfljyp7/e6ZVWCu5mZkztgMUE8l0yBPDJwsTxd6aM8Hk2IvAb8s7tcRZW8SmqJPTr79ryHbAA4h2wAPooGpTwkQXi8/YeRPeU2vbyJC5o94Wn4vCH0ZT3ZjCu9uw9SvAdBgjx/qSU9L553PILxQr1wI3C84U8GvM9vhTyDPtW88eVDvd1rnrv8jAa8B6DCvI/yULqm+WG8QGxKvFI6HT33Www9rRM5PC7wfrxLck09JMsUvR0IujwYjfy8bDw5vJa6ID369bA8lwezuzF1pr3tops75nuLuglEUb3Fuwm9Qb7RvEwWXDzb1Eg9Li2Ju+gnXj2sxiY7yV1yvDDRF7zhSpG8079mO5KRaj3rxne8/zPkPNYM+bzFGko89C1hPaK2OT0g+do8f1Ipu3nUHLxe5K68nel0O6rQED3TaOo8NlxdPOOXIzwJ4Bu9SNgovSbBqrxXytc7Ss6+u5LefL1hMUG91LrxvM7dJD0ZxZG5rMYmvf6P1bxDr/K6s0x3vKhGdL33dX47P7aNPDAjHz3oflq7UO2KPKzGJr0TT8k7wNwWPFZ40Dy2eqI7edScO/POoLzIC+s8/oIcPbsP0jySNfm8mAI+Pe9GqjrNix08btZdPRVF37uZpsw8GW4VvVDtijycQPE6tiibPF1FlbrhoY287p2mvILxwrssUWW9rmVAPBL9wTwY5Pi8eOZKPD/Iu7tLE427TA6YvZqh1zyyqOi8DRaLPDnhhDvQGIm7Ba+hvTZcXTwIm827J7w1vOTpqrykA0y9hxWEPFxFlTykTY88jVM3PHHM87yq0BC96nRwPNUM+Tk9JK29/9kYvc2LHb0nvLU89NZkPEoYAjzCgKW8aJ0fPfTW5Lq6vUo8mPWEvc7dpD2IZws8dKMiPQk8jTw8gB69JcafODNrvDzjQKc71LrxPDEeqrn+5tE7jvLQvAGB9jy3da262JEgvOYxSLxfNjY9gZKCufXRb7v78Ls8FPPXOUnTM7yZQhe92jUvvAjySTsRWTO80M7FOkl8N70TQhC9S2WUPRkhg7spCUi8aJ0fveH4CT0VSlS8sPyVPAw18jxLycm7p0tpvKSflr1KIEa9nZJ4vPCTvLpt29K8TGAfvQk8DT33BBC9SSW7PIXi47wIjpS7VccIvQG+AL3+3g2+SXy3PB6fDzxm/gU8lGgZvS1M8DvC0iy9d+ZKvfeyCLoMOme8ae8mPG0lFr3p0OE8dfA0vccQ4DoIm808OtwPPHHHfrwA3Wc9koz1uw8Mobz3zHo8TA6YPCyo4bwS/cE7nPNePNRj9bxbu/g8S2UUvOd2FjwYIYM8IEOePMZfmLywU5I9gpKCu69gSz3n30A7aJ2fvIXiYzy/OIg8nPNePT0kLbubnGK85YAAvLD8FT2Z/cg8WGYivQRYJb1Kzj69NwVhvB72i7yQlt886CdePE+bAz0hS+K8nZL4PAdBAr2jX727DDVyvSv/3Tts4Ee9OADsPCutVr3bdYi8YIi9vPI8wDwgol683SHbOwibzbuziQG9rRM5PGeiFD1NEec8Z/kQOzeu5DzYOiQ9l7A2PeeIxLzAUno9rmVAvTAolDvinJi9nJdtvZJygzwrVto72oe2Os/TOr26Xgq8EF6oPI3vgbs6OAG966wFvZKMdbwGpbe8+HV+vQw18rywstK5tnqiPKQDTLoMOme7nZL4u7H3oLy2KBs9HA2vvHZCPLxKIEY9DmiSu7QyBT2tBgA9LUxwvEFaHDoI9767NrPZvPvwO7yOoEm8KvcZPc2GKDuE51g8xg0RPLthWTq8YVm9OtwPvYtYrLyWuiC85yzTu/lRIj1YZiI9Z6KUvENdazz9hxG7dPUpPKaaob3ec+K8nel0vIeBfbsHTjs8oRIrvYKNDT2/jwS9Ovt2vcR2O70cZCu8UoykvJzu6bxawO082jC6vEAVTj2hEis9RQH6vNXyBr33W4y8dkK8POQ7srueO/w80byXvNsrxTwvKJS8l1k6PO6dpjsMh3k9UeiVvHvS9rzfwHS8C4xuO9owurzWlpU8NrNZvGyJS7oV5h68mU9Qu9B3STyiDTY9L573ulI/Erxr2AM868vsOxTz1zz9h5G7eNkRPSr3mbzjQCc8Fe5iPWB7BD0J7dS8MCOfvL1c5DtKwYW9LUxwPNvUyDyry5u8a4EHPDQHh7x09Sk9iWKWvCNBeD3/4dy8CuhfPCbBqjylVdO8zS8sPejIHb0awJw8CZZYvYbdbjxq6jG8XZccvHVHsTsMG4C9P8NGvCyo4bqGhvK7UoykvHbeBjwxHqo8HQg6PB6sSDzaI4E8K0khvJUMKD01YVK9woWaPa4ORD1Yc1u8ca0MvWGDyLtHLyW9zd2kvLwKXbt8YQi8H/7PvK1qNbxaafE8eTPdurtZlTxv1l08eDhSPRxftrkpYMQ6KGU5Pa+qDrsK6F88yuwDO8pYfTxsfBK9O/fDPPy8iTwBPva8TXKluzLiVzxQgYu7IdLHPLysLD3wRy68oYcwPGyOwbwS3gG8QExRvOMuvjyPu0U8UCMePF/TPr0P+Xi8stvlOnFbBLzJZy+9C74zPBO5V7v+pMM8wF8nPQclATw3rxq9vgwcvXCF4bwpK1k730SCurHbZb0YKK08QAisvBs3kzyHwKG80cBAO8irVL19Tci8XzEsOyZOAT27n8i7C20qPQDBDb0AwQ26flqsvEkQtLxbLSi9LwUAuwnJlb1sMNS7icIjvdYvlj11Xwi8Tn+JO/hC0jz6uoe9dUVAu2Txir3jcuO8R8qMO7NGNz3ZDO6854PLO0T/S7qqPq887IdPvNeNAzwUJKm8koYGveiQL7vzBQs9F+KFvHhhCr2yOVO9Vsu2vPgJDz1rI/C7HSyxPItmuDzmPSS7RKHePPa2gzyYw027grwdvSHfKzx4YYo8ixWvPGLKXrxVYGW9yWcvvRgO5byyOdO8ZsH+u4sVrzlkQpS7BU9evWsjcDzb1Sy8+lyaO/FHrrvRHi49oSnDPHHwMr22+TE8c64Pvdszmrx0ieU6rfwLu6b2Bb00CwY9pEUNO4Mai7syM+E8AD52vOsp4rwOzRm9rJ6evCrnszvkmQ87Et4BPQe6Lzzjw2w9Xrn2vN/ZMDx1UqS7gGkSvWfO4jz8vIm8Wn4xPdrVrDqi8gE6bPmSvbaB/DzkmQ+9p/gHPUlhPbxxn6k8LtHvPET/S72hh7A881YUPX3v2jxoir28fmcQPBi9W7wctPs8eUnEvAIUmTyQyKk8TQdUPaV+0DwleN47Yr36O8xR6zwG/tQ6u06/PFs6DD1uTJ690QRmu/A6Sr0y1fM8Agc1vKEc37zUfp080m+3vK7xKTvHFCQ9+roHvX78vryUiAg7dDjcu2/7FL0bNxO6EoCUvOPQ0DxeddE9pPSDPBMK4TzNa7O8MjNhvaZHjzvQBOY7c12GuwGP/7lbOow8USUgvUSh3rxNIZy8hrO9O+N/xzsYeTa9sn14PM28PD227M28nAt3vJQqmzt6Yww71iKyvF+CNbzuUhA8DnEuvDNNqbx84na8Y3lVu378vrsujUq9Et6BvCWSpjyW2xO924SjO3UBm7tVD9y8VhxAPaUg47y/OPs89raDvN4dVr0YKK08JuMvvInCIzwhI9E8AHCEu3WWSTz0gnM90RFKvVSx7jupglQ9LVQHPEdsH73O1oQ8EwphPGN51Txextq7FBdFPUOUerocH029ZqIDPVEyBD21s4q82rtkPJMQU711oy07zADiPAbxcLyGSOw8rpO8O+abkbzX3gy9HSwxvfCYtzzOJ468TXIlvaTnHz3ZMZg9AUtaPBfiBTyhKUO8t5vEvP5TurwblQA9YmxxPM7WhDyGVdA8/m2CPP5TOr3M1AK99e1EPEz6bzvLdpU8TcOuOlAwgjpiyl683r9oPIW+H71O0BI9iSCRvMCjzDwCnOM9KW/+PIINJzyLt0E7XesEPXlJxLydgyy7RFBVvYdvGL1edVG9N0TJu2joqjvvOko8c64PvUW7pj1w1uo86vAevQR0iLv8Xhy633tDvshNZ71mzuI6JYVCvabpoTuCAEO81oCfvFbYmrwPV+a8Bq1LvJswIb0y1XO9MfodvbkImDtJbiE90HqZu9Zzu7vE6/U8daOtPE0UOL3Vt+C8rfwLvZwYWz22MPO8ybg4POs2xjyhHN87/qTDO0QMML34QlK9cDRYvbq3jr2qMcu7u5JkPBdf7jwJRn489UuyuqkkZ71tqIk8C2DGu6JDCz1IbqE9ztYEuwu+szxSJSC8xPjZvLVVHT399cw8KvSXvE0hnDsmnwq9HYqeun5arLxU1hg7+ZPbvMhN57qsTZU87IdPPRN1Mjxf4CI8ggBDPTdRLb2q4EG8LkmlvHX0Nr1eF+S8nAt3PCQ/m7y6ZoW8C2BGvW/WajudkBA77PKgvI9Q9DtOf4m9SPbrPItznL2P/2q8Apzju638C74biJw8Xsbau1UC+Dxs30o8dedSvCHfKzvkSIa86OG4PFELWDy6ZoU+Bv7UOpSICL2TA2+925EHPZR7pLzonZM9194MPV3eoDuAGIm8qjFLvQdppjxrdPm7sehJPK6TvDzztIE9qfoJPFIloDzEBb49PAQovd97w7kbiJy8YUCSuzKEaj27QVu9N5VSvV4X5DuM0Qk9WiDEu48Zs7yCAMO6p/gHvOvL9DxEod67zKL0vJhyxDwPqG88oYcwuxR1sjyhKcM87f+EvL84+7xazzo6t1cfPZwLdzwuPEE8rasCvNFV77xopAU8Q8aIuxgoLbyK+2a86EyKvBy0e7w/kPa8/ZffuiTWS715Vig8ZJMdvZx2SDyAupu8GNejO3H9Fjsh3ys9WnFNvJjDzTxnLFA7EC2Jvf6+Cz3OeBc9+AmPO0QMMD1WbUm83mF7PJQdNz1WHMA8HGPyPE3DLjx8tpe84pcNOqJDC706D4q8pjqrvFYPXD11Xwg9PMCCPBQXxbv+sac8cONOPMkWJjqk9AO93eQSvEz67zlU1pg8oG3ouyGBvjzWZlc6xJpsvKXC9bxs+RK8CqRrvAPDDz10ONw80QTmPHxljjxWHEC9qdNdvcTrdTxibHE7jwzPPHtlDr0oQx89VQJ4O0V3AT0tgGY8gqLVPLbsTbxwQbw6W9yevPeroT0CZSK9ktePPBxj8jz7Xhw91iKyuzxilbw8EQw9ip15vJKGBr0PE0E9bI5BPCr0F73AUkO9PASoPJJhXD1ivfq86v2CPfn+rDycdsg8ztaEvIb3Yr3Lxx487wEHvTGplLyS14+8D/n4u/SP1zz99Uy9wzx/O5QdNzx0iWW76p8VPRwfTTwQICW9Z9tGOyC4fzzJxZy7hW2WvCrnM73+sSe87JSzvH5nELtsPTg8N6I2PVD+8zzfiKc8LpouPV08jj0guP88apkjvDeVUjvIFia87KEXvXDjzju8uRA8YmxxO7HoSb1CaJu8SW4hPdq75Dz+ArE7ovIBu+abEbtZOAo9sn34uyWFwjxeddE7O5nWvN2TiT2Lc5y8Z3D1vNpd9z0JeIy8196MvOFGhD1f0768xGMrPYsVr7y3m0Q9VikkvWSTHbyShgY9j2o8PKZHjzw790O9TanmOuhMijxk8Qo7RFBVvGiKPb1exlq6yJ5wvJ3UtToG/lS7HMHfvPTg4Lz4T7Y8Cw89Par6iTy7/TW8EM+bPElhPbyWLB0925EHO32e0Tt5jek89ViWPC0i+bstVAe9bVcAvU0HVDsYDmW9jiSVOil84rzZMRg9Q8aIPP2KezxeaG09BWekPGRCFLscwV+8u/01vCkrWTvxA4k9KM3rvEm/Kj2KTHC7u0HbutoZ0jxePhA9oL5xvKV+ULtxn6m7nLptvMnSgLv8DZM8LSJ5PM3JoDzQyyK8lB23vLFRGb2FHI28C7FPPCmJRjxQI569emOMvQfHk7wh0kc8p+ujvDs76byOJJW8geZ6uz+d2rz1qR+9cNbqvIK8HT0ynjI9F7B3vChDn7vjcuO8za/YPBgorTz8DRM92ne/PCR4Xrxr0uY69OBgOqXCdT0G8fA8apkjvc2v2Dwk7hG9lIiIu5AmFz1Wei28UWnFPCCBPjy8uZA8PBEMvIC6mzxiyl486JCvvIam2bxImP68GL1bvQVcQjvHchE98fakvHhhijzHcpG7PMCCPL5qib1vTB48+eTkODeVUjtm84y8KolGPURQVb1s+RK7QxcSO5cHc7wd6Au90toIvXgQAT31qR89UtSWPDeVUjvsoRe8Y3lVvejhuDpq9xC9G3BWvNB6Gb0BPva8gq+5PMyidLzjjKu8cJLFuofAIT2GVVC8eevWu4C6m70lyWc9W9yevOOMKz0PfhI8RP/LvBgorbzQEUq89T7OPPhPtjzxpRu8DCkFvTULhryi8gE9tbOKPOEUdrxWh5G859TUPDq+gDx3A5076JCvPPnxSLvsh0+74yHavOvL9Dou3tM8yPxduxQkqTyuKOu8M00pvRh5tj0+ZJe7ayPwu3iyE73AXyc9O917PPeroTtWD1y76zZGvPnxyLwcH029KW9+vTcApLsd2yc8b6oLPE1lQb3A9FU81S8WvEJomzqdP4e83m7fu0QMMLw7O+m85EgGvgV0CD02lVI8/fXMPPerIb1Sdik80cDAuwYLubwFQnq80cDAvHDjzrt5Vqi8jtOLPVp+sbyLxCU7s5fAPL67krz3qyG80RFKPf31zLyPu0U84i4+PB0ssTxW2Bq9Ae3sPJSIiLuGmfW8lHskPXcDnbti7wi8+eTkPJ2QkDzEVke8/fVMPargwbtNIRw9fUBkOyHfq7pjNbA8eGEKPGhGmDyhNic8G+YJPDxVsbzSzaQ8zNQCvJh/KL0y1fO84mX/vBuInLwU4AO9qo84PKo+LzxeaO08mwv3utJvtzzLJYy9TcOuOs0aKr2LZjg8TSEcvWg5tDw3US291sREvWMozLxoij08YZEbvWxKnLveRII859TUvJQdt7ymOis9cU4gPOPQUDzInvC71bdgPPTg4Dzndue7LaWQPakk57yYZWC7lIgIvfX6KL1jyt48WdqcOxuInLxi7wi9lMwtPbuS5Dy68NE7IpuGvNq75Lwumq68YxtovFaHkbycx1E7nLrtvDeitru7NHc8dUVAu/NWlLyyffg6QGYZO57jGzwhI1E8HBLpPOVKiDtFGZQ8hb6fPElhvTv4NW48KXxiuo8MT7xXNgg9mCE7vA/5+DzZGdK7WnFNPDvd+zxVse68XTwOvRd5Nrx971o8QBUQvKAP+7v96Og7mzAhPdEEZjuShoY8bIFdvCbwkzz6rSO9CvX0vJ3UNTwla/o8BxgduoJeML3+pEM9Tn+JvJjDTb0b5om87JSzO6RFjbyk55+8YmxxPCTuEb3mJV48kNUNPWjoqrxnzmK7UjKEua6TvDwJGp87hrO9PKx5dL2CXrA8Vg/cu3Xn0rxnLNC8oL5xPX2R7ToT/Xy8mCG7vHoFn7s3ldK8Bgs5PZDVDTybdsi6SbLGugatS7zJuDg8gvNePVFpRbudMqO8vKwsPbICkrv+YB49vufxvIfNhT0y1XM8HB/NPH5arD0yM+E8B3YKvE0hnDyzpKQ8pkcPveIU9rtafjE79foovIINJzw+woQ70bNcvJ9BiTuLc5w9xxSkPNUVTrrNvLw8pEWNvA0eIz19nlG9UVxhu5YsHb2Ue6Q89ILzvC6NSr1Wy7Y5aIo9vQ9xrrwSW+o7uLWMvH2R7buXOQG8GHm2PMT42TxZ54C8sejJPI6hfTwSW2o94UYEvVH+cz1qmSM9SAPQuxhs0rxAWTU6DwbdvEQZFL0MKYW8/EbWu0XIiruvTxe89I/XuwptKjytefQ8/A0TO6HlnTxnzmK8xxQkuxTGOz18ByG6JuOvPP2KezzIq9Q8E7nXPBgjyjzT7Ys83Gl/vaXAZzsWwj28UBK+vEznWjz9fkQ90CeUujMwmjztSzW8JNqcvOjiM7ycsH08OnatvLV/rzqact+8Rrz3vLgmGDxQOYs6d0ooveBWRLw8tEu8a3BnPEmtGz277A89I7sNvCkkD73gebK8qynpO25drDoFJmS9cdnouwz8jrxbGmo88RUMPWbRvLyg2+C8V56tvH+razxOjsM87U8UvQ+ACT3B8KW8qqVuPAou2bwSRoG8gVoSvf3EoDxzOnW9Ga+CvLfgO70+fqI9AYe5PNQMG7pT3JQ8I3FSvc7llryorSy9hPm8vFsa6ruUUxk90qevvL9B/zvEj9C8PjhGPWIPJLwayrI8MoFzvLe9zbxEftm7KOKRPcw+rrz0kci8vMVCvHTpG7xrtsM8EbpIvORimDzBNoI74yAbvJBHRTxSmpe8gVqSPKo1hrwR4ZU8nzT4O38UNjwWK4i8fzuDvXYEzLzQRiO8Sam8vBhppry7olQ8t+Sau1saar0FcJ+7jea4vPsduDwRukg6AGyJuuLaPj2GpIS9RDh9vNpWjbzzmYa7FuWrPAFB3Tzrxzq9Q0C7PIMgijzU5U08HmndPEsxlrxJqTy8Mc8NvaAlnLyK+fM8MCDnuVK9BT1aaAQ9T/eNPIZ9t7mtinU8o8glvOvqKL3r6qi85+KzvMI2Aj00U4g8+byrvG1drL25SYa6ooqHvU8WnTzit9C8NShcPAjNzDwcEI+9/DhoPIjeQz3qgV49y7L1vEzEbDyVR/w7BSZkujp2rbyYep08n53CufSRSD3jt1A8Qd+uvABsCbv/vGI8D3yqPItivrpLVIQ9cmmAvRunRLz5nRy95V45O9YjbLzjIJu76suZPOFx9LvDl467j40hPZmdC7ya3wi9PNc5PGl8hLzOwii9kyzMvBP4ZriHmOc80z7lPY+NoTyRz548OTDRvD5bNL14ZVg614w2PDWVBb2CUlS83q/bPPr6Sb0ju4280mFTvBwrPz2rKek7e3WLvaH+zjyBWpI98jA8vGVNwrtjVQA9dQyKvJq4u7yknfm7N/IyvEiOjLw9QAQ8hD8ZPA4T4Dz4MPO7kYXjvOU7y7wVhJ88RcS1vcmXRTw4FSG6ch/FvEElCzxaRZa8FGExPQ+AibsZPnq9BAu0PGWTnrzEbOK81AwbPTgZALy+Sb07IBiEPfTbA719sym8O9sYPY7e+jyjyKW8efEQPRWfTzz1HQE9KBB9vCkkjz3lgSc8u+yPvFYSdT3zKH67vOiwvK4aDbxNSGe8z5d8vGuT1Tyz+zS9LeqGPQePLrxeKp27LpzsvPsduLz0tLY8CTaXvNDd2LztTxQ966TMPRZZ8zuuGo07DbLTu26jiLtYlm+8a9mxPGZocjxM51q83JSrPLzFQj3K3aG8hfH+vILeDLyRqFE8j40hPOqBXrtbqoE7+J0cvCUcmjvK3SG8myEGPQpRRzxXwRs80CeUPXxKXzyo84i8cfzWPGRNwjxtPh28b8KXO0B25LwwQ1W9JzNrvC9ugTx3H/w7/99QPO2/fL2UuIQ9tTlTPeggUr0lHJq7XD3YuiogML6zb3y9xLYdu6spab3Owqg6lzggvN47FL19kLu8GqfEvDbXAr1GvPe8Xgcvvadn0LxMUCW84gEMPXiIxrzlgac7X//wPCEQRj3Spy+8TFClu9PKnb0zDaw9Sa0bvU6xMTsO8PE7THOTu6KKhzq4SYa9mFcvvcw+Lr24SQa95Bjdu2q+gTmpEhg9Sq0bPIP9GzxSc0q9QLxAPezuB7xSc0o9kGJ1PYzql7xKzCo7S1SEvAayHDylwGc9aVU3Pd47lLzQ3Vg8hTdbu7keWjsuLAS9e6P2PBbCvbxmaHI4WOQJPXjSgT1a3Es8j40hPGR0jzu5++u8VqKMvBQb1bwhMzS9KOIRvZS4BDzSYVO8G+0gOzGJMb0/U3Y79Evsusfw3Lu6Qcg8a90QvTeJaD0cKz+9IBgEvRZZczxLVAS+IPWVu/SRSDzAZG07ZHAwvUvnWroHh/C6d0qouach9Dwbp0S8qPOIPmuT1TyUuAS9tndxvOwNlzzHE8u8pQZEPSOUwDzxVwk7p0RivFn/Ob1x2eg7Y+T3O9PKHTvQRiO8WSYHvLHghLzE2Qs8dyuZPbea37xSlrg7I5RAu1sa6rujyCU9VlhRvVuDtLzuQ/c69foSPVE1LLx8Sl+71U6YvB9G77yfwDA9QMAfvRJGATyPkYA8+pF/PLt/5jvDLkQ8V54tPNtOT7zShMG8i4UsPOja9TtkcLA8PP4GPHrG5LyYWw6974lTvB+MyzwmGDu8vFx4O4gFkTxYlm+8NZGmvG9VbrwwZsO8CpsCPRvCdLxLVIS8WJZvvL7gcjzrpEy80+0LPWKmWbuTT7o8jk+DPPqR/7zB8KU8nlfmPCFWIj0plPc8Q6kFvfq07TzSYdM8WLndPC3HmDxKzKo89NekvBZ8YTxf//C86UNAvMifA7xL7xg9D/DxOqml7jlPzGG96YmcO/YVwzst6oa6Pn6ivJ2lgLyz+7S7naWAPOFxdLwead08zD6uO621obxAvEC8M+q9vC15frvY9YA8SUDyO70ujbwhEEY9N9cCvP1bVr1Q7888jMPKvMS2nTxoyf67hfH+PIP9GzxFoUc6W4cTPaC48jzA0Ra9vkm9PBBR/rzLsnU9ODgPvbQeIz3oag28+pF/PJHyjDqQYvW8ShIHPZXXE73Uwt87j40hPWRwsDwvS5O8ZZMevWNVADywDnA9+MCKvIkkoDxSewg9V3s/PNtxPbwWCBq9NUvKPK3Yj72OAem8/VtWvHH81jv2ODE8ltM0u87GB70Wwj08Hk4tPMc2uTytivU8MYkxvZ2CkrgC8AM8LKQqOxblK737HTi9d5CEvHYMCryoir68KiCwO/EVDD3T7Qs7DRsePd8YJj2qVJU9dMYtPao1hrz9xKA7Xp5kuntSHbzA0Za6o8ilPGl4pbqBnI+9h+YBPJN2Bzy+4HI8+tdbu3mrNDyDkPI4MawfPJMJ3jx/GJU8UpoXPElj4LxtPp09zTbwvNrtQrvGze49XKYiPS6cbLxqcGc9EgClvCogMD3CLsS7Kv1BPRwrv7w1bri8iSSgPKySszyavBq8HrMYve4oR7xGLQA8GEa4PHqjdryTU5m7BAu0vMI2gryD/Ru8YGi7vPNTKjwASZu8eqN2PCyFGz3A0RY7EtX4vL5JPT2ureO8rLkAPasG+7uYVy88+vrJPI3DSjyK+fO8vkk9vVSx6Lv7QKa5srVYvWbRPDwnM+u8hTfbPNkQsTxOjsM8WZZvPVkiqLuTT7q8esbkuyyBvLxpMkm8VhJ1PQQuIruc9tk8dOkbvW9V7jtQqfM86+4HPdTlTbyFN9s8FsI9vNJhU7zJdFc7C3Q1Pcuy9TuvORy8FsK9O2QHZrwnwwK9LgmWvNkQMT1SvQU7h8MTvcDNN704iWi8WmgEPWbRPLxPzOG8M8dPvLlolTtD+l68lLiEvV9FTbt/FLY8EuGVPVkiKLzAzbc77pERvZMJ3jvdjG09lhmRPF4HLzxXnq28VljROw0+jDyacl89VT0hO10LjrylwOc8Sa2bvAaPrryWjVg94ZTiu2bRvDwN1cE86ssZPUYtgLwqILC78cfxuwUmZLxUHhK9zaOZvIpmHb0uLAQ82yvhPGj0Kjy5+2u6InmQu8DRljpZ/7m9w3SgPGIPJL0kr/A7myGGOXmrND0+XxO9lrDGuo9HxbtLCsm82srUvJw8Nr0mOyk9Ci5ZPL0ujbtbYMY5aMn+vLL/k722op08Cej8uynaU71MxGy8IVYivVeeLT3F1Sy8j2qzvOqsiryjX1s9Zotgu8fwXLxUHpK96UNAPRXpijsZYWg9aZsTPcI2Ar2OJFe8HCu/vIpivjzvZuU8RwLUvB+zGLwCzRW8wPSEPCEQRrwvbgE8jgFpOmlVNz3SYdM8QJnSPIi7VTzPumq8wfAlvLt/Zrxa3Mu7sDHeO3ivkzxT3JQ8lo3YvLeaX71gIl891pCVPI0JJ72mbw69v4+ZPEdIMDwIFwg8tfN2vDkw0by7XHg8ohl/vbt/Zr0vKKU7qPMIu7G9FjyFN9u7u6LUPLlByDuskrO8RcS1vN2vW7xJ0Am8ukHIvNYA/r1Jhk49sA5wugz8jjuiPO28gi9mPHrG5Lx3Sqg76ssZvLcHibyAWhI72u1CvDfyMj2BdcK86P1jPMtCDT1d5MC8czr1vLTzdj1iD6S8Yuy1vMv4UTy+ST084HkyvVuqAT3QRqM8HAhRvP+8Yj0ieRC8TUjnvGR0jzyd0+s8uL1NvKEhPT0WfGG8J3lHPWtwZzzoao08VI56PHdKqDx4Qmo9oSE9OyyBvLtpeKW7HtaGPQnofLt4ZVi9DzZOvYZ9N70+OEa7q+vKvLWDjjyrdwM7+9dbPeVW+7yjgsk8+x04veSFhrwwQ1W9j5EAPIpiPrwWWfM8o8yEvQVwH70t6oY8Xk0LPT44Rr22d/E80mHTOwZsQL3aytQ7tqKdPKOlNz0jcdK70N1YPI4kVzzbTk88H9InPNYAfj01S8q8l+5kOvr6Sb3Oxoe9y7L1O/fPZjx++QU9qjWGvPrX2zzkGN08TUhnO0Hfrrz9FXq8xza5O6EhPTuTdge9DhNgO7EO8LzMYRw8qPOIuxSnjbwW5Su92laNvLzosDzWRtq7KrfluwqbArvQSgI9ckIzPRBR/jwNGx48p46duZCwj7uBnA+9OBUhPCd5xzu6qpI8QMCfu5HLvzs+WzQ8Vn+ePDesVr0EURC9snc6u0ElCzuMoFw69jixPFSO+jx1DIq8SI6MPJZqajwRusg80CeUvSkFAL1PzGE7kjQKPZxAlTzLQo29+FPhPHTGrbzQRiO91U6YuxgjyryPjaG8+d+ZvGAi3zwlP4i8WdxLPT3yaT35Agi9d5AEvEmpPL08HRY87A2XvH/xxzyjyCW96+ooO/h2z7w9z3u7ukFIvKnIXD0N1cG85uYSvTq8Cb0xrB+9OlO/vKexizyTLMy7W6oBOeIBjDkead278erfOn/xRz1SvQU8nPbZu4yg3Dz/Ja08ShIHPd71N7xmrk499R0BPM8IBT0SACU9ZZOePDisVrzqgd67esZkPOcokL2ytVi8YhODuwVwn7xAmVK8LKgJPJRyqLxMUCU8nwaNPVkiqLlC+t47lvaiPK7zv7yfBg09lLgEvVd7vzy7XHi9myGGO5aN2LzvidO8Q/pePHdKKL2v8z+8kYXjvKitrLyeV2a5Sak8PNtOz7cKUce7/VvWO8ddBrz2PBC9XcHSPJfu5LwlHBo9mtspPST9CrxDY6m7pymyuxvtIL2tTFe8mZ0LO1579rkJNpc82u1CvN71Nz1GoUe85BjdO8GHW709QIQ866TMOsOXjjs/U/Y8WSKouxrOET08tMs8P1N2POd56bwSSZ88DuOCPAnENr2cLD88U3KaO6bsNr0G1Li82awNPX4n5zt13Q49MsQVvQt15Dt+Zjc8ILaEPBsJlztvxkM8cECjPAs2lbyNyxs9u+LEuxgl2rwE4Pm7iOfePCUQXzvDON87CQMHPH2tCL3Z7528vpczOvJPCbw17yI7+eRyvZPmJj293oS8vCEVvOqDzzyVl9S8/YnfvE1Xj7y+1oM6nGdOPNfz3btsl/U8u2ymvIlhPjx8cvi8R3+UvF1x4bz3blQ7GxGYvTO8lLs7Ci69sG3ePbEmjjyu+4C8Rn8UPHUgn73ph5C8UzeLvYSFg7x1IB88BVrZO5vtbr0toYk8xSyeuw6kMj2Ny5u8e/gZPfsXgrxz4c477a5cukKbVz3XuE69P3QLvY+32LugUwy89H5WvHPhzrvvohs8cEAjPZgBsrtEUMa77a7cvMI8oLs9fIy8s5hrPXjFC70kmsA8KXq8vJGrl70xRvW8nhy9vMQ0n7ufWw29CnklvOD+5rxlQVu9ZAZMvLZJmrw2ZUE9WoWkOlO1qjxEVIc8h6xPvT18DLxWYpi8ecWLO3fRTDwRCk88rAsDvUTG5DpjEg49BlYZOliR5Tzk4qO7d80MvK82EL0bj7e7J8VNPa73vzw5Fm88GOYKPROELj07jA48twLJPLWMKrzJzUm9lFiFPL/SwjvViYE9tBaMPA7jgrzRmYO9E4DtPLVRm728IZU8NHmEvFoHhTzQqQU9HcaGvf99njxRALw9U7HpPHUgH716/Nm7+l7SvECr2TpHQES8Y5AtPGGcbrva5xw9CvuFu3ThzjyryPG88N2qPDgaMD1lfGo8DqQyPUKb17w7Bu28TVePvRmfObw256E7nGfOvI/2KDxy8VC8QxW3vN5NOT1EUEa81cQQvVdaF7tU7Pg8rQOCvNltPTx+Yna6NbDSPPPNqD2xJo48oQw7PbTXu7wHD8i8Cf/Fu2indzx4Syw8LR+pvJp7kTzg/ua8GGDpvJYRNLyVkxQ9ui1WvNltPb2ad1A8cTgiPXs7qjygzeq70CNkPV/nAL29WOO8UnqbO3Ms4LtR/Hq84IQIvG4Nlbzqf488nuGtO85yNr0FXhq9RYvVPEosgr1wPGI8QKeZvAbUuDuDB2O7SyQBvfZ6Fj1LZ5E7ZQKMvaKC2TzWfT+8/geAvFGCHDtW4Le7BV6aO5k8QT3Y9568zjPmu3jNDD2K19w8VeA3vAVa2Txm9kk8ieMePYyQDL14S6w9w+3NOvnkcrwllgA9FPpMPPY3BrzN9BY8ZMu8vNe4zryOAuo7vCGVvKwDgj3QqYW8o8EpvNnvHb3hPbe8Mv+kPHgInLub8a+8dd0OPWQGzD0EH0o8uHjnOx4BlrtWH4i8Y4xsO9IXIz1n9sk8b8bDu/6Fnzx4R2s9w/kPvdqoTL1wPOK8PrcbvO9nDD2nYtU73kn4uzGFxTto8ok6+xcCujZlQT2ldpg8mEiDO6DRqz0bUGc7Y5CtPFQrSbzpSEA8d9HMvFbgtzz+B4A7o0OKvYCdhrwFXpo7GxGYu4MH4zuWUAS9LGZ5PUvlMD3ZrI29yY55PMdXK7xAJTm+LtwYvUi6ozyNwxq9iOufO4DYlbzd15q8U/C5vNQPorx9Kyg7EdOAuDL/JL1IPAS9GGDpu0nx8TxiFs680CeluxHPPz3KDJo8IyDhvMx+9zzyU0m9a9ZFPScEnryOPfm6x1crPLbD+Dz6nSI9+eRyvciSuryj/Di9ZAoNvTkWbzp4DFw8xmctPLh8KDz46LO8NLQTvX/gFj0wkYe8yghZPQ5hIj31vSa9h7AQPF8mUDtmfGq7XfcCPabodT3CARG9XW2hPAYTiTxPDP07/gcAvcdXKzue3ew7ldJjPOE9Nz0k1U89OwquudGdQzzpSEA8CIknvRzKRrzoCfC8FPrMvHEwIb1DFTc9/oWfum/GwztocCm9WJWmO0xbT7smT687yJK6PHThzrpQwes81QPgvMtDaL09+qs8OVH+vVJ6GzxDFbc8TtUuPECr2bzeDum8fLFIvKxGEj355HI8wjwgvQgLiD6/0kI9XTZSvFO1qrwYJdq7A+S6vDM2cz2ooaU8mnfQuxJF3rx6AJu8h7CQPM5ytjxesDE84T03vML9TzxA6im9+9RwPIPIkz3u6eu8w3NuvFpG1LuvMk88u2wmPS0fKb0TgO28mnuRO0vlMD1GhxW9XPtCO5WX1Lzt7ay8d5J8PciSOrz6YpO7STDCPFZiGDvNuYe8bRFVPEg8hLyOAmq8eAgcvG8B0zs429+5TF+QPAEvTDzgAii7OVU/vROErjsYZKo8UjtLvMHCQLwA9Lw7+ScEvcBMoruBkUS9xO3NvGEaDz2UmxW8gNiVvHt2ObpGRIU8ZnxquxsJlzzMvcc7MUq2PBV0LDvnVAK9fezXPPQE9zzvohs96sIfPVgXh7yC0BQ972cMPVnQtTxrmzY8BpVoPJFwiLxnMVm7GhXYvLn2B73heMa7QSU5PK73Pzv4qeO77e2svF020rufWw08oM3qO4ld/bzaqEy8Il+xuJPmJj3UD6K8vxETPXy1CT05Uf68+SPDvAB6XTzfiMi801IyPJp7kTvr+W07g0YzPWvWRb1r1kW9OBowPTgasLuI6x+8zbkHvUh3kzzhdIY605ECPT2/nDzhfAc9MUb1vEKfGD1qJRi9dhgePXs3abyOPXk7M/tjPHMs4DynJ8a8l4sTvdY+7zy/DdK8DO9DPJPmpjx1IJ87O8cdu0umYL30Q8c6+KljPa2BobvZLu08gNgVPegNMb0QFhG7ldYkPNhp/DyOQTq9/geAvd3TWbxwugK8e/gZPCl6vLxVJwm9/oWfPBAWkTyCQnI8qhOEPGolGL2FvFG8k+YmPGmruLzqfw+9vVwkvZOjFryp2HM85aNTvOv9LjpHfxQ9GGSqPNGdwzxe60A8YGFfPdycCz12kny8JJb/u/SCl7xuizS9IuERvLruhjxpqzg8WQvFvVGCnDw7gEy8R/UyvCLhkTt7vQo8BhOJvEvlMDxo8gk9SLqju1ah5zvIGFu8RUyGPe+iG73oDbG8zrEGPtCphTkv0Na8VOx4PVGCnLwgbzM9naLdvM2xBj1zZ2+9xSwevNGhhDpesDE9bVClPHr8WbxFyqW8kmgHvWUCDDyYSAO9ZYCru/7Irzpc+8I7yY55u6ihJby+GZQ87qqcvMG+/zwZIZo8WBeHOrziRL3VA+A8slkcvQ1lYjxysgG9Zru6PJWTFD2OPfk7WAtFvJ7d7Lyb8a+7Y5Ctul7vgb0z++M7MzbzvLg92LpJNAM9TtUuPK77AD3LQ+i8b8bDvHKygTrVB6G7OpDOO6JHSj131Q28L5VHPJEt97yxJo67KrVLPTL/JD04GjC4sSaOPM4zZrwpdnu8882ovOTe4jpiFk48T4qdO3aSfDzUjcG8jcsbvYldfbuGdQE9GGSqOuXiI71xugI7hPdgvIqczTzxGLq8x1crvZdMw7ymrWY86AlwPDM2c73ATKI8NSZxug5hIj3ZLu28VOz4Oi6ZiLzJ0Yo8QSH4PKuNYjwAuS091cSQvIILpLt/oUY9puw2PIILpLsDZhu9fLUJPa2BobtwQKO7ipxNPbQSSzq9XKQ8P2wKvAJqWz09fAy8eYL6uJjGojstH6m85d7ivMw3J7gB9Dy9RgH0OwOl6jw7Bm28RcZkvKdmljwi4RE8H/GTveCEiDznVIK8HUSmO+t/j7sdf7U8cyxgvRfqyjy/ERO8hjaxPFdW1rxYUha9eQicPCGuA7qV1iQ8BVrZPN5NOb3bHmu9RYvVPKncNDwJ/0W9qKGlvKhelbwlTy895Cl0u8I8IL2sCwO77qocPVhSljw8gMw7BZkpvbTTej08hA28J8kOPancNLycrh+9A6mrO2NNnbsUv707aiUYPYkibjzo0iG7QOqpvPpeUjz0flY6GtaIO35i9jme4a08tQ6LPPjoM7xBIXg8U7FpvGVBW7zpRP+8N2GBvLZJmjwB8Ps7wYNwvMYknbxIPIS9GOYKPbJdXDwFmSm9oM1qvWyXdTym7Da8ZvZJPAG17Dxky7y8IPETPIILpL3a41u9DO/DvIeszzux5728cvWRvPb4tTr//306yFPqPLj+iLxz7RC7MYXFvD63G7z6HwO+QOqpPPuZYbuRLfe70GI0vVz/gzy2SZq86UhAvYgmr7xdceG7ywSZPCA0pLuhDLs83deavHhLLLwTgO08+K0kvWCgL70llgA9WJUmuxtUqLxYUpY8mMLhPAbUuLyXTMM87O0sPaxGkryj/Dg9HQVWvA6g8byPgAo9fxsmO3B7srysA4I94AIovLtsJj3+hR875OIjvExbT7xJNIM826SMPfR+1rvI2Qu7ONtfvJjCYT3AzgI9hrgRvYuYDb2IqA+9NXEDvDlR/rv0ghc99zPFO5XS4zwIhWa9wjygPExbT73t7ay8ZYCrvUxbz7vE8Y68+l5SPaQ3SL10KCC9QlwIvHkAGz07RT28VlZWPGtc5ruooSW9c+FOvLk5GD1GBTU9VmIYvcgY2zzDc+48ThA+PaDRK7zyT4k9kPYovWf2SbrBRKG9qJ1kvVz7Qj0jXzE7hriRPFqFJL3pyqA8NLSTO6nctLwJA4e8Hnt0vCYMH7x5hju8Os8evdrj2zrE8Y68Fq+7PH3wGLzTE+K7UzcLvKhelby4/gg9OJyQu85udTsHD0g90Z1DPR/10zxJMMI8hbxRPPczRTsoP606NSZxvXUgH7w9fAw6vtaDPFkLxbwU9oy7Pb+cPMTxjjxEUEa8wEhhvJswgLxt0oW82qjMOoxN+zwYZCo8KvSbuyfFzTzC/c88iCavPBFRoL0llgC9vOLEvNGhhDy7pzU9kbMYvWmruDxZC0W9mMaivC3kGTvWPu+8yJI6vNLYUrzd01k9G1DnvCNbcD0dfzU9jFG8vAJuHLwbUOe8okfKPESPlrxT8Dm8DSrTvJgBsry0Foy8dd0OOuF8B71dNlI9+ScEvBtQZ72lcte8lB11OwF2nbtaRtQ8aau4OzP7YzzBvn877ulrPP2JXzvqwh89ecULu6Q3SDxHe1M8FLt8O9msjTyad9A8R0BEPY2Ii7w1sFI8FXQsPZvxLz3ZrI28kDG4Ox1/NT2/ERO9298buwG17LuEgUK8PfqrvDGFxbuatiC8SPUyO78NUj0NKlO7WoUkPNku7Txz7RC9/Q8BPXfRzLxvAdM8U/A5vSGqwjvObnU7Zbu6uwF2nbx1IB+9o8EpvKV2mLz0fla77qqcvPDdqjzHnvu5YlUePKkXxLxXWpc8JgyfukosAj17+Bm9TCBAPDbnIT0czge9aiUYPEd7U7wbjze9ZzUavFdW1joAet28bRFVu3oAmzwUvz09BdB3u+fOYDxQhly8jcfaPHPtkDy1URu859KhPYZxQLxMIEA91n0/OhzOB73wntq8ky1UPOGz0zxBG4W9xpIKvWjBGLtM0De9NI/mPHN9Hz2ARDK8A84XOzyMGbxPgEe8Ei+iPO1H4ju+bd884bPTPCRAvLw2WKq7cPJrPDu4STxWv0K9Ve6OvIWk0TzBEuO7zb+lPOmwBjydEdO8mmFDvWqSzLw1WKo8HfY0vP14BL3BB1c8ptsBPEaGsLzFlsI8csIDPGU9Ob2mFva8zODJPN0vdDy3CQi85whnPB0Bwbxzons7s5cIvSKQLLyXhYO8lsfLPLj3p73EzX687iKGvKjULT1ps3C7Wk4uu2feBDwCAZy9M6iavLHVGL2sYP04hZUNvJa4Bz0/RzW9WZB2vKfbgbw/XU099WyNvHHn3zzrot68qqXhvBbCxTsWwkU99Ybdu+Gox7zEwnK8NynevBMZCj2TTvi8Tq+TPKGgPjzJLIK7xc1+uTHQkrse4By7HRfZvMA2Iz24DcC8BpAHPY3YwLsyyT69/nVovSGbuLx8poK8i+qgvC060zobMI28BapXvQS14zskKqQ84KSPPJXo77xe6KU87kfiPOGSL71bOJY7hpUNvW4ojLwcOP07rx41PE26H72STng8TqHrO8wBbjvmHv87JgZkvJbOH7zKMLq8YYKdvEZ7JDzOqY276cYePcEH1zxjXl0959y2vDD1bj3C7Qa9DdM6vcEd7zzANiM8ORNGPX5aSjyV6wu91eVsvYoosTzU/iC9phb2PIIVZrxAPCk9ywz6PN0vdL11Zwc9oKC+POYT8zyXpqe87THKPBz9iLwuNhs8aKsAvFl63jzW5ey6aoOIPB7rqLvWxMg8BMBvuiCiDD20epw8sPKEOwaJszyhiia9jN+UvF0QHr2tTQE7PYyZvKCVMrz8pDQ9UV8ju3g887xSJcs8QvOMvP9fULzw74G74z4HPbKtIL3FrFq8CERPvHkFtzzo58I9Bp/LPMkPFj0uL0e8EkGCvEacSLwHcP+8gQpavSRh4Lvx1s089HtRvde5PL1jSEW89Jz1PP9QjLzWrjC98sC1O5Xo7zwHaI88Lg6jvG1Y9Dwo2rO8TNeLvNbLnDu8pzc8w/xKuzuisbtvITg8twkIvJ7wLrx4Jtu6rTAVuyjaszw3Gpq9ElT+u5bS1zl3G087HQFBvMdfBr3FrFo9rjRNPOJ8l72cAo88seRcvPORaTw8dgE9bhasvHymgjrLDHo9UIBHvdijJDwid/g8mYLnPIIVZrx7tcY86bAGPTzD1TyicXK8Kn83PQ29Iryxw7i8JDwEPQz/6rZGhjC7ARvsPEz857yBIHK9o2ZmOwEm+LxFo5w8AfaPPOfjCruXpie9ARtsvEacyDw4D446+BwdvQA/LD0hhaA9gSByusdqErqpsO27KLkPvT9z5bvsayI9SiCoPBlyVTt4Fxc9phb2PAIBnLyuKUG9p+rFuyJ3+LvpsAY9yGd2uzu0kbqtYP07yFxqvPj0pLyXpqc86oiOucPbpjvn3LY9O7hJPG4WrDsN3sY8vm3fPOYT87tMB/Q7Dd5GvNiNjL1wzQ+88dIVPJebmzxbLYo75u6WvHAAlD360OQ8rjAVvRlcPTxx0ce8IZs4viJ3eL2EvYU8pGZmvTOl/juV6wu8onFyukhi8Lwxsya8hplFPGxxKL0ZZ0m9a2acvGfpkLxps3A9Wk6uvNijJDtibAU9RbLgPGUyLb3e7au7c6L7vDVYqj1o17C8Ey8ivOxglrm/Kxc8O78dPUd7JL1n1zC9TOKXvRMdQr07zmE21q6wPBpnyTp7vJo8aNewvBXxkb1D4aw8rT9ZOTY3hj2PiNA8kykcvWQ5gTzHapI8SFfkvBtRMT0GkAc9HDj9vP6A9Lyxw7i7mmiXvAApFL0e4Jw85hNzvOjyTjyEvQW8kkNsPTOoGjtD1qA8p9+5POCkD705/S28Ka4DvVI7Y7y/YtO8iR0lPI9yuLy1aLw8FeYFvRBXGryuNM28MbMmvC0ggzyqmtW6kxMEPV/EZb2kOra8l9LXO/8oFL59hvo7R2UMPUhBzDv0dxk8ywQKvdFkKTz3HB082KOku+8bMrygp5I+ar58PHVrP7zTNd06e6q6PG4zmLz1YYE99kQVPS5FX7yxv4C86pOavFQEpzw+UsE8PYn9PNXweLs+WZU8KOW/u21NaDx7sY49UywfvaqWnToB64O8Pk6JvC4DFz1JQUy9kWcsvGq+fDwGibM8yiWuvCQfmDzpxp68WW9SvKql4TyWw5O8McUGvdbESD2FpNE8bjdQOsWs2jzlLKe8bwugOxpcvbwFy3s7Q+y4O/WG3TwYk/k7+ttwOoEYgr2GmUU8+Aq9vIv5ZLyEvYW6PXaBuzyisbzLDPq8e7XGvLKilLwuRV+84nwXvA29Irw3HlI8kjhgPAWfS72C+5U8QRhpO9MbjTsiehQ94bNTvRB0Bj2M7tg89HtRPBlnyTy/Xhu90x/FPOm49jztMco81sAQPTKzJj0hpsS8WWuau6bxGbxV6/K7PzypvJMekLyrj8k7/1AMu3ZKG7y0n3i6F6ytO3ZgszpBDV28aMwkO5/M7rz1YQE9rhMpvNJL9TskNbA83CRovLgCNLxPi9O7/K9AvN34tzzqkxq8LTabvJphQz0C5C+7Wi2KvTOoGj3pu5K5F6ytvBslAb33EZE8M6iaPMA2ozybVrc8SwoQPXKaC7zkWNc7CRifvL9BLz2pu/m8CSOrPPWG3Tte6CU9onSOO4PeKb2d+zo8zqkNvEhicDzpreo8O6mFu4kvhbz8pDS91BQ5PDutPT0OpG66gDmmPAEQ4DwN07q5abNwvBB/kryC3qk7qo/JvPu6TLyifH66bjfQu/9f0DxWuwq9xNAavOxrIj16y948ZTItPFpVAj2dJ+u8rG6lO4Z4obvgyeu6whJjvFMWB73wAv682zKQvNQUubsikCy8zp6BPZ33AjyzlOw86bAGPeGSrz0sUwc97GuivF0JyjtIQUy8UHEDvda5vLwIOcO8B3B/vGYDYb3FnRa8XTV6Ozn9rTtRXyM84KQPPMWsWrpWyk49XTX6PBljET1CAtE7yTcOvVQavz1Pi9O8yEZSvFX2/j1JNsA8XvOxvG4ojD0ZctW8p985PchG0ropxBs9tXPIvM+BFb0ynQ68onz+PES9bDz2Wq28+BVJvdbEyLzhnTs8/MXYvMS6AjuFjjm83eKfvGb0HDxftSG8xos2vPLAtbxHcJi7n8+KPAzPArzuJj680zVdPTcamrwRYiY9ut7zvBiLCT1n7Ug9p9uBPOJ5e7xV7o69QgLRu6NMljrLAe68YLnZvFe0trzo8k47JhQMPUWcSDsSM1o9onQOPIzNtLtn9By74ZKvvEENXbvlFo894ZKvvAaUPz3zlAU6MepiPNXweDxd/j09l7Gzu+uBOry+Uw85Yo0pvORNy7yuEyk8LFt3u5bSV7xaQyK8PlLBvMTC8rzFoc68f1aSPHK7rzwsU4e9h4OtOumwhryuSuU8dkf/vKYAXr28p7e8rTuhupP2F7y7rou9u66LOmC52TwFqlc9Ej7mPH5ayjwQeD69dGcHvA6nijxbLQq7SiCoPCKQrLwTHcK80kv1PAApFD3fvl88ooqmu8d1Hj2vE6m8PK29PCnBfz0uNhs8Pk6JPKqaVbyagmc5DOUaPLK/ADwo2jO8rWD9vEhX5LzhqMe82IKAvYWVjTt+Wko8K5XPO2KNKbxjaem7+ByduQZ+J71aYA49ao4UvSx0qzwxAPu7BomzPAIFVL2n1K28tWi8OgdzGzzJJS693e2rvJI4YDwxsya8LTrTOwzpUrssaZ+8BokzveQ3MzwRQQK8I2FgvVBxA73hqEe9O7hJPXg8c7wkVlS8Pk6JPFieHj0+c+W8SVfkusklLr2sWI09FfGRO/crYT22XTA8kWesvN34t7tSJUs8CERPPILpNT3/Sbi8x1+GvCt/N7zaXsA8onz+u0PhrLyZbE+9ORPGPDK+sjvicYs8KrZzuzKzprxYnh463u0rvAS14zu70+c7SUxYvKfUrTzTH0W8375fvV4JSj0ys6a7y/bhvFCWX72dDRs9euH2u17zsbz4IFU84nyXu7HZULxFkby9kH1EvYkvhbyC/826Y0jFvMlCmrv/dWg8OQi6vGtxqDwWwsW8hqTRu1Iw17wGcxu9EH8Svu1S7jytTQE8BpCHPBMZCr1IMgg7GWMRvYsEcb2jZma6pEGKPGjXsDy4I1i9n88KPXHNj7x7tUa8sOTcPBXjaTpqfLS83f+LPVotCrxrfLS7ePqquWCqFT0mCQC7+7pMPKNQzjsynQ48IJs4PXR2y7sBHgg8neWiPBwIlTwLCne80kt1Pe481jo9gQ09F7e5ungXl7wXs4E83QqYPGDPcT3cJOg7jqwQvHVrvzzJMDo9NxoaPQXL+7zrjEa93CRovafqRbwo2rO8HDj9PGfpED3puPY8cpqLvH9LhjxM0De9v0gDPF/a/bwjUpw8UV8jvVBqLz2kZma9DM8CvZ/aFr2KBw097hCmvPn0JDwcLXE7yGf2vF0f4rk1bkI89XvRPATDi7rZXkA95v1aPXG7Lz3icQu7XuglPRl9Yb0qq+c8fmGevW1YdL3jTUs8cAAUPS4gAzyw/RC9iw99PFe0tjx2Shs8hY65vH5lVr3/Sbi8iC+Ful4JSr02NwY8DNO6u4EKWrgxAHu7HCLlu+4xSrzXtQS90HYJPJ0R07sSPua6rhMpPd34tzyL/IA8ZT05PdT+oLzjY2O5Im+IvJ/B4rxjXl28EWImvKx5MT0proM8yTA6vdFkKbvYgoA6SFdkvV/afbxcFFa8mJsbvGjMpLt4DAs7dWAzPYv8ALqJVGE85uOKPEhIoDyHYom9fmVWvOui3rzadNg8WW9SPM6xfb3KGiI99HBFvbV+VL0zqJq8pRmSO0BHtbufweK8Nz/2PLc5cDun3zk9ExI2PRCO1jutTQE6n88KvZQBpDz1Zbm8qosRPRfNUb1qg4g8vYaTO+jcNjw+c+W8Ka6DPT5SwbvOsf281s9UvFFqLzqDyBG8CGVzPCJviLtOhxs8MPiKO4L/TTuFpNE8BMOLPfOqHbzW5ew6X8cBPEICUbt1chM9guk1PR72ND0ZclU77iKGPIvqID3YinA98rUpvCb7V7y9kR88ee8eve081rv2RBU8eAyLu+4iBrxpjhS8GIjtO17zMbyx5Fw9EWKmO7uyQzxjXt08UjvjvJ/PCj2zlOy8nfcCPXgbT71o7cg7cAAUvbH69LuyrSC7/0m4vFiTkrxN5s+61P4gvTOa8rwBHog7ZvQcPGud2DuKKLE8Li/HPHKai7yhlTI9O7hJvXyUIj2Havk8ORPGvI3CqLyMBHG8fnBivEEjdbvKJS47HC1xvHHYmzt0dks49WU5PchGUjun6sU8GZN5PA+ZYjzNtJm7WZB2PMkwOj2FoJk7eQU3PfDs5TwLAge79zbtvOxhTTy74yI9isJavVNdEr0Cc/k7aTbhvE8BQDy1kUQ9Lq2ju7EweDw3vbC8rqomvIvww7yb85e7tYzKPAkwGDyZlIC80ieyvInH1LtQZ4Y6gxMavfG9n7zhjhc9k3WFPEOL7Dzd+mc83vycvMwNMb1f8/C6/FN+usSUmDyKMpW8h8zOPO6Ptrx0edG8Xv8ZOwnMhjwgdKc7Y4egvJwaUjzkTEa63AuLvCB0p7sOrHW8EwhIPHaiwLwLu+O8TAa6vLRlkDzuH3y9bCxtvD6f1LwVO6s98FLfu9jWcjxzRu47k9JnvW8d/7zkFGm9kwrFvKMv2Ts1V+o8dOQRvbvjIrt99J683QGXPUzT1ryAsk085XqvvCuENL3+8aE8zteIPSoZ9DpFgfi8qMgCvR4airp2pzo8IwscvO6PNj1LEC48UMTovNLImjxztqi78uuIOJQ4LrztlDA9POGlvOhJgTxWFke8DrFvveRMRr3gWzS9/o0QPJMKxbwv4IY8vtmuvESGcr0IOgy62dF4PIXWwrrjhKM8FDuruugF+zxCAKG9HeygO/6NEL3wWQ68NFzkPLDdCT3Xg4S83mCuPEKcDz0PTxO8gq1TvN8o0bvySOu8ZrCPvOetEjySRxw9OnvfOqP3+zyfgBg9XP3kPD+mg7wc7CA93frnvPlibLzXg4Q8qMOIu/SpNz3iJQw9kdfhvK+lrL3ySOs8JGU5vWvUhDyTQqK8B56dPIeU8TxHu4q9o/f7PMsSKz3pcDs9V0kqvLJj2zw1V2o73De/OrFoVbxBnI882zw5uc9pgzz/8SE8lchzu6JxqrxF8bK7sGhVPd4oUbxsMxw92wuLvbbEJ7zOOxq9VhZHu7GgMrxM01a7E9DqPFsCXzzhKga9UcYdPSu3l7yokCU84et5vIj/MTu3h1C8aT0QvUjiRLz99hs9JmC/PQ+s9TwdS7g63GoivSaTorxJFSi81R0+u3BcC7084aW83AaRPNUdPr0C47O86DhevJFHnDyEo987rERgvYB6cDzMDTE9vaZLPcZ++7wmYD882wTcu2USbLygdqS7FjG3vELIwzweSzi7bGTKPLp/EbwNXgG8TjkdvVP0Bjxbchk9b1VcvVQguzzEiG+8kwrFO1gMUzvbBNy87CnwPB1QsjyrfD296DjePJokRrxztqg7hpnrPHpnHr0+n1S8dEF0PdaDBL2fFw09U7X6O+gF+zxyUpc7v2R6PB0YVT2MvxU99HZUO3CDRT3HvQe8qhb3ugXURT0qwYu7Q/YsOpkpQDwW/lO9nRXYvCoZdDzAykC9mfFiPHfanTxpNmG8+QWKvKlTzryCgR89SqVtvGcIeLwGDCM9QAqVPUvYULz/gWc8aEKKvJmUAL1G7Di85ULSPDwZgzzLrpm8560SPf6G4Tuzagq9htFIveWyDDvmCvW7fJUHPWucp7u2/AS7RrTbPLJeYbwHo5e8q3w9PShWy7sW0p+8zgO9PUkVKDyylr47DuRSPCaTojwu5QC9uhuAvI/h1bwpUVG99eGUvBbGdjxoQgo8WgdZvKFxKr3TIrg9ldScPC5EGL18Vnu8AqtWvEXxMr65RX+9DSGqO/ifQ73HuA081xNKvMCSY7s6rsK8LzjvvBgnwzuG0ci8NopNvXanOryL9T28RSQWPXidRrv8+5W7oHYkPCdbRT0oVku9Dr2Yuzm4tryLvWA9u3PovMccnzstQuM8D0+TOyqJrjt1PHq9vmR6vTrmH71ZE4K9JJ2Wu/FIazyY/Ys8bSfzPEkVKLwyLvu8VuoSPd78nDwc4Hc9Z0DVPG+NubyEo9+71ewPvC7lgDulKt88RYF4Pbp44rzmsgy8Oq7CvG7FlrsYZJq8pJoZPYEdjrxflo48n3sePWFZNz03hVM83De/PBxQMjyEqg69OYwCu+W3Br2R3Fs7tckhvJuKjDzJFyU8ljM0Pe2UML3nPVi7LE4MvMsNMbyuS488Ve8MvUmqZz29EQy9+dImvWVKyTs2UvC9EBc2vAgCr7v6lU87+ZpJPDiMAr3RyJq7oy/Zu3jQqbs7ceu6A7KFPqpO1LtlfSw7+G6VvC+jr7vNAz068Io8PfrNrDyokKW7NYrNu5VrEbxLoPM7GGSaulLt1zy+2a68HVCyOHCDRb2UOK47K7eXPbFvhLzM1dO6Wzo8vK4/5ruWw/k8tveKvaQv2byiCB+8Y0/DPErdyryaXCM8YO72vFfqkryJj3c91hjEvCx/urw1+oc8qIsrPIKBn7xDw0k8USovvJHjirwKK568SRWoPMDPOrsOvRg8hQmmPNXlYLuR4wq9eGVpPOSEo7uAenC7De5GupkpQLz0qbe8DCakvEGVYLy3Wxy9hQmmPN4o0bxY5Rg8xrbYvDZemTx4Zem7jL8VPfqVzzvlR0w8yKfqPGdzOL2bH8w8uX3cPBtVrDw56xk90mQJvGxfUD0ssp08h5TxPJzi9DtDw0k9Tc5cvWDpfLwybYc8spa+vBxQMrwdE1u8unhiPDXHpLvzsyu9RrTbPJXDeTyGBCw9vtkuvBgnwztxu6K8Z0DVupguOrosU4Y84lY6O9z/YbyJx1S8iTIVOy3lgLhXSao8WdR1PKgbcTxbOjw8aqGhu32Qjb1fXjG7k96QvNsE3Ls6e9+8Ws97PKcslDsQ64E6stMVPTt9FD3Gtti8+8iyPKu5FLztXFM9eAgHvcLFRj2uS4886UQHPb7ZLrtZdxO9DiGqPMKN6bzlD+86f7fHPCRqM7ya5268b8AcvMW2WDw5gFk9jq5yuxgnwzw0V2o8eZjMO17/mbxLQxG9hplrvB9GPr0OvRi9u6tFvLe/rbwYZJo8CjAYvRcsPb1nRwQ8jSMnPcSI7zxPyeI8YC0DvTZZHzwTCEg8LFMGvNSy/bwrhDS8uuicvGg727uI/zG8isJavHU8ej2lKt88vweYPO0kdj1G7Lg9KlgAPRcsPbvY1vI8IKyEu4MTmrx5bJg8+J9DvTA/Hjyj93u9u6tFPEfnPrsVy/A73GoiPY4erbz3cw+8+pVPPFP5ADxhjJq8j1EQPB95obx1b109HOVxvP7xoTzNmPw9DhywO90yxbziJYw9n4AYvL5p9DzDlBi8SbEWPXR5Ub2Kwlq9fFZ7PCyyHT0rFPq6bGRKu1s6PLxRLym7OYDZPPR21LyphrE587OrvDe9sLxgXjG85BTpu+9eiDyhPke9GlomvCfGBT1hIdq8v5zXvFoTAj3F7rW8c+kLPa53Q70dULI8eNUjPfSptzzJp2q8e5NSvatJWry83qi7AnP5vHfVI7wWxna8TEORutoJVj3U6lo8s2qKPWqhoTsz0Zi8NMwevIzED7zoOF68yd9HPaUq37wvPx49JyNovTJthzwhdCc9NVdqPVcRTTzf8HO8NfoHO2hCCryDcPy8pywUPdpBMz0cHU+6IAnnu686bLtRyxe9M5k7vAWokTycUq888FmOvcYhGbzlt4a8e1v1PLobgLw7dmW9FNcZPMDPOjsL88C8Khl0vS9wzLs84SU7FtIfPburxTziiR08KI4ovaNsMDzSJ7I8dEH0PFs6vDxJque6t7+tPOs6Ez2UzW0969GHPBY2MbztXFM9z2mDO4J19rsC4zM9JWU5vEvYUDwDbn+8Fsb2u+vRB7u4gtY8IwscPCiOKLzQaQO9NlJwvFgRTb05uLa5VxFNPK867LyM60m9HOVxPHLuhbygdqS9Z3gyPRyID7zG6Ts8xMBMPO+KvDzX22y944SjvOEqBj22/AS8qoE3vc0Dvbz6WPg7fMa1uuprQTx8+Zi8/4HnvAcHKb3qLuo8dTz6uwrHDL1JGiK9f+8kvZrnbjzodbW8yhIrvDTHJLxBBRs9HOXxvDzhJbzlD2+9mlyjPSqEtLs0/wE9o/z1PLClrLx/t8e8FjaxO0kVqDxD+yY9/7nEvOW3hrynkKW89Tl9PD8KFbxM09a7DCakvPv7FT3bPDm8WROCPH8iCD1viD+83vycvAn9tLy294o8F/nZO8CX3bpRv+67sps4vTWPR72chRI9isJavLvjorxbAt+8dqe6PBFKmTwYJ0O8d2pjPJwaUjsG1EU7nU21vVcWR71CyMO8qlUDPEkVKL3CjWm8EwhIPIj/MbwGnGi7JTQLvdRVGzrW4Oa8J8YFvR9+G761kcQ8+pXPOw1Zhzx5YO+8JmA/uzVX6rxeY6u8z82UvNoQBbw1wio85bcGvXxW+zyRD7+8kz2oPFToXT3P+ci8HRjVvEmxFj3bCwu9HxWQvIDqKjwtQuO7lAVLOWQeFT2xb4Q8xum7vJXUHD3+koq81fGJuh8aijyDExo9JmC/vAOmXD2cUq883fpnPV8rTjo+Z3e8+J/Du4XWQrwJ/TQ9S0iLPDFygbyjNFM7/fYbPfkFijx32h29+s0svUmxFr3jTMa88U3lvKQ2CD0MJqQ8blrWPPnSJr14CAc9YOn8vKddwjt9kA29nxDePFeBB730qTc9BNk/vRmSA72v4oM64h5dPQ4hKr0ssp08IEFEPBHaXr2ZKcA769YBPalTTj1JFag8OuYfPYj/sTxFudU8B6MXvTAzdT3pa0G999egPGJUPb2qVYO9hZ5lvOlEBz1tly27ogHwu/lpGzwxcgE8JihiOzTHJL0hBO28PQ+Pu0ivYbxyUhe9OxmDO59DQTyFQQM95UdMvLwWhrwXAAm9mPZcPGppxDyokCW8GGSavH4nAj36WHg8TAa6PNpBMz0uraM8b4g/vN317butryC9UmKMvHCDRb3hWzQ8Q/Ysvc/G5btW3uk7FcvwOmCRFL01j8e8OIwCvKE+x7sK+Lo7EKf7PH2J3jz/7Ce8XWglPQgCr7nxhcI8kBS5vUqxljtDl5W8JmC/PJU4rrzsmSq91VChPCWdFr2R12G9fpANvFl8DbyJN486xCuNvMT4KTwDEZ283vycPTT/gT16Zx68L6MvvKUq37xO1Qs9vKZLvFEqLzsX9N+8Ub/uPEzT1ry3h9A7JpicvDKeNT3qa0G896Q9vdRVmzvE+Ck8MNuMvBHaXjw0lEE8ruKDPCt/OrzXRq087ccTPcMwhz2CtII540zGO1EvKbw3TfY7A7IFPcnfxzzszI09mWEdOwSh4jx5YG89NY9HPXfaHb3O1wi9HBhVvKBDQb1F8bK8ITxKPDdNdrzEMIe7mlcpvNG88Tve9e06sps4PW9hhTwNJiS6zdeIPLe/LbzNQBQ7L9sMvT6fVDsyZti8kwrFPLbEJ72lYrw7pyDrujt25bxQxOi8hpnrPNjiG71dBBS8KSWdPPdzD7yfQ0G8VOhdvOlrQT2oiyu8C7tjPZwhgb1BoYk81ewPPTykzrwI0YC8mSnAuWppxLzsKXA7ajFnu3G7Ir1LQxG9vmn0PA5UDbvlt4a8dKy0PLKbOD1Fgfg8B5fuPBAXtjw65h89EUoZvPK4JT1Amto7EtXku8/+QrwDkiU8itSaO7ALcL2N42+8MS2pOwekjLxh1PA8NL/PPMe0KLtRSWQ8LqEkvUYTMLyGgtO83uNCvNJnDD2cK4w7mVmFvJvlCb1kIJY8+qqmu589cr2Pb/S8PmyRuyDf6jxb+bY8de4TPVBDQr248m68w+UyO7WjOT3Mj2I8Lp4TvY1jMD1HVqG8oIDjOiPrLzty5V87geqKvPWSnbwdEHU8jCZhPNZ8hLsm+gU8E+DivH8htzv3nmG8fVjjvLLUQ73VudI7xq6GvVrwg7yMIL+8QLi1Pfxz+TcSHTK8AIZgu1TVaL30TBu9TG4qvQWeaTto8py7JPFRPZE4yLxPPSA82MUXPL+Q2jy14Ai9pdW7u8CW/LvZyzm9cV99PPTPaz2fPfK7tmbqvHVx5LyzF7W6vATWvJ898ju1I/k7XUJKu8f9O7zCnJ880i1OvPmkBL29R8e8GHWbPV7CijyXVvM8pVsePOVEX73j+8u8oL0yvC/kFTg1xfG8qu3EO2BOD71/5Oe8oUAEO+gT1TzIwOw8VtsLPTFtCTzw+tM8MS0pvemfWTzH/bu8KUYqvCQuIT2zFzU8WjDjvNJqnbq8gQU9EJEtPPJD5znrH5q8K9IuPP7/fbxdfAg8OI5FPajnIjwycBo9vIEFPXY0lj20Wia9qOEAPU10zDu4Lz66JTTDPCFlzbkF4do8PiyxPFEGc7x5A4y9NkWyPLVgyLwpRiq6yMDsvGbseTvokAQ7XsKKvbq7wjzJgA094G9HPQmwULxJ3xQ9g7n/vDUCwTy9Cng8pRKLPHc6ODtKpVY9++qGPLlyLz14fSk8dGtCPQdnvTyBp5k7l1ZzPatzJ725cq+8Zuz5u8lALbzbFM08fI8QvVYe/Dv9Nis9aLvvu85YNj1W2wu9f+TnvKOMqDwwJ4e7PabOvIwgv7y245k6K5XfPFchjj1Cvlc8UYxVPF1/Gb1ZrRK8j6xDPJbNgLx6zF48uG+evM6VhTyjiRe9SZ+0vK5/67tdfIi8TDFbvDaFkr3lxJ+8fBXyPOcNMz3BWa68OyDsO0YTMLv0El03yolAvGKXorsV6Ra84bI4PEF75rtI3IO8/DAJOamqU71v2Ru81T81PbLUQ72n4f88sc6hvCf9ljs5FCg7i9crveulezz0El08rDZYvdjFFz3JQK28pE/ZPCZ9Vjtac1Q8hHYPulpzVD0KtnK95D49O9kIiTzR5Do9TTf9vKfh/zvtqA09wZkOPTmUZ7yl1Ts9QfiVvDfLlDyWzQA9fVhjPBJgI7wyOW08SFxDvagkcb0FXoq8HE3EvClGqjzn0OO8x3dZu/oqZrqaohi9fdUSPR3NhLxCPpg6ls0APfTPaz2CrTu8WOfPPMyP4ry5cq+8GoRwupAyJjxGUxA6iMtmvKw22Dz9Nis9YM5OvfywSL0KcwK9VqTeO+rcqDyecQ68pVuevHqJbT1LK7m8ZCCWO95jgz1y5V+8TO5pu1ek3j3qHAk7TvedPKWYbDwr0q488oC2vDJwGjy+iri8P7ITvWQglryopLE8AhJlPEoihjxsBxW9fNijPTdL1DxPfYC9JvqFO+viyryNYzC+4/tLvcUuxjzVudK8R9ZgPNeCprxlY4e8YtqTvN8mNL2ROEg77zGBvLwEVr0gHLq8MjNLPOmfWTwEGAi9uC8+PNNwvzwSHbI8/7+evGk1DrwSHbK87asePZL7eLuhACQ8QHVEPW/ZmzzkPr08E2AjvS0bQr2q7US93yY0vQ3Ct7rc2g89G0QRPbMXtTwBSRI8Lp4TvdAhijzok5W7y8aPPWIXYj0PEe28q3CWu+iTlbxVW8s7f2GXPJhcFj3v9LG8qioUOtAhirz+fz48nKvLvBwK0zyhw9S8l1bzPLZmaj1ilJE9R1YhPSU0Qztpu+88Ko89vbv+MzuVyu686VbGPHOoEb3oUCQ9S6t4vEE7h7tb+Ta9rDx6vKw8erwQ0Y28X0jsO/SM+rsVqTY9RMocvWJaU71ilyI8ByruvcCWfDtM7um74rhaPDiOxTsNwre8aPg+vXzYIzyn4X+707CfPPG9hT6FP+I76hwJvPVPrLl1cWS8CKquPCf9lj1iWtM8BBiIPHmDy7v4nuG7DgvLPFt5djyd7rw8mp+HO4KtOz2CrTu92tFbu7IRkz0cCtO8PiyxO3+h9rwSHbI8IFyaPDsgbL2o5JG8IWVNPP68DT1zpYC8hbmAu9yXHrz3GAC9FuwnPVu2Rbzq3Kg8LFWAPOK+/DvOWDa8jmnSPPGANjyRezm9VVvLu2p+oTuizIg7+qqmPCmJG7xO+i47+qqmvIhLpzxcOZc7QTuHPKVV+7w96b+7HxYYvBoBIL0xbYm8iA5YvfwwCTzTrQ69DLyVO2IXYjs8oCw7itQaPXoGnbm37Mw7gS37u96m8zzxAPa8qu3EPI6mIT117hM9jSbhPKw2WLxRBnM8pRUcPbiv/TwgX6s8Y2D1PL9WHbyBakq8dGtCvCmJm7wS2kC8Zi9rPLCRUjwbBLG8/nmcOmi1zTvMzLE85D49vMJf0LtBe2a8MCcHvSU0Qzz0TBu9CTCRO/mkBLzMzLE7okk3vR6W1zvHtCi9WvADPehQJDw519g8R1YhPb1HR710a0K9j+mSO8lALbxUVSm8Zmw6vQXhWjzGcbc7UENCPZeZ5DwK+eM7xrEXvbgvvjwqlV+8RpNvPTBq97yt+Qk9J8DHPK7I/rs/rwK8Fq/YvADJ0TsTYKO85spBPNEkGz2B8Ky7U5L3vNd/lb3usUC8cuVfPY7mAb215io8DcI3PBj4a7zsK168voq4vLXmqrvaDiu9EtpAvdW/dLwUo5Q8Zmy6PPqnlbzIukq9ipS6PNMz8DyWDeA8KxKPPJeTQrwdU2a7hr8iPJI+6rtxHA296Zk3vc1SlLwsFSC81POQvOL1KTn/wi89HRD1PMFZLjxLaxk9VWHtPG/WCryrcBa9oL2yvDygLLx0a0K9ildrOzlUiLzLxo+7R5mSvTbIg7wM/wY8GX5OvOZNEzxtzda7krgIvL6KuDxYKsE8NoUSvMAc3zwcipO8Syu5PWTgNbxZqgG8Z+8LPmi77zt/5Oe8/f99PWp7EDwFHqo8zAwSvLMdVz063Xq9aLVNvUTKnDtpOJ88Qr5XuppiODwPTrw6EdQeve1oLT3T8H48geoKO3wVcryihga9W/m2vHmDyztQQ8K7h8XEvAt5JLrHd9k8UxK4u6jkEbx/XgY9y8YPvVNPBz3ZCAm9ZinJPANV1jyvyP48CbBQPNOtDr0zdjy8HIcCugu5BL2q7UQ8ixqdvGi77zspiRs9R9ZgPATbOD3ywye5Y2B1O/WSnbqO5oE7BeHauxEXED3Fa5W84G/HPNkICb0g3+q8gnBsPYaCUz3S6ly8D1TevD9vorzAFr28TTf9vKCAY7xDxPk81fahO1gqQb1fyCy8kXs5vWbseTy9x4c8y0zxPAekjL0ng3i8r0KdvCAcOruaopi8OhpKvSkJ2zoI6g49kfXWvN5jg71DgQm7QHVEvFgqwTw40bY85UTfvNeCJr269YC8o4youaswtjsvp8Y83R2BvJhclrxL6Mc7KQlbPQADED3wd4O8phgtPYa/ojvh74e8T32APfeYP7s1PxA95D49vE76LjxzpYC89Y8Mu8Qlk7tOeu65E6ADvZTEzLw1AsG8h8VEO4MzHj2fN1C9KAM5vVZhbTwADEO8SNwDvQdnPT1y5V+8mBmlPHLlX7rfJjQ9BOFavXOlgLxO9508XDmXOxxNxLx9WOO8mBYUvMDZ7Tq2KZw6vYSWOwSYx7yrc6e9HhOHPEOBibwwave83d0gvdHkurxvk5k803C/vOTBDrx+G5W8/jxNPGdy3LwpCdu7sc6hvZDvtD1tCqa89lVOPUZTkDytvDq8ls2AvF7CCjyss4c8lo0gPV18iLzZy7m8Ds57vCDf6jyIy2a8xq6GPFchDrxAdcQ8w6JBO17FG7wSnXE8jKB+O8kD3rz+eZy8UQZzO010zDwiKH68EJEtPM0VRb1oeP68i9crPXFffTuopDG8EReQvepcaDtcPCg7fNijvJyryzxXpN451fYhvO0rXr0m+oW9TDHbvOcNM7wQ0Q29TvedvHc6ODyB6oq8vQr4PK+FDjy/DQo6fVjjuzkUKL1UlQm+xWsVPSBcmjotmwK8UUlkvQz/BjvDZfK81wLmvJ0xLr3U85C81fahu2TgNTuXmWQ9TvcdvHtMnzz4HiI9nKvLvMi6Sr1O+i490Kdru7IRk7tEjU05tFqmPHUxBb14wBo93yY0PIgO2Lzok5U8WGcQu118CL0oAzk9wyICPQ3Ct7wcTUQ9SB90O7lyLz3v9DE6fhgEvaTPmbqOpiE9D44cPMpGTzqKmly7ZinJPPcbET1Mbio9BBiIvJcZJb2aJWm8s1cVOtb8w7z6ZzU9/TYrPHCcTD29Cni9o4yoPClGKr0KcwK8NYIBvRNdkrz8tuq72cs5PdmO6rz+Qu+8m2jauqrtRD2Iy2a99U8svHnGvDwNRQm9zI9ivJAvFT1/ofY8lg3gu/IDCD1DxHk9BeFaO5olabxbtkU9XDwovRh1GzxJ4iW9LqEkvf12izzgb0e7EmAjvOP7y7w511g8TnruvHzYIzyiyfa8tiYLvf+/HryzVIQ8fFLBuxNdkjzCnJ+8S+hHPEmftLwh6B683uNCvMh9+7tJpVY84jWKvG8Wajs/byI9Jn3WPGj4PjywSD89bQqmPEgf9DxvUzk7Q4QavVw8qLrBWa66qzC2PLXgiLzO2PW7YpeiO6OJF7x4fSm97zQSvaVVeztLa5m8tmbqu5vlCT1/Ibc8DP+GvIW8ET3LicA6a8ESPJQBnL1DRLq76dYGvFEGcz106wK9h4uHvQx/xjyanwe9SiKGvaw8erxxX/28I+svu8VrFb3okAQ9rLYYvUdWoT06mgo97/SxvMk9nLwsFSC8VtsLPfqqprzpmTc74DL4vB/ZyDwt3vK8i9crPC5es7y5NWA9cuVfPI5pUr0YeKy8RIcrPNeCprsH53w8z17YPK28ujz/RQE7OI7FOgNV1jxnclw9zU+DOymGirxh1HA8S2gIPJZQ0TwltIM97WgtPeCslrx17pM8IuWNPZAvFT26u0K8rby6POiQhDw0+Q29+B6ivI+swzwW7Ke88DcjuyY6ZbupJwO8xGiEPM5YNj3W/EM8FekWulBDwjwt3vK8Pem/Ors7A73h9Sm7bIrlvJ898jyOadK8KxIPvV+LXTzTcL+8vEGlvN0dAT3+vI29BV6KvOcNs7ymWI08jePvO3OlAL237Mw8/LDIPBl+zjxHGdK8zMwxPOwlPD2q7US8AhJlvLIRE73Iffu8y4lAu5I+6rz6pxW9JC6hvI3jbzzd3aC8eg9QvD0mjzxasCM93ya0OzEtKbxDB2s8fBVyPSlGKrxVW0s9ykbPPLwE1rsYQX+8Rv9pvFB2tDzPX1G9taCBvJP1prybUGq81xfXPM9fUT1YLjo8yaMQPBevx7x5DlG9ZlAGPElhbLx7FhU92hOcvKujN73TyRe8Dpr/u2RxfztJRC69nb7rurpI/7vAA4k7Ca29vJtQajzDy8i8XTP6u5RvJ7zepp87CMGAu3UyTr1rDMc8uKVBvWiqxDsksdE7j5+jvN2yHr0KtQG9RJHoPN/P3DyQQuG8Mb9aPA0s/rwtfZo8zzaUvNS11Lxugoy8f97UO/+jdL1smoq8c0pMvd7bWz3fIKA8ptOzPHLETL3yeC29mEsqPLwHRL2F8xy9PztlvLIKej3y/qy9psc0vMS/SbyiIO487SIqvLh8BD2FMB28Auk4vWQfBT1feD49NZtdulb19LzHfg69lYxlO3HcyjwnrRa9+rayvL6JiDxD7io9mHTnPKNxMbxY3fa8240cvbnCfz0x0x08iIpbPODD3TxaqLq8hEgbvWEP/TmCNNi8DIlAvbfa/Ts75eG8SUQuvczIkjwNsn04Xv69PBG2Bj34SDG8SPNqOhuLyryIBNw7vkwIvYPOGjp02I88LO/WO2aNBr22bPw8CvIBPQ59wTyGllo8G58NvcZ+DjwcGY68K4kZvFZGuDy18nu8M6dcPc5rUD1NFDI9xzUPvbSsAD1bIru8gExWvJri6LqX3ai8uwfEPKmvtrx5nBS8zHfPve0iqjzwhKy8C6kCPS1pV7yhpu08LWnXPDdaIr2Y7mc8YWDAPAfieT13tBK9M34fPYrDoL19RxY7dUYRPF+MgTs0ux+9ZOKEPU2aMbwMiUA9AHs3PcMcjLxqLIk8ThQyPLeUgjwIuby7NuwgvTUhXTzA40a94T1eu9tEnbzkJeA7N2YhvSpYGLykZTI9UHY0vdrKHL2ShyU9+MKxvEhta7yzW728z+0UPMjsDz1SGXI9hhxaPNd0mTywnPi7B+L5vCjqljyFPJy8Ds4EPEIGqbwa6Iw81p1WvJKHJb218vu8PsHkO8Nli7okSxS96m9kPFdGOD312i89T44yPK2LuTxdWwA7UuS1vDHfnDyxZzw7EtPEvOgB4zyjFG87C5U/vHQyzrzSEhe9ISYSvWZQBj1pdQi9YtrAPHBiyrz0D2y9vRuHvTmXIr1nqkQ9uyeGut/PXL3xeK08wV1HvNelGrsmM5Y89QNtPG16SD11g5E9C0R8vVucuzyJDCA9hbYcPREwBzwPSIU8L6KcPHBiyjx8cFO7kA2lPTG/Wjx5iFG8zfFPPZu5KzyzWz294F0gvKZ2cTu0eHu8awxHPOpGp7yzW708JCtSu08Is7wDVzq9daxOvNnWGz1hA/683lXcvJjFKj2qo7c9ahjGuRHfwzpIyi28suG8vHUyzjvUgBg9cVZLPOUZ4TzIFc08mj8rPZ0nLb39QXK8qa82vGvjiTy0JgE9ehYVPIYQ27ybray6LMaZO3hrE71jzkE9c9gPuz0qJjw92eI9INXOPATROjyTpOM7ukj/PIcknrwHM708EbYGvB97kL25H8K8ft7UupaAZjzpRic8EucHvfllbz0i3ZI8D8KFvR7Ejzxshse8Wag6volVH71J52s84MPduy9lHDytizm8dBWQvEk4L71AmCe9Iw6UvEPuKr092WK9jtTfvGY8Qzy4AgQ91YCYvE4IMzpxs408FsOKPUwgMb2aP6u8D5GEvCGgkj0pWJi6FQwKPMpmkD21vT89O+VhPOUZ4byFMB29/UFyvQqhPr1+L5i70tWWPDl34DzCogs9Y9rAuLIKerzyeC09qx04vA4LhT24SwM9FUHGvJQeZLyjFO+82GgaPKRlMj3VN5k8+jAzvP0Mtryqo7c8RnlqvHNej7ytizk8N1oivUm+Lrz6tjI8s2+APaXfsjy6mUK8IWOSu42rorxtFAs8UCXxvNFH0zu8G4e8QyPnOyrSGLvkn2A8qthzvZE2YrwT00Q8NTUgPPowM7z2VLC8FynIPGRxf722YP28EVnEPLk/BL60YwG8ivhcup+VrjsWhgq9jVrfvJzKaryFthy8oiBuvA9xwjwXPYs+wqKLPbPVvbs+pKa8wV3HPC7rG7xTXrY8b25JvPZ9bby0YwG94/wivYeK2zwbGQ49Zev/OopJILuMZt48OkIkvWuSxjyl07M9yQnOvNtt2jwu11i9OkIkPZKwYjsn9pW838/cvOK33jtg5j+8sJz4vPuetLwNsn05008XvJVvJz0c3I28teb8vNCklTyHYZ48Cr78uygnFz2imm48uq2FvBMkiLwncBY9UfyzPKqjtzzE04w8L2UcPPllb7wUTUU9yuCQu0WFaTxhbL+6LfcavO0iKrwZtws8i+xdO/ueNL2/Awk7EfOGPPAKLD2GHNq6TcNuPI1a37z70/A7BNE6vLOEejzayhw9n4kvvejMpjtSajU9EGXDPCYCFT0CY7m8suE8PbYOAz2b1mk8OU6jPAxsgjy8jUM7QyPnO/+GtrqSKuO8NwlfvDDLWToc3I08sO07PJ4bLjzz8i09+TyyO8IoC73XC9i8p0G1O3caUDy2N8A8vFgHvXmUUDtqLAk9l/pmvE0gsbwn9hU8t7FAvQGYdTt1j5C85CVgPANXOj2SAaY8s2+AvcazSjyQGaS8iz0hPFV7dLxflXw7rQU6PGNUQTytBbo7PLAlPWUTBr0PhQU8LO/WPBMkiD38GDW9tGMBPRRNRTwc0A48VsA4PH5k1LyA5pg8a+OJPDcJ3zz6WXA9n5UuvB8+EL2ESBu9Ed/DPATdOT36MLO86cCnPX14lzxBgCm8tzdAudp5Wb0tQBo8LEyZvPwYtbyBVBq7nSctvdI7VDxE7iq8TUluvIuGIDy2N8A8YWDAPEGAqbxJvq68jxkkvKGm7byEeZy8PiqmvBTHxbsOkQS9MMtZu83l0Lu+TIg7dqDPPBVBxjwHCoC7zvkTPapSdD0kxZQ8nNbpvE2asTuDzpq8Wkv4vIWW2jzqRqe8HsQPPcRFSb2OJaM7CFz6O8sRkrs7NiU9Bj88PBG2BjyZ7mc9CniBPKwRuTzwJ2o8uhPDvGoYRj2zTz68K3VWO2ED/j1SDXO6Tj1vvAISdj0n9hW9s1u9OlJqtTvWI9Y8HZOOvFkuujy30YK8qLu1PFkuujxhbL88UfwzvYLamTyfD688oabtu2kkRTyrHbi86HvjO/ows7ycrSy8j5+jvO2cKr0Gxbu8xEVJPVD8Mzrfz9y8IU9PPYSFm7xWb/U8GR1JvIMo2TyjCPA8gZ0ZvGyGRzzNa9C8CLm8vAyVvzpbFjy9mO5nPHQyzrxzUpA8NKfcPM1CEz2tizk9PLykPC5dWLy9lYe8Cw/APCxMmbwrlZg9YPI+O+SfYD12oE+87z/out5VXDxrpgk81YAYPMS/ybti7gO8sCJ4vBNhiLyutPY7JSvSPD8SqLyHEFu92B8bvP8p9LyaXGk8KKEXPZfRqTxGXCy91rEZvb2BRDoj0RM9Nx2ivLIK+rkbnw29Vm/1Oe4Wq7vZ/1i9Yu4DO+XkpDt7CpY8D/fBu0uyLzod+Uu9w8tIvZP1pruz6QA89GwuOl0eAL075eE8mmjovH5kVD14qBO80h4WvVmoOj0YMQy9p020vP27cjwvZRy78w9sPDHTnTxwYko9YtrAvMUQDbvd29u8JrmVvEtVbbxSarW8YtrAvJfRKTxjaAS8iARcvRgxjDx3GlC85pPhvDRBH70fuBA83qYfPWtdCj3JZhC8223aPI/I4DpR8LQ7QLVlPJOYZLsooRe9IKwRvXQJET15DlE9IKyRPOsuKbyAqRi99GCvvTW7HzwPwgW8p0G1vBolDTssAxq9IG8RPQbu+Lv/r/O76cAnvNHhlTxjpYS9glSavMmjkL1dM3o9oxTvvA73QT0ePpA7bkUMveo6KLyCQNc761fmPMLrij05yKM6bXrIvMZBDr3C6wo9LUAavEIjZ7y5AoS885VrPaGm7TzvkKs8sWc8PNtt2rwICgC8fHBTO5hLqrwMLH482VAcvXDwDT2jFG+8enzSvCgnFz25AgQ8OB0ivQ1gg70Zt4s8Y3H/O2GJfTx5X5S8s1s9ve0iqrwNVIS9vdKHvTcJ3zvyeK07S7IvOwV0+DsnH9M83ttbvAY/PDp/qZi7+TAzugVLu7yimm68E20Hvs1/Ezy7Jwa8bwgMPJWM5bx/5hi6jGZevHIhj7u59gS9YMmBvFOT8jmaP6u8v+/FPKmvtrz1VLC7njhsPAMGd7yVY6i8yHIPPTUh3TyzW7084BQhPMYEjju90ge9nSctPMenyztJRC69GiWNuoW2HDyYxaq3bdcKPVXMN7zj/KK8WC46PaleczslsVE9ayyJO6bTs7yCNNi8dxrQOylYGDv7TfE69IlsPEC1ZTzSO9Q8el+UO7lIf7wXAAu9Dqb+OR0Njzx2oM+8O7wkPbuNwzyIVZ+8ZCuEvKbHtDzRzdK80piWO4gE3Lwxv9o7loBmPA6m/jyuLne9Xq16vOxX5rvg16A8JT+VvYQo2TuRDaU8FrvGvOP8Ir3/KfQ8wfeJPMoJzjsS08Q8BID3O/8Atzu4SwO6ZrbDPNISl7yqKbc8NhXevCxAGr2qo7c8mHTnvGN9/rw7NqW8f2yYPKg1tjscc0y7td2Bu85rUL3b59o65fCjvEk4L724fIQ82gcdvY4lozzSO9S8jxkkOx4+ELtpJMU7jGbeO+2cqrsJJz48Cf6APBevRzx6iNE661fmPEOdZztcP/k8R//pvGkkRb1ngYe8UhlyOxcpyDx5iFG82hOcvJ6VrjwKL4I81EMYvahqcr2Nq6K7Xq16uynelzzBroo6ZzDEPNCklbziMV88ahjGO7IKertdM3q9m9ZpuzZmITzqOig9JrkVvcgVTb1Ve/Q8pI5vvdxh27zAaUa7z+2UvFqcOzwL8gG8jiUjPAiEADtnBwc9Hz6QPFoiuzt1rM68bABIvVXMtzzoUqa8kZMkPVAl8byX+mY8ZdaFOW2aCjseZ028DInAPEf/6bvjRSK9Et9DvFvF+LyDC5u8PxIoPaWC8LotaVc7/wA3vJjFqrpnMEQ9+EixPJBCYbzPsBS94EldPcDjRryzW706ufaEPOE9Xj1qLAk6KKEXPUlt6zxOCDM9FUHGuxPTRLx4lFA9xL9JvawRubyoNTY975CrvJE24rs+zWM8NhXevGXCQrsK8oE9bVELPNx1HjuYSyo6693luyaZUzxg5r+8+TwyPNNPF7wdk467+VnwvOIIIr1mUAa8pd8yvGcHB7yqzPQ6GZdJO72Vh7yqozc8zPHPPDYpobyVBua8jiWjvO2cKr28gcQ8Cw9AvV94vjxnMEQ9VkY4vGcwRD1YLjq8Z6rEvKADML2TmGS7OU4jvYr43DxlSMI7PiqmvB35S72y4Tw9M8cePPq2sjvqb+S8aZ7FPBUYCT1lPMM7muLoO6B9MD1ubkm76kanvCGwgLwsicM8c3k6vVdbobxyFX27V5qmvBev8DyN6Ak9o6EPPB89pzupuAG95XqUvMFBHryjoY+7O3wNPQCZrbxmqyi9GfLgvCQCjTySz5K7/BJNvRmz2zx07BM80cJkO9HCZLz/Bxw9WrzJvIKKvLuLEfM7nSZgPIiwyjvDkyq9Te63PIHJQbyxfr083mMiPNOD37sTjU29/dNHvOQW1zxMLb08xdaavLkF9DstC7m8D+m0PAOdmLytuVe8cvdEvSWEgjxjpz29OZbavLwJX739tY89FDCQO4SOJz1YOtS8hy5VvSfWDjw1szy91ioNvR2W+Ts41V89sTCcvDk5HbyCijw7AVqoPNdm/bxjmKE8FpE4vENCSb2K87o8ewBxPcFucrxDQsm8DMcRvdIBajzpe2o9krl2vNmpbbqs2qQ8lN6uPH2CZjxOzeo7z0MEvA+bE70GoYM9HSqgPGarqLt4wBU9jVRjvUYHL7xUlju7z9/GvOxAUL1iJcg8APbqO6a0Fr0zEPo7TIp6OxZzADzDk6o8oovzO5N6cTsl4b+8B93zPKJtOzof2Wk82UywPKeTyTzlmEy9da0OPZtlZTxCgU484+mCPGDi17yocvw7GkeCvJcA0rzMnFY9LGsLO7mZGj2jDek8iLBKPd9yPr3n2zw91+sHvPcKd7x74jg8qvTxvCCaZD3idqm7sGAFuihnoL3JejO6PTrzvHxkLj1pcI68qRU/u6nWuTxZ3Ra9ummxOxLMUj1nHgI94OUXvbCfij15n8i9iRQIPWhwDj1Ip9w8EFyOvA4Kgj2lj148lj9XPQD26jwmVJm8T+OGPIGrCT39dgo9YIWavDhphrxXuN48Zl2HvZwIKLvC0q+85/n0PFAQ27zNP5k7qFREPb/OxLxFNxi9l8HMPGjNy7xQs507dDq1uw+qrzs/Xys9bUSQPbEhADzq/V88wHGHvHoSIr2GbVo6AIqRvHviOD0vfhK9y64HPdNWizyUn6m801YLvLIAszvZi7U6d1xYvdTnHD0xLVw9zT8ZPYEIR7o8PYg7NlPqu18hXbxNoJa8Zeqtu0eJJLtKbEI8ULOdvHQ6tbs8W8C8NJWEveYawrx/aBk9z6BBvSbA8jwZlaO8t0T5vCNfyry0QyO9PRy7PI0V3juYgke9B3EaPbnnu7zvI248MpGZPB3rmjup1rk8GkeCPVh5Wb3DhA49ZeotPf5VPT3mWce8FwSSu4M8mzzNXVE8RTcYvMUzWD2sGao8yPg9vNq/iT0d1X48qvTxvA3EfLwJtAq9CEGxPM+gwTw08sG8+qIIvBvYk7uOqYS8ixHzuzx5+LuJccU86t+nvHB1z7sCDIc8/VW9PcvtjDvbzqW7b1eXvLF+vbwdeEG7jfelPCoomzxi5sI8g0s3Pd7wyDxS1UC931QGvefbvLrn27w8ixFzPW0Up7oEfMu8GzXRPE3utzwd1X69Pd01PfnhjbwCDAc8eiG+Peo85TvIqpw8As0BO/hN5zwzMUe9p1TEPLnYH73vRDu9JZMevQgylTmSz5I7YQcQuyvISL0NxHw9ajEJPIjvT72xIQC8xzfDvFSWO74G/kC8CkWcPEwtPTu9ytk7wRG1O3gdU73k19G8phHUvFMy/rx+Q+G8+C8vvVb347xNr7I7XfQIPT2esLzCw5O7UTWTPNNWiz3P/f68TIr6vLKyEb2aBD09bC70vHoAcTwYMWY99WpJPWOJBT3a7F29ME4pveF2Kb0Qqi+9mrabu8ZYkDzg5Rc8r/zHPNXGT7zJejO9S6tHPa4dFbs3qIs9GfJgPZW9Yb0I84+8bUQQvJlh+jsqRlM94+kCPH7XB7vcERa7i7S1PH2C5rvt45K8vkzPPADYMr3kuZm7sSGAPJnmhD17P/Y7GbPbvFUJFTyVfly9GNSoPFzebLztpI067QHLvOLT5juSXLk83BEWvCHvhb2kcSa87qH4vMo7rrxv1aE7CcMmvDXR9DxdgS+9JsDyvGOYIT31DQy+V7heuk/jhjw25xA8+CCTvKtJE701dDe8ME4pvF3AtLtuBYs80heGPmDiVz0d6xq9sT+4vL8NSrzqPGU8L34SPf+JEbxMino6cDZKvEVGNL0D+tU8toaTPLRhWzxNrzK8ZUdrPfePAb0oA+M8xrVNPbrG7rurWC89qbiBvUeJJDzXCUC8KJcJvCH+Ib0I8487cvdEPCFb37zfz/u8bjLfu9XGT7wtSr48vW0cvbnYH7yv3o+64+kCPfatubzrvto8jzqWPFdMBb2gCf68qDP3PP5GoTzTF4Y8XwOlPNNlp7pdga+8McGCPWarqLvaDSu8Id3UvKVQ2bwuKXG8avIDvNB/dLzXSEW9954dPCZjtTwY1Kg8hX+Luwp1hbu6abG8eN5NvFmekTzPggk8i7S1PLkF9Ly/Dco7PFtAPeF2KT2POhY7R4mkvCQ+fT1wdU88eZ9IvHdcWDyRjKI8GkcCPfqxJDySuXa8D+m0OtpqaLwnQmg8jrigPA/aGD36z9w8yjuuPEQhfDvjN6S8Zl0Hve81nzrHN8O8y+0MPTq7krx74jg8eB1TPHJ5Ojqqdue8ijLAPFdMhbzekwu8ZslgvNlMsDyTHbQ8COHevI1UY73n+fS7JCDFvDy4/TlYeVm9RHadO/oO4rznOHo7en77PLCfCj2JcUW9CcOmu6dUxDs1dLc9WBwcvQFaKD0D+lW7yBZ2vBJvlTx+14e7V0wFPAtj1LuyADM92Cd4PTHQnjtzeTq9B55uvdjKujy/Dco8fJSXvHoSoj1k25E8TnCtvEfmYTwu6mu9d8CVO4JshLygzQ29zQAUvJglCr3Y6PI8Te43OYhxxToOKLo8IVtfO7/ORD2Ejqe7JyQwvTuaxbxMDPC8qbgBvZV+XLwUTsi8wK33uyNBEjvBETU8wsMTvAnDpjxYDYA8Pz5evEwtvTxFo3E9Et6DPPuQVzteYOK78qVjvEfIqbxbfcQ8jHWwvGlwjjvuwsW9QiQRPBROyDt6IT69VJa7PKCOCDw355A8uMmDPf80cDvXSMU8J4HtPMxvAr3YrAI9gauJuj3dtbsdGwQ+i6WZvOrfp7yrtew8SGhXvLwJ3zy4g/47vw3KPGhwDr1XmiY79OhTu2IlSDwW0L08dm6JPAP6VbxS9o08a215PMERtTtRNZM83K3YvBXudbzNXVG9pvObvO9EuzwfGG+9srIRvVg61DxB/1i82UywutTYAD2JcUW8o+AUPSOeT7yy8ZY80SK3O9TYgDySPgE9VRixuvqxpLzsIhi7ZgjmvClYhLwMJM+8Hvq2PLjJg7t1Geg8vV6APUTi9rp8wWu81AVVvKfSzjzkehS8HZZ5PScksLvP30Y9AVqovE2gljyCirw7YQcQuwUfjrwcmY67XOEBvfbsPrsi3VS6v87EOzjV3zy8Cd+8E41NvW+HALwUTsi8Wz4/PJP85jx9BNw8DcR8vXK4P70qKBs7vi4XOydCaLwBeOC8fuaju15gYjsqKBu9m3cWvXW8KjzXCcA7P1+ru5n1oLz54Q29xpcVvXyjM71qT8G88eRou/VMkbyQ+5C8VJa7PCgD47x8lBc9T+OGO+G1rrwDnRg90eOxvHmfyLz1TBE9A50YO90vzjzsQFA80UBvPXviuLskPn28LWh2vAeANrwGv7u7NjWyvL7vkbwXr3C8mKB/vG/Vobw+EQo8h9EXvEpsQryU3i69LGuLu4jvTz2I7888EFwOPCQ+/TyTDpi8yXozueBRcTyRjCI72UywvIyTaLyjTG48n2lQPe6h+LpNr7K7hk+iu+BRcb0CDAc9TnCtvOqRBr3qPOW8JAKNvBUPwzzj6QK9GYYHPUWFubtgo1I9fkNhvdBSIL37cp+9jJNoPXxVkrzLvSM9n2lQO3xkrrw9HLu87sJFvLsbkDyhTwM9chX9vETi9rxl6i07O3l4PG2w6Tvh9DM8Ajnbu5kidT2xfj27uyqsPP03hbyI7887DaZEuv9z9ToCDIc8WftOPNTYgL3+Vb08SQuavCxrC73n27w9KukVvL/OxLzArXe9jfclO9or47gigBc7R8ipu8l6MzzU55y724CEvRmVo71APl47f6eePK87TTtCgc68sx7rPGlwjrzNP5k8GZUjPEfIqTiSufa8kpu+u+2kDb6Cijy7CDIVvWVHazxHeoi8EFwOvDvZyrtkhvC77yPuvCdC6LwWkTg7hM2svNNWizv9N4W8PHn4O/huND3a/o68rzvNvMNUpTtXTAU9CAKsPEQh/LpOjuW7OZZavMsaYTzq/V+7T+OGuwdBMTwTzFI8lJCNvEfIKT1c3mw8F69wvPzxfzwX1Cg8iXFFPT9QjzzajyC90H/0vHyjMzwlhAI7DwftOz2eMLx0+6+8c3k6PTi3p7s6GFC8Le0AvWzvbjsQa6o8XB3yvOkPET0Gvzs8mfWgO7nYn7zq0As96Q8Rvd+Qdrz2Sfy8KOWqPAawnzutudc8HRsEvUNCybxjSoC7Ac0BPW1EkL23ZUY8iTJAPKIuNr327D69IwINPIZt2jwBt+W69KlOugzlybqSm748FtC9uQjzDzwaFxm9PP4CPYBHzLtnLZ680EOEPMm5OL0aFxm9OZZavB+slbuLEfO8Y4kFPWgM0bv1DQy9vYvUuz9QD70Zs1u9RnoIvNvOpbwlk548QoHOu20UpzoOGZ67uag2OOthHbsQayo8lVEIPD06czyGT6I8BT3Guz9Qjzze8Mg8E41NPXjAlbzrUoG9q3bnux8Y7zz6saQ8aO4Yveq+2jty98Q6gqh0PE/yIr1JKVK96tALvGRoOLpCgc67fMHrupF9hjyMdbC8m3cWvGFkTbvqPGW83vBIvbQi1jzug8A8vAnfPMu9I73Gl5W9JZMePY6pBL2tjAO9R4mkuw8HbbzDRQk8ak9BvLSgYDy9bRy9RvgSPQ2FdzwopqW8IbCAvGlwjryNVOM8qvRxvNXGzzxavMm8TN+bPIQqary2hpO84zcku/gvrzwGv7u7bhQnvcEvbbybOJG8m+NvvI55Gz20gqg8TyKMPMl6M7tPT2C8PQ2fO/atObtYOlQ78kgmvUqNDz0d6xq8OTmdPLEwnLwx7lY957rvOqJtuzy/sAw9j5dTPdTnnLwD+lU7VEiaPSWiOr3UBVU8rBkqPZ5LmDtuBYs8Mq/RPMv8qLv2SXy8ak9BPT994zx74rg7mUNCunIVfTpRNZO6uofpvB76tjwXQ5e7qwqOu4T9Fb2Ezay8nqhVOyB8LLwVsoU7TC09PIx1MLxwNkq8WDpUOw/ptDpUh588ivM6vSNfSrxexB87XmBiPaDNjb25qDY9msU3PeJ2KbshHNo87mUIvWmsfrukzuO8bbBpOyB8LL0kPv28I0ESPDBOKbx43s28T/KiPA3EfLp6A4Y81ERau4SOpzwtSj491+sHPUyKejsOhfc88qXjuwDJFr2UEPM88V5mPB71FL1IbtA7zw68OjUFz7sVYYo7zjhJPTE0iTww85y7LUTtvGvVWTy2Uhy9kRUgPJwrg7uhz3E8bu8COmcEFL3xCky81wr2uWWFBb3m4NO8X3AJO7B7wjw0xOI8lGqhPGYBSrw4wv+8mk98vCQKETzwTZu8a2pgvc95tTzXzx28LMiovCgF5DxggVS8PIXEvG2Bv7y8/J484nqHPG7vArwWB1w83h9yvKC+JjyZPrG8Ta3ZvAUgM729pbo7q9SJvSLG2roHiyy97jmGPeJNMLuvOla6PfA9PL7mpr2sfSU8pj6cva6UhL1lVWS8RsJqPV3EI7xtGRA8kYAZuxEzTD1DMhG6ztAZPFrXUbxAg+G8tD4HPPuhID3MjGM6WtdRvGYr17xJsgY88w2WPPje27zNvAQ89p3vO+4Mr7yMqb886CQKvKzonrz5IpI7G3DyPJhoPryK/dk8YgOtvKY+nLweXUS8eq6Bu+ChSjnb+pG8DTWvu0FZVDuIqyK9qxIsuz6co7sbcPI7zLZwulwbCD1/f0c9SRo2vfRLODwEnlq7KdtWPF3EIz23ZjE9HzYBvc28BD3pzaU8hOhdPFAvMjyd1B682UvivG0WxrwFdM28qOoBPSjKCzwkChE92iHVPAgx/jzII8282UviO3RsLrzo97K86PeyuoirIr2RfU88CJx3PAndY71ora+9xJApPax9Jb3Gd+c8pL8NvJLrEj383Pg85Ml0veu04zyfUy09aK2vPFZxBb3fYF47BAlUvHzCFj32zRC9S1siOzMeETwxNAk9cUQEPcEOUTse9RQ8OML/PAgx/jsX4Bg9asQOPXfuhr1NGFO9WMDyvLeTCLzGDO67lNUavMn5vzxJsoY8semFvKvUCT280hG99vedvIWUQzxjbqa8ZitXvY1VJbwlsyy72UviPKfk7T3QT6g87cvCuokn57yxUTW9Ecucuwe4A727+dS5gZamvHcpXzwQXVm98LiUvELEzbq0qYA7+zanPAicd70Ao4c8DF+8PPS2sTptFsa8xyNNPY3qq7swyY87HmCOvL7mJjyN6qs8b8IrPENwszyBKy08hL5QvAndY71ggVS7d4MNPfjeW73YOhc9isIBvVIWcLshGvU7A8jnvOXgUz13gw281wp2vd1JfzqQp1y8EF1ZPGCBVDwAC7e8SERDPY1/Mj1xqWm9Mu5vvJjTNz0/cpY7CMwYPIfVLz10bC47Xf/7PEodgLy15Fg9WTEAPOe2xjqBliY9iOZ6uqglWrvOOEm8clVPvdfPHb190+E8ae4bvb+8GT18/e67o3vXu9/15Lz3c+K87PVPPGopdLyIqyK8g33kOyYepj2FLJS72/oRPEYtZLy9pbq83XkgvE/EuDumDvs8UXAeO0SB/jwXdR89XcQjvRVhCr3KpaW75ktNu4RT1zxOGx28teTYvCnb1jyKaFM8VDAZPFVuOz0C8nQ88IjzO8gmlz0Ch/s7tNMNPKrRv7wIB3E8KrQTvSB0ozw/Bx29Qi9HvXRsLr1HmN08FswDPOnNpTq4d3y9nCuDPeiPAz3QTyi9sBMTu4ZqtrtKhS++WFsNvU/EOLo6M428WTEAPOSf5zoTdwK9aRgpvQe4A71THIS7XgUQvZj9RL01mlW6SbIGvMqlJT0oyou8TULgvEjZyTySU0I9zfdcvDbbwTy9EDS97+IhPZ3RVLxy6tU85GSPOzOD9jxIRMM80fV5vYLXEr23/gG9wM1kvVPCVbsdh1E96knqPDUFTzwJ3WM8UQUlvdaOMT3S+425n1MtPcT7Ij1vLaW8UXCePKpmxryTwQW8b2j9PMvg/TzVuwi9NC/cPLtkzrwboBM7BGMCvfROAj3Bo9e8qfvMOz3zhz3MtnA9YOxNPbFRNTzt+Bk9mNO3vKx9pbxuhAm9UC+yvGFaEb1Egf48cdmKu508TjsPt4e99jJ2PLXkWDw0xGI8s2gUPSB0o7w+MSo9pmgpvaIQ3rzuDC88gdH+vXZTbLzsitY822ULPPH5gLxsq8y8NC/cvBGeRbyCPPi8+viEPECzgj4w85w8dlPsvBbMA7tGLeQ8ToYWPBrKoD1UmMg72oxOuwqz1rysfaW8OjONPF5AaLxHmN08CJx3vHBukTpyVc+8RvILvT4xqj2kv425EF1ZOxS1JL2LPsY72iHVO3qrN73fy9e86g4SPN/1ZDzNYla8/l5RvACgPb2cKwO9nPthPdb5qrzSZoe8aEK2PDJyqzyOKxi9qzy5O8rPMjwmHia9oTrrvN3kGTtOhhY7GLYLu5JTQrydp0e8vagEve02PLwTd4K6W0WVu9lL4jsSdLi6iBacvIs+xrwVMem8HvUUvbFRNT2NVSW84DbRvK35abvwTRs5rSN3PMo6rDwfM7c8ToYWPQUMHj1XVfm8alkVPJ08zjwlSLM8E0orPTJyK72J7A49gO0KPaWStjw8sps7lrzYuowUOTxaQks8Om7lvKx9pbxAs4K83/VkPNARBrsX4Jg86GIsvKrRvzycKwM9xxICvDwaS7zSNua6xuLgu/i0zjzKOqy8PBpLPLg8JD1I2Um89mIXvXqrNzzFZpw7wuTDPPFeZjyGara7QVlUPXZ9ebv83Hi9+EnVPCcvcTtUxZ+69LYxvKPm0DzlOgI8LXSOPDWa1TyeFQs9uU3vvAHhqTy+5qa8YcJAPfYy9rx37gY9cNP2POSfZzvjjhw8ZH9xvbKSITyAVbq8AXawPL/38TwLIZo8V+r/vH1oaL2z/Ro9YcWKPQv0wrzDujY9SdwTPVWvJ7yaFKS3O69RvOOOnDwEnlq9xJApvdcKdryMQZA8NZrVPIN95Ls0xGK9ehYxPF6aFj1YwHI8n4CEPS6vZr2wqBk7pZUAPfuhILwSDAm9Z2zDvOA20Tq9EDS7GSGFvCCv+7vi4jY92vfHPPCI8zsX3c48c1iZPcpnAz3+89e8G9vrvNg6l7u80hG9dUIhvJk+MTzt+Jk8dC6MvWeZGjxa19E7pZUAPCjKizxkrxK7iBYcPDoDbDziTbA8zw48OgP4iDwur2a8D+GUPbg8pLw/3Q88YcUKPotrHbxYwPK8ibxtPcwh6ryBKy097x36vF7Vbj1a2hu90E8ovWHFijxGLeQ80fX5vIjm+rtSFnC8AAs3u8YM7jtghB69AiKWu2KYs7xnbEO9yCYXu/uhILsVYQq7aK0vvPDzbDxFHBk92o+Yu60j97xiA626qtG/vDgcrjlQq3a8VW67PAIiljwInPc8ZVXkOoDAM72VUV+8vDrBOURGJr0LHtA8eq6Bu4dAKTy0qQA9NgiZPBfdzjznuRC8FCAevXvsIzszg/Y7Kh+NO2m+ej3ajE68iVeIPMPnjb3eimu7FWGKPZHoSD22vRW8by2lvDWa1TwECVS86Qj+vHDTdjzKpSU9ab76OeU6Ar177KO8cG4Rvd0Op7tfcAk8g33kPIfVL73WJgK9mrp1ulNXXDzEkKm8+SISvVkB37yG/7y6rmRjuqsSrL3HEgK9n4CEPNtiQT33c2I8zs1PvCQKEb329x29ys8yPVZErjx51US87jmGvOnNpboxn4I81HqcPcqlpTynqRW9gZamPJP/p7u0Poe8CrNWPYjmejwiW2E8a5oBPIHRfj2ofwi8HmAOPLzSETp5asu7eqs3vBmJtDpVmxK8otWFO4vTTLzPebW7NQVPvCcv8Tt8/e67IHSjvabTIj3hDMQ5VQNCPBi2C7y0DmY7/l5RvQ5G+jtLW6K6AAs3vDyFxLyG/zy9ndSePL09C713vmU8N/IgPB2KG735txi9buy4PGFXR7yN6iu9edVEO8y28LzPebW8AeEpvXfuBjyeEkG9qOqBPdtiQTviuCk7j5aRvfXHfD2je1e8fQODPXQuDD1Vbju66c2lvLroibplVWQ8vnstPc+jQr0hGnW7CkhdvPCI8zuMFDm7ekA+vC1EbbgRnkU9hFPXO3Mrwroixlq8qCVaOxIJv7xCx5e8kr47vEXsd7ziTTA8QIPhuz3wvbzSNma9DIwTPRezQTs6nga9Lt+HvQEOgTzW+So8IN8cu4m87Tu9qIS8ipLgO0myhr3k+RW9xJCpvINCDLxOg0y8Koc8vas/gzyRfc88KdvWu9qMzrzLe5i8P90PvPGOB72bwAm+fP1uPcDNZDzZtls6ZVVkvJ3UnrytI/e8canpu/kikrxAg+G8i9NMPN6KazwwyY883Un/vE/xDzz/NEQ90OQuvAgHcbwUi5c8F+AYvULEzbtMbO08oL6mPBbMA73KpSU9RsJqPNH1+bsTSqs8QscXvKGUGb2BlqY8lVFfPE/xj7xg7E0957mQPDMeET2efbo7EcucvJ3R1DpVryc8KDWFPWXAXTuFLBQ8WWzYu/zceD3Ze4M8Mt0kvavUCb1ZAd+80OQuPPvLLb2Y/cQ8iewOPD/X+zwYHju90mYHPc44Sb215Fg7eFmAvKx9pTyrp7K7CGEfPdw4tLxMnA69bRbGPKbTIj1Jsga9BJ7aOvc4ijwOsXO9mT6xvOnNJT30ToI8O0TYuyqxyTwORno8NnBIO6i64Lux6YU9kX1Pvd9g3jzT0YC8KUZQvS7fh7xQL7I7tlIcvMSQKb2OK5g8m+oWvT/X+zzoJAo8nPvhvIkn57vOZaA8ArecvWIDLbym0yK7T1k/PIErrbui1QU88MlfvOiMubxULU88FTHpuugkijsTSis97WOTPIirIj2BKy09xgxuu6vUCbxj2Z+8vaU6vVavJzpdavW8k5SuPIDtCr0y3SQ90mYHPK2OcLvRuiG97fgZvRJ0OLxh7xc7FFt2OybEdz0XSMg86Iy5u5hovjyA7Yq8JeCDPBRbdr2nFI+7Lq9mPNH1+TyWFgc8u2TOvFhbDT280pG9ipLgvL0QtLtlwF29kuuSuwEOAb1F7Hc8KAXkvAEOgTz43ls9LDOivGsvCL3SNua8OByuuh5dxLz2MvY8mrp1vIOthTuPlhG8Qe7aOqx9Jbyd0VQ9p3n0OxX2EL25p528lNUaOxJ0uLwh8Oc82KUQvJV7bDyIUfQ7GYm0OwzKNTxSRhE94uI2O0qFL71SFvA8mGsIPLInqDzXz528UC8yPdb5Krzc0AQ9vNKRPdLL7DzF0RW8Fgdcu1IWcD22uku9ZpZQvF7VbjsQIoG8xdGVuw01r7tCmkA7D7eHPLG8Lj1Qmiu7pCc9PD3GMD2FlMO7a//mO9tlC72m06I7DTUvvZoUpDwwXha9QEgJvfo2JzyeEkG96c0lu1bZtLs8hcS8cNP2u06DzDuSKbW7gMCzPOkI/rsQ8t+8zIzjOvr4hD1NGFO94noHPZaBgD0kn5e8UhbwPLATE70WnOK85c+IvDIYfbuQp9y8AeGpvDLdpLx51UQ8BAlUPIm8bTzPDrw7nafHPCf0GLqUaqE8pZUAPU9ZPzwXdR88loEAPP9hm7wRy5y8nbumPO2hlzxKTii9isGZOmqFhLzqIjm7Vr4xPMAw4jzthuo8bZApvKRzK710JdI3ssDYvNorojxWvrG7rYcyPP7pi7t3z7u8fbJLPfKvsruwMRy9ofRMvNy63jxx7Ks7CIrZu3yyy7xL1bW7hw+BvHXElruTjPK8TmRyu/fgqbzB/ac8lTbcu7lwrjsU54480dFivBC2F70p5JG8O96ePLYULLz6RFu8AsqlPABxmbzrc5Y8rzlLOyyhz7ykSCC9N9ADPHVugL3x2r2863MWva2qjj3+voC8WU1uO+lVczwVFZC9BM0bO+pFlb3nQh+9OjxkO+7PmDyoiXW9upYAvTLSRjw32DI9wCAEOw5t6TxVN6S8zr6OvI8gkjyZgoA9xaqHPOmAfruKGia9geNCvPU+bz1jpy29oOwdu4gPAT3SybO8KkXNPFo9EL3JXxY7aWdhO02qqjwL3iw8fCaFvI9TzLx/OVm9H1xRvL8gBL2MqWK7T1SUvOlVczolDKe80fS+vS8gLrwTSEo7ywmAvPiSwjtNslk9PZA3PYRq0Ly1P7c7yLUsvNYC2jz6RNs89GFLPczmo7xaEgU8M/iYOw9lOj3x2j09ceyrOsfgt7zG2Ai9AHEZvSiLhTyzlU065Gq0PApXHz1POec8yo0Xu+fGNjslP2E7k1EJvStrnztpPFa8Vum8PN9kyDwH4G+9POZNvRRQeTz8wzm93lwZPd8OMjwDzRs95D8pPfU+77yx2wU8L1PoPN9kSDzUWHC8nzoFuwfg77zlHE07DpBFule2Arwok7Q7E5YxPV3ynjxtw+M8L5wWPFzUe7vthmo8U4ULvMWqhzyznfy8oDoFvaUlxLznxra8J7aQvDYL7bqTUQk9bW1NPJ4MhLzAMOI8ZX8YvdfffTuEatA7CV/OvOpNRLxLCPC86//cO59lED0DG4M9luj0PIONLLzebPe8Vuk8vSvnh7sLCTg7rYeyvAcpHryDYqE8t8ZEvTo8ZL24cC68+/bzOwR0D7xyyU+9h8ZSPNOeqDxVHHc7U1oAO65kVjwihZm70fztu7AW7zw1Lkk8c3O5PP1to7z6RFu8koTDvKQdFbxypnO9H1xRu3APCD3T74W9CiwUPY0dHLzZ0hW9453uu/UuEb1Q2yE963MWvEj1m738y+g8EsE8vDk85LqR2lk9mxG9uxNISj324Ck9QLaJvbAxnDzG2Ag9iyJVPEmB4jxvF7c8gjSgOuAWYTwks5q81gJaPYrBmbxWFEg8ajQnPZiCALsQD6S8bZjYvMhfFr14eSU83N26PAlfzryfOgU8yxEvPFjkg7vyKxu9IQY7vRikTDxl+wC8G3QIvVHboTwvnJY9nZhKvPboWDy5cC67cpYVPK2yPb3peE88sbipPHHsqzyhycE81gJaPd2HJL3UoZ68bQwSPFOVaTyc7mA9/0IYu8bo5rw24OE8ObCdO8KvwLydmMo8hekuuyNivTsCp8k9vlM+PVnkgzwYecE6REi8POOVP7z4mvE8DzovvQ86L70YcZK9Af1fPEozezvWAlo90qZXvdkroj1+h0A8oDqFvYnBmbsvU+g7NtgyvmMjlrx5gdQ7Qj0XvLOd/Lrej9M5r9iPvPYTZLyipmW94A6yPF2p8Lzdj1O92qeKPIibR7zlkAY9WUW/vJ2Qm7xRBi09DFoVPYHjQr0zUSW7vnYaPABxmTwAKOu889WEu9HsjzzZgTg8VN6XPAYDzLwOXQu9oqZlvSiTNL1tbc07KxpCuj9lLD1POec8FbyDvIAxKr0Cnxo9pfIJvPAN+DxA5Ao9qk6Mu3bXarxXm9W7aNsau65B+ruW6HS8Lku5OxKWsTxTWgC94ribuw5tab3fZMi7fX8RvTfg4bkQF1M9Y6ctPTNRpTzGC8M8jR0cPPbo2LzXtHI7Hn8tvZPVILxUat68nZjKPLyhJbziwMo8IVeYvRzVQzyb5rG7JuGbOxt0iDzyp4O929ULPRsAT7ySr068Haq4PNOD+73lJPw8mkT3O3le+Dwm8fk8tRzbvNAneTxx9Nq84sj5vKTEiDyDcn8+1999PYg6jLxFJeC8QfRoPSHbr7w6hRI9Qnv2PERzR7sjjci8Eo4CvVvvKLrlHE08v1ttPe8opbwHitk8M3ywvLG4qTzX3309+xlQvC5+8zwlDKe86BcUPGiCjjx2+sa8PYgIvR85dTygaAa8q1ECveRH2LxlJgy9nr6cPCKFGT3nvge9ro9huyJXGDyDlVs8SivMvFG4xTxDEgw8+JpxOybx+bwDWWI8qwAlu1AOXLtIgWI7Kk18vMK3b737GdC8SjP7uz4MoLz/Qhi8wdrLvD9CULvPStW89D7vOgN8PruTIwg8YJyIunKmc7u8oSU82YG4uzfYsjzpcKC7oxofPT5t2zxvZR49JulKveK4mzzB4vo8knyUPIZllzxYcMo7BneFPbAGkTwqRU07OWfvOw9C3jzyt+G73oekvGdUDb3pVXO8H1zRPJV/iju4o+g8FuoEPZbo9DtpsA89ggkVPTSiAr0ks5q8yhGvvOQ/KTv9mC46TX+fPJa96Tys3ci4lGHnu0pOKL0udsQ80+8FPJQurTydmEo7zOajPI5+Vzzlu5G8+Wc3vbYUrDyUqhW8iXA8PE5k8rw24OE8fKqcPBNISjyBBh89ewhiPbG4KTy47BY9QeQKuyHjXj0VJW69n0pjPZ27Jj21HNs7s42eOjOEX70jjcg8tD83vXbX6rtOXEM9O8NxPM9K1bypVru8gbg3Pfgxhz3ku5G71kuIPaRIID279zu7rY/hOm9CQr3wDfg8YPUUvW8Xt7yhpmW8uvc7PY/HhTw87vy8eV74vDj+BD2c5jE9gOvxPK8OQD0umSC9wnyGPMfgN7zR9D68k1EJvamBxrw4rac7KyLxvC8gLrwCp8m7zO5SPTmwHT0wcYs8wq9APbsixz04KRA8APUwvTiS+ryfQrS8XalwvSU/YTyDCZU7ukUjPUAXRb2W4MU8YdpnPP9CGD3KNAs9pR2Vu645yzwsxKs8AO0BPbl43bvjne48jZkEvUJ79jyYii+8zO5SOxt0CD6L90m6tvHPvCxAlD14pLC87yglPRRzVb02A748xDZOvENIPL0eh9y7fLr6PE6PfTuede688QVJvDYLbT1vQkI7tLsfvd6HJDttbc08/KDdvKLRcDoaTra8f62SPMvmI72JcLw8WyJjPYOV27z3xfy8ZfuAu7RqwrwzzY28GivavIl46zwTSEo9lKoVPAiCKjtG+tS8bxc3vd6HJLxeU1q9flw1PGlfMr3HMRW86xoKPUzVNT0QF9M8usGLvDOEX7uB48I7yF8WvLU3iLyrUYI9spXNvMpE6Txb99e8qgAlPDOE3zyvOUs9lQMiPDNRpbx5Vkm6kk4TvSbxebzXrMM8x71bPBRIyju2+X48CTRDvcK377znxrY8vEgZPIg6DDwlP2G9+YoTvRfPV7xLCHA7JvH5vFxrEb1uQkK8mkT3O+9TMDyrUYK9rQObuqp8Dbzeh6S5Xanwuk1kcjzYeQm8jscFvQcpHjxwOhM8RW6OPHbHjDw4KZA8y2IMPFoaND27/+o7z0pVvffF/Dw4tda8XlPavIRiIT2FFDo8Qew5u/AwVDw5X8A8luh0vJ2geTy1kBS8dFDdvMzuUjwLEWe8GXlBvViTJjxH13g8MHELvTUuSb21HNs8dvpGvUOWo73PQiY9qqcYPdiJZzxPKQm85+mSPWD1FL1tmNg8Q5YjPTmCnLwQMgC9ikUxvYsi1TvR9L68kfUGPNlWrTyipmW9m94CvZ9CNDxOXMO82VatvCgPHboI/hK9/buKu8U+/byuj+G8n0K0vMi1LD3h4ya7KbmGPDAoXb0NkEU91naTvCsaQj0AcRk99GFLvCoawru6lgA85fFBvDOEXz2VAyK9Q+eAvNzdurzbCMY8gri3O5Qurbz3kkI8INsvPdH0vjwihZk8wdrLPBKOAr0YeUG8DMN/vCQ3MrwlDCc90tHiPN2P0zybGWy9Y3wivQRZ4jwxcQs8LlNovSsi8bzjne48bx/muzgpEL1KTqg8BHQPPI3ykLwm4Ru9gbg3veNihTvrzKI8jscFvafPLb2fZRA7lgvRPLDjtLxtw+O8jMQPOZ1tv7ygH1i8QLYJvg9lujzvUzC86XhPPBicnbpyyU87uk1SvY2hszv0YUu8xtgIvf7pC7tedja9npAbu7IJh7z4tR68wq9APcKnEb3HvVu8yLUsPHl5Jb2UWbg71SW2PATNG7tCwa68GwDPPFiTJjxYDw+8QBfFun1/Eb1Mstm8b5MfPZ9CtLsmXYS8YPWUPRis+zzkYgU9E2smPLrBi7wVHb+7+LUePcRh2Ty81N87KGgpvDyzkzvJNIs8WDqavPy7Cr3sHQC971vfvJYDoryL90m9HofcPOAW4Tyw4zQ9/lJ2vKNzqzxEQI29HHSIumIjFr3X3/08pHMrvfiSwjz+dVK9TbJZvd5sd7nnxrY8/ZiuvJfgxTviuJs8/KDdvLQ/N71pX7I8gBb9u9j9oDsH2MA7nZCbPAMbAz2ie9o7ZTbqPFNagLyhpmU8FOeOvKmBRr3RwYQ8pMSIvFKFC72wDsC7J76/O+K4m7zZgTg8wdIcvHVugLxByV28WhKFvDH90byYggA7voZ4vIDrcTxQgpU65s7lPKDsHb1ir9w7MCAuOvULtbsdf6081EgSvDFGADz4ksI8/xeNPcOM5DvJb3Q6l+BFux5/Lb1b99c819/9vNUltjwUUPm7tvn+PKqnmLxEQI08uKNovF/Hk7yWC9G8OxHZu24MkrvEE/I8sBZvPEikvrzCr8A8SIHiu8KEtTzSe0y9yxGvu/o8LDz1C7U7P7YJu5ximr0H4O88TYdOvY1+17xIgeI7/lJ2vQLS1Dyh9My6tD+3PO+kjbvufju7uk3SPC8gLr2F6S67M80Nvc+TAz3tfru87X67PHNrCr39FBc7zOajvO+kDTykUE+89T7vPKikIjyznXy8VTckvN8OMr1A5Aq9ACC8O/OnA7zxBck8Cjzyu+fpkjvS0eI8d887PSHbLzqF6S69eV54PNZLCL3KGV48Of6EOqLJwT3NmDw8iJtHPNZLCD085k09YoRRvP6+gDxpZ+E87MwiO2qFhLw9mOY8uiJHOm8f5rufOgU8EsG8vEisbTxm+4A9wdIcPFgPjzzAIAQ8ceyrvBsIfjxj+Iq8PO58u1AO3LsTa6Y7OgkqvZK3/byWC9E5Xn5lvXCTn7yTUQm8iUUxPEJ79rxrEcs7ssDYPLAWb7yoIAu9JDcyPRLBPDwlDCc9F0ORvURrGD0hsCQ991ySvCLTAD21HNu8qSuwO2YLX70fKZe8+iF/vB1/rTsNu9A8HPifvJi1urz1NkA7g5Vbu+8oJT3LGd68zOYjPOtzFj2G6a47FvKzvFe+sTzkuxG9hfHdOnhuNzxooxE98I1mvVtwh7uw4co7610vvV0IIz2F9RQ9PLydO3kVojxjrtG8NpEoO93q4jtkmkA86XHAu0fmVrzvofe8P1S5vCnt6LtlJEm8lErDvIJOKryd+cI8gR03u5U2sjsEGJe8xnmOuyUfmLxt4he8uKTbOzRvBLwel/46MHWCvBStB72MuKU8IeXTPPSWNzrS2fy8AgB3vDS5Sjy5kEo8gqe/vHc9xDwXe9i8R1eMOn+2jrwF05K8BZPQvOuOojxNggG9DQwbvELnEr3psYI93uUgvaRa7bzmrfM81YBnvYFxCju8rSy9pNDku4pljjsvWCA9KahkvSyAQrycUli8UAtOPbFDMb22zH08+jxmvEDKMLrBxJA8QEAoPXBmIroFxEO9voUKvXlaJrz7st08nio2vSKMvjvSWQE9/zEmvIk0mzyAto47FwVhu1DVmLt8vAw91LFaO8QrOTekn3G6Ke1ovaX8Fb1vvze9ICWWvDmuCr3X/688TjPwO/efCL2Au9A7gDHIPNmmGjuLzDY84H08PJeYGD2yuSi9OMKbOwlDDLzh36K6lAW/OvzPPz2VrCm9ENWpPHsBkTuxzbk8202FPAZ/P7uPkIO8GOwNvSXuJL3i3yI94lUavKaLYDxaus08zO5JPXDcGbzappq86DsLveCRzbx5KTM8a7bmvDsadTwPc0M86+c3vfZulb0G9TY8YsJivWIzGD2P1Yc8ifTYPJ8WJT1kJEm9qE+tusFTWz3hODg8keOavGTfRD0NghK9D4dUPNtNhbzO2jg8M+FsPMzuST2e+UI8ehUiu0cXyjuC2DK8A10bPfjaf7z7aJc8S2UfvZR7trzN6Qe9xr4SOyXak7yvf2S8MWv1PNU747t+WWq8AgD3PFkT47yfW6m8ongLPHrQHTxCcZs7JwsHvc7auLv0UTM9T2TjPN5g2jw81XC8NIMVvU+pZ71+KHe8sNyIO3izO70ziNe7YGD8PFvrQDwHay699+SMvElIPT26BkK6GCJDvfmB6jyMQi49eRWiPN7WUbzxuRc8I4y+vA1W4TtCGIY8UMEHvPMgwDyAto47hxz7O6TQ5Lwl7iS866IzvbbM/bwK/gc9pvyVvc8LLD1vvze84mkrvWqFczscXAe9p6hCPcS1wTgPLr+9QECoPIWwEL3zpYa8dO9uPWleDb3p9gY9b3ozPehPnL2+yo48N9asPILYsjwT8os7nxYlPNYTQTwuzpc8D+k6vCaVDz3gAgO91KyYPGv7aj3bTYU8MxLgu7nVzrwrgMK7lI/HPIiqkjy9yo46nuWxPFhY57p11ps8DofUvCcLh7u9QIY8f55uOzFr9bwqlNM8xReoPYvMNjx4gkg7Y/NVvAjhJb30PSK9M83bO0IsFz3w0mo8PHcZPSUfGDzrjiK92TAjvQv0+rtjZIs8CFcdPdXxHLyg0aA8lTayO7TqmztjOFq9uelfO+/me7xPZOO7/M+/PSi89TwhJRY9nqCtu5It4TyIw+W8Z0GrPIrbBb3CyVK9oyl6vRGkNjwpqOS7Gj8lPQIA97y3n5k96vtIPdMKcL1jvaA8QrYfvBGkNr7ydBO9IzOpOzPhbLytCW078I1mOyw7Pjx55K68wz9KveaUILw8X/m8zDNOvSoeXDwaDrK8potgPU4z8LzTxeu8QnEbPUPTAT0p7Wi93mBavDB1Ar2ALIY9UVBSvA6HVDuGYf88AE8IPNUn0jzLeFK9yaD0vPyZir3CDte8UsbJOxxwGDu4WpU83mBaPCdG/ryDCSa9ZYYvPbDcCDtj7pM9lI/HPPSCJrz/MSa8x++FOiJWibxGcF88hbCQPEK2H73FFyi830cHvBDVKTx6FSK9bLZmPDokAr2NLp089uQMPcHdYz18d4i6HHCYu+DCwDukhp66k9TLO8UrOb3OlbS86UDNuoEdNz3D9YO88f4bPWSpj719sv84XmoJPPefiLw/3sE8A3ZuvPr3YT08S+i8lErDvFYxgTzzYAK+iHmfO+Fpq7v9dio94Ti4PAAelbypgKC6+BUAvDfCm7r0x6o7j9WHPmoPfD1LlpK7LIDCvNPF6zyq4ga96ICPPaMp+jxjac286cpVvM7GJ73iJCc8yDQKO9SxWjyL4Me885Y3Pbdz6LztvxU9bc6GPTB1Ary93p88OX0XvbN0pLy+yg49kRD/vEkDOb1b68A8ekYVPPjaf7z0x6q8TNsWvL77Abthke88VM8avbjp37y40Aw8PEtoPElIPTwbP6U8lEWBvOeZYroAHpW8GoQpPaiUsTxp1AS7BGJdvJU2MjzB3WO9wSLouuEkp7uUz4m9sBI+vGfolbzpytW8ztq4vKVBmrsCRfu88u/MPLFDsbsbhCk8/buuO1ida7tpjwA80CgOPRIGnbyrJws9uyMkPTdMJL0Pc0M81/+vPLlaFT0+qAw8/FQGvPE0UT2xiLU8i5vDPP0UxDyetD49IzMpvao7nLuXmBi9b7+3vEfhFLt8dwi8nFJYO1GBRTz4lXu8cWYiPduSCTvWnUk8vJkbvdM2Ibz0x6q8P2jKPKTQ5Dv8DwI9PvJSO5wIkrqtCe28Tx9fPfQ9Ijzd6mI8iMNlO/pt2TxtXVE9uFqVvLefGb3PC6y8nbS+PPQgwDfLR1+9diDiPIz9qTw5JII6Kk/PPBhiBT0kqSA8ZJpAPJ2Dy7zE5jQ9AgD3vHbHzDwKuYO5a/tqO0U/bLvepV69dHl3POS3AL0jAjY9u2goPa/wmTwlUAu9XX4avP/YED1tWI8960mevPJ5VT1Xsfw7E3yUO/AXbzxdkiu9ICUWOwawMr2V8S292EQ0vGgtmjyw4co8k9TLu3x3CL0AHhU8yhZsPLoBAD1HF8o86+c3vXbHzDu+DxO7Wc7evLjp37xOM/C8EsGYvBIGnbwbhKk7d4LIPOuiMz3Xnck8tsx9vDk4Ez3zIMA93qVePSAq2Ly/Nnm8pJ9xvBisS70NgpI8dn0GvHlutzySLeG8pgHYPLFXwrsbhCk8LictPZKj2DxTsjg8fbL/O34U5jy4pNs8Mw0ePCUfGL36PGY9RA75OypPz7snxgI+3mDaPHBmorwjjD49hWuMvH5Zaj2aq228+Nr/PPo85ryd+UK90LIWPMfvBT1cHLQ8p6OAvEwMirxIAzk8NLnKO7CcRry35B08ZkGrOxndPrzDcD27fDIEvYpWvztvejO9lIqFO0dcTj14+L+8gXEKvSCDbTwCu3K8py2JPLDhyrxoLZo8SQM5PfyZijyoCim8OX0XvaeowrwMJe67Gg4yvZ70gLxZE+O8FwVhPGijET1SKDA9elomPSD55Lst9jm80lkBPO1mADzxQ6C8RbChPapsD705OBM9SM0DvUCFrDz6PGY7Je4kPZuXXDw2dEY7kRD/vD8jxryDCSY8sOHKPAMxajx2x8w7pvyVPDeRKL3JKv28vzb5vHmzOzwzEuA8FgVhvWLCYr04TCS7b7+3u3kVory8rSy9TFEOvWVVvLszzVu7sBI+vYBAF7zqXa+7WrULPZ7lsbwM4Gk7eDgCvIy4pbxS9zy8vkAGPRFLIT3h3yK81fbeOmEbeDwJzRQ9N8Ibuw/pOr1b60A9WckcvUuqI7xwqyY9PTIVu8kq/bv8KNW691qEPHKXlbvFXCw8jLglPPED3rzW3Yu8eSmzvCuAQr04TKQ6BvW2PA+HVLwsbDG9gk4qvDPN27nVIpC9EvKLPJo1dj3LAts86ICPPK46YD2GHPu8/A+CuzH1/TyzL6C8SI1BvcbSo7xTnqe7kujcvORBCTttzoY89D0ivQXTkr0SS6E8r7DXvF/gAL0Wj+m8ag/8vJEoHz3LhyG9GVO2u7xoqLxwq6Y9cQ2NOS2dpLxbKwO9R+GUPRhihbwqT888Um20PDqkfbxuSUC8F8BcvBWj+rvrXS89dpbZvOYj67wfr568eZ+qPMc0Cr0u4ii8y3hSvMLEED1myzO8/qcdO+uiszpF+me8DVGfvB/IcTrp+0g8UYHFPHO++7qkWm08S6ojvbK5KL1HJhk9lM+JOh+vHr0GsDK9jIeyPNf/LzwG9Ta9ewGROxlTtjsNVmG8o+R1vQ8uP739u648EsGYvEPTAb2fbzq81LHaPLBSADxOM/A7mnr6vEfmVrxPqWe96faGvMy4FL4hW8s8bc6GvDaRqDzG0qO8Wcmcuw79S72Rt+m7N0ykvOIkp7xSbbQ79uSMvVTjKzzPPJ+77TWNvF5+Gj0KiJA7OTgTvUjSxTyaNXa8UYFFu9CyljuXmJg8hMQhvan2Fz0tO748QECoPAgmKrwkvbG8ou4COeS3AD2jKXo8UnwDvWMfBz12x8y7kbdpPXwyhDyd9AA8W2G4PBwrFD3O2rg8Se8nO8M6iLsxa3W6iWrQPIy4JTy4uGy9wd1jvXmfKr0LOf86PLydvF1Npzqx/iy7rsRoPAVOTLyaNfY8pjJLvUPTgTwkM6m8UJXWO2leDb1MxwU9dTRzvWjoFb1w8Kq8Gj8lPa+w17yBHbe7GGfHPKYyS70rxca8wZjfPHf4PzxlyzM795+IPAQd2TydDdQ8Um20usGTHT1werO8KahkPFthuLxTsji9t3PoPGVVPDyyuSi9k1kSvftoF7vvXHM80lmBPLASPr2hRxi9FgVhveeZ4ryltxG9+cZuPGxAb7wGfz88geeBPMbSozxd16+8BQlIOgVOzLvB2CG7gk6qOpH8bbxPqec8myFlPFthOD18MoQ75EEJvLe4bLyltxG9OmmGPKSf8btzPgA8nNeevG8EvDz0DK88ZDhaPDNX5Lx/AFW8sBI+venK1bs+rc686AqYPAVOzDxjH4e7ZN/EPNoIATw1+Yw80tl8vS4THLzx0uq6h9f2O424pbs2YLW9oyn6PLtoKL03TKS8ep+qO39FWbyb3OC6GKxLPA4RXTw9N9e8lHu2PNKU+DwHay69x3kOunENjbxJAzk9Gd0+u5m//jzXncm8KAH6PEuqozzDOog7bHHivMIOVz2e+UK8A3buvDW5yjwPc8M7Z+iVvFJttDxtWI+7ukaEOh5S+jnV4k08eW43Pd257zzohdE6gecBvQ8uPzxb68C8VOOrPNU7YzzBU1s95pQgPDZ0xjxatYs9VEWSPdphFrulvNM8AB6VPPQ9ojvV4s2871zzPAPsZTwkeK28jqSUOxFfMj3V4k08bOKXPXVl5jz/2BA8q2wPvHHIiDwFSYo8+60bvWe3ojz0gia9I4y+PA+4R72dg8u81SfSPCqUU7zdoBy9iMPlPHXb3bshb9y789u7u83ph7sbya28bJ2TvHpaJj39FMS8uQGAPS+6hr12ltk8WysDPeJVGrwD7GU8aOgVvaLuArvqGKu8wPH0PAAKBLtcMEW7PJDsOmhejTx3PUS8NnRGPJm/fjxUFB8755niuw1Rnzwp1JU8q7GTuzvVcLtmyzM8Hw32vA+zBTxIuno8lETtPHQ8R70+yay8+dSPO0AXqLylNh273UoUPV2bAjv2jDU8htsVvctYZDpltaO85r5yPMn+pruO9ba8qvyhuwUOuLtz4gk88WcNvNTv9Lswoue7F901PNKhebw9dRA9smMDPUIRB7v5h8+8sLwFvKO/TjtEEkI6CFyzvNWW8ryxP5a7hmpou1WNIz0dc4u7AsC8vJaSaLyOTrk8HiAqPOayMLxVOsI8uNxHOy/vJzmMVNq8d5BjvIxU2rzDi4M5p7pove/AD7xz6Kq8QO2ZPRk3czyHuOM8c5vqPKPigL035ds8dpBjvdTv9LzlXhQ8un2kPEwCVb3622u7ty+pOyB0xjw8e7G7rKMfPVwq1bwFDri8+yILvDblWz3fIUG8ZQgFvYmywrxRS2o78PbfO/o07jsX49a7ODl4OoNjjLx1Qug8kvbxO+UX9buSl868g+YcPFGeS7vL+IU94sl5PEdanL2HWAW9pgcpvUK+pbyAzvG8vB4BOw9MxjsUm3y9etIcvDyB0jymWoo89VwGuzSX4Lr1XAY9TlBQvbswZDxOVvG8/Hanuz7PzTxRRck8tykIvdlVG7uOTjk8m3ufOr3RwDwikpK7663KvAxRrLz9cIY7u9dhPSdeODySne88ob4TPRPoPD1Z4vq7mS0kPKU2nbyymVO9FzCXPIMWzLyT5A49QHCqPLmDRb2YqpO9+XuNPEM7lb2TRG08h9sVO5SRLTxGYD09Wol4vQGQjTyymVM9z5odPa+eubzk2wM8dJtquzGcRryK0I68cKDQu+5P4rsivCA9Jbc6PBCg4rt8Jjm7TKnSu6ZgKz3unKK88z46PbqDxb1fcq+8c2UavcBz2LwnLgm9kBMDvLeIKz1NozG8gMhQO5LqLz0XkPW8SVvXvBorMToQw5S8iV9hvHDtkL1tpTa8iawhPYsG3z29SI88/XxIO2BsDr1GZt68kuqvvORkNTxtWPa88j46vO6cojyxvAU6iwbfvE6dELzpU408i61cvJcDlr0jOZC7KawzPQPAPLznL6A6vcufPOr6Cr20CgG8k2cfPHSJh7zJ/qY73Sdiu6DK1TvDGta7UTmHuxetBr15T4y6C6SNPAz4qb3BIPc8oMS0u3CaL7s1CI48aA/hvAkDMT3bMuk8luVJveLJ+TwMzhu8VjpCvTn9hjxwagC8eeT/OKJrMj2cLl+9oWuyuzwu8Tx4foA8E/R+vGMaaLpFiRA92yAGPRmEs7zuokM9O4fzu2HGS7vQ+ns9MknlO7swZDuTZx86zckRvYNprbyzmVM8zqbfvNNCVj2pqAW9LkiqO+lZLrskEL28FO7dO5HqL7zOcA+9qagFPfPxeT3cgGQ8X0IAPGlXu7ycIh28Kl/zux9Elzxibcm7LPquvElb1zx0lck8cU1vvD3V7ryreRG9EOeBPIweijyXAxY8XSQ0O97xkTxMr/O60uiYvFfbHj0c0i66NGEQPBmEMz3MUkO8xQ/Pu2+mcTzJV6k8LPquvIAbsjx+zTa8jU45vWNnqLxqCvu6HtPpvKHEtLcnLgm9ROKSPbBFNz12kGO9mYdhu2iAjrzXMS6+q3mRvQDFIrxr/ri8pWCrurr6kzp6Twy9S1U2vOxUSL0Q80M6VufgvJQ+TL0dIKo6fYB2POPD2DxL/LO8VEBjOOvLljwNpUg9gMKvvHiKwjvsVEi9fSCYPRjXFL3vSUE8HhoJPaDK1bot+i49wMY5vSytbr2y5pO92nmIu7p9JLxFbH87T6RsPZRE7TyrAsM7Asz+vPXlNz2YAxa5plqKPf8dJT0VPNm86vqKPMa87bsPUuc63XQiPcRo0Txu//O8toirPE4aAL3sTie8AHJBvYpZwDy0OrC8my5fPBM7njy9yx89Q2vEPK+kWjwXrQY7zfnAvEK+pbyDCoq8QzsVvfjgUb3wwI87w4uDPLQKgTzlF3W90kh3PGlXu7zWWoE8BrU1PYW3KLzoU409pLmtvOp9G70U6Lw7gM7xvZblSbya+I67MpCEPMhRiDxlwWW8YBOMPNH0WjxyOww79+byvNSzgz5ORI48E/R+Ox90xjt62D08YRktvLAViD02OL08N6+LOxjjVrw62tS6hMPqO4K8DrziFjo8fZ0Hvep9Gzx7LNq8bRwFPcufgz1b9AS9iwC+O4ynu7yZLSS8VEBjPCQWXr34qgG9/M8pPHFBLT3J1Jg79eW3uwgJUrsGCJe8oMQ0PfsiC717eZo8+KoBPTottjyiZZG800LWPBM7nrxItNm8+oEuvG5GkzwzPSO8uDvrPH/rArwPTEa88kRbveVktbyeI9g8lTirvOuhiDpfH848GOPWvJ6C+7wPTMa8cUEtvU9EDj3N/2G8sT+Wu3DtEDz+ykM8G3/NO2JtyTwCGb84XtHSupmqEzx60hy8r24KPc3/4TwAbCA9TALVPDJJ5bwiFSM9ZYuVPANz/DytUL48iawhPYEVEb1WNCG9CFyzvHPoKr0IVhK90uiYuisjArwhIeW5IWgEvU4agDyZ4GM8AGwgvXOPqLuMs/27f+uCvBSVWzzMpSS8sJiYO0W/YDz6NG68ZBTHuUQSQjzJBMi8OTl4PLHyVTxMcwK98/F5PK1KHTzhIny9bsOCPBP0frz81Uq9itAOvS/1yDzhb7w8xWKwvMtY5DyENBg9iAWkvAkJ0jzYMa684GkbPYS3qLw0YRA9wMY5unPoKrxvaoC8yQRIvE4aAD2MrVy93nQiPII/Hz1zm2o8i/qcvBVC+rwtoaw8BRRZPaDENLyrqUA9SNcLPUBqibzZ0go97nKUvEK+JbyHWIW9uzDkvME9CL2ddjk8bRwFPbweAbxixku9DFdNPIgpkTxmYkI9wxQ1PXfdI72gHTc8uOJoPHSVyby3KYi9385fvd/IPrw4hji4yrHmvEwC1bu712E9svLVPIVqaDwEYZk8VuE/PRWbfDxJYXi8abbePMp7FjxyO4y8QnFlvGmwvbyiZRG8kUMyvV2bAjwiyGI8KqaSuDwoUDy4KQi8p64mPAuqLrxwoNA8hDSYPN10ojy/Jd288EnBPejWHb3PTd080PTaPXH0bDws+q68Ahk/Pf0jxjt+bhO87aJDupW1mjypCGS9Njg9vZv4jjzlEVQ9o7/OO1eUfzxwF5+8VufgvN3NpDs2Mpy8vUgPvHU2prwbhe47vni+vM+aHbtAcCq7440IvRmEM7wx6QY8iwZfvMylpLwVQvo8nna5vD7PzTx33aO8sFH5PEvMhDx89ok8Rrk/vKMSsLyiZRG8dAyYupczxbxKJQc8SlU2vea+cjtSPyg8r0tYPGurVz00l+C8WoPXvOEc27zQ+ns78j46vC2hLD0vSKq8niPYPPFnDb0xliU9b/lSPVsw9jw5J5U5lzPFPGVoYztpY/07X3Kvu73RQD3xZw28vu8MvGQURzvDx3S8/HxIvSa9WzvK/qY8oxjROogpkb2nhJi8E/R+OyB0xjy53Ee8jK1cvZ6Cezz81co8tZTtvHwmOb1U4IS8zflAPLbbjD2Sl868PSIvPCDBBr08KNA7z01dPZiAhT2RQzI9K1MxvZW1mjz1jDU7EkfgPBmEM7y+H7y8bv9zPbwkIjzuchS8VjpCPdfk7Tta1jg86dYdutJlCD0R7aK8L/tpvEa5PzvJBEi8denlvAx1mToMUay8ZbtEPIPmHDzQ7rk7xMFTOqhbxTutA/47ek+MveEifD0Hu1a7F62GPAkPczxhPRo900JWveDOX7xAF6i8BGe6u0QMIb3bIAa9qQjkO8lXqbtAHUm8pwGIu0LExrw5LTa9jk45PJFJUzwKsM+8DZ8nvTmGOL3qfRs9Sq64POXbA70msRk7aaqcPTtLAr1oA5+8as6JvQz4qT1Krji8QO0ZPZmHYTyXhqa84sn5vHsy+7wjb2C6TUovPSkFtjthlhy9ttsMvVg7fTyzQFG8togrPJNEbby0OrA8W302vLTtbzwNq2k8OIzZvKW5rbrzPrq8ZbWjPG5GkzwNdRk8eKiOvB15LL0ofIS9c+5LPaZgq7tuRhO9C1dNvZaS6Dy4O+u7UJiqvNnSCjyDaa281Dy1PBIRkL1Uk0S93XrDvC2hLLxX5+C4LfouvSh8BD0wbJc7hMPqPBbpdzvTQlY8KllSvO8ZkrzNcA++XtFSPehlcDxeeFC8niPYvBJHYDsX6Xe8ilnAvIJvTrwqslS7Lk7LPBkrMb1vpvE8oh5yu8bfnzwdeSw9lVwYvRNBP73zSnw8bP64u0LExji224w7gc5xuzDvJ7yjv049GOPWuosGX7xZL7s8Vi4AvY4B+bwJtnA9TKOxPNBHPLzLWGQ9v9J7u1mmCT243Me74ha6vNXpUzspstQ8z5odPQqqrjzbJqe8E/R+vDwoUD0VPFk9ByyEvVrWOL27HoG96gAsPDblW7y7+hM9EpQgvBjXlDyxvAW98EMgvC/FGb1mYkI84sn5vPKXvDtX2567Q7gEPXfdI725g0W99+BRPFLsRj2wRTe9FzY4PA6r6br3LRK948l5u69uCj2SnW89FgaJvA9MRjyGaug8suaTPFFLaryx8lU9IhUjvcS1kTya2kK9RGUjvVGSiTwB6Q89yVcpOiFoBL3GFXA85GQ1PIyzfTycIh29a7F4vG7DAr05/QY9LaEsvcOLgzzjEJm76gCsPEUGADwAbKC8vcufvCtfc7xmr4I8z1N+vEolhzsHVpI7lTgrPZCctDy24S09iaaAPHt5mjsMUSy8D0xGvdp/KTzz8Xk7h7hjPINpLb1WLoA8OTn4uy30jbw9dRC9d4ShvMUPz7ug0HY6sey0vGLGSzzfIUE9RBJCu4weCj2jEjC7sFH5PHFBrb0uHhy95HD3vKW5LT0W6Xe7RmA9va793DxRnsu8mDNFvXzTV7tz6Cq8aAMfu/rb67zDi4M8z6C+vFn/iz3fmA89xWIwPFbhP7zahcq8so0RPIGSgLy4L6k8BoUGvZK6AD3oZXC8OjPXPK+eubzFbnI9ICFlukO4hL2gHTe8+YdPvKPiAL1jZyg7/EyZPMldyjujv866SX6JPGcPYTxO90093m6BOhetBrzc08U7JOCNPC9IKj1Iuvo7sEU3PTGWJTusqUA89YaUPWNtST0Y41Y8y6vFOYpTn7qvboq9Y2eovC/1yDzTlTe89OvYvG0chbya+A68I2m/O/HqHT0GCBc9omWRPGHMbDzrrcq8hV4mPP8dJb3q+go8rQP+vAIZPzux7LS8jLP9u+YFEj1uRhO88fC+u/zPKbzTNhS9vn7fO5SLDDx6hdy7i61cu3Puy7nfyD493vERvc7znz3PRzy9hI0aPVopmjx4hCG7I2k/vOqnqbzxZw29FgYJPVvWOLsTQb+7qvyhO++WATyOSBg9DEuLuyZk2TzKCum7vyXdOxBGJTw1RP88tDowPR965ztZ/4s9g2mtPIDI0Dulua07r0y9PHZX3zw/64K9yCPEvP2iY7wMpDk86PYBvAddaT1V+RQ8kJgzPIMd1rw5ywO8LZOiuSA0cDoEcCw9Vh3dO8uhn7yGwgK9b40fPbDSNbyGdGC91IqTvDoLd7uNQak7Tp62O1jCCT08ke+8/jOCvBJSTjwM71I9+ZZyPP8o3Lw2TSg9SQxNvExjVzx/XP47NwIPO80nmLwH7ge9s3TZPJpSubm4LZS8CU0vulRMy7wprgI8ozMQvTsqK73nswW9ahdhvLw5hb14RyW9O5yVvDKzoT3RdgU9yCPEPEkzHrpu/4m9t+oXvbzjRb0ahtu8RgDcuhGBPD14uQ+9xEbBOuMWdrxifA8917rMvJOFcDx0rZ68lcBPvVRznDzky1w9WpObPPkAQL1cgFi8biNSPCbG2Tt82Q68cgDVPNU01LyGRfK7k++9PKxcd7s2mMG6SnYavascBD12V9877lb0PAl0gDshUyS9+XpHvW7YuLzMek68yxOKvBE2o7mYYvO8bz99vRMHtTwLHkE6iRkNPdOuWzxqZYO8yEqVPAZBPr1vQoY8biNSvGYWlrw8+zw9ta+4PKschLyaB6A8D5H2PFKqpzsIfJ27S5JFvPoAwDvERsG8E275PJQL6TyO9o87qVOPPNDwDD3KXiM9Cmnau5IerLtgQbC8twZDvJ303DwKado5ta84Pc61rTwNwGQ49UqOvaschDzaXPC8nNAUPN+/a7z7ao08AYDmPP3tfL2W3wM8ZYgAPV01Pz3njDS8v2m+PAGAZry9mCy7CDGEu0ZqqbvFF1M7cBMYPfFGurvSKOM7JV+VuRzoCzw7Kqs7J5frukJCDT2sX4C9jLuwt3BeMbzKXiO8DO9Su8zkm7yw0jU9iK+/vHlj0Lu2ZB89Cb8Zve/nEr2H3q05gBFlPGBogbsHxza94HRSu6g02zz2I709L4BfPMuhnztrzEe9GtH0vJkHIDwILnu8P+h5PAseQbtifI88H7GAvQc5Ib3iReS7TK7wO9TNj7xnWZK9uAbDvDmksjyandI8JV+VvAKfmjxR9cC7/IY4PI3XWzvBWYS8Nr+SujNBN7tm70Q8zC81vBHM1bvNlvm81lD/u68BJD2QCp693R1IO0AHrryThXC8rPUyvPVu1ryaUjk9Cb+ZuoWjTr1SEew8LzVGvI1BqbmmY8k8daL4O3ZXX7tT4n09VExLvZpSOTw0qHs8RFabPHp/e7zqLli8JntAPZ303DwnKAq8B8c2Pbx8Abzbe6S5PjYcPWr7Nbsotp+7bQcnvFH1wLxdu7e819b3O5hi87yS0xI97YVivBNu+bwQZRG6TRg+vYJMxDwNWaC8e56vvJpSuTzpx5M9gkxEuNxzBz0vy/i8fhwLvCHFjrrcl88899CGOzNoCLxLksU8/gyxPK8dT71laUy9c9yMvGaF9zuQ40w8gTCZvLBoaDzdRBk9aMDWvCeXa7x6GDc91BgpvNBXUbwph7E94a+xu7DStTm79gg9hsICPWMubbyRTZq6FanYvL2YLLy2pxu9Q164O1tkrbo3adM7mlI5vT6BtT3BWQQ9rXurve1hGr073xG8AWQ7vsLnGb33P+g7ta+4vI8SOzx1OzS76i7Yu35AU7wkHBm9rXsrO+6kFr3AhWm9uC0UPMXMObt4RyU99iM9vJG0XrsW5Dc8jUEpPSmuAr0bpQ+9XTW/vMedSz25cJA6vDmFPBm1yTyjovG7FhMmPUjwobyHRXK9MVHxvCx0br15rum7UCSvPH/1OT0ur808ReSwO2Mubb3jgEM9CZjIu/Gwhz3G6GQ9H673vAwLfry9Ll+8Qf8QvFDZFT3ds/o8BzkhvJ561TuhHHm8DMsKuzoOAL3Phr+6W2StvBGoDT3HnUs96PaBPXWGTT1ECwI8jqhtPE7pT72RtF45p80WvQNUATwAkym85rsiu3iSvrqSacU8w20SvYhkpjpfs5q8GQBju9P59Dyqbzq8MQZYPd1o4bysqhm9ETajPGCMyb143dc6EcxVO7E5+jw+Nhy8xYEgvKc/Abwe/Bk5I9mcvBlqsDs9ZYo+aJyOPAPqMzyRkJa7hVg1vITu57pk/3490DMJPapvujx+QNO8Qo2mvIHidjwKRZI8f1z+O7dcAjtOnrY8UYvzvMT7pzsfP5Y98hfMvFH1QDxe4gi9V+5uPDXjWj0/vJS9LmS0vP4MMTwMOuw8IcUOvUHYv7uw0jW7eoIEvT42HD1WHV29waSdPEkMzTx4uQ89WKPVvPkvLj2GUBg8y6GfvHzZDryZ6Os7we+2O8LnmTx0rZ47EusJvEorAb3Z7Q49LtYePT6dYLydXqo6zmoUPM87prt3way86V3GvEvdXr1eUeo8AhGFvISHo7ulRx48Z1mSPIZQGDxNGL48UzAgu73jxbs07oA8ydgqvfGwBz2txkQ91IoTPRMHNT397fy8OsBdPa7i7zx3waw8DnXLO3zZjjwsKVW9geJ2vNU0VLtf1+K83jnzvPToXTwp0ko8fW/BOxs7wryPErs8axdhOlGLc7x1OzS8xRfTvI3X27yGwoI8mGJzvHqCBDubvAa6Bdfwu0hiDL3X4R08pUeevK3GxDyMcJc8BLvFOx5HMz1f12I8re0VvYvigTtwhQK95MvcvNBXUb00Esk8MxJJPGhGTzx4R6U8zmoUPeUtDb2NQak8APrtvJM6Vz3gdNK8ijU4Pfu1pjuW3wO8Lfrmu+7vr7z3qbU8IVOkvLlwkLxXPBE9aEZPPF27t7y2Fn29gO0cvKI7LT1s6HK8mYGnPPaNijx5Pwg7eWPQvMPcc70rKVW8WXRnvZ/kIr39fpu83bN6vFEckjxhXdu8bJ1ZvfKtfrsRNiM97YXiPPgQejz+wRe9GWqwuy6vTTtoKqS8aWJ6vf2iY71f1+K8yvRVvEXksLzvdSg8vBI0PcnYKjzstFA8S5JFPVb5FD0ib8+7L8v4vOKQ/Tx5Y9C7vQoXvV5R6juRHqy8pUeeu0TIBb2sXwA8pbmIuxJ5n7yjV9g8M/YdvHhHJbwkqq47ny+8PNBXUTy7Xc26IpagvBJSTj3HeQO9XgbRO+3Q+z2/HiU8X7OavIa/eT0UjS28o6LxuyaiETxCjSY9avs1vWr7Nb2EhyM80pIwPQpFkjtAUsc8H673u8T7J7uhH4I8Ei6GuetpNzx3dhO9cXrcOO7vr7wjSwe8yvRVuv4MMb3ohBe8xLAOPVijVbxjLm28E7wbPeANjryjovE8o1fYvBE2IzycP/Y8qQVtPCA0cLxSEey8kONMvIpcCTuoNFu9R4bUPIviAb3Zxr27avs1PL2YLD1lRYQ9BWgPvBofl7zn1028s3TZvL+QD7zn1009HpJMvOwenjwKtHO8zOSbPM0ccj3LxWc92sY9uoferTxqYno8s1CRvMIL4ry948U8VAGyPMnYqjwx4g+9x53LvJAKnry9eXi7v7RXPM0nmDzF84q99/TOvPOBmbzK0I08cgDVvOB0Ur2vASQ7XlFqPLXWCbwrWMO8ZoX3u73jxTtHhlQ9ruJvPD95GLxnpKu8amWDvCmugjy1r7g8ea7pPFb5lLzJ2Ko86RItvKauYj3SBBs8sDwDvOoKED2LLZs7JV8VvAykOT3yF8y7VOUGPWjAVrxwXrE8+xzrOdyXz7uzUJE8jHCXO94587yandK8RmopvWUes7s7Kis9zFaGvHvpSL1F5LA7Yaj0u2XTGb3t04Q9uqhmvANUAT0M71K7YscoPd22A70YtUm8S93ePBjcGrxzHwm9h94tvT6d4DyCthG8MxJJPPoAwDuLLRu9Enmfvc47JjyFWLW81BgpvPGR07yRAgG92aoSPQzv0julKOq8HXahPAmYSD1ubuu88zP3vDCfk72lkrc9PWWKvEHQIj3n1808se5gvI6o7byaUrm757OFu0WZFz1pZYM7ElLOvBvwqLwF1/A85MvcOtF2BTrupBa88NzsPAVoj7zDbRK6LN67POYGvLsJv5m8kR4svPqWcjvSKOM83bYDvEEj2TthXVu9zScYvTOrBD1PuuE7RFabvCZ7QL1hXds8UqonOy4Zm7zaXPC76PN4vLVFazq8ErS97haBvTpZGbw9ZQq9myPLvI45jLzSuQE9CU2vvC/LeDzCwMi7hilHPAVoD7we/Bm9n5kJvpv/Aj1Q2RU85nAJNBZev7ysX4C6RmopvUfR7bxjTSG912+zvCHFjrgFaA+8GdyaPAb2pLyNQak8h94tPXsQGr3S3Um9a8xHPQmYSL1oRs860PAMPMXzijwM71I6fbraPJw/djtodb28IM0rPKI7rbybvAa9GmKTPC/LeDx2V9+8aoEuPQ1ZoDzEYmw9qH90O1zL8bwfGEU8ukGiPOQ1qjxaRXk72aqSvOGThjzCdS89FguJPLic9bwlXxW9Ei4GvTsqK7w/6wK99W5WPR5uhDzhUIo8oLU0vYmA0TwG9iS9E7wbuxUTprtwqUq7wBaIu/3t/Dw/6Pm88hdMvfw7n7vY1nc9hlCYvQlNrzwphzE9O98RvUhiDLzxkdM88vMDPV/XYrttUsA8X9fiPLhR3DxoKiQ7JPVHPeci57yUWQs9sGhovR+ud728fAE8RtyTPCSqLrvZQMW8v2m+PJECAbvZQMU72NkAvdV/7bx5Y1C8V+5uu6KtF71cy/E88hfMvDwiDrssdO4538oROzG7PrvoQRs6jjkMPNdvM7waH5c8wGEhPajpQT1cgFg8FguJPVij1TtAbnI8Cb8ZvMpeI70O3xg6aUZPvfbYIzzn1828W/pfu79pPju9Cpc7pHYMvYfeLb29Lt87v7RXvIB7sjiThfA83HOHPB25nbnlnG496nnxPCRA4Twgzau9/93COt9Yp7yul1Y9aCokvYB7sr2u4m88Kw0qverjPr0eboS8ZYgAvc5qFDsCEYW80XYFPZXAz7ywRKA9j3n/POtNjDt9b0G7yG7dvMd5gzyA7Zy85nCJPBxX7bzuVvQ8lXW2vAq08zji+sq7Im9PPSbGWbyaUrm8hO5nPFYd3btrga68ydiqutiL3jyQmLM8cPTjvFH1QDzMes48PEbWPDjTIDxIYoy8iNaQPEnBszwEBt88s1CRPBWpWD3OOyY8TsWHPFEckj3iRWQ9X4zJuzKzoTgeR7O7PoE1vVAkL73r/+k8m/8CvWpierwvy3i8vx4lvSi2Hzp7xYA9HpJMPWWIgLzE+6c8qZ4ovDrAXTzUY0K9pxiwPFv637ym+Xs8nNgxvRT0cbzCda+8n+SivMedS7zIufY8KLYfvXViBbyzv/I6JjAnPMXMObyvtoq7HXYhPXvFADvsHh49rpfWvFSX5DxmOt48S5LFOyYwp7zdHUi80XP8vDxG1rulKGq85VHVvJqdUrwme8A8xEZBu0Fu8rwILvs8DiqyPMcHGT0uGRs8Yah0POkSLT0GQb68E7wbPW8//Txwqco8KYexOzrEEr2PjhM9xoIxvXg+lrw8q7G8kSFXPFL7rjwe7i89BFPHO3aEtzwadgS9Qc3KucGN2LvP77U7tAByPUoR/TyHhxK9Zf6JvLnICjwvyu+7W5EFvbZih7zyeL48CceEPO0tUzxyOUw80zxYvUGiQb3karw8bZaXO10ikjw0lna94KBsO8bYwzvJ+ly8rDukOySfnrknBaK8HsXdvKP5qDzPxKw8TB0AvJ7Zxjv3Qo47YGF6O9rAhrwr0Si9vcFRvcNFAD3eYYS9p3HUvMGNWLzDxhs91zPovMObEj2pVIU6DySYvY0oELx2hm69mTjJvB7urzrB42o9OImYOpDNe7wmsUY8VYoEPZ5Yq7zAYs88p0ZLvPXcCr183xM98vciPaJ8+7yviv28RXD/vPUbc7vBDvQ7OLQhvauT7TyK7RU8yqTKvOUUKj1ckzw86Th6vLh2ZjwQC7c8RNuEucYDzbttQjw7g+hLvWl47LxOsvq63x/RO/YZPLw0wX88dy6lvBXZdL1OMd88ucgKPQvASzsNvpS7cgwMPWLumDwh0xe98c7QPP+vEr0Zpfs8TrL6POBIIz1X8j69++XCO6fFrzsn3M887VjcPKl/jrz/sUk8xoIxvYwB9bvxeD48vWu/O2UAwTxBTmY9r9yhPCt9zbxt7uA7sIhGvZyclbz4qBE902dhvCMOkj3gyT68DGo5vSaIdL2a4rY7cuGCvGn1mTxOMd+80ubFPJJamjxpeGy9ovkoPfZGfD0rqNY8bsGgvBBfEj0UgSu9/wfcOg0UJ7zXM+g8kfbNPLyUkTw4i088V3NaPU/Zlbw44eG7BCYHvM5w0bzuqgA9UyY4O4fdpLny+Vk9DGo5vdJnYbpx5XA8ok+7PPu6OTyDlHA8Ayi+PEwdAL3BN0a6dMghvN23ljoGjAq9vJSRu6NNBD3Su7w8Z4+WPZWXyzwZ+VY68qPHvHp7x7wHcyk8B/Z7OvqR5ztOsvq7zu81PKJR8rzd4h+9s6govF4iEjx3Wa46OLZYvct3Crvgxwe89m/OPGCIlbxXSFE9O8SSPJelhbuk3hA8+o8wvOVoBTy5ysE86WHMPNNlqrxMcxK6J9zPvBWu67y0API8GqNEvTyrsTwn3E+8+xDMvM9FyLv6urm8Fdl0Pcp3ijw0QGS9iDEAu02yerzrmg899kb8PPIiLDwCQZ+8EA1uPdunpb2/pIK7cmIePZ6sBj3b+wC9FYNiuzSSiD2RyY06meRtvCE70jxcPao8tNVoO0YYNj1CIaY8YDbxO/7cUrzOxmO9Hhk5vQjJOzwMvhS9zu+1PODJvjxX8Ie8vb8avTNrbbz2GTw9mYykvM3G47uZCwk86TSMPE4vKDutSxU97dfAvHaxd7xhiBW80mUqPHum0DwaTbI8isIMPUEhJryyF5y8JzCrvaJPuzsrJQQ8Y+4YPbyUkbzNCJe8Rhi2PIqXA729wVG914dDPTSWdjye1w+8aU3jPSIQSTw9gt87HsVdPGdkDT31G/O7tyBUO3XaybwVAke85ZVFvFtq6rsexV08co/eu1MmOL2M/YY9EOCtvDwDe73rb4a7SrvqvBELN777ZCe8Zo8WvJF1srw4iZg8K1JEu86ZI72y7BK9cjlMve1Y3LuZjKS85vkRvbxpiLwIx4S72NuePZF1Mr2ZjKS8tFTNPOXAzruY+5e8ShH9vMVXqLyDu4s9U6UcPH7xuzyM1uu7buwpPO1Y3DzfjI28g2cwvb3BUTuzK/s3zpvau9z9Nz3yo8c7AusMPWl2tTy8Fa29o/moOwyTizxBI109gxNVPSIQybx7ptC8ZNMAvXYDnLywiEY9XL5FPHrPojwre5Y8K33NvNOQsznEcAm9bkK8PPJNNb0XZhM8iArlO8g8kDwQOHc8+X0IPFeeYzyMU5m905AzPKFoHL14Pha87S1TvPvlwrpyOUw8tCv7PD2taL2BVYg802fhvCt7lrwrJYQ8IpHkvCv+6Dw9AUS8nQRQOzwD+7w4Yv29DGgCPW1E8zuI3aQ8EbUkOxn51rxnjxa6W2rqu5phm7ymxa88fd+TPlMkgbqsOyS88Xg+vRC1JD3gSKO7wgoGPQfJOz2aDUA8JHQVvT2C37n6EEw8JrFGu5tGgzwwna87cRD6PLnKQbz/MC48MMaBPVf09bxKubM8zhx2OIX2hbt7UL48iyrHvPXcCr3O8Wy8uMz4PPbFYL0eQgs9xtaMvEoR/btg4F49nlirvU4EnzwQ4K08MPNBPD3UA73FWd88ZNOAPEPbhLxXRhq8aaE+PIGrGr3/sUk8ylDvPJ7ZxjqRdTK9nVpivBeRnLy9lsi7S+KFPBl2BLw0aba8fYkBvWmfhzyWwJ28vexavM3GYzxPL6i7fx78OtIPmDxKZVg7J4Y9PCqoVriOjpO8zhiIPB5Geb3+W7c8fkdOPPbusjxxZNU8iLRSvI9jCj3rxRg97zsNPKYZCz2Waos7WMe1uzdgxrzOHPa8ZStKvFtq6rwUruu6pAmaPIMTVT1u7Km8z0VIPLxANjxyj148o00EPHWGbrs0lL+8Qc3Ku6L73zwhO1K7weGzPAuDGr3AN0a9kfbNPHFkVbwQNAk8jamrPIz/PbwFYYE9EYzSvC/GAb2MgNk7K31NvEvihbyegzS9oOeAPKL7Xzonhr07aMxHPSspcjxGQ7+7afWZPDQV27wMaAI9dq0JvT2taD2ZCwk9criwvAqDGrydrj29YLMePZD0lrxWCyC8DGgCPW3sKTtAdzi9r1uGvdHUnTzgx4c9I48tvIvCjD3FV6g7fbQKPb/PizxKEX29/zLlvGkgI72raOS7p/C4uxp2hLuL1us8oWgcvVMkAbzyo8c8DBSnutKSajxgikw9dltlvVtoMzu96iO9DJMLvEQa7bz+W7e7FS1QvM/vtbsvSVS8DGxwvNNlKj1giJU8ugOFOTMTJD1Gbkg9QPhTPPYXhbwrKfI7Ou8bvUyem7xyuDA8UyQBvYZMmDxSKG+9pkSUPMolZrz/MK68xthDPXHlcLxx5fA7f/NyPZ4E0DyesPS76F8VPdS5Bb1ByxM9QPjTvKby7zzxevU9mbctPP/c0rweF4I9JwWivJHLRD2i+988qdUgPaSzh732Gbw6L0lUPFw9Kj1K4gU86bfeOrlJprxqyhA8xa9xua+xGLtg4F48rOWRvAyVwrx9iQE7ni/Zuyavj7z+MC69zkd/vIcztzxNBtY8h2B3u3bYkjy0VE289hk8PBgQgbwmMKs8lRjnPKvnyDxlqq68gVWIvbifuLy/z4u7ceM5vZ6wdLuZjlu9g5RwOsyyBDtjVlM8LbaQPQNREDwO+Q68K6hWO1y+xbwZTTI87YNlPVf09bzKpEo9odBWvALAgzzcqVw9hwiuPL3B0Tz/iPc76WHMO9oq+LwMFKe7SmXYu7QAcjx3LiU8Om4AvUB3OLvCtqq8CKBpO6rnyLp2ggA8XSKSvfrn+bs0kgi9mbnkPKsQm7xJkGG8YAvouj86BzwZoQ294HXjvGDgXr1QFBA8QHe4PHCmiD2VGOc77ddAvQiesrx12kk6lRawO4dgdzye1488AcADvc4YCL1+8Ts9MHKmPP/c0rx/xrI8PVdWu6y6iLwQtaQ9Ci0IPFP95TtcvA69Wz9hPGBhejvuga48d9iSOxsHkTwQDW688ni+vKfuAb2ZuWS8vZQRvAcdF73fjA29m8ceOwf2+zrTZ2G86TZDPSM5G7yMUxk7mjaSvMRwCT1BdQG9CMm7PCMOEjskSQw9jakrvXdZrrxS0KU88DsNutcGqLq7Lg48V/I+vbpZF73bU8o79hk8vZUYZzxpItq8M7/IvO1YXLtyYh68K6jWPDyrsTz2REU9NL9Iva31grwVWFm9p3FUPdwowbv+W7c8M2ttPOSX/Lx/8/K7qmatPP9bN7unnN07SQ/GvNOS6jvoXxW9oOeAPIsBdTpQPxm9aXa1Op1a4jww88G8V0hRvCYwqzxSKO88jAH1vOS+l7z7OZ68V55jPAP9NL1/yOm74Mk+vf8HXL0VAkc9T1qxuxWD4rz2F4W87qy3PHIOw7xJY6G8uHQvPMYDTTw9VZ+8TgZWvR7uL71K5vO79m0XPG3u4LsQCQC94J41OjeLz7zORUi6e1C+vPq6uTyK7RW9ZmSNvYS7C77wZpa7PAN7uyumH7zuga68en1+PO3VCb06mQm92yYKvapmLbxXSNE8PVfWO4zWazt7UD68kcvEu4S9Qj05tCG8o/movBgQgTz/XW67RcIjPRgQgTxS0CU7kSHXu3qkmTyeWKs8+ud5vGCznjwIdWC88aNHveAfUT0DJoc744OdvEGiQT03YMY8/11uPWggozw0FVu9ylDvOz2AKD09AcQ7MVcOO9vU5bvXiXo8NMH/PBl68jsRt9u8XBRYvTkKNL0eQgs8GzKavL3qIz1EXCA9buwpPfZExbzX3VW6QUwvvaeaJrp7eZA8XU0bPbnICr12hDc9ngTQvCaI9Ly8vxq82yaKPIvWa729vxo9Jl3rPKLQ1rzDxpu8s/46PVL7Lj1nZA28vWs/PdHUHT1BI908IZHkulIobzwQtSS9pkbLPBrOTb1pdjW9PSqWvBml+zw4N/Q6lUPwu/A7DTuv3CG8vG32O4eHkrz3Qo68A6civZtxjLyfrIa9pvLvO43UtLroNsM8xgGWO0mQ4TumG0K8vG32O9iFDDxGGLa8gEUXPFMmuDyPYwo9wAw9O9smCj0r/mg8uPMTPCbaGLsVViK9ndv9O8p3Cr24Hh08zsbjvOniZzw436q8AqlZOhTXvby49Uq9i9brvOJYlLtKOJi8bpaXPDqZCT043yq87iscPau8Pzy4zPg8p+6BvRbVBjwi53a8hvYFu7Mre71+cCC9riAMPTk1vbxkgVy9p3HUu8Sv8Tt7JbW80pJqvG1rjjywiEa9vEJtPWEyg7smBSK9lZfLvOiMVbuZty25+pHnvFlWCz1Mnpu8CPTEPFecrLwFt5M8QHc4PFs/YT2IMYA7SZDhvOjgMDyI3aQ8rwnivGTXbroMFl688Xp1OzjfKr3IPJA8ph35PDS/SD3ADL27LeEZvW/RkbxVioQ8If6gO7R/VjqmxS899kRFO2kgIzyIMQA9+xBMPau+9rxta447MoIXPTxX1rw3YEa7K1T7Ojg39Lxbauq7sLPPvGa6nzo0lD+97lYlPX5wID3pYcy7ovvfPHaxdzz0B5Q7xgNNvTjfqjxkKRO9XvcIvDqZCb2ehWu8t0tdPH9Hzrzc/bc7P2WQuy/K77uHCuW8etHZO+ICAj04CrQ7Bx2Xu3WvQDyVlRQ8F2YTPUB3OL3m+RE94B9RPY2pq7xk0wC65/kROsIKBjz/WQC94Epauwiesry01Wi86F+VO5iOW7xtmM68uJ+4PNMRzzt2goA9DGzwu/qR5zzgSlo9MJ2vOjRA5Dtbk7w8kM37PDwsTbtRvG88s/xCPBpyir1/6Z287Rh0vG+5Kzx1I5S87qD9PMviK7wVeRE82Wf/u0SF9jv/lHS8HEaiOke6aj32ku87Y8B5u+QUo7yxTQw9MR5EOz9A77wlqYO85sNZOlWeTjyWSUk9cJTKOjlzXr22Mbe8I/wYPYwi4zsAQt+7hfKpOxhNqbv6ESY86R2vPFWcgjxwGog8aMc5vUQiTr0u5wO83JzzPE5JtLwR+A481z6Gu64vMrx6pBa9AEJfvRRrSr2AEMu72AKLvblmq7x+YZQ8Tkk0PanVXDymPUA8rZLaPM88gb0DdYe8uceHvTSR/7yV5qC81vRDPbeU37z/t4m84aOzvAHIHLyD4ha8q+VvPGJbBb1ub2m9PKjSPERHrzw3xnM8Jm0IvVtG/rwzLIs7eeCRvJdJSTyltTY7SN/LPJ+u9jlUFsU8hheLvDfG87oolDW8nw0HPck1wTtvbZ07BDmMO/7zBL2+DI+8b1YDvY1spTz7vhC9+jYHPUO/JbyIAj29maMeO93mNT1t5988V+iQvF8DfDxvlEo8N+vUvB1rgzynxUm8072DPGEo3Tt5HI27BcEVvbDFAj0kwB08p4cCPECKMTt4+fe8KQUlPEBl0Lzo9oG82rHBPJwUDjz2km88WVtMPZhXkD03JQS9a5kFvF3z6Lxm86G8ISrNO+X9CL31L0c9qOoqvCGN9TtxpF29q+XvO0OaxLx02dE6Rs+4ux994jtHuB49HWuDvZhZ3DzlwQ28YE2+PLbOjryJryc96NNsvb1h8LrN8r68JkpzOrLXYTy3Vpg8dV+PPHsu7DzGY/W8eeCRvMzN3btjgjK9Q5pEPDhOfb1JZYm8jjL2PBhNKTxpKuK7wmiwOwi6Dj2frva89Armuwj2iT3REuW8sSr3vBvAZDzOPIE7sGQmPGzC/jvcnHM801ynPOGjsz1t598813oBPeIG3Lx92Yq83JzzvEdXQrx54BG6DLMHPNoSHjxa4Qm94BsqvXiWz7oHNFE7yVqiOltrX70fkjC8B6xHvMEcojy8Ud07yr3KOyTAHbzyXfu7a10KvV8mkbzLQwi8hfKpO5AEQrxQWcc7oqWjvN+ToLx88KS8Z6AMPTYAo7y9YXA8nNiSvGWSxTtztHC8hnqzvDW2YD0Mdww8nw0HvSP8GLy9I6m8MoHsumP6KD1M/3E8tYIAvaTzfT2lkNW9YE2+PCeUNT2gcK88pJDVvNO9A7s2Y8s8IziUPO53BDqK1Ig6/vMEPCtRszu0X+s8sMfOPHOyJDzbThk8QGVQvH/pHb0xHsQ8b/fyvDMJdj1w3oy88Oq/vDMu17y3b/47RIV2PXBBNbytkI69oHAvPP9WrT3zgBA87dosPELt2bzbFOq8aCiWvBpyCjwrUbO7vWHwuGPA+TwSvt88dNnRvIbdW713ce68Scr9PGGwZjvPPAG9y+KrvL2EBTv5ZDu9TzRmvPfcMT3Tv887TzKau6vjoz3k2Cc8BP0QPaFb4TsislY9HdD3uukdLzz7dE68DgFivawIBb1EIs686wjhu4DSg7t8U029q+OjPU0kU7yzmRq9+U0hu9d8zbsc5UW++MfjvPNElTwjsla8gZYIuSRfwTvlwQ29MR7EvMCUGLz8hOG8lklJvSM6YL0t/p28pyjyu0ESuzvCpve82YqUuoTNyDzsjh49Xp4HvXPuH73UR1m9stdhPbqLjLxpT0O8YvqoPHUjlDy0ggA8p8VJPFtrX71Gzzi9GdWyvABC37vO3fA8Bg2kPGtdCj1yKpu8NmPLveboujv1L8c8BYUaPdKabjxiXVG80piivI3NAbzAlBi94eF6PNxeLD0PiWu8zVObvFlZADyyT1g8LquIvMQVmzyEaiC9lgsCPawKUTzd5jU9Izpgu6UWE7282eY8V0s5vUAniTurXWa9+ImcPB63kbrt2qy7myuoOwzM7TzOeki9lm4qPdc+hrsj/Ji8XRjKPIE1rDlVnAI91CJ4vY3NAb0mbQi9UBsAvraSkzyHnxQ8vgyPPDk1l7zy+lI8cEG1u0ycSbw2Y0u8/anCPF6ehz5VOya8maMePWFyH73olaU8bCEPvDn5mzwUa0q7V0u5u29tHbydO7s89ArmO49XVzxNwao8UmnaPEESuzzRr7y8TzTmPAaFmj1JZYm8IY31PPSnvbxfxbQ7oJWQPLYxN71xohG80a+8PBH4Dj0XAZs7caRdu0ycSby4Qco7O0WqPMPwObwaNg89gRBLPATa+zs8zbO7pdoXPa8/RTzFeEO8wJbkuzCWOj2Iisa7kN9gPI/dFDwOAeK7ku/zvF49q7uNbCW91vTDvCzZPDxk5dq6yVqivPFyybyTd/06lJzeOiM6YDombQi86NPsPNBMFD24HOk8oA2HO6hLhzy3lN88LqsIvWqyazzKf4O9ebuwOxr6kzq43qE8BkkfPcYlrrx92Yo8hM1IPfREFT39DOs8tef0PK0vsjuTmpI750tjvLHsL73sjh69lSRovKDTVzyRZ+o75BZvvPxGmjxDv6U8nuglvJj2M7zdgw080ppuvPK8Czw6++c8GE0pPBUYNT3aThm9Or0gPESF9rwV89O8L0x4PBFwhbu2MTe7AxQrPcV4w7zCpne9j1fXu/aS77spZgG8ooDCvMog8zydYJy8f+tpu3pDOjwIug49qQ8MPFU7pjz33LG7ViSMuvyE4byGuHo8QnOXPM+fKT0FwZW7AELfvKagaDxilwA87dosu6KAQj2BWo27qpcVvV7aAr1n9W0647NGPXN2qbyLXJI99ZAjPTMJ9rymoGg81xklvcFBg711/jK9qlsavedwxLzWVSA7maMePYmvp7y2kpO8phhfO5N3/TzGAM08f4hBPWqya70MVHe8FVb8u7z+x7wzLle5S7GXO+Hh+rxiXdG8uQODvPVUqLwZ1TI9zGo1Pb9IijxwGgg9u3Y+PW+USjytbXm9nsPEO4bbDzznDRy9ia8nu6DTV7v9DOu74is9vVeu4bsda4O8YE0+PF7aAj33PY682xTqOzogST1+ALi7ippZPeBZ8TvLqPy8y0OIPSKwCr1vlMo79ArmPeB+0rzMzV28uu60PP9WrbuELqU8C46mPC7E7jzN8r686waVvFqALbxT7xc91CL4PMdKj7waNo+9tamtOcxqtbwygWw8caRdu4GY1LxqsB+9MqbNvN/PG7yXSUm8fdkKvT0Le7xj4448tQzWuxQtg7slSnM8bCGPPK/cnLogx6S8zt1wvDAzEj3ebr88MqZNvCw6Gb3cnHM6g0U/OlGjCb3jjuU8ZKcTvZScXjz7mS89/i+APMXbaz2ydLk8KBy/Or8zvDwVGDW7Bw/wvEBlUDyoTdO7DHeMPInt7jvREJk8jKggPdKYIjzIiFa8p8XJPMHgprn7+ou8LsTuvKuCxzymnpw74is9PC6GJ73IEOA7S3UcvW2pGDwzLle753DEPAHInL3uPVW8h2OZvJZJST3Rr7y8Wr50vXngEbx6Qzo8vzO8vEt1HL3PxAo8bakYvFqALT2Jr6c8NyWEPD+4ZbxMXgK95kkXPfpyAj37+gs8sSr3vE5uFbzgGyq8+MWXPP4KnzxSK5O81EdZPQHIHLxJZ9W7xgBNPXOyJLwuxG47yA6UvH3bVjolhKK86NNsPC7E7ryuL7I8CFkyvRZ73bwUkCu9MoHsvL3AgDy71xq7LucDPX3ZCr0Svl+8AWdAvIIekj2eJKG8t2/+usviK7zMajU9mPazvEDIeDzolSU7SxTAPVTxY7xavvS8D4lrPXAcVLuHYxk86uN/u9QJkryWbiq9M8uuPP7zBL3TXCe8/CE5vSCiQ70+tpk9mmcjvfjFFz1ztHA8x8KFPXPuH70YTSm8QRI7vSw8ZT11YVs7KWYBvN7Pmzx6pBa8P0DvvOAbKrwuhqc76Vv2PGEoXTv+Mcy8BSQ+vYXyqTxilwC9f2GUvdKabrxjHwq7OTUXvUz/cTwJfpM8jpGGPMJDT7uYWdy8zM3dPP9WrTsKBh29cH/8PLFNjLxnGs+8x0oPPaWQ1brryhm8YtVHvTPLLj1uDME8NPAPvNqxwTywou28wUEDvVR5bb2aBse89VQovcp/gzzF2R+9IeyFPOQUozsvb4288rwLvO7/Db0Ohx89kWfqu0P7ILyqlxW+hnqzPPWQI7xhKN27Or0gvbkDg7zq4/+8VsMvvctDCLy3lF+8kATCvGSnkzzkO1A9kYxLvKpbmrxRfig9uk+RvNs5y7xAyPg8pbU2PJvx+Dxt51+8ZW3kPMCWZLz7/Fe7X8W0PFdLubzzgBA9NyWEu8tDCL3rypk7TF4CvN/2yLxD/ew8DBYwPaQtrTygcC88p4cCvYTNyDvpugY9p8XJPAlCGDzJlh29gBDLPKqXFT2D4pY86fhNvYDSA73Oesi8LucDPN2DDby71xo9yr1KuAzvArwuhie92rFBPC6riDu3Gh296whhPKlytDy8UV28HtB3PFdLObzdSV68iRAEvUMggjzh4Xq9WNPCPIiKRjyKElC8rApRvLdWGD1rOvU8qOoqumQKPD2OMvY89ZCjvFFE+TyCHpI8DMxtvdNcpzs/3ca8d3HuvOiVpbxswn49Q/3svFyQQL1Jyv08uccHvYAQyzwMVPc7zVMbvb6rsrzijJm8Nj5qvQOMIbxNh/u8QIoxO8Xb6zs/QG+8I7LWOyYxjTyLXJK88EscPMCWZLvAlJg9QRI7PRLjwLxwGgg9DLMHvLDFAr0120G899wxvOn4Tbx7Luy7cBzUPIiKxjxox7m7bgxBu4SPAb3Pnym96qU4vZ4kIbwRvJO8wJSYvIll5bukUg49z5+pvCZvVD3WkRs8eRyNu8ogc70MFjC8+U/tPE/2HjwzLle9gTUsve3aLD2q+r28vzM8vXwVBr3LRdQ7+hEmvQvxzrzasUG8rKeovOrj/zzREBk9kSkjPUe4njxv9/I8SAQtO03BKrwppMg8EuPAvOWe+Dthcp+8mowEPNopuDrIEGA9AECTPKKAwrv2Gvm6Opg/PLt2Pr2eJu06BJy0u3gzpzvLqPy7stWVvKnTkD2D4pY9u9cavK63uztiW4U8c1HIvGnsmjyFVVI8GItwPQ152DzlYLE8OXNePU0kUz0j17e5I/wYPb9ICj1CdeO8qOqqvH/pnTwiT648+td2vAzM7by67rS7oJWQvLUKCj0mDKw8NTyeO9CIDzwWe906ZOXaPNs5S72HAr08lklJOwi8Wjybs7G8viMpvc8C0jtPNOa8Y4Kyu498OD1P0b28ls+GvH4+fzzFeMM8txodPRKAmDz3t1A9HvOMvBzlRT0BZ8C8UisTPcCUmDztdwS9CLzau2OCMjxQ0T27MqbNvKUtrbqukA68A3fTvATaezyy1ZW801ynvCDHpD1iWwU9qOqqvAmXeTwNOxE8Ik8uPQKxgrwyps09fFPNPGAoXT2Lv7q7QgaSPEoU/DyFPuq8SWdqvL+RcbyPVr07bAhLOaJT4TwGBb08ZNALvFeHLr3YnzO73X1PvI8Ei7rsIFA97EolPcn7dryxtaG8eXrBOzGMqrxrWv28gZIUvH5hirsTTho8h2/0PASq3TwbhxW9hgUbvWJLVzvERvQ8sjkaPLMf+7wbhtk8SRU4vK2EFzxBWEQ5neGWPLx6Br3jIpy8NObNO1YcmTwSoYg6FvpvPA8uAjrp70U7pK7AuxksNr3ZdV69eSiPPMstPb35kwK91ZdCPLRRQT0gPJi4uQbEO7Egt7vo1569FiTFuztxe72U4ia95I2xO/0GCT00vTS7AKMovD+CGb2zH/s7G7CuvFzAKbzXNB68e9RkvdvQvTyCuy09quc7OkWJTr3+R8m85GNcPCp8yLyLoH68MYwqujZBrTxLmHS8oirIPKyUTbewc6W8NA9nPDEHdj11tYi8EG/CPPKCZLyc8Uy9XBMYvTW8+LxvYm48D8KwvKpTjTsfZbG808GXvRV2dzzW8iE9FE6aO4Q+6ruUC0C7qhDVPMCRcb13za88SpmwvEIvKz2s1wU9T6BlPJXh6rwDaR096VuXPA7sBT3zguQ8eOaSvETMhrq5BsS8pIUnPUHElTyLkQQ8FPL+O2XPTz0SX4w9Kr8AvXY5ATwYmIe85I2xvCQaND04xaW8LlsgPeFb67s2vPi74vmCvZBGBzyCDeC7WtEbPD+CGb34UQY9bN8xPSICjb1tOpE8wD8/PeMiHD0JX+C8EUapPAP9y7zvUpY8tHravOnGrDxIZ+q8HvobPQvj2Lryq309HU2KOi6D/byMoH67ydLduxR3Mz0fZTG9JsfFOQK8Cz3Q4j+9Ammdu1xVFL1k+aQ80PsiuvHVUjvSPR894NdyvctWVrw+k4s7s3uWu6rnOzz+SIW8ZPjou21jKj02Qa09lj2GPP5wYjviW+u87vb6u4IN4LuJ9Cg8oVSdPI+ob7zVbik7S3AXvQHMQb04xOm6Rl95vInLj7s+F4S98ChBu0Z5mLnDRzA9jy0kvXFCAj2Sh0c8UtKrO4tPCL053gi7vmmUPIbDnrufZQ88alp9OlLSK7zygmS9LlugOyQaND1VLE+93MAHPXScJb3LRiC8n/m9vEP1n7wzECM9VSxPPOQRKr3ve6861On0vN19Tz1cExg9d80vvGUSCD2pOio9OQeivRR2dzu7N8484IXAPJsbIrwxtUM8i08IPQTTdrk6zZa881nLPJO5DTyxIDc8Kc+2PPcPijx8gfY70xPKOwo2R71sCMu8ev65PJvyiLxKmbA8B9yjvK0YxrlNRsK8sXLpvJ11RT1W2WC83lN6vM808rqHwmI9tv5SOY0+ljs+k4u8/x30vKcI5Ltyat88utxuPHFrGztNRsI8SJG/PM2HYLwZK3q9nkysPATUMruthJc8K6VhvSul4bw6IAU8USRevSbHRbxFDoM9HK/yuxvZR7qU4qY9SWdqvHzU5DvaIyw8Q0gOPcglTLxAWYA8Fqg9vNMTSrwUd7O7IDyYuGoxZLvwUVo7xEZ0vRX7qz19L0S8nkwsvZyfGrw2QPG8bxA8vqzXhbu3WbI7VSxPvCYZeDxJPtG7fC/EvOiUZrxT6447u2Dnu3Y5Ab387SW9OBfYu3RyULzy1dI8CbJOvVD8gLySh8c8zdrOPAlf4LtlpjY7Ks76vLfUfT1yal+7cK0XPXpqiztmfOE6t9T9PCLo7Tm8ox+934XAO2BD5ry4chW8XRLcPEZ5GD06i5o8DuyFPFwTmL2N+907K1OvPFrhUT3YCwU9P0AdvWNLV7jaIvC8mrAMvCxsEj3aIyw8sUlQO8t/77t3za889AZdu7qKPL0YVos7QKr2vHJBxjzlEO48dHLQPDzMWj3C3Bq8hey3PFxVlL2xILe7TfNTvAWq3TsIHiA82HYaPVgLJzxCL6s8RjZgvVLSKzx/iee80JCNvIbC4jzU6XS8hJHYPNh2Gr1PoGW6Nrx4vGzfsb22rKA8hut7vA+ZFz2wcyW8wexQvMsEpLwWTd478f7rvCgiJT1+H44+O/avPHpqCzlNHam8f9xVPDRSnztGDUc9+ZMCPZXharu1KKi8Z1PIuj16qDv4eh+8vA61PHyry7sQb0I99opVvNjx5TymW1I9xPRBveucVzy8o5+7lj2GPJ/QpDzBLwm9dSCevHPu1zvi+QI9gz+mvOdsiTporic8LwiyOpzxTD2c8cy8NmrGPHb3hDxNHSk9573/vMWiDz2VuFG74yIcvRoC4btVLM88fmGKO9t+i7ty7xM8nMizu9PqsLwnZCG80OK/u3GTeDx2SHs8h0eXvIoNDLwgEsO86VsXO/AowbsvnZw8lDRZuhDB9Dy3MJk7glCYPPr+lzwqfEg9qc8UPBvZx7z6aa08DdOivT4mfjvW8qE8yx0HPbAgNz3XGzu9GQMdOyk7CD0/F4Q8RQ4DPQvklDyrlYk83kQAOSwAwbqJ82y9e9RkvWy2GDqZbdQ7tkGLPPQvdjymW1I7bbVcPIz8mbxG5C07dJwlu+3Onbx6/jk8QwVWPBR297zY8WU82PFlvLphI7yNJHe8i5EEvayUTTttjEM8XOnCuxLzOj2wnL68hRVRvbs4Cj10m+m8RQ4DPd9cp7wKNkc8xcsovCbwXrobh5U8Wrg4PMeRHb39w9A89bSqvMZ4Oj05cre8w0cwPXCtlzxJFbg7ifSovDGMKr3/HfQ8MxAjPCRDzby73O48P/1kPGd84bxh8He98oJkOwXTdj19Biu9PSc6PeqdkzyWjvy7qLaxPPUGXb12zS87T3gIvSsqFr0Yfmi8GQOdPKJT4TuqUw290OI/vRV297shO9w8B3EOPUhoJj17gjK9jCWzvO8owbwwCLK8/cNQvYCjBr3QC9m7aVu5vICjhrxXXhU8IkSJPYbC4jyhpk89Kc82PVN/vTybGuY8m0S7vG9ibrwYLLa89N1DvI9/Vrs9eWw8u2Gju5ryCL05i5q7KwDBvLhylTwcXcA85GQYvHLvkzx3SHs9rsaTO3TFPjqN+908El8MvaPYFT1D3Ly8yKoAPSFk9T2x9507SJG/vLN7ljzdK528WOKNO+xjiDywIDc9Yp5FvQ4VH70Nqom8GkUZPV9DZjzDmeI7GSw2vbcHgLwHLta7El+MPNkjLDtV2py8GhwAvEf9ELt8q8u8wtyavGoyoLwoZKG8hpqFu+SNMTwRb0K8mZbtPPh6H7yd4ZY8+FEGvbVBCzxJqqI8dXJQPW851bvLBKS9N+4+vO9R2ru6ijy9gTe1vFbZ4LzEoo866EI0PWiuJzo+UFM98oLkO67u8DqWuNE8I0QJvSzXJzseuB89Ox/JvAJQujz0B5m86VuXPKcIZD30WUs9ljxKPJMLQDxvOVW8PpOLvHeklrxFYLU6KTuIPAQmZbr45TS9VrDHuNzpIL3Wh4w88qv9O9efszxWHJm9A9QyvEhoJr32zQ08q+Z/O+hCNL1iTJO78tXSPEtwl7ukhae8oc/ovMX0wTwmniw9xk8hPQKibDzf2K68als5vJmXKT1bt/w8B7OKPBiYBzz/mXu8zLG1u3FCAj3olOY8joASu4kdQj3YyMy6n/k9u002jD1YNMA8xuSLPGd84by+Jxg9g5FYvH5hironIqU6uQbEOrPNSLxix968D8IwveUQbru/qxC7ASehvPIYi7tIaKa8aADauzAxy7yEgaI93lP6vGT5pLvlOsO8BdP2PMAV6rxo10C8367Zu/B6czzc6SC9zTUuvQHMwTyxtSG8eKNaPFq4OLkL5JS8DLo/vdWXQjw0a4K8WAsnvIXsN73x1VK9I5a7PEvr4rx5esE7ss1IOcHsUD2Zl6m8YkwTvYt4ob2zvZI9NpPfu2V9HTw9J7o8yoArvWHwd7wKDS68WIZyPF07dTzWhwy84NfyvL+rEL2yzoQ8LjIHvKhjQ7sdTQq9w3BJPRd/JL0rKpY8uKtkPLaDBz1aZoa8lo+4utC4arzeRAA8np7evL9oWDw1vTS9xcsovfgOTj0khoU7FU1evG8QPL2HcDA8Y3Rwu82weby/q5C7joASPGXPz7xRTXe9/rMavQ89fLyV4Wo8HgrSvFNWpLwoIqU8cpP4vIM/JrxoANq8GQLhPODxEb1NHSm9R7sUvrMfezybGyI83VQ2O4nLD70aAmG7kl4uvTRrgrxorqe8aNfAvLFyaTxjdHA75BEqPUT1H7yZlym7mpZtPQJQuryMd+W7agkHPRuG2bs2vHg8tL2SPJKHR7zoQrS80LmmPJHZ+bk1vbS8Zc/PPIINYLz0WUu9+mmtPDW9tLwjlf+8ZyovPS4yBzyFPmo9ENuTPOdsib1CL6s8IgINPdjx5Tz7gpA7cObmu3zU5DvPThE9NZPfPJHatbz03cO8qToqvceRnTvorgW9KPhPPXY5gTsPwjA9BdN2vU1Gwjxo10C9NmrGvLMfe7vNsbU8RWA1vaErBD0kMxe876RIOjdakLy8egY9499jvTW9NDzfrxU9P0AdvC90g7xAWYA8AaJsPTG1wzy0elo9G9lHPWzfsTzDR7C7br4JPLndKr1jjg89ehcdvcXLqL0GV+86wD8/PACjKLyZbdS8jST3O1Ek3rs1asa6eKPavAsmkTvznAO9XZZUPMsdh73KLb27U6hWvEtwlzyyzci63QKEvGdTyLx4o1o87fe2PDgX2LxQugQ8YMgaPTZqRj237pw897NuPQ8U47zo15479bSqvKUJIL0g6am8qLaxO/BR2jzUA5S8w0ewO7CcvrvwlBI6K1JzvbZBC71T6468IDyYvAnbZ70Bouw8als5PSnO+rshZPU855UiPBh+aDz9mre95eiQvJ1MLLpAghk8XJeQvAGjKL0ug308ZaX6vOEJOb0lyIE5fFjdOpTiprx3zHO8xyaIu/QHmbz9w1A9yqlEPNaHjDz/HfQ6mRL1u7FJ0DzSZri8OBdYPTPnCb1IaCY8qGNDvIDMH7oW+yu7tf8OPazXhTv1L3a99bQqvOU6QzyxSdC8u9zuvN/X8jpfbH88Y3TwvM2xNbjgMw49yn9vPYhGW7wUkBa9PKNBPHekljwvnRw9w5liPLbVOT0WTd67mOqXPPw/WD0e4Pw8ttU5vJw0BT04xSU9wtwavarnu7y4WTI9xcsovWWlerwt1uu8XDt1uxhWi7x4o9o8fh8OO+RjXDh6J1M9jE7MO1uOY7w/QJ29K1JzPIrK07wGV+87G4cVvT8XhLxxQca7dMU+vQxoDb1nU8g83AIEvPnlNLxz7lc803+bPD5Q07sk8Zq8s6QvPT7+ILxRTXc9geUCvfYPCj1ebTs9gIlnvNTpdLzn51S87KUEPGta/bx9m5U7El8MvRDB9LwypY08e4IyvazXBbqSXi49xaIPPZTiJj2M04C8A0/+OzzMWj08zNq81Ol0PepB+Dx294Q9X2x/vMqIB73ePUU9dy0DvQyEGTtK/Fa8lH6Du4LdwrsV3409iUwnvLKj3TzT9kC8udFzPARpSLwNmUE7lPzmPAfBITuRJqq89+B1vDqex7zmAiC8LldDvXB90DztRV48em+JvNrQQzqKdvc8I7wrvVMs0Ly86H48JpMTvE5pWLy50XO9DIQZPf1QBbvxCYE8q4uaPNgk17u6qQa8uLxLvJ6CVjwXNFk8EcV0PG4SsjzFWUY7tfu2u9jO4Ls8SjS9wkI7vRSJlzwWCom9LRegvEtSTbwiUQ094ml4PNG2HT0N77c8vJWWvR9PKjxLqEO9ea3JvF1JBLoPWlY9SmigvE1qg7zqQ3s8M9nsPH/Gt7uC3cI8NHAxvMavPL3hVNA8NdtPPb2Ua7x1QEi9q4savPVgL7yvzaA8H08qO2Q2zDtvJ1o8WZu0PJm/3jycWIa8dYEWvSNmtTwumBE9WbEHvBngRbtCYyK8TysYvWRMH7uPkBC89nVXPGjkG72UU4i7Q41yvFTuj72SO9I8g/LqPDjdMjxFeq271LfVOzFZpjx8BSO9df/5PI96PbzcO+I8YrYFPbt9YDxTbR69t2bVPHPVKTwNmUE7UYDjO4Ldwrz5zbA8GjY8vepDe7wrQDg9d0KrPGx8GDyon4o9PkwXPFIXKLzhVFA7sOLIvDPZ7Dtfc9Q8aGL/vPs4Tz1j4NW8BSuIvGv7pr01HB67BdURvV1JhDwn07a8UFaTOqgd7jyIC1m9Op7Huy/uhz0sVeA8BCj6vCbpiTweD4e87YYsPP1QhbyfLkM8+uJYuxMIJj2cF7g70jcPPQvt1LtQKm29Ely5PDIFkzx2Agg9ekSOvGhi/7x37DQ9BVYDveVrW7048wU9pQZjPCZ9QDyTKI07uP2ZPMVvGb0ViOy8dy2DPIYJdrw43bI6x1spvLwpTTu9f0M9UQIAPhiKzzwp1Rk9Z03XvAG+Br1TLNC6JeZ7vC1CGzwBZ2W8B8EhPfa2Jb1IkTi9zkhxvI25KDzHWym6TxVFvS5Xw7wUHc47j3o9PRFHkbyNzlA82M7gPJkArbzwswq9vT71vCv/6bt8BaM8hbN/PJE7Urq9lGs6lxNyvNuSA73MHiE9I6eDvft5Hbz7pJi8yHDRu4sNPL2T5766iUwnPWwmIjzK22+9DQJ9PE5pWDyew6Q7ehkTPZkArbzf1Im8cj7lPMavPL0AUj08GUwPPfQgjDyW/km8OUjRvJDQMz0bjDI900y3vGijzTxcXMm62GWlvPJJJD1yPuU8qcqFPFeZ0bw5Mym8IGRSvSg+1TwaNjy8LQFNPZm/3rzN8vq840ELvXaWPr3GxOQ8HQx5vJsCELjqLlO7SvxWPZcTcjsrQDg8t6cjvOCoY70plEu8Ve3kPBlMj7wB6YE8uxSlPN789jw7NQy8VW+BvUc7wjzVDcy7uLzLPFBrO72FNZw5zvWIuznyWjzd/aG8gcgaPbD38DxUl268CtisPe2GrLojZjU8YraFO/bhIDyMIuQ6mRaAPA9a1ryKzZi7mMAJvCMlZ7wn07a8tREKPcCWzryUfoM9oEPrPCgprb3fUm289WAvvStAOL4+TJc8+iMnvLA4v7weuOU7j7uLvDQv47y709a8VW+BvZhpaL0N2g87564MvQlB6Lwe5Iu7bHwYPXhXU70pqp68/TqyPFBrOz3u3KK8EMafvDgeAbsgpaA98fOtvLNlnTxpOhI8AxNSPK0MjLq+6uG7wJZOvRuhWjuHDIS6F3UnvIlhzzwF1GY9byfaPFhFPjz6I6e95GwGPYfhiDzxCYE9c9UpPYsNvLwtVeA7Xh3evN/UibxKaCA93vx2PJJQ+jwwwuE7ea1JPAfBITy3ZlW9UhcoPGLLLb3pGas800w3Pc+eZz2ItWI6Sj0lu3/b3zw/Yb+8r82gPLQOfL1hdbe8P3eSvEf6czt7GOg8fRpLvO6bVL1iit88APzGOimUSzyjWvY8lVLdvLXmDj3Jxke9dCugPNyRWDy9PvW97UVePPhiEjyT/RE9OokfvPriWLuagZ68vGqbunGSeLuwOL+7rTeHPj7Kej3CAW28J9O2PIgL2TtsfJg5e25ePcQD0Dzx8y28De+3vLRk8rzYzmC7M9lsPKn1gDxpZY27qJ8KPT4hHL07s289J5JoPXHTRr2k3BI84usUvAZrqzvBq/Y8ErIvvdhlJb0Yy528dtcMPYcMBL2TKI07HY6VvMUY+Lsyg3Y97UVevVcFGzxR1wQ8Ely5u4xjsrxEJLc8MtqXPCc/gDsPWta7VkPbPCnVmTuhmWG8abj1uviNDbwFK4i89wwcO3mYITszhoS80eEYvEJ4yrzFGHi8vGqbvN49xbyYqra707iAuwUVtbvFmpQ8zTPJuh1jmjzTC+k8Psr6u2x8GDyagZ68+YxiO3aWPr2NuSg8YR9BPfJeTDw6XXk83dKmvJRTiD0JgjY91nkVvDyLgjyfRJY8/+YePGQ2zLqI9jC7IGTSvF3zjbyTpvA64uuUPOS/bjywofq87ptUuRngxTxtZsW88fMtvM3y+jsYik+9G4yyvIYJ9jwEaci7GUyPPLl+C72xjrW8GncKPeJp+LyjWnY7qfUAO+jDNLvIsZ88G80AvbGkiLxCjh08pp2nvBY1hDwJbY69Zk4COxKdh7zlrCm8mRYAPU1UsDyZAK28yHDRPGwQz7wqqXM9zom/vO9HwTxiit88vOh+vABSvbx8BaO80aBKPVeuebwRG2s78FzpPBngRbyGixK9rjZcvZhp6Dx6wnE9teYOPDxKND3u3CI9c9UpPLFN5zyaKn29wViOvJQ9Nb24KBW9juN4vAL+Kb0C/ik9p7JPvfP1ELxEJLc67YYsPcDXHD3i6xQ9baeTvb0+dbzKXQy9tfu2vI+7C72f7XS9L8MMvenYXLxK/Fa9n9hMu0aP1TxkNkw8QPiDPOsbDj31YC89r4zSugyvFL2W6SE81iL0vPQKubw3Ru47dy0DvXyvLLweD4e9mir9PEc7wrphH8E8kNCzO2hi/7uF3yU9SNKGPQ3vNz2JTKc8VkNbPAjr8bwFVoM9l2qTvEJ4Sjxloeo9Sj0lPIwiZLxNaoM9jjoavbGONTytITQ9rSE0PUoRf72VUl08egNAO4RI4TywoXq8nC2LPEy967yNztA6G+KoO3JqCzxeXqy7jjqavI3O0Lxhiwq8YDWUvLHPg7yIC1m98kmku6eyzzyUUwg8tlGtvEaQADyt4OW7Fd8NPWSilbzvMhk9VBkLPfHzrTwK2Cy8y4dcvSF5erwDf5s6M1uJveCo4znERB69S6hDutjOYDxsEE897vFKPS5Xw7rIcNG7j3o9O34v87sQHBY8WARwPfnjA72SkUg9nC2LvAHpATw8SrQ8qgopPbknajy9f0M8DAL9O4X0TbwRcgy9+eODvLyVFj22PAU7yjFmvA+bJL18ryy9WwbTPJkArTznbb46Ab6Gvfs4Tzt8r6y7mb9ePMCsobxFkIC8MtoXvOE/qDxVLrO8+eODvHEUFb1p+cO6QLc1PKTxOjziqsa89Aq5u1ncgrwSnYc8bSV3PEz+OT1NE+I7GZ93PJMojbvB7EQ9IhC/PBUy9rxqTzo9k+e+u0+/zryEnlc9pV2Eu3yvLDxzf7M6h+EIPXctg7rYzmA8TD8IO77VOTzh/lm7UKwJvTPZbL3MHqG8h1/suhMIprzGrzy9Ft5iOFgwFjw0cLG8g0kMPeDpsTyrNHk8hosSPHls+zx6b4k7InyIvLsUpTz85Ls8I3vdvPfg9bzCV2M8PV9cOvriWLuqCqk8c8CBvVAqbb2xTWc8bdKOvPnNMLteHV46zp8SvWqlsDyf2Ey8TRPiu24Ssjv3IUQ9KD5VvU6qJr3J3Jq9C1kePVBrOztYBHA8gzM5PZaoU7ybwUG8e5qEum1mRbxf3x09j5CQvFydl7wv7ge98J23Ox9Pqrxm9+C7j5CQvDuz7zzr2r+8QmOiPDZHGT0JQei7NnKUO86fEjryCNY77wZzPKnKhbsplMu8JNHTvBPHV73A15w94OmxOgUADb1vaCi68LMKu/P1kLzf1Am8XFzJu810l7zgKoC8UGs7vZuA87waooW8houSPAXUZjxEOoo7l2qTO24SsrzmWBY7rjZcvPz6Drz7pBi9ZiOHvGqQCL5VbwE9pp2nPJprSzusiu+8MVmmO1ydF72I9rC6xhuGvM5I8byNuag8TVQwvLQO/DywOD+88nQfutsmujzkFWW9HzoCvcCWTj0IQpO8Ar3bPNIMFD0UHU68FbSSvBd1Jz3jAD09WO9HPOFU0DzuB5683SgdvXN/MzxgCpk7LKvWvP35Yz2Sp5u75WtbPR64ZTwvwwy9WdwCvfUf4TwfDtw8veuMupWTK73d/aG6Qjf8PAFn5TyHX2y9Qw8PvcbE5LxouSA8VW+Bu+6wfD1Ul+47EcX0PE1qA70N77c8NYVZvUKOnbwK2Cw9OzUMPaHwgrztRd48egNAvR5i77xNVLC8MgUTPEDNiL0cOB89ur4uPCU9HbtouSC9BCh6PV1JhD0635W71LfVPFlaZrw5M6k8pp0nPMVZRjwoKS29KCmtPNf6hr1LZ3W9FTJ2vCO8qzxgiHw8JjzyvFZDWzzrGw48nBe4OiyWLr0L7VQ84CqAvOYCIDu15g691KItPV2yP71/29+75tZ5PPtN97zArCG8MYShO9mQILzs7+e722eIOtS31Ttoo009BKoWvE8VRT058to8bWZFvPZ117w2MUa9uLzLvJpWIzzVIx88+YxivNyR2Dt3Qiu81PgjvAnDBL1jISS9D5ukO6zhELyHto28thBfOqnKhTwIlfu7AWdlPVaEqTv64tg8tjyFvYx5hTtrutg8XR4JPepDe7zxsl+9cL6ePOS/bry9f0O9I6eDPFTDFLw/og28X7SivJJQejwiz/C7o1p2PY5lFTxqpbC7/XuAvBvNALv9ewA7ktIWvS+tObw43bK7gcgaO7yVFr1njiU8OwqRPCbpCT20Dnw8OUhRvahJlLuudyq88QkBvWjkm7xGkAC8DQULvF4d3rxZ3AI8jc7QPAyvFD1vJ9q7GqIFvRJxYbvsMDa7dayRPDdG7rzqmhw9nYOBvBFHET3Zek09EPEaPWFgD7x1gZY8CUFoPc8gBL0JQeg8OJzkO59vkbwN77e8DQWLuxLIAr2TKA29FNz/PIxjsjwKl966H08qPQmYibzB7MS6QiLUvGu62Dyh8IK9RtAjPD5MF70Yis+84OmxvDFuTrxvU4A7cZJ4PMuH3LzdKJ06JeZ7vCG6SD2jRc47VBmLukd8ELxZ3II6I6cDPYMzOb2ZFoA8OfJaPFcFm7wlPZ077geeO0w/CL1vU4C88kkkuFLW2bwZn3c8M9nsPFqwXDw6nse8UhcoPbZngDs43bI8LhZ1OxbeYjySO1I9/KNtPOLAGT20ZHI8VwUbPcuzAr1NirK8paoaPV0oH73C3Em7Np6YvG49erzKEeY78AKMPXS2+rvRaHQ8zRIvvCq0r7pJzc28cz+Mu7C+jTxNtQW9/NKavFATYzn1YTK8ygDtO5Mlv7xH7785LSxnO3t9iToy2FI8qV6ePO8KpLzsXwG9h28KPZMlvzz5yHA8mMCxvJMlPzwFCQC8AhDPO4N22Tz1gyS81+H0vM0SL7zY4r28l9EqPYgRTL0KrIo8YlzyPB7CrjpMVn68GQVKvQi8Or2LvO48nSdwvc3wvLy9dEK8dMfzPIzfqTvtPQ89UUcXPfZqk734+1s87D2PvUGYsbogbVG5utoYPbJgz7wwJRi9zSyJO7RZgD2PeVO8P+2OPJYmiLx3hFi94wcqPSCpHT0kMxe8hUNuvdB57bwcBpO7VYzjPFLgd7wdjvo89nuMPFxbCroZJ7y7WJ4lPO+0fbwvWIM8VtGQu3S2erwey4+8sZSDuvWDJL0rrBc7YpCmvDoN77vVFOC8aQknO8tWE7wns2a9GDi1PMdmQz2L8CK7ygBtO8mAnTzdWvU8M5TuvPlACT1f/hS91Gk9PH0OUj3JgB09dOouvUjvvzxQaQk7RyuMuvzjEz2fKDm9XOPxPAbNM73w17i8nUorPW+Cpzw+DwE9TmhAPTSDdT31UDm89C3+OtYmoryTFMa8jfkDPWn4Lb1NpIw9kxRGPM75HbzX8m299wzVuzXIIr3O8Dw8atY7vHtSNrwFu3E9PblavS8tsDudFnc99x1OPDoN77yvcP88PblavVET4zyzC/K7J7NmO2vFwjz66ys9h28KPHpAdDwu+fu8bqSZvLUurTvSejY8aQknPXBxLrwb9NC8x2V6PZ4XwLwfsTW9YsMRPTz9vjzZ6568zD2CPKPDqzyRixW9oCkCvK7oFzuCyza8JFUJvDzsRTui5Z08Bs0zPTdR0z3MPQI9q/jHPABlLL0z+w29cGA1vMoAbTxXWXi7QZgxvFpaQTw1r5G8RiKrvGy0yTq5yR86sZQDvMdler2mXdW73Y6pPMh3vDzu1u+8QMMEPV4xAD1PJNy7tPp4uOtNPztqAY88EZx5PJx9FrxxLcq8zvkdvOlvsbyEVOe8QakqPfcMVb1sgd48chzRvLDPhrxSJSW9KcUovL4wXj2UFEa7HqA8vRsohTuqVoY82cDLu/vaMj0AIH87dPsnvAYJAD21Pya956IcPB3CLj2PtZ88QzLbO3E+QzyvknE9LE7ZOVtsg7zKEea7EvuAvJXhWrxYlg09F1qnPOk7/TwAZSy8ZTvJvPVhMr1xLco8tS6tu/vasj29Y0k8GFIPO+H1Z7wkMxe8SM1NPbFxyDogfkq9QLqjPOahUz0NJEI8YX7kPLyWNLvWWY27AELxvGzGCz0iXaE8mo3GPNvjBj2Ynfa74/YwvYWIm70AIP+7j74APBOuO7xq1ru8kja4u1MMFLvPrNi7NpW3vO744TxuPfo6zfmdvAm9Az7AMSc91FjEPJufCD2r5848kVgqPNRynrzKZwy9mnzNvBdapzypRY2857MVPO7Wb7yDdlm9rbRjPbODijy6hHK9lgSWvFWuVb1e9TO+TWhAvCyThrxkmQe9OC/hOw1XLbzmssy8qglBvQ5PlbxnTYu9QLqjvNKtIb3rTT87X/WzvAWq+DyMvTe8r5LxvFS/zjuLq/U8Zl4EvfRg6bw7H7G6Z02LPeH1Z7wLipi7kXocPXBgNbxioZ8623znvC5PorwS4aY8h1UwPABUM7zHkRY9bLTJPEq81DwesbW8M+qUvU96grt9MMQ7agEPPbFxSD3Q4Iy81lmNvN6oA72+hgS8LhtuPaaRCbrXJqI5wSkPPCu9EDxLZ/c7qTwsvTwOOD1pIwG90ouvPNYl2Tyr5848SAA5vO8CjLtHETI9t9lPvRcVejxAmDG9hzO+vGOqADwsm568Ym3rPJeu7zweoDy9kEboPBAli7xlKtC7F2sgPYZ3oryNm0U9fUKGvQBC8Tzi5G68NnPFvRdJrjzYBDA74joVPZU3gTvpXjg8x5kuvLqV67yIRDe6+rd3PH5Chj6M8KI9QlRNO+BKxbwG3qw7tD8mu5xaWz1aOM88yhFmPMve+rwcF4y8jM4wPAIhyLr2SKG64ykcPGU7yTxMVv65sa2UPdRYRD0MggC9e3QoPaDTW7y/ZBI94wcqPXwfS7x//iG9MCUYvTWmMD2FmRS9ie/ZvBg4tbxlO8m7r3B/PQq9g73JM9i8JvfKuryfFT2dFve7ei97PIzfqbsaBUq82OK9uwTd4zzUWMS8S6wkPMoR5jwERAO9QqGSvILLtryf9c28QJgxvWn4LT05dI68klASvDeFh71kbrQ7M/sNvMH+u7x9DtI7+UAJPDw5izqnXVU8rsalPG+CJzyeSqs8+UAJvTBHCj3JgJ292+OGPNYDZz1I7788mo3GPOMYo7x9/dg8F0kuPXmFoTrzlJ08ma84PVTzgrx1yLw8NpW3vAferLzMATa9e1K2vLXpfzz84xM9ofYWvCYinjxjS/m6RiKrvHqWmju4t108p6ICvMaItbyxgkE9Np6YvFZ7aru1HTS9zCyJvPRPcDzmssy8TVdHPOleuDzN8Ly8HAYTPSusl7sERAO9IG3RO0cRMjp7UjY8njkyve7n6DrTlBC9X/UzvdDxBT1IGpM8C5sRvCxfUjzTch69ySJfPbGCQb0+l+g8gdyvOiNdobuRE308A+7cvMmAHT2Zr7i8SfggPMfEAT3wxj888bVGvcwjqL0o+BM9qBnxPDaVt7yvxqU9IUvfPFPhwLto5ms9h2+KvW61krz72jK9sxzrvCtf0rrRnCi9oNNbPBDP5LzJIl+8zBKvuuk7/TzsGtQ89XuMPcBCoL02lbe8LnGUPHbiFr2Y4qO88Nc4vS4+qbxmCN67YpCmvOXlN7xkqgA9v2QSPQlnXTw7MKo7d7dDPbODijwMVy29Q1RNPEybq7ygKYK8TJurvKZuzrz5LxA9Mh2Avf503Dv/qJA8KKLtPLVIBz1lKtA78LVGPCiR9DzPzko8OJYAPUGpKj30Pve8C2gmPWyj0LtAy5w7POzFPetNv7xLZ/e7ixIVPc/OSrz3DFU9XQYtPYvwojzrPEa9aObrvEGYsTrF3RI99wzVPKwbA7zgXAe9xodsvEXudrsYWqc7qAj4vDljlbxo92S7B9aUvNRYRLyLEhW9t8hWvROMybwl90o8qE0lvOMYI7zQeW09RkSdu2KymDxeMYC8Kt8CPPzSGj2N+YM8Xw+OvCmAe72mf0e9KMWoOzhAWr31Pve7ata7vCX3Srx8Sp68cVgdPLItZD2nkQk7+h6XO6hvF7zA7Hk7/nRcOwbvJT1Ya7q8PcpTu4OqDb1bFl09hneiO4VD7jwAIH+8uPwKPQbnDTzUab28JubRvJU3gTyEZeA8mmvUO96OKbzSiy+8qkUNveT2sDv89Aw8x4g1vKDTW73uLBa7o7KyvLUurTzuLJa8jJr8vATuXLxR8fC7O/x1vO09j7yXnfa8KYD7uzdizLoNPhw95PawvOQQC7yL36m84xijuiqSPTtpGiA9EL7rvJjrhLsa49e7Ks6JPQXvJTwZUg+9Rv/vPL2OHLz9hdW832w3PVPP/rqnooI81Gk9vAiayDypPKw8GHQBPbqnLTz1cqu8smDPvCez5rxlTEK98LVGvG5OczxSLoa7gdQXPJFpI7xYlg09nVukvKWhOT0Qvuu6FHvQPL8f5bt//iE9pKE5u7naGDv1ULm7cy6TPFTzArxrxUK9nkorPD252rw0cnw6fyCUvCVEEL1XjSy9aMT5umzGC7woxag7/Mm5u7xjSb1bBeQ8/KfHvNB57TxCVM27ATJBPQFlrL0ZBUq9x2V6vZmvOD1rtEk8enQoPIu87jxy+t68PAYgPLyFOzpp+K086Tt9PfSUnTqmXdW6tPp4vBDP5Lryx4i9sL6NvJ9CE72Cw546nUorvY2bRTv0Lf47M5RuugAx+Duq9367/NoyPBSMybtgwsi8njmyvInvWb106i69NHJ8PbfqyLuRNW+8BueNux9+SrsDTJu81hRgOxTIFbyhsWm77wIMvFP7Grwpxag59C1+u1dZ+Dq8sA48dMdzux6xtTwqtC+7wOz5OeJLDr1FMyQ8zCwJvVtsA71Ypwa+HtOnOkJUTbsAIH+8zBKvupNHsbw5Y5W8lhWPvAF/Br1p1fK8RIgBO/lACTs1wAo8bKPQOyBt0bs/7Q49YX7kvGujUL16haE7JEyoPDeEPj1Mm6s7nRb3vHfilrzVR0s8hmapPOAX2jw2jZ+8zQG2vMPtQr002Zs8HrE1PErfD7wMVy09M9mbuqcq6jx+QgY9XQYtvaS7kzrUcp48vUFXPSxwS7pp1fK8xbugPEJUzTw2rxE9XEqRvcDseb3VFOC8TFb+OaddVbxp5zQ99wzVPNB5bTwkZgK9wikPPckzWLvWJiK8nmSFPWjm6zzzxwi8cy4TuxknPL3UWES8aOZrvKgZcTteF6a9mnzNPICo+zzP4Ay7TVfHvK7olzwLRes8NaawPCii7Tz6/KQ6Al2Uu5iM/TxmGVc95NQ+vU41VTyXv2i99KUWvW1wZb28lrS6OXSOOwCHHr32P0A8NaYwPA8TSTqQRui7No2fvPz0DL3KEWY8O/x1vasbAz0d06e8525ovDljlTziS468jtcRvY35Az0iXaG8rugXPHS2+rtwcS48GSe8OsO61zyB9gk9F1qnPOah0zxugqc7HfWZvLCcGzz9hVW6OzkLPCuSPbxqEgg8St+Pu7naGDuZjUa8Y0v5OokA0znreBK7wCAuvbNyEbuPtR88cFgdvXQMIT33Hc47Ux2Nu1/CSL1oGqC8GjCdPHQMoTtFIeK8gfaJvRVI5Txq57S7nUorvahvFzwl98q7sxxru/vJubx6haE85uYAvdzSDT3ar9I8auc0PILUF718MMQ81+H0u1E2HrzZDZG6NHJ8vLim5DxpGqA7nWQFufZhsjsMgoA9eWLmu9GcKL3XLwM8vLAOvIN2Wb1VjOO7kDXvOdU20rtyHNG8mMAxPCUqtjxMm6s8UvK5ui4s57xUv0687vmqvPcuxzwZUg+9qTwsPZjiI7wuCvU8G9LePPLPID0d06e89GBpPIKpRD2ogBC8y0UaPLnrETv+qJA7tel/vDMMB7x6fQm8qTwsvbDPBj1xPkM87E6IvMO6V7zeWz48S5srvLKUA7097MU8dPsnvao0lDxeMQC9UGmJvBcm8zzZwMs8nThpu87OyjwlKja9+PvbvH/+oTreqIM8iE0YPC4K9bwz2Zu7MDYRvUtn9zy8sA69y+/zPL4wXj10x/O8UQJqOhDP5DwxCz48ppEJveqahDwWa6C8VZ3cvOd/YbwFu/E8WGu6vHMMoT28sA494G2APLimZDr1ULk8z5vfPOo8Rrv2WRo92p7ZO8kiXz3xtUY78BZFvA0GET3tSWa9TePiuy8knjxMXiq87JCPvCXuhTy9NRO88P+iu0WncLxFgIM7ui48vINjrzpDXDA9wFOMvbuMB7z3Eei8/FkOvfG4+bsRqUK9LVHlPHNJlrxUPNG7z31wuqSeuLsFPwy92sC5vORxmTkhpl+8vPRDu429GrxwX7s8tosKvExeqrwOHTM8D4XvO51FyrzlDfS8GUMAPZiV5zy7EUC7/PtCPMrDnLw3U9+8dtWlu+6KNb2GniS9g2MvPaQZgL2P8Ti99sanu9Qt0zx+ltC893UNvABrVrsE55q8uWg0uyPKsrqUQ9C8tfmgPDaxKj1UPFG8YQuqvNfjD7yg+4Y921IjPNGhQ7ymBnW9EEGGvVV9IDwaTXE8quAEPZiy47xB/mS9aelQPBNvyrwyAci8JZA6vKKXYbx+llA9jb0aPBzPjzyh3gq7zsQZvQ/jujzkVJ281lGmvM4VtDzBpCa9QnmsvKRqmrwCFOI8IcPbvFO3GDxceMM86I+SvNBgdDxDxGw9446VPNuGQTyaFwY8JK22PLbcJL0zQhc7R8tDvGKdkzwG4UA9Nc4mPWNW6rxCKBI8ofWsPHh+sTscE3k80Nu7vDNClzyOKzG9uku4OyWQujwUk507u4yHPTrf7jwG4UA9xjcNveNkaDzvHJ+8jGUpvRwT+Tv7x6S8wFMMPBjOErsaJgQ8pul4vWgjybuWZyO98BbFPIbSwrzr/qW7o3rlPG98N73NT6w8gUyNO4Bpibw+Chm8xcKfPPQdHL1PZYE8xXt2vJnzMjqGV3u8pgZ1PRzPj7zZYu48aw2kPLpLuLxyqvu8xRO6O8GkpjzydJC9DsyYvJq5OjzbhkE72H9qvfLczDxhKCY9YQsqu7HO9jvjjhU9i5+hvKBMIb1OJDI9+VI3PJYWiTsVGFa8Wzf0PAWg8Tx5YbU9rHzfPLpvizxfYh69rwjvu1ir5LysiZC8L/rwu7e/KLzkAwM9A1WxvCPKMr23oqy8uvodPcwOXbvpVRq9YQsqvFPUFD1N42K76tpSvDsgPj2PoB475HEZvL6dz7wCci29vbrLPBwT+Ttq9oE79L/QPBUY1rwccUS8qtPTvFE1erx7CkG9C/nfPOvhqbxasjs8zU8svO8P7rz24yM9PIj6PLWbVb3Kwxw8CnqBvGWXuTrZbx+8aIGUPIP1GD3BpKY9GAIxvZ1FyjvLbKg9z5rsPHIIxzup/QC8MLYHPeRxmbovF+28xcIfO69mOrsTb0q8z/g3PUwA3zwQQYa8W0QlPQnoF70KXQW8UpPFPA3c47wtexI9HBN5PI/xuDoUk527YSgmvF1bxzw1jde7LxftvE9lATwsmI49Wi0DPEpX07tc4P+8EanCvAnLm7y8eXw8Nc4mPdrAubvabx89u2+LuvuTBr0hIac6iDr/vNoehTyylP682PoxvG/k8znYFy48eRAbvXKNf7yVM4U9S3umuzgZZ7vLOIo9OyA+PEWAAz2mZEA781cUPcKHqjxYCTC8uUs4vCRcHL3RocO8HjfMPMEpX7z3EWi8sg9GvaXfhz00qtM8Wi0DvZOhGzus96a7MgFIvp9pHb0jyrK7b1+7u8s4CjwATto7HOwLvZL4D7yLJFq8ZfUEvbkK6bxZcWy9PIj6O6YqSLzw8nE8VQLZvAaDdbzma787UpNFPS/68LzxuPm6oNHZvLyWeD273SG8ZBIBvduGQTx6yfE8I3kYPKz3pjsUsBm9f6OBvdsBibxasju8G45APRzPDz3DGRQ9spT+vNA5B70JbdC7EeoRPD9yVT0P47q6IueuvAGPqbyvZrq8qrbXvBB1pDsqtQo9QnksvJEVjLyw6/K8McD4O9Qt07wAySE9FXahvJJ9yDzq/iU9JRXzPM+abLxHUPy7gT/cOfuThr0lPyC8mz7zvG476LdJ0pq8ewrBOu5WF7xXyOA8/TwSvanwzzyJQda6LcysO9L/Drvup7E7DHQnPQx0J73xkYy9BKBxvINGM75N8JO7aenQOvC4eTyknri7Je4Fum8B8DxNQS68BP48vHElQz1/o4E+avYBvVcmLLxYCTC824bBPKZkQLuNsGk9maIYPd3u/TttZRW9SXRPvPKb/Txp6VC8jUitO9ecZjqlI/E8c87OvG4BcDzEMLY9ByIQvLJtkTwiBCu996mrPNc0qjuAXFi9zrfovJtLpLvUqJo9z/i3PLLyyTt4frG8jBSPPJ9pHT2Bnac8CzNYPX3QSD1TWc08hQw7vZUzBT35b7M8AnItvQ8AN7wATlo9GzD1vH+jAT37uvO8/PtCvEiRS7sOouu85hqlO81PrLpv2gK72BcuPJmimLdbN3S9n9FZvJnWNr0Gg/W83vVUvIbSwjtBlig5Xn+aOxBo8ztKOlc8CW1QOkGWKLxPZQG7E29KveQDAz34LmQ8Kf9NPUB/BjzxM0G9+5MGPYZ09zwhISc8idmZuwSWgD2BLxG7qxSjvHDkc73/5R29LxftvIj2Fb063248vhgXPZAyCL1h14s8zf4RvIUMO7scVMg8XNaOPH1yfTwMVyu7H3ibPIMSlTzShMe8EEGGvBixlrwEGzk9zhW0vO1zk7ulgbw85Ig7vF9iHj1XJqw8atmFvKEvpbnXuWI8JK22OsalI72Xz987OBlnPOv+pTwsmA49P3JVPSKJY7siieM8psx8vK8yHD3O4RW9Bf68PE6p6jxLRwi8eC2XvKuZ27thrV675EfsPOUNdLzFwh89OHcyPeZOQ70CFGK8I0/rPAJyrT2htF28WxAHPY2w6TyDRrM87qexPEQ/NL2VCdi8cF87vf4fFr03NuO8QUUOvEBV2Tw3YBA7OSaYvNwLersMI408bPAnPSStNj1KOle9zsSZvNoeBb2J2Zm8oRIpvN8SUbzXNKq89L9QvRnltLwlFfO7MAciPSDgVz1kOW49HbKTPHZ3Wj3ApKY7Y9ExvW9fO7zNTyw8Qf5kvcpI1TyuTxi8RkYLOjwDQr3RHAu9T2/yumrZhTz2xic9bwHwPMBTDDw0x089P4/RPPbGJz01jde617nivMTSaj3hu9w7eQNqvBxUyD0XwWG9KwalvOZrPz2htN26vdfHO2LuLT39wco8pSNxvbouvLsv+nA8C1erPJucvjpBlqi66VWavGS0Nbxp6dA8R65HOxuOQLwRS3e8iHtOvY3qYb3ShMe8dCyaPGlHHL2ehhk9u7N0PEnSmrwz5Eu92d21u1tEpTuw+KM8S3smvNoehbv61288co3/uy1RZby4hTC9NMdPPKbpeLo+rE28sg9GPL3XR73LbKg8mmigOxqrvDxVH1U91gAMPXDkc7yehpk7I602PEwNEL10oYc8lFCBvDPkSz3SZ0u819beO8+a7DwAeAc9LpK0PGKQ4jzzVxQ9cSXDvIbSQrw/nAK8PAPCPFYPCjyq4IS9xN8bvGELqrzboz09Q9EdPMKHqjw0qlO9AiGTvDdgkLzIgs08B8REvMX2Pb2Ey+u8DHQnu8ngGLy/3p68wFOMPCyYDjy3oqw8LVFlPPL5SDyRt0C9FXYhvZo0Ajyp/YA8Nc4mPI4OtbthCyo8rPemPGRjGz33EWg8UG/yvH95VD1xx3e8GAKxu9FD+Dx+s0w8EanCPNuGwbz/5Z08bVhkvfaSiTvX44+8XpwWvLQWHb1WDwq8ttykvW8rnbyO2hY7s9VNveHIDTwyAci6gUyNPE8HNr2XLSs9NQifvBcfrTqP8Tg8QigSPVJ2ybtQzT08qbZXuvDV9Ty0M5k7ATHevN1MST1KOle9AwQXvKymjDy918e8uIUwvSrF1TyS+A+9hrXGO3bVJb3QOQe9o9gwPUVjh7x3PeI8LOmoPLPVTT2qMZ+8I2znup3n/rsP4zo9B0n9vLouvDwQJIo84OWJvMbZwbyRt8C6yWXRO68ynDvwUL06PWv+vBLqEb2KQVY8AtppPJLbE72EKTe92m+fPFuVv7wZ5TS8WrK7uy6SNLwtUeW7AtppvAaD9buKvB08tn5ZPOra0rznrI68dZRWvY4rsTzW89q8ewpBvf4CGr0b9nw8OEOUvLPVzboz5Es8Yp0TvY69Gr3Ot2i8SJFLvd2qFL1WJiw9IgQrvX+jgb37k4Y8SWQEvFSaHD3up7E5j/G4PJwEezyHMA48QwsWvk7TFz0P47o8P49RvOvhKb1LRwi8FLAZvZUJWL36NTu87xyfvPrX77zLOIo80uISPSrF1byDYy+9aUccPU7TlzxLeya9PMlJPAnLm7wOHbM8IaZfPPz7Qj0/nAK9Ofzqu2x14DwbjsC68PLxPEBV2bv7GD+9xDC2PHElQ7ov04M72sA5PeKB5DsG4UA9Bf68PExeKr0s6Sg9+8ckPYl7zrtbN/Q6maIYvIiYyjwLV6s9jM1lPWuvWL1pRxy9ByIQvRqrPD27jAe9VyasOzdT37w5Jpg8zU+svGLRMTx3LZe9luzbvPAWxTxtgpE7FLAZuhnlND3SZ0u9RYADva8ynLwXPCk8oqQSvZG3wDxl9QS6JiKkvCKJY73EMDY9m0skPY33Eru0Fp080Ns7Ool7TjoCcq06rb2uPO6KNb2GtUY8Z8X9vHxLkL2E2Jy89QAgPYMSlbys2iq98TPBOX6WUD1beEO8Dh0zvCEhp7z93sa8OBnnPINjr7xFgIO7wSlfPLouPDrQYPQ7VvKNvHus9byLJNq8Wxp4vL+qALz2kom8riXru+QDgz0Eve06jisxPWrMVLv3qSu9RNGdvJAyCL1Sdkk8f3nUvENcsDxkYxu8KsVVPFzWjrzJZdG7MN30vKvDiLwhIae8EMY+vJo0ArzcC/o85eYGPXggZjzYFy4978sEvGRjmzxqzFS97izqvA0GkTvKcgI9xI6BvG22L70krbY8JDJvvC406bx7hQg8gJ0nPWJz5jvf5Qm9OpsFvIbSwrzw8vE8rF9jPD0nFT3I/RQ6IcNbvGx1YDwHSf0633AcPS6SNL1yZpI8jiuxuz6szTwNOq+5SYEAPcXCnzxwvQa9opdhvMGkpjmQ1Ly8luxbOhB1pLzkpbc7RafwvJBZ9TsBjyk9oN6KPOPfL7xKtR69sOtyPEt7JrxfBNM82kVyvLgnZT1pRxw8ZDnuPBSTHT2S25M7htJCPJfcED3E0mo949+vPG8rnbwvF+26QZYovFbyDb3Y+rE7kHbxuwEx3rwadx49rPemPB43zDtp6dA7UvGQPNgXLj1XJqy8JiIkPP/lHb3ZOwE8n2kdu/gu5Dx4IOY8PAPCvGQSgbylTR493i9NvcI2kLxQzb07db4DuxB1pDuxzna8jAfePB6Vl7w/j1E9rPcmvcMZFLyybRE9fXL9vLPVzTzxM8G7L/rwvN8S0TtS8ZA8wocqvUE43buSH308PqzNPMWYcjyPT4Q96BTLPIW7IDtCKJK8nAT7PHrznjynpY+8xI4BPQbhwDwOHbM891iRPHBwwLwryCs9YFdGvfjRL7u1kSW8VbjFu+4TCjw0hlE9vMgbvM+MIz251dG8tW3HuyjnUDvyaSU8+WpOPflY3zv8OTq8xqofvNQYDLzJVS28Vj/1vB2QDLyAQX48vIDfOxVHJz2MoYs87u+rvHKUHr1AN8E8DO6aO/zmDz2p8qS82z2TuiZyEL3YOFq85TEGumlLOTynEcq8nPn4vJQ7U7wo51A8nKiWvEcbDTwuqQa8IIx8PHBM4rx8moC9RbE6vYk1cbxtLBS9ilnPvHsRCbsiCgY9TG/gu1eHMT3n7oI8GHnkvQuoJjtWZZu9giLZvPj1jbw0RRY9pZwJvNV7XbxhjZM6z4wjPYYVo7xKoPQ8eIPYvBVHJ73XTBE9TV3xPFzdzDqoWYa8RbE6vcURgTwktRM8H8SRvIbxxDxBW5+7RThqvIt9LT2NFsw7m5YnvKp7nLxAN0E8e2SzvCqkzTyreVQ8qFmGvfY4Eb0SegO8F/I0uzVXBb3k6ck8Vtyju/TwVL2eL8Y8SqB0Pa2voTqil1C756ZGPMsAuzxShgi9lF8xPWbjrrxAN0G78vKcPJbUcTx6QFW9rSRiPKO7rjwBTdK6yQKDPENp/rwmPEO8C6imvAgPiLoqkt48AU8aPPEhaTwzYnM9EfELPW0sFL3EUPS78KwovVeHsbzFdNI8+EZwvLYsjD3ecRi8et0DvEIYHL3cTwI8rSRivP+jDD0+J5q8FtCePCqkzTxYIFC90/QtPTXOjT2JR+A8I23XvAI74zzWe129+VjfO1vflLxDe+07vnOpu8utEDy4KkQ7WmgMPazBEL30FLO8PoyzPA+Fcbx+zD08vmOCvEqg9DvqIog95R8XvVBiqjx9/dE7mjz8PGEWi7t+lvA7rUjAOxFoFL1FSlk7QxgcPNWfOzxIGw06hc3mvBNmzDwXWRY94j68PbNJ6Tzph6E8CA+IvPWvmbyGFaO87VYNvOqHIb0vQiU8k7SjPPe/QLuh/jG9WTSHvNJbDz1WdUI81AYdvStP2zt7UsQ8cF5RPLgqxLtddus8RUpZvGwapbtPpS281Vf/u2h8TTwdkAw88mklvLHEgTvS5Aa7075gvazBELwDcTA94usRvZDTSD3Y1Qg8wAxIvLlOoruCrZi8n7Z1PYpZzzz58X29jOB+PJy6Bb1vcgg9wR63PD7CgLsai9O8d3FpPezNlb3RSaA7zIfqPBmdwjxaMj+83m/QPAYuLT2omHk7XZwRvNWhgzv8XZg675o5Ow0ACj2FWCY9yfATPLhgkTusryG9w8lEvd9d4TyHAzS9w1D0PJYcrjy7bnA7IcLJvMKl5jwai1M9IbBavGwINr0DHoY7YzghPSbpmLr9wGk8Fa6IvCQsnDnYXgC8cpQePHM/LD2iheE8HRkEPQ80j7xOyQu94JOuvUwMj7uDEOo61WnuPBUR2rw84aU88lc2PG/FMrwmPEO9r/WVPFpWHbtrgYY7cvfvPfC+lzxylJ48rvUVO/MEDD3N84S6SSu0u2k5yrxL6LC8HfNdvIIQarze6KC8zb03PGIUQ70vII89v2E6vK71lb3cK6S7DezSvC6FKL6Q5be8XohaPHwhML1ZRK48AtgRO6mq6LyRbGe99q3RvOClnbz4WN+8iMAwvQly2bwxydS7r36NPXlUDL0PIqC8HVo/PM5YnjzE7SK9Zb9QvN6DB73aB8Y9t6OUPGuBhju3LIw8w9uzu/SNgzwvDFi7Es0tvS8wNry+c6m8YxTDuys9bDwKuhU8/F0YPZtgWjw+nqK9nlOkvEBtDjpm0T89AKLEPCGw2rzQjKO7nDEOvVW4xbw33Gw9lxyuOkN77bz5fD27SqB0vHS07DssdQG9vdoKPXou5ry0bUe7gr+HPF0TmjybhDi8RxuNvJ5BtbtKoPS8i2s+PSdOMr3u3Ty8tZElvWWt4Tt5uaU84j68PDjuW73D2zM8E4qqvNnR+Lxygq88n3eCvCu2PD1ufXa9o2iEvB7z3bznZQu+fNnzPJ4vRjvk19o8LwzYvNAniry1f7Y8hp6avPSNA7wPhXE8XSWJPjLbwzwE+F87311hveaoDj2mEUo7wjCmPGW/0DwvDNg79cEIvVeZILzO4RU9luZgO7+XBzyHJ5K7mjz8PM1qDb2mJYE8EnqDPel1srzxrKg7DQCKvB0HlbuQ08g7wNb6vN+Trru2tQO7AcYiPRQ3AL0sK3081NDPO+AuFbx82fM8ed2Dvd5xGDwb0487SsYaPKV4q7w0IwA9NaovO7PUKL0P/sG7PZ4iPDurWL03eRs8xoZBu7hgETtpFWy9GODFvN7oIL01H/C8kZDFPL5Py7y+K228Q6ETvUduNzxpOcq8TPqfu/opkzwktZM8S+iwu7PUqDxnWG+7IeanPFqnfzum2/y8J06yPPUCxL1V7pI8Rm63O5o8fDyleKs8/cDpOotrPj2BeZM8X9AWPANfwTv/CKY89r9AvI0ou7nVV/+8qarovJKiNL3js/y76YehPC8M2DxI9ea8EanPPGSb8jsfBU08+Xy9PEuy4zyBZVw8UzGWPJ1BtTwRqU+8qfKkPLykvbwyiJm8j8HZPH/wG73JVS08tVtYPAdOe7xRUDs9u/mvO7NJ6bwvDNi8GQSkuwI747vpmRC98Q/6PPl8PbzOaEW8rvUVPWBF1zxbuW67M2JzPEIGLbyeQTU9T1IDva1KCD3LNgg9Zb/QvIbfVby2tYO9NCMAPU8I/7umeCu6QhgcPSBNiTw33Oy8frrOvKoEFD0w3Ys9LZeXvEBbHz3SrPE7aSdbvKPfjDzuE4q9z4wjvZEbBb11Y4o5ux2OvHYOGLwvDFi74JOuvCHUuLwKlrc8Ux+nPBUjyTw4Ejo9lYOPvap7nLxie6S8cHDAugajbbwSza27RbG6vPIzWLzcxMK8YgScvHbYSj2w4V49cXDAuy7o+TzDt1U9Uw04PSGw2rwKlje7/OYPvR3P/7u29PY89jiRvAtBxTwVEVq9ST0jvOaC6LxRxXs7WjI/PWkD/bw+AfQ76w5RPYGbqbslBna7HRmEPKEQobz8J0s9RJ9LvPl+BTs6mek9c6YNOxN6g7xhaTU9uOmIPAHGIj3n7oI8twbmPG6PZb1dAau8v09LPKAQIT1Fw6k8OiQpPDQjAL1Djdy6Ve6SPLykvbzqIog8kZDFvDZDTrzCMCa82EwRvMt1+7yHAzS9j69qvFj88TwU7fs6udVRvKFz8jwr2ho7wR63O0xv4LyRftY8m/0IPapn5Tya2aq86HUyvQ+9BjvPVlY4kj0bvf1dmLyRbGe9NlcFPLUanTwX4EU7mC6dPZpO6zvLJBm8N9zsuw/+Qb3N8wQ8fZbwPOaojrwtc7k8PER3vM2rSD05AEs8w8nEPOOzfDyjqb88kQmWPEvosLwML9a85sokO9CwgTymeKs7Xa4AvHMJ3zuxev06IbDauxOKqrwMzIQ8n9ybvcKT97uf7gq9Zb/QPJaDj7mMGBS9qo0LPJFs57zPVta8sSmbvNsHxrxOpa08xjMXPLcGZjzPVtY8yXkLvWzSaLwKlje8RUpZPFbcIz00RZa8kJKNvCf7B7zkDSg9uwufOw+FcbyftvU8KoBvvPGsqLxqXSg9KoBvvC766Ls+niK9/ywEPFYAArxZIhg9tG+PO2wapTxtj+W8WUSuvA7sUr1V3KO8pVRNvJX6F73GH2A8/dJYvEFbn7u/6Gm8hycSPVNDhTz1FLM7uHIAPOCBvzzLrZC9dFEbPDYx37twTOI86/xhvYK/h7zuE4o7MFQUO5h/fzy+K+07NEWWvJDlt7wsK/27B+spvDcCE7w6Nhi9JaMkvWHw5DsXvGc60BWbPIW79zzqIog9hbv3vMVi47zjUCu9ScaaPXuagLwh1gA94QjvPI0WzLx9D0G8CNk6u5MX9TzNvbc8ytzcuKPfDLyYo129DXcSuxbijbyhIpC8Q3vtO9WPlDwn+we9X1mOu5YKvzwHUgu8PVbmvCA7Gr2iheG7mMe7PCn5v7w2yv087gEbvZbmYL3ZkgU9fUUOPKNWFTsNAAq9ubHzPKyvobwNZaM8/ywEvNDv9DtgM+i8v09LvSvIq7xa35Q7QeJOPC/LnLxxXtG84/0APeT7uLw5JKm8J+kYvefuAj28pD29xHYavaNWFb7fk647W++7Om9yCLyuz++6AWEJPSHUuLyYo9285sqkvBfytLsAkFU82z2TvIV8BDwkPou8NmcsvKyLQz2Ljxy6+NGvvBbO1jwdGQS9qfIkPQ1lIzt8iBE9S2EBvHtSRDy+Y4I8HNOPumbRvzy7+S+8b8UyveQNqDxi3nW6/2t3vMhVLT0lGOU8ywA7PR6QDD2hc/K8M5hAPP2u+jzAhZg8DEHFOn9B/rp/3qw85+6CPWwINj0rPWy8UGIqvXtkM73cxEI8e1JEve4BGz3Edho8K8grPVWm1rvVoYM8Ail0va1KCLytJOI8yu7LPKVUzbxygi89vmMCvR8XvLyjqT+9YvDkPKUTkr1KoPQ8zJlZPKH+Mbx7/5m8eRx3Pdgmaz1AN0E8qfIkPXIdFjwuqQY9K8irPNyg5DwlGGW9FkenPGWt4byM4P68bPgOva9+DT2KWU+8ekDVvNZ7XTokf0Y7BRw+O5GQxbyovNe8T6UtvZGQRbwbXIe9z2jFu8oSqjqCvwc9ux2OPAMeBj3bGbU7pv/aPGaQhDtdroC8QFufPLtu8Dy8pD09840DPSBNCT1ZDuE7vlETvJqGgLzcT4K8/V2YPDcUgr0u6Pk8e3aivE6Bz7s6Nhi7oXNyvC6pBr1B4s684C4VPGIWi7xKYYG8OplpPHFwQD3Ve128abKaPPab4jycMQ49hVimvXrLlLx9D8E8Ob8Puz1oVb11URu9K9oaPSkLL73GRYa9gEH+O5D3JjwzI4C7LHUBvETDKTxMlQa9Xa6APX+oX7zTvuA7bAg2vf3SWLzjs/y7DO4aO8+MIz2hIpC8wssMPa5ar7yG8cQ8IIx8u08Ifz1JPaO69BSzvKaciTwTZsy70kkgvVEPAL1Mb2C8QxicvGlNAb3RE9O3bY9lPCCeaz0kPou5duq5vNheALyn/9q7aU0BPNheADsBTxo9/G8HvJiRbjy2fzY9Bi4tPUqg9Lw2Vb07cV5RPZl0kbzDycS8xWLjPKnyJLyCv4e7UoYIvf32tjqhIhC9bPZGPWvk1zwML9Y7NEUWvVW4RTyERrc8116AveTpyTz95Me8ICkrvKH+sbxL6LC83I51uywrfbzoUdS6vdqKOwZSC73tuV681Vd/PE/Ji7qzsEo8/cDpu+tEHjyxBT28O882Pc9WVr2gECE9cDpzPQ8ioLsNyHQ8CpY3vDcCkzzggT+9LyAPPQJxsLxy9++86upyPKYlAb2Ytcy88dAGPZ/uCj3pUVQ806zxuV++Jz05JCk9gxDqur5jAj0EDBc9PxNjPXinNjwf0jQ7M4L4POTT8LzF0Sg7MuYmu+qTGrxcNw26mDg3PQV/jDxVDgs9SyS9u2XbEzzj0Aq8pPAtPKhtdj1W3LM8+vz0vKt/orySqKA8tjeZvLdqkrwRBSy8kC9gPJidhzyMTCU9lYmXuj86b70ETTW9npMQPB/Rkju2BKA6k6rkvNHvEbts0+C8mTr7O9Ijrbw+0Za8vZQ2venHtbx/xgW7BE21PB6Ly7vkAwQ9ip/Ju71iXzynn828YvxgvRrcK738Q168bJ9FvcIiCb23ahK87XbVPIaKNzkDOuc7mQQcvEXIwb3t3Mc8KXWZvdJVhLwE58K8HfE9PTUtELxp8mk8uufaOv1D3jwOjGu8gGATPRb7tLyflDK9tji7PBdhJz0AWfA7V6pcvTh2vbwCoFm7C3UVPI20W7wZdrk8fbIVO5/8aLwDOme70r9+vLZs1ju55Za8F/s0PAn81LtkDo08nOdWvIidBb1oirO8Kqv4O1T7vLwcvSK9gZSuPGCBXLwT5iK93nUxPW/o8jySEFc8pIx/vBGfuTwWYAU949EsvQM6Zzq651q7qG32PI3o9jwgOKc8iJ0FvTne8zyW8c08lSMlvJF0hTwodZm8G6rUvIo517z1foo7Rg4JPfZNVbzIfgS5VJVKPa4vZD1xLZi80r/+PJW9srytYJm8/NoFPXSonLzmsYE9LPJhvHi/8rzCWGi9qrKbPJW8ELz4+jA9xWu2vP7vlzxTyeU8qGsyvavoejvIGBI97/HZPJa9sjvLLSQ9pLySvGVBhjxgGSa9v6nIOonRIDtoIx886LRnPI/5gD3sqCy9MNPYu4ZY4Dw/oOG7Kt1PPJJCLr0y5qa8N3WbPMDbH71jlKq8SiS9PBN/Dj2QL+C79Absuv8k1TzwV0y9vPoovF5/mLzhVqg8v6eEumC197uQL2A8rWAZPUirfD3j0Ao9Nw6HOp5gF7103vu8RJSmvMO8FrytYJm86pXePIpt8jxNaoS8CfxUvTDT2Lyr6Po8QU09vDeoFL3G02w6fudSPAWBUD3FBCK94IpDPfSg+TuV7wm8h7yOvFRjczyTDhO7mDeVO2wH/LscVg487EEYO7mzv7zngMy7zJXaPKtO7bxMagQ9lVaePAp1lbtmd2W8lVYevP1DXj1BfxS8UehuvR/REjxoirO8LYxvOlHobj0X+zS68tJQO4/7RD0Ca5y9xp9RPGXbEz3Svbo8TjnPuoZWnDz1S5E8pwVAu4QPs7yQL+C7zqcGO7S/+rtgGSY9RWJPPCaWZjwytE88QrVzvWsElryhDpU8EDcDvb/dYz0Xx5k8D/Ldu/7vl7ykjH+8S75KPap+ADzuqvC8Y5SqPMYFRD2ZoO28Ui2UOrrn2rwEgdC8g9uXuXEv3DyZoO08XTrzPNIjrTwdvIA8fhkqvVC0072DQ847okPSu+PRLD1W3LO8TWoEu22yk7tWDou7hSIBvfiTHD2HvtK7wu+PPImdBT46I5k8gS68PKp+ADwx5YQ8xms2vGItFjzb+qy80iOtvIby7bzk03C82i5IvDLmpjxDk4S9m7KZPcz5CDxgG2q94znjvLz6KLzDij++AZ4VvYEuPLlpvk65FmEnPBS0y7yk8vG8HFcwvYidBb2E3Vu8OKgUPIBiV70/oGG871fMu04HeD1wxgO9tFdEvGtqiDzGnQ09VUImvarlFLxp8mm88gSoPZbvCbo1L1S8G0RivIEuPLz3G/47IrKJO5JE8rzmgMy8MAd0vTq8BLtX3ne7oqnEPCZiyzyxEFu7NslhvdouyDxObWq7HzeFPV+zMz2qspu8fOUOvHRCqrxpijO7yOY6PdQ4vzzMYT+8ny0ePPZLEb2liZk60VdIvTUtkDsis6u8bRiGOs920TvIfgQ9DiOTPFzSPL2VV0A8APP9vI20Wzx4v/K85NEsOgn8VLzaLIQ8dA4PPajTaDtZvSq9BE01PQvdS7zADzu9w4kdO6sa0ryYag494e+TvdflmrsKQ7673qcIvgfIuTxL8mW6IDinPABZcDv1sYO8vJQ2OqEOlbyPlVK8pPCtPI7Ghz5SYI082mCfOwBZcL0llCI99RiYO0T83DytYBk87KisOfIDBr08i0+8xQXEPD9sRjwadRc8vw87u+Vt/jxAGIC8uoHoPL/bnz1xlU69/A/DvOC8mryQ+8S8fU3FPKKoorzsqKy8lSOlu+PRLD3k0/C8HwQMvAvdSzxpvk487EEYPY3mMr1l3de5fudSu8KKPzyk74u8g6gePUm8hrrPEF+7pPCtOuXTcD34Lky7oqiiPLHcvzzeQ1q88L0+vc92UbxV2xG9t54tvQIEiDvyA4a8N9uNvAyr9Dzpk5q8IGugOdr5irrLkxa86fkMPDNOXbzedbE81qB1POGKwzwgayA71qD1vC+fPTwQBay9J2LLO5a9MjxE/Nw8CqgOPVtqhrwjT/08xWs2PTtZeLvpYcM8hKnAPLGopDvg8LU75uWcvDyLT71zdAG968n5PB3wGzzaxhE9LImJO0gR7zwTGj488p61Olfcs7vIGBI7BLKFPEBMmzzznrU8mJ2HPFygZTzD8DG8+F8BvZOqZLt7Bly8dKrgPAYbXj0GT/m77yKPPAC/4rw9agK9pVjku3Iv3LogoF08LVhUvblLiTxW3LO8n/zoOxEFrDw2/fw8TjnPOz9sxjy2OLu8HFcwPaoYjrzdQRY9TGsmPHiLVzzYf6g7csnpvH2BYDybS4W7vMhROn6BYD0T5QA9NMcdvf6IA73/JNU8O1aSPaKoIr3CIgk9bxrKPESTBDyobfY8DiOTvd51Mb0uBA69eCXlvGtqiLyKn8m7SbyGPGapPL3PdtG8B/oQPZXvCTxl2xM9ZA6NPehOdb0jT/28EqH9vGUR87ut+8i8rsYLvfMG7LwlLrC8Z+8DvJidh7zXSw09etJAPTUv1Dzm5r48uoFoPQfIuTy5sh28AzpnO9Q4v7zh8DW98YtnO10G2LxK8CE8UvqavZUiA7ybGS48tp0LPHgl5TyBLjy70byYvFfedz2cshk8e56lO2+AvDzhIg29lb92Pc9CNrw3QQC9E+UAPgctCr0gnpm8wyRNPWIw/DprBTg9LznLPMuTFj1Z8UW9k9sZvKoYjjwPJvk8RGJPuzrwnzvedTG9b07lPI3o9jzd3We86S2oOyb82LwllKK84PA1vEbbj7z7dBO9q0wpvXcjoTxNBJI88zhDPa1gGbyTENc8Tm3qu5aJlzspD6e8yIDIPKIPtzwUTtk8MhpCOfIDhr10dIE69X4Kuo7Gh70ZqJC8HVYOvdiBbLuid+08I+dGPF9NQT2nn808dHUjPLob9rvFBKK8Rg+rPAM6Zz0o24u8Y2LTPOblHL0hoN08cpVOPFvRGj1374U76LRnvNG9urtL8uW8s1aiO5g3FbtoJME8twZku6tLh7zkBci8XdI8vCWUorz1TdW7b07lO8vGj71kDo28TZ9BPD04qzyn0SS6H54Zva5j/ztL8uU7Z1YYvczJdb0xfxK9GXa5PDLmJjzI5ro8UIJ8O2jwpbwa3Cu94zcfPPUYmDx6ODM9zJVau10G2Lx+szc8fEsBPZW/djwZ2wm9PIvPPCb82LwA8/28n2JbPXqeJbtav268N3WbvBOAMLvD8LE7Mk7dPGVBhjrVOD+9I025vDRgCb1O01y9Y8hFvHKVzjstvka9pfLxO7z8bLxEYIu8y8exO9vI1TwSoX08awW4PMJWpLsT5QA9Ui0Uvdz88Lq8yFG8otubPJPcO70ygLS7wlUCPc3JdTlzQYi6v3WtOyuKK73YGTa92OfeOxWC9DvlbX68gcjJvNGL47yAYBM8Z1YYvS43hzy9/Oy7XQZYPVFO4bywDhe9jy9gvUqKrz0y5qa8Cg8jPOQDBD1z2xW9ZA4NvSUusDsHLYo8Zqk8PXugabw2/fy8JccbveZLj7vL+Yi8MuhqvHrSwDwb3u87APP9vIidBbuuYbs8maBtPPLQDL0fnhm99bPHur8POzziWOy7KA+nO5hqDr1jyEW9Qy0SPZ/ITbxyyWm8aL7OvM50jTy0v3o8Kt1PPC0mfTtGDgm8MoC0vFueobzJ5Zi8ep4lOx6/Zryqshu8xp9RvSPnRjyidak8RkECPQdix7xsbe48k9w7vYx/nryxQRC+onWpPG7ocrxxYbM7LYzvvDT7ODxyx6W8MxpCvONrOr2JN5M7aVjcu8OKvzz+IhE90iVxvLY3mbxn7wM9TtPcvNQDAr1I3VM9zg6bvCA4pzzgVqi70YvjPNFVBL17niU8sKcCPWAZpry/Q9Y8eL/yO+n5DL3LLaQ8yEytvN50D7zUNx09ztuhPHBgkT2651o7boA8vNK9OjyB/OQ8ccclPUgR7zu6G3a8JS6wuXH7QD2MTKU8vS5EvedMMb10daO8maBtvAUb3ryYODc9hSIBPFolYTxTk4a8GGPrPJF0hb1/xgW8jU7pOns69zyxRPa84FYoPZWL27yi25u8Wb0qvTfbjTzCWGi9HVYOPe8ijztMa6a8D/LdOlm9Kj3UBKQ8nvkCPRS0yzwdIxU5jeayPARNtTxyY/c8lSMlvUgRbzyziRu8vMYNvcB1Lbw7vIQ8/1asvKF1Kb1mDy88wiIJvIe8DjxF/Ny7/NoFvYOoHr3IGta8RGCLvbFBELvLxzG8Zam8PP9WrDz5lL66HFcwu3tsTj3g8DU80iXxuxQavjwOJLU8BLMnPV0G2Du5sz89ybTjPARNNTt7Ove8JZOAvEPHnzxqBBa9jBgKPdv6LLzUBug8gcjJPHR2xbwETTW9PmxGvZXvCTyHWGC7AZ4VvWny6TzL+Qg9BRmavJDHKTu2bNY8M4J4PIlqjL2NtFu6DHfZPJk4N7yqGA69oqeAvUHnSj3ngEy8MX8SvQp1FbvyBCg7hljgvJg4t7wNiYU7gZQuvaoYDj1uTCE87XZVPCZiy7x03Lc8KkNCPETIwbyE3Vs9XTrzvDlE5jyxqui8sNsdPGyfRb0wbeY80iOtu5W/drylVqA7BLKFPPLQDL1RgDi8T+aquo2AwLuMS4O8CxHnumCzszyTRHI9m7KZulPJ5bw6vaa7gWJXvJDHqTxv5q67b7RXPX/GBTzGn9E8PzpvPdv8cD2qGA69JWCHPCVgBz2X0AC9Azpnu8ERfzw4dj28syXtu4pt8rykirs8iJ0FvbB2TT3A2x89tL/6O8IiCbtldaE7y8exPOn7UL2tLaA8IaBdvZxNSTynahC9lb0yvcUFRDzXfga9xQOAvO9ViDxhYA+91GoWvajRJDxmd+W7AFlwPE/lCLuA+iA7zGCdPI/7RD1VDou90iXxPEOThD0EsgW85oBMuUd34TvLYJ27KA4Fvcz7TDx27wW9UU7hvCyM77pkDg08GduJO7rnWj2MTKU8yEwtvBZhJzwROUc8JS0OPd1BFryuyXE8z6goPUXIQT033K88wTPTO5ANNT0uxR29jCVdvE05CLu1YQi8dwj6O3iDYj1RMXQ8roepPFURAjxVnuM8JmiMvD6FSrxRMfQ8ZNXTu9ZSG7yIuG06f2dwPAxbh7zmiYu8QW0iPOx14zsp4887chAOPVOeiDu2adK8jw8avdXTDT2we5W7TMhOPM3/OL3+nJo8u9L3u4W4Errqgfe6hUO0vOKXBL2Olha8B3fUO0bg9jxKRZy8StJ9PPZBSTt3/sq8QPSevNDxP72ygfq85wpZPFQj+7yuhUS8C+TDO0fYLD2rk727cxZzPO3wyzzeq4e9InqqPEbakb2BWfe7E8bsu/orBj3WzQO9rocpvVMdljxnTHI95/yEvD8IfTxsNMq86/r6vOEegTxg5TE9utZBOwWFzbyMqvS8ZsUaPDqJFDwq4Wo8LkQrPdVUAD30T0K8StL9O7D8Bzv7qpO8wq47u8IppDt0Dqm8DtivvCJ6KjxuJBG9ndVQuzStULs7g4q8cp1vvSjhDzz1Q668hbiSvXKRgDx9aVU9xxWhvFQj+7vzT0I9800CPMQjmr27zBI9wTW4umJo5DyYaAY96XWIPVWUtLzCrrs8Vp5jOy7JwrwGg+g8a7nhvLT6/bqdUh69Zk5XvIygRT1NOQg85wpZPNDvWj1ylSU9ba8yvJjvXbyW7R29T6wBvYmuPjyQCZC8oMm8PSpc0zwhfA+9cpUlvex1Yzzu4JK8LFIkPVgJEzxyGj08TrpVPcQnP71Bbwc93qsHPXIQjjx2ADC8jRsuPeIcHL2+xuM8JmgMvGFgGjzin848nde1PGVMlzuNnKA8RGlYvLjUgbtf4Qw9yRV8O8Wip7oMWwe972fqunvwUT1lUDy9VRECvcwBnj3LAR49az55PBBHhDzvac87NK+1vO3u5rqvj3O8UydFu+1rNL3jnek7oE7UPAd1FD09Apg9uODwPOUOIzvDpAy9g8hLvbKBerwJ8Fe8HKBLvJ1QOTuTAaE8BgA2u2B0+LxmQIO8WQvTPPk/ZLyRhji94xAIPCfvYzweDTs9hzcgvVURAj1zGFg86oF3vIW8t7pBbSI7E0O6PPBZljyjNiy8gsowu3KVpTwvQka9s/DOvI0lXT2/P2e8/aIkPEhRMDxk17i8xw+XvN4yX7wEAps9Ua5BuydqTL04HCU8gNgpvJzXtbv0yio9TqyBvK6DhLzs8jA9xCOavfFdOzzqgXc9az75PFacfry1azc8OpNDPQYANjz2yEU7S8CEvKJCQDzav4q8fuS9PK6DBD3kDqM802CUvOEk5rzKA4O8XXZdPMK46rz4P2Q9rgicPKG9qLwXNcG8/SOXO6M2rDzx4G28lu+CvErGjjwI8rw8te5pO/fGYDx+Xya8R9isvPXEILyCyjA9Nii5O3QMxDxk1dM8NK1QPBLIUb11h6y94SRmuiR4xTzmiYs84R4BvQGVq7kHdZS8xR0QPLpZdL03GAA9wDGTPCxSpDwI8rw9snfLPK2R2DsQUbO7tl+jPMmSSTzzS528HRlPvdhGB705GFu77mEFvGNcUDw5GsA8Sk1mvdu5gD0k74g8GCWIvWu5YbyZ5S69VZQ0vmLhZzy9Q7G7272lvDarazySfAm8eIPivHr8Zb3KhjW9roMEvb5BTDvmiQu9CPK8u003o7y/QUw9X+EMvWJUhryb4WS8TzEZPQMMSr2DRZm8XHqnu/2ipD09Api8ReCbu7pRKrzyW1a84ZcEvOiD3LzKhjW94Z2OPI+UMbz6K4a8VZS0PBWyjjyiQkA9OJWoPAEQlL2+uI880eGGOPk9fz2gPhs9sXkwvD/2g7ppvSu81d/8vNVcSj1ahjs1roMEvFQje7wQTY46RtoRPCdqzLwK7vI8KtmgvIqs2TsWuHM8HKDLPA3alDvax9S8aLmGPLvS97zqgfc8VRGCvVeKhbwGe568+rAdvBkpLT2dWmg8y47/vKK7wzwNXyy8BYXNvDedlzy6USq9eHkzPaerZb1zDqk7nsuhPJhoBr4h/QE9wykku28eBz23XyM8FTcmvLpPRTzMhFC8OZEDvd2xET176Ic+mWjhPDWlBr1iXjW9ns2GPBDMG7vu5Dc94ZeEu3WP9rsxvS69NSSUvMSipzvuazQ8InwPPOMat7wAnfU8rYkOu6BEJT1BdWw9+6SJvIc1uzmBWfe8aUBevJjnEz2mKLO8gNipvKQ0R7wZJ0g9JO8IvWVQPLrbxW+8T7AmPBBPTj00rVC9Na3QPA5bYjyiQsC4pDIHvYsx8TxZkOq7fGu6OT0CmLxsNEo9kwGhvH9ZnDyYbKs8bSqbvGuxF71RMXS9O4OKvKM4kbwzt/883yqVvEpFnLwSTem8ZsukvH3gmDuPlLG7cw6pO2Fo5DvoexI8evxlPO7ktzwuTPU7bq1Nu9lCvbzhnY48OomUvb68tDyOGck8UCUFPWi5BrwgAae8dA4pPSfnGT1/Z3A8kglrPIiwIz3HGUa8NKsQvBU3prz2Qcm8kBfkvJEVf7xd74U8GSktPTiRg7x2ApU8J+9jPAf0oTy25Lq8PY/5PKLF8rxBb4e8Ag4vPRNDOrwzt/+76vzfvA5b4rzhoTM9cCbRvOxtGbvqgfc8+TGQvGNcUD2hx9e8m16yvKG9KLwL5qg8VCVgPGTTk72Z7Xg87HVjvKatSrwUxmw9C+IDPT/2g7zJCY08/Se8vKcmTj0xxXi8fGnVPKQ0xzwq2aC8kBX/vBM5C70j/0E8Ag4vvWyvsjxB7hQ96vqfPBBRM72wg1+9UTNZPU2yiz31TV28CuYoPQru8jz+I3I85ZHVPKatSr09j/m8rgISveOd6bt+X6a8rJHYvKWvrzqhv429Zc2JvME1ODvmh6Y8osXyPDSrED1D7m+9bSg2vcmQ5Lzx2KO8fOYivY0l3bzU17K8R9SHvFeKBTyEyMu8SVGwPMYbKz0XsKk8NKuQPI0brj0YrN88ORjbvOiFwTzhoTO9ULAmvaetSrv6Kwa99UOuu8z/uL0k+3c8i6zZvBUxnDquAhI9xaKnvLVrNzweF2o94xo3PMkNsjyrk708baUDvblbWT1bCW68NibUui9Cxj07k8O7D+D5u2m5hj3x4O27sINfPe1zfjxKTeY81dcyvVqGOzpFZ/M7/aIkPXWDhzvLjv+7xCMavUnKs7uy9Bg8XIJxvF3zqjyTASG9AwSAvPuuuLz3xPu8fl+mvDQ0Tb1YkOo8NKsQO9Hhhjzy0hm9mWjhPEJrvbzcuVu8ba8yvElHgTzEJdo881GnPBqiMLzzzA+9HBs0vLngcLugx1e9AwQAvSxQP70idgW6DlMYPENrPTx8ZxU9/qruvCXxSDocFw83DlMYvHr85Tvt7uY8/pwava2JjjsaojC9qKG2PBkprTw3GIA8CPI8PCN2BT2DyrA6koa4vMQnP7w6j548j4qCPIc/6jr/G6i8DtgvvXOTwLxUI/u8jZ5gu4NNYzukuV698NqIu5KQ57xUJWA8zvMkvASDDb2lud64OhZ2O2o4FL1vHCK9NSQUvQxbhzw9CmI8NaMhPU+sgbvt8Ms73q3HvPVN3bv5soK7Xe0gPRiklbzp+p87cKE5POGhMz1EYY48dwj6vFWe4zwmbLG8ywEevWZGjT3Qdlc5Q2cYu0B30bwxvS49uFMPPA7g+TyYbCs890HJO041PrySCWu8/Se8vS/JQjq9xmO8L0SrvBmisLrYxZQ8bSqbPC+/E713/so8VBsxPTYouTxQrsG7gNQEPSVoDL2MngW6NxgAuu7mnDyeTBS9vUMxuw/geTwxva68Ow4svLhbWTzsZ4+8bxyivAnwVzvGnB29azavO3f8Cr3jnem8ygMDvBQ5i7svRKs8N6E8PF14Qj20bRy86QCqvLfaC714/ko9yJSuOxeshDzpACo9L8fdvOUW7buOGck8SsaOO068Oj1ITQu8Gh0ZvBBPTrwuTlo8pauKPHSHLLwaHZk7FT9wPLXu6byFvhw80GgDPA7YL7xAd1G7LFpuvMCyBbwMZ/Y8hzU7vHQMxLziobO8BIMNvWRaaz1h48w7y47/vJ5QOby06IQ8ia6+vNJmnjuC1F88X+/gPBYxnLzq/kS8Y9MTvLngcLzax9S6qhq6vL+6T73mDL470u11PGNc0DxJ1OK8Q+IAPNfTaL2qlwe9bKsNvhuWHDzbOA48t9gmO3r85bzEJz88qKvlvE43I71voTm9Fby9vJV0mrvS7fU80GwovIbGZrwtTBq8CHdUPQvkw7yAW9y8Q+YlO8cZRrzogRw9ReCbO7jYprub48m6pasKPLvKLT3o/AQ9EzmLPJtm/Lv0yiq9hTkFPKM+djyeyyG8Mz78PFCuwbua2Zo988wPPcG4arypJGm7feCYPAltpTxNOYg6pasKvcacnbumKDM96v7EPGTXuL23XyO9X2yuvEhNi7z2P4m8uNimPa+P8zyKJ8I8VKDIvGFgGj05lSi9d/7KPDeXDT03JO88McV4vD4AMzz1TV29NiZUvckNMr3Yyx48v8R+vY2eYDwKa8C7ia4+vZZ2Wrx4gf08muNJPf2iJDxJT8s8vMYIO1EpKj21ZxI9/R0NPW8mUb2gTlQ8wqSMvb1N4Lz6M1C9IQnxPGfJvzueUDm8bK+yPEbgdrvr8jC73TapvBBPTrwvQka9XfMqvO11Y70Fhc27jKDFvJ9OVLtZC9M8mGYhPK0WcLziHBw9FbpYvLRtnLscGc86qp/RPNNm+TzEJz88Qms9PX9n8DwAkQa9LkaQuxM5C71ToMg6sPwHvVWUtDye0+u8lvtxPO/iUjvGnt28g8YLvSGCmbyUgm68kQ21u6NAW73eMt87bKsNPT6DZbyjOBE9CHfUPBwbNDzSZh69tl+jPAh31DzQaIO8o7tDvJX1jL2MHZM8g8ABPOSVH719aVU8lP+7O/fG4Lu5W9m8ScozPJGGOL1i4ec8j4qCPKatyrxk17i8L0JGvPXIxbvnCtm8qZ0RPV/hjLzin848YVoQPED8aLo5EBE8NK81PauVIjwN2hS8nVA5u4c/6joN2pS9okLAO1oBJDyKrFm8CWmAvK6DhDwcG7Q8DGf2PJfnE7tnRCi9yJLJvFQbsbyiQsA83q8svQZ7Hj195D07EFEzPbrWQT1J1OI8/57avPm4ZzxKxo49uVEquyleuDzEqvE7TD+SPEPmJTyezYa8VxdnPB6SUr3lFu08dIMHPc/xv7stTBo8XmwuOw7Yr7yygfq80PG/PCH9gb2ixfI8muNJvZ9O1Lv1RZM8PQriOzG7yby54HA8iLAjvZfxwrwVM4G8JmgMO4krDD0FCuU6ORabvHAk7DybXjI9/iNyvcUdkDziqf088F27vDHF+Dw6j548kIidu/myAr1OvLo8n8shu5AX5Lws1Va8pK+vu2w0yrw9Apg8GKqfuzkY2zvOeLw8Wv8+PDStUD2vgZ+6CW0luq6FRLw7Diw988wPPNU3SjzMELc8l80PvZutATzPlWc8MjyzvFTqEjmFigg9pSWGO+NbgTwx4CK91TdKPDuLF7xvFh679lf4PFnKBLxPhr+8agO8u997Dz2zSgy7gt7VvNqmvLyaR6E87N4kOx/RWjwd5sk88Oe2vFPCwbxw2I48ZWFZvJSwXbuYHoG9SwJeubQY67xwc/08SeONPKVOprzDWqO8dLiAvOlaw7tLNU48UQtwvL32zzxtVK287pbFOW9JjrxpDQy9N3g1vWAkCLsNmfK8V0fyuhJuRb0cGTo9D40EO5IsfLxk0Yk8nihivWXHObyQAo29L4VhvFFwAbvQlBg930gfvUFWmjwQ6RS8agM8PXE0n7zYVUs9CJDgvOyrtLyRX+w7HUwqPVMoorzYuyu97RLkvKu+57uu25k8xeryu+bW4TttiOw8JXM9OsRPBLwj71s7OKx0OcL+krySXh08hoA4vC2a0Ly2aA08rH+JvcMxA73Mqla8XBxFOzis9LwNMsO7GdIYPDETk70tzUA8LWaRPFpPNTxHXyy8iBrYOfl0Kj14wZK9dUjQO+5j1buYHgE9TuwfPUD6CT1flQe9nlvSPHxvY7zY7+q7s0vbOArrobySK628bYcdvWJD2LxWeZM79yO5u/xfOzqfjsI8S89tPcfUtLxHIZ07pRs2vZzX8LwBNY48hC9HukCJij1bgiU8CCkxvATtrr0laB49PamYvG7uzDzNdpc8BBUAPI3kCzyRxUy97EXUPJZnLz2oEJc8SBfNvMB6sTy7Cz85HU15PJzWobzuY1W8d/+hPMGiAj0LPBM88Oc2PVyDdLzRIxk9UQohPTrK9Ty05Xo9h+dnvUK9ybw8G+e8N0VFO54nE7wPtiQ9iKgJPXrqsrwV8ia6FJYWPWZgirxraZy8Of3lOzXAlDsLR7K87y8Wu81DJ7zw8QY9kxa+PQGRnjzqwKM8UAvwvCl8T73TQZq8L+vBu8OYMjveuR67Wk81PSEsnDtqN/u8q4t3vNFWCT02q6W8hYqIvYI5lzwoXs48pRu2PCoVoLyKONk8S5z9OwGcPbzxGie7JH0NPJtHobiCRDY8wHoxvNF/qTtdBoc8q/FXva9qGjt3cCE8uYfdvLKIG7xHIZ27lzS/OhsuKTwJjxG9h7MoPXNdP7zfSJ+9hWK3PN7sDr3Gg8O730nuPDy0t7wDVN48fjCFPewRlb2BG5a759USPdzEPT3NEDe9YL92PTaChTyHtPc8a9BLO0ZfLD0EVN67kyAOvRwZOj1gJdc7mkchvNl9nDz5dKq8wpiyu9KymTxBV2m8LiiCPUs/njyeW1K8ZvqpvFXgwrzvyTU9HkGLvJ7BsryBqpY87EQFPt1eXTw5MNY8KnuAumAl17znb7K89J4IPYrRqTzk61A7L1LxPEubLj2fJ5O9L7eCvcNao7x4MpI7BqQAPWPcKLyr8Ii8ogcFvZgegTz7LEu9W+gFPd3EvTlzxO48C0eyPaCsQzz1iRk9vo8gu8/I1zwSbkW8JEDNvMBHQbxHxlu972PVumhMajvhZ287mFyQPE65L705/JY9t8QdPbs+r7yN8Pm7tgKtvJH4PL7P+0e9hoC4PFFwAb3NRPY7KgqBOArh0byOdFu90GEovLi6zbwS1fS8wBRRvdqmPLyJBBq8pSWGPdFMuTr7xRu8qGynPAp6Ij3HOhW95LeRvMXpI721Nmw9cD++vGb6KTzH1DQ8n47CPEw1Tjv3vVi9UynxvJ4nE71vDE69mI+AuxgRd7xC5Zq7+1+7u7NKjLxLmy69Y9yoPCK86zi4h109ZS0aPWKzCL2ejkI9iXWZO8c7ZLtqN/s7LKQgPe/JNb1mLuk7vx4hPH0wBTy4Ux69SzVOPEfFjLyaRyE7rH+JPFuCJT2KN4o7U46CvHnqMjw1jSS9hZWnO5SvjrxpDYy7OG0WvRuV2Dz2iZk83Sttu14GB73c9608sJM6vBUlF70x1QM9TyDfvFFwgT1w2V29LWYRvRbyJj2cPAK+G/s4PEFWmjt/WnQ8LM3APBsveLxqauu8juSLvKmfl7zEHJQ71AOLPhsveDyxkzq7hleYvE1dnzuHs6i8vlwwPSheTjrytEa8+Q7KvGs2LL3vYgY8CxTCPHcAcTzC/2E8y7/FO4WVp7z6Nhs9qGynPZtHIb1dRJY84WfvvGtqazy+KUA9f8DUvG1V/Ls4oIY7h7MoPa9qGr38k/q8lwHPvPEb9rtEQSs9otQUveUewbyGgLg74ZpfOyrjfjvqjbM87EQFvCZoHjsDIB+9ylnlPBVZVru6Pi88POh2PBsv+Lv4qGm9R1+svAU/b7woKg+98U7mPLaczLwFct+8bVX8O51aA71YZfO7pP00PeNRMbtGxlu6jkHrvAMh7jvcXt067Ku0PAXYvztYZfM8xYPDPLAt2ryXaP47LTOhPGo2rDzzn1c8dUcBvexEBT2svuc8OZa2PMIy0jyUsF09uIaOO3KR/ju8ZgC9yDqVvDerJTxBvUm77RJkOsATAjxPhj+9poLlu3SusLtoSxs9EzqGvcsmdbvS5li8WlkFPb+tITwG2L88faJTun39FLz7xmq8n8EyvMCtoTsXd1c7lgFPPOIzsDyxYEo82psdvcn8hb24hg68sxhruiBr+jtIsJ297/ylPCiGn7vqtYQ8t4aOPBbnhzw0J0S8zKrWPFc7BL0y1lI96VpDvGmySjwnxX07da9/PC+Ekjz2Izm98w+IPA+DNL3kUbG4prXVPF46xry6Cz+9IbscvdJ/KT114SA9gI1kvIrGCj05lrY8+EG6OnzVQzwMCSO9SLAdvHL33rzk69C8q1c4vI3vKrxtVfy4DHvxvAPtrryccME8EquFO0RBKz2eW1I941uBvTXAlLyWZy+8C0eyvApRAr2kY5W8vfZPOSXZnTuN76o8x27UvHS4gDwReJU8VFzhPLK7Cz02q6U9QMcZPcKYMr2HGQk8WGVzvNJMubwVWda7DTJDPGTRCTqRLHy9da6wPOS3kbu4VO27dhVgvB83uzz1vIk8pDH0PENBKzzfFa88jkAcPEOo2ryNiUo9x96EvOFn77wvheE9RyEdvMXpI7yudTk9DK5hvUwCXj3+fby8XtOWPK1/Cb2behG9YVhHPUUDnDwoxK48aQ0Mva2oKb3TdIo7UQtwuzNkhLx0rjA8EXgVPDpjxryzsTu8yAclvVZ6YrxtiOy8fW/jPEFWmjycCuE8Nk8VvWtpHD1MnH281ZILPcHh4LwY3bc8lUr9PDTzhDxDQas7BeIPvd8W/ry+KcC6hJZ2vTI8s7yVPg+9A+2uPPK0Rj3Zc0w8WTE0Pb0pwLzbm528vfZPvLjtvbnkt5G6elCTPXmOojuUsN08L7cCvEUDHDzRf6k8ncuCPLFgSrzIocS8GBCovPHntrtjqTi6lEkuPeqNszyFYje8XIN0PHA0H71Axxm925udvN8W/jyAWaU5YkNYvRdDGL0fnuo8MjwzPTYS1bwLruG7GsjIvP19PLyobfa7wzGDvZkegTqOQJy7wv9hPd8KELyxkzq9CzwTvAldcLxZy9M8W+nUO82pBzzvyTW8O02IOo6nSz39fbw7fG9jO4ERxrzpjTM9eJlBvVnL07zrtYQ9A4dOvDr9Zbw0J0Q8gjmXPDu+BzmgEqQ8xepyPLoVj7uwx/m8NcAUvZnsX728M5A86o0zOxfnB71wci67dHtAO2KAmDlAiYq9UHHQPLulXrzfew87L4VhPIezKD2xxiq9ADZdPDJw8rn0axg8qAZHvOKZEL3meQI9Y9GJuae11TuXmp+75wgDvMq/Rb2iBwU9PgWpvCKJ+7zB4WC9xYNDvfFOZj14mcG8MqKTPNhVy7x0uIA9gt0GOyFfjLwkQE29uFRtPW1VfDwhXww9qAZHO7vYzrzd96066VpDvErkXDzvyTU9+/gLvFPCwbxTKfG8EerjuvEap7wDIe68wBRRvNchDD25FQ88eMwxO0csvDsxE5O7UdewvHOFkLzNEDe7wHqxO6CsQzxqNqy8KXzPvKtXOL1ebbY9j6dLPAfNIL2riqi86Y0zPeE0fzzF6SM89Dl3vD2BRzzZc8y5fN8TvQakAL1MAY88gaqWvH07JLvf4j68aRn6PJujMTyB3tU7Yw8ZvSxnYDxBIyq9/JKrO5KRDb6obKc8C60SvGJDWLw+0ri8Gy6pO6aBFrzRfym89lapvCHujLzpWkO8NPTTPGMPmTz7+dq8aBl6PMfUtDxTwkG9/PgLvSCdGz3nCVI8e1HiO10GhztTW5I8AM+tvIi09zuEyJc8HCMKvV4GBz1WR/K7m6Mxu4Or5TySK60852+yvBKrhT0I9kC84jMwPZEs/Lpebba7iLR3vNSeeTxQrhA9QiMqPHbWAbuwxiq8LiiCPYuTGrs7i5e9fDukvKht9rzhml877ESFvMzdRjyXKaA8CMKBvIT8Vr0HABE9yAh0vBsuKbsGDP+8wBMCuzr95bxn5To9/PgLveajcb3B4eC8SwJePKGsQ70/n8g8NMHjuzuLl73mEyK8SwEPO0l9rTxuVC08Yb4nPIioiTzIyRU9rp0KPJMWPj08G+e8YnbIu/FO5ryklgW9/F87vPl0KjwR6uM4Qr1JvSBqKzwYEXc8J8X9PGJCiTsDIe68+KcavRPUpbvygVa9KIafvBCDNLxVHYM8W+iFPLEtWjxy9968x96EO8jUtDtRcIG7SX2tPHpQEz2+XDA9nArhPFiYYzzreMQ7GmLou5wJEr3NEDe9NqslPVu1FTt8PPM8S8/tO4ViNzqmtIY8q70Yuicqj7wMbwO88w8Iu28MTrw5MNa8hJZ2PJGRjTwMPJO8FYzGPC3NwDs5Y8Y7HwRLvTrKdbzRTDk9sMaqOo8NrDzsEZW9fG9jPcIy0rwokT684WYgvBsveLyAWaU7sogbvLkgLrrnl4O8znfmO+Fnbz0dsoq85R5BPJIs/DupObc8ZZRJvHBz/TzzDwi9Dv4DPEybrrvYVcu8ATZdu6B5Uz38Xzs8B82gvKq9GL1IIZ05ogeFvMRPhDwVWAc7cKUeO6e1VTx6t8K8+NqKPNoMnTwAAp46MaPiOxh2CDr7LMs5rIooPcB6sbw+OJk93SvtO5HFTD2KBBo9MnDyPKy+57wvt4K8wHqxPH9a9Lx6t8K7bwxOPC+FYbsFcl88EzoGPHKR/jtXeuK8T7mvPRwjijx/vwU7L1EiPXqDg7zk6oE8yr9FvR3mST28MxC9/hfcOrukD73hNH+9sruLO82pB72YHgG9+/navIwjarwTCOW8nJiSPJzWITxQC/A8rqn4Ogs8EzwGPqA8W4IlPdrZrL2siig9LZmBPUl+/Lw83Ag8QSOqPOKZELxLNU68wHqxPJ/0Ir2pYYi8ZvopvEdfrDw0WjS8zBC3PMfeBLyKOFk8cirPPP19vDrl61A9NPTTu7Fgyjx3cCE7MW+jO6VOJjw+HQ87ZnNRPbRhcL2XQlc80JZnPJ42urxYoWm8bfhbPXPLcbq6MwQ9rAiivGZd8zxzv4C8Qs8tvO0k2TyX6Vy9txKNPLMTZbxzqaI8yEgIvSX+n7yd/gw8NDVzvFMQGDxJokM9ieo2PdjNZjrYJmG8N5iEPKV4qLzJalc8CS0SvDfmD73l4mo8CfZmO5MKgLu6z5q8pcazvBfeLLz7OV07wj5HPCzRNb1QMj06112MPMmAtTs+zwO910cuvckyKr3Q72G6N5gEvRN6Gbzs7Cu8LQnjPF4PlLzCjFI9ghehPH5ak70zYS89Oq6MvUmtsryhFJW8c6miPEzZmDp04c+85ao9PFcQQj2e0tC7r42CPLCCk7yzowq9jxZHPF1HQT0og4C8ekQLvXP3Lb2Jpxo8wdpdPK3n1Lw6un09gof7PJDTqrv+OAU81zw/vFO3HT3lUcM77S9IvK3nVLxtA8s8FzenOlfNJb1tA8u8dBn9ucXZBbvtZ3W8dy4DvJ4ry7ttUda8n2P4unQk7Dxethm8nwp+vBdCljw0CDU8wWqDvUja8DxlUQK7EL2LPahWgz17tOU8gr6mvEIoKD3QEC88wjPYOo8htjweFSy9V82lO5iF87ztcmQ7kL3MPC0JYzws0bU8+6i1PGZz0bxzZoa8+1qqOwLgtLyCOfC8n7xyvMm44rzsRSY9ylR5vPqdRjxdBKU6frONu0kGLb0Qkc883uKWPN4lMzuejzQ8/tSbvI8htjxJ+708gqhIvInqNr0kj0c8Sa2yvbtVUzc08ta8mjYQO8fvjTzlZ6E8+1oqPNpzFD20bF+90KFWvR5upjwBAYI8pR+uPNAQL73Xiso8RQaDPOaJcLyw0J47Sfs9PXMCnbqtjlq9ydmvPFZpvDsChzq9MxOku1pShjpCa8S87J4gvVDDZDxJrbI7bNYMPZ7SUD1fit08YTALPLvm+rw0ju27EXtxPJJYC7yhu5o7dIjVOhgL6zxllB670F66vGxyo7mXYyQ9KNELvckyKr1ptZU8JVcaPR83ezzs7Ku8JfOwOx5YSDytjto8EJHPO1Bq6jxJBi08879BPeFcCD3QoVa7bNaMOyVMq7wX0z07F7LwO2XtmL0lYgk9LDUfvYhDMTz69sC6t7mSuzs/tDyXpkC8U8IMvfRFejvCHfq8V1NeOwLVRTwXb9Q8mjYQvF1SMD00/UW9rUBPPDTceD23YJi8bHIjvOXtWbxhfpY9XUdBvGyU8rwdplO8BRcKPNeKyrzzOQk9iS3TPJGn7jxZqwC8JivevKZX2zytmck813/bvHQv2zx7v1Q9yKGCPPRmR7zsqQ+8H/ReO/eoi7wJWlC8kLLdPJ6ERTxhfpa837ZaPFesWLwX9Io8bNYMvTuNvzw3mIQ9K3g7PfC/lzusYZw7AmZtvMG4jr3p4ZK8ULj1PJemQDwCOS+9Qs8tu1mgkbvTR4Q8LQnjvEwykzy7VVO8XUdBPBpjjT0JAVY8pQlQPfuotbzX+SI8XjFjPHpba7wC6yO836D8u4hZD71Q2UI85kZUvHSeszwzE6S9CIaMPUJ2s7we6W+9U3QBPQLrozq7azG+hd+duwVlFTxTGwe8NzQbujeYhDyJkby99A1NvXuHp7wJDMW8bIiBOlAnTr1t4v272hoavaFtjzyt8kO8URFwvSViCTz3AYY83okcvW2f4bx7I768n8fhPZFOdDvQoVa7ir76vCw1nzyejzQ7XmgOvezAbzwaWB68F8hOO1ChlbsX0708QiioPI8hNjxzqaK7rZlJvEKjcbolTCu8EDhVPZ/HYT17AvG7JfMwPHu/1LpiJZy8SbihPQJbfjs0S9G8O40/POW1LDxmzMs7rfJDvdf5IjzeGkS95SQFvCX+Hz2XbpM8Jsd0uuz3mrtJ8M67t2AYvfcBBj2sHgA9+0TMvCW7A70tu1e8pQlQPVcxjzuahBu9kG/BPNdHrrxllJ68yXXGPEJK9zxXt8c8dJ6zvDuYrrwwCIu8UKwEvt4aRD30Rfo7H01ZPLM/obtmBPm7ggFDvekvHr0reDu8bfhbPeXLij7foHw4UKwEPAktkrw7P7Q8IUyBvKU1jDsCcdy7tGxfPeUZlrzJuOK8moQbPQjfhjy7o168rB4AvOVcsju3xIE7MxOkPA9vgD0eIJs8mDdoPFpShrwC4DQ8qfIZvCYr3rzz4I68e3HJvJ42Oj37I/+65pRfvMlq17wlpSU9nrCBPSXoQb0BAQI9tNs3vaTRojvXMdA7bJTyPPuotTyl54C8u5jvvJf/Oj10RTm83jCivJ9uZ7tFBgO9t7kSvBfpG7rB2t28yvt+vHRFOTx+ZQK7+y5uvIl73rxfzXm8elB8vJdjpLsMQxo8kG9BPR7HIDwtbcw68GadOvf2ljysHoA72iUJvTD9G7zly4q91w8BPUnl3zzQJg09HrwxPYkX9btetpk8LQnjPMG4jrxmD2g9bUZnPR6EhDye6K68SVQ4vSYg77xFohm91+4zvCSPRzzoOo08MP2buh/03joJ1Be9VxDCunMCnbysuhY8JUG8up9uZ7y3awc8heoMPWV+QL20r/u85onwuwlwLr3Qaam8rBORvFfjgzsfN/s7iYZNPAGSKTu7/Fi7id9HukJgVTwsYl08Sa0yvYJlLD0zuqm8WqsAvUlJyTzXPL87SIF2PLrPGj1CYNW8xHWcPTuYLr0tpfk896gLPXP3rbxJ5V86XqA7vbp2ILye6K68JnlpuTts8jy0d848ZhpXvRCnrbyzmJs8yEiIPe0vyLsC4LQ95cuKPCzcJLm6diA8OxP4vPPVH71z9y29u5hvvMJJtrwQhmC9+5LXOtDv4TxPamq8+zndPIL20ztmwdw8U7edPRebkL2Je146Fk0FvPv2wLxmwVy8V6zYvBAAqLzT4xq7311gPJFO9LyTWAs9yvt+PB5YyDzI2S88wfuqPBqxGD07gtA7Fxbauwmd7LzaJYm8HrFCPfN8pbxrGam7UKyEvfBxDLsWvV88SaLDO+z3Gjz7qLW6bQPLPInUWDxsDro8fWUCPXvKQz17GE+8nqWSPLraibyYkOK8yWrXPUIHWzzBX5S89ALePGYE+brelIs9iacauJMKAD0QWSK8bQPLvK80CD0Xvd88wV8UPXTL8bwIOIG9NEDiPGWUnjzEdRy95RkWPJf/ujzmn868yRzMu6HGibzskzG8QT4Gvez3mrzJuOI8iXBvu+0Z6rwe6W89KR8XvQUXijztwO87ntJQPAmoWzwTLI48V0jvux5jN7x7Lq28l8cNuejsAb3eJbM8e6l2vVd0qzt7GE+783ylOxCynDy7SuS7ewJxu1ER8LxXrNg86YiYO3tbaz3tGWq8qUuUPMH7qjss3KQ8FzenPPuS1zx7DeC7QrnPO6xWrTks0TW8NNz4u4XfHT2PFsc8XV2fvDSZXDtzqaK7l7EvvF6VTLyICwQ7sx5UPPBmnbwwCIs8Ph0PvMkRXTweFSw7LRTSvCXoQb0sYt26jBadvNdSnb0e/007KNGLPAkio7kFZZU8LbBovBfIzrsCZm28Ox7nvGm1lTzlwJs8tDSyPGGJhTuXQlc7PsQUPEKuYDo35g+8AiNRu+1907zCorC8JWKJPZBk0rvBuI686JOHvCV56TyXeQK8JZq2POGqkzuCvqa7kL3MvAIj0byL04C9KNELvcG4Dr3RPe27nrCBPdOKIDy6HSY9+hcOvSzyAjxa+Qu6EPU4vTr8lzzJJ7s8u2uxvDfmj7y3YBi9rZlJvde2hrxJjOW8k00cPcXZhbyFnAG8nrCBu0gcizyeY/i85aq9uxhZdjvCxP875kbUvLcSDb1+DIg76YiYPJemQD2X/7q85VwyPfvgYr1zvwC7CbPKvCw1nz1JuKG45uJqPXP3LTxTtx2919hVPLMIdrztGeo7JKUlPB9NWbx0iNW8bH2Su777ALsJcK68V8I2vG2f4TrCjNI7NFbAvLSCPbzsRSa7DEMavVN0gTxaoJG8wfuqOvSedDzJX+i8V3SrvN5+rbxfzfm8NEBiPZGnbjrQBUA7H5vkvCViCTl0Osq8Bb4PvOVRw7tw7BQ9UKwEvIx6Br0eCj28Ps8DvRq8hzyR9fm73u0FvVMQmDx0Rbk8V6xYO6W7xLwsQA49DKcDvS+vkDwwrxC+OmCBPa2ZyTt7Iz69wV+UvDtscrs+EiC9RQYDvBebEL1Xt8e8+y5uvP4tFjws3CQ98BgSvcmAtbws0TU9K3g7vTRL0TzB+yq50F66PCYg7zztL0i9+iN/PLMIdrx0GX28LCowvaxWLT1Fohm9ep2FvJBZY7xM5Ac9QYwRPBd6wzokj0c88yOrPDvmOTwJs0o97X1TvcKM0jxJ5d88XqA7PdcPgTy0NDK86JMHvHSeMz3QtzQ9ApKpvF7uxrymV1u97J4gvIzIkbwXLLi79FBpPYkX9Tz0GDy9tMXZPCbHdL00jm29EdTrPNcPAT0FDJu7pv5gu+jsAb1Xt8e6UD0svdAyfjyo/Yi9XmgOPZ951jzXf9u83cw4vQlwLj3Ji6S87PeaO2WrfryRTvS8hUMHPAjfhjvKVPk7+9VzvbTF2TsaCpO8V8I2PFB1WboMpwM9EAsXPULPLbzXPD+8NAi1POVykLyspDi8Wu4cvZFOdLxL2Ri8pRS/vcJJtjwsNZ88JfOwvFfCtjumV9u8ZPgHvQyngzxXrNg8eyO+urs/dbxXt8c87OwrPXu/1DwXesM8Jsf0vFpSBr3C2t27950cvTvQ2zzazI69TIsNPXMNjLyYkOI8F8hOvaUfrrwzVkA8kU50PO0Zarws3CS7ghehvK3c5Ttw7JQ8OynWvAI5Lzz7REw96C8ePCViCb2RTnQ8HiAbPQkXtLwQshy9BXCEvYIXIT1l+Ae7LDUfvWzWDL1XrFi8dNZgO9rMDr2tKnG7XgSlvHQkbDxQizc8hZyBPBeFsrxsDro6Okojvaaw1bx+s409Oj80PMIoaT2lu0S88yOrOxiy8DrlJAU90BseuzBhBb0Jney8F2/Uux+bZL3JuOI71zFQO5BvQTveGkS9F9O9PMmLpLwzKYI7e2baO4t6hjt3ypk8tB5UvbraCT1JM2u9rAiiPN4aRDyJLVM95SSFPanyGT2CvqY8Aoc6PdfYVT30W1i9e9WyPN4lMz1dUrC8O2zyO5exLzteBKU89A1NvTSObT1fzfk85VHDPEoo/Lwtpfk7VxBCPV/N+bye0tA8AuujvKUUPzwlTCu93dcnvcWAizzXXQy8c7+APCkfF7t0y/G8X835vKwIIrufFe26KcYcPQmoW7v3WoC9dJ6zPBPTkzxXJqC8iAsEPSY2TT00S9G8u2sxvHcjFD0YC+u8qZkfvYki5Ltl1zq89FDpvCVMK7w7jb88rdxlvGbBXD26gY+5ugdIPNAFQL0T3gK8Zg/oPHSI1TxQSBs9ZDA1vAIjUboJcK48hV0RPfsSRD3DXJi9ultxPS8mMjxPI+e8x4D0vNIE9zw5msO7ETIUPe/vfbx84qW88I7BvONZTbxIXgo9EkIFvb2SnjwCbBA8fnXyPI661zt2EdK6hdUYPVJTOjzO8Au6gSsBPNESKz3mERm9pEP7vG+vbj3HD8e8C8nWOpgu6bwxKO+6Z0tOPBXcqzxpeyE85Gt7vNAJFL28iQe8p+T7PDLHMrsQG8m8tr8NPMgfuLsg74A8+Hgdu2S6Pr3gyD298h9RuyDhTL0LWua8NenRvDYAHT0JSLg7NvlCPfyxBz1ClJC95ICJPIbXVb2w51+8EZxnu20sEz0LaJo8tIhgvCvm7bzdF0w9EkKFPKbyrzzIH7i8EKobvfhxQz3hSdw8dP8jvcZ+N70td/27gJXUPDmKUjxvRRu9gRZzPMzQKbsthbE70AI6uxw+j7xjqk072fWsu+pKAzztbCK8IOFMPOFJ3DxrDDG9sg4cPeDIvTuMKUg7wtQfvXagpDzD3bY8R06ZvYO1truyhqM8ZdEJPDmhnbwFl8a8Fm27u+Jngb2BpUU9qRTPuy+XXz2MKcg8+6EWPSpVXrzG/1U9GP5KvA8LWLxZp+k8nO/LvHchQzwg7wC97OuDPAJlNj0sdcC7dhHSPEwRuTzYZJ08GG94uxqP2ju/nfK8VgQsu5rP6TvWxVm7MjhgPeJnAbrtbKK8x44ovQe+AryNObm8ZCvsPCSZGLynY907JCGRPRoerbw4GSU9BhhlPMgPxzsh8b27mc2sPNn1rL0GGOU8IOHMvMAsRbw6OQc8ANQmPaw0Mbsq1vw8bR7fvEjfqLwKWKk860zAvOJngTy3yKS9C1+DvMG9VD1YFtq8Gf5KvUr/CjyExSc9h1j0vDCnULs/7LU8VwZpvfMvQjuqJEA7AnwBvUEMmDy7a+K8YorrO+1sIj0NAIQ9c++yPEnh5TwSO6u8HlA9va7FwLwZnY47H2eIvGrsTjyVffc8673tu78c1LwKyVa8KtQ/PFtGrbz9o1O9lY3ou+R5Lz256IY8vxxUvexOfTy7+jQ7foMmu4uoqbzmCr87hdWYPN2WrTzdph47p3NOPAc2Cjp2oCS9VHMcPM7wCzvQCZS9eMCGPAT2Rb1WFJ08wj7zvK/XbryMmnU9Rr9Gu6cCIb2AldS8OhtivV7Z+TrzvpQ8BRYovO4EjDuUfXc9OZpDvRXO9zuv3Is9NfeFPNEZhbwJTxI8k4urPDkL8Tretg+87WwivHWQMzx1lw28U+RJPDVa/zyiSBg8PMoWPbnoBr05C/E8TaALPQOFGLwdv609Gh4tPGykmrzeLhc7okE+vPEdFD09SzW8KUVtvPwiNbxfdoA9SFDWuwtKdbwZDjy8sg4cvPuhljuQaYw7/TImPXLfwTxWBKy6cc/QuXvSNL1q/D+9yTaDvFilLDzpOhI8obeIvQe+gjtUZei7/STyPFWDjb0f0ds8PWKAO/CVGzw/8489iheaPBVdSj181PE7VoXKO4oXGjzfN668Rq/VvEKNNryR3Pa82fyGvASViTyuxcA8qRTPvZBpjD2xdjI8kNo5vSIBLzzufJO4awwxvmwcIr0sjIs7tIhgPJpePDsO++a7QX3FvP6zxLyBJKe8hMWnvJc8Hb1d5y29673tPNhknbx6Q2I9N3phvVtNh7zE7ac8Yxv7POxcMb1zcNG8jkkqvRZtOz0q5LC7SnA4O4AbELya3Z07yzHmPNIiHLzufJO8fXO1vD1LNb2J+fS4BRYoPF3uhzsh+Bc8Hk4AvLhgjr3vftC8xoURO7BmQT0FFqg8DgmbvFaFyryismu8jJp1uzTnFD198pY6eDG0vJnUBjzgOes8ta8cPfD/br0rfJo83aaevMqgVrznqQI9IgiJPRTTlDtWBKy8rtyLPP05AL3j+BA8p3POvHlBpTyQ2rm8xO0nvB3Ghz1YlTs83J2HveLonzt1kDO9BiYZvX3yFjuOO3Y7ekNiPJ6egL28EQC7ZDmgPNS6Bb4VTdk7zUFXvJP82Dz40v88Qw7VOoZtgrx+ioA6t8gkvXT/ozxo+oI+6q38PLtr4jz4ccO8DvvmPFeclbxGPig9Ha88PEfGID3XVCy9KWMSvba4szxjuAE8ebJSvF3uh7xdWNs8GQ48vF3nLT2m8i89/0TUvGIZPj21J6S77GMLPWVJET3BU4G83zeuvB1AzLxqEws9IO8AveHfiDsGJhm9GI0dPKExTT0O6/W8+fLhOngxtLp/k5e8Qo22O3gxND0V3Cs8JrKgu3tTU7xc1zw82fwGvb2LxDzRkYw84dguvfD/7rxLh4O8pNLNvErx1jx5slI8XMfLvNS6BbwYb/i88I5BvXthhzxAe4g7BhhlPLJ4bzyj0JC8EIz2PCyMC71spBo9jLgavUJ9RbzO4tc7QF1jvbKGo7o8vGI8XNe8PC4WwTxGMPS8fWNEPe5uXz1uLtA6h+dGPFo2PD1z4X48vXtTPN2Y6rzl+k29K3yavLOI4Do4mAY8MUYUPRw+j7t8ah47/jTjuzA2ozwJqfS8LHXAu5YjlTu0mNE7br2iPLrqwzo8vOK7/0TUvCQhkTqAFDa9HkBMvOpKg7xwVQw9TBG5PBCqmzwNAIS8EjsrvQ4Jmzo4mAY6Rr/GPO/9Mb2Ra0k8Xtn5ujI44Lxo+gI8x5UCPfuhFr2OSSo9z2P2u/COwTzbjRa9H2AuPc5huTxPQYy8qZqKvIwpSL2uRl+8aXshvS4dm7rG/1U9+6GWPHSHHL3cnYe93ZatPGOqTT35iI6811sGPRI7Kz0BbJA7hmaoPC4UhL0sjIu6lX33vL4qCL1lyq+8cV4jPMaFEb252tK8QO5yvH1ztTxsHCI9umklPeosXj1dWFu9eDgOvXPfQTyl0k28jkmqvCwEE73WNMq7lRy7vOA567yWndm7c++yPHewlT1RM9g7hmYoPaf0bD2djg89xv9VPOWJIL1ffxe9Gp0Ove30mjznDHy7dhFSvJvfWr108W+8hdUYve/9MT0i+Bc9LRQEPeNpvrujWAk9hm0CPB/fjzync049SFDWvF9/lzyzF7O8O7olPZrP6T2UDEq9UtRYvKmaCj2iwJ+88I7BPCtlTz2VjWi6VWXovBJCBb0Nekg8DgmbPN83rjzvftC8b69uvT5bprwEh1W8xO2nvC8msju6WbS8yTYDvCDvAL3le+y8rCb9OkrxVr0+Wya87M3ePGAXgTzc9+m8r+UiPUDucryCFvM8MDYjvfCVmzyqJMA7hLdzPDXp0bsZnQ67zVHIvDxSjzqAlVS9LASTPEfPN70KydY7KnMDPUjmgjzRg9g8iQ4DvHrZDjty38G8SN8ovQrJ1jx2EdI8wCzFvO/9MT29i0Q7koIUPW0e3zyu3Is7xW7GPEjR9DpI36i8q7MSvXPhfrznGrA8u2tiPDd6YbxcSOq7ESs6vHTxb7xqE4u8obeIPCUjzjwdvy293ye9u8/yyLzVteg8C9nHu9AJFL2hMc07z/LIu3SAwrzwlZu7SdH0vCjEzjsJT5K7Rr9Gu7MejbyNyIu80YPYvHzipTwMeIs7M9cjPceAdLwwp9A8i6+DPDPXIzzqPM+85otdvOebzjwxRhS9UlqUvJ3/vDwRK7q7qRRPvHYfhjxZtR090hmFOqJBvjux91C7qqOhO5k+Wrv3XxW9HsFqvQNn8znpLN68rtUxvciQ5TyziOC6NmrwOl52gLzubl89G59LPWa8+7vTFGi8JANsPSvm7Ts9S7W7+OJwvOaL3by56Ia8h2jlvHSHHD3IkGW8Xtl5vIfuILw2+cK7FMw6ve4EjDwY/sq8S4cDPSrkMLyQaYy9vAqmPOxjC70B1uM7zvCLvNdULD3keS+8etkOvWjcXb1/BEU9F32sPMHLCD3ufBM9qZoKvUDu8rsIqfS6ya4KPfGlDD2vbRu8fNTxvAYYZbwIOMc6Vvb3u7dQHb3w/+47rCZ9OtGRDLzO4tc7qIoZPJHxhLunc0464sp6PCSSvrzF/Rg8WafpPDEob7qkUS85NngkvR2xeTzsXDG8jrrXuxolB70FFig9WBZau1HE5zyWM4a8tAl/OexcMb1qEwu9gawfvS8msjwf3w+9GxB5PGqLEr3t64M7ZcovPESf5LuDJmQ7aF18PWAXAb2vbRs8QhwJvu9+UD1wVYw83Yh5vHzUcbyG11U78ZUbvSIBLzxMETm9r20bPDmawzxPI+c8PDvEPGwcoryegNu8np6APaVTbL1tLJO6eTPxO04xG7xGPig94kncunrZjrzIkGW8RUUCuwQNkbyyeG86e9K0OjeIlbx/heO8QhyJPHWQM7yLJ4u6ng8uPXWXDbwElQk99T8zPLIOnLx6QSW8sWh+PGwcojwdrzw8uEnDvC32XrwwpZM9mL07NnYfhr1bTYe8sH0MvddUrLvv/TG9p4GCPQUI9Dtxz9C70RIrvevLoT1juIG9ms/pvFHE5zzt9Jo8XectPFVl6DxRQ8m8Rb2Ju5UcO73E7ac8UMIqvaRhoDqhsC49umklvV52gLwDd+S7esJDPZ0GlzsCZbY7xF7VO4GlxTyxdrK6DwtYu2r8P7y1rxw97+99vLpppbw3euE8A4UYPUIO1Tzi6J+8MBh+vEMeRj3Gfrc8jkkqvLIOnLxqixK9hE2gOlgWWr3WRLu58aWMvKE/gTyFVrc81tONO2ykmrzSIhw9ulk0O1ckDrzZ9Sy8tajCPN+4TD1SWpQ8Ez3oPFC09roWbTs8M8eyvC+lE70LWCk88I7BvIO1tjygoD08JqRsu3aC/7wxvhu9OSkWvXCv7rz1TyS8yrBHvBsQ+by0Cf88sWj+PLa4M7xvPsE61LMrPZi9uzxT5Em9gzbVvHzUcT1kG3s8IfiXOiz2Xr1S1Ng8IpABvXPvsrlDpIE6KUVtPLwRgDu0mFG86CohvIsZV73xHZQ6OZrDuooJZj0oNfy7QAMBvXewFbyTkoW8mb94PYRNoLyAG5A8O0Keu5J7Ojxz77K8FdwrPdXDnDzXxVm8WjY8vVNaFL0tBtC8LofuvGdimTvKPxq6gaXFu5L6mzvfJz08+OLwPIdoZTvmi107obeIvFtGLb2n9Ow8v6umOrH3UD0Dd2S8AcZyPaNYCT3YZB09wK3jOjPHsjwgUno9InJcvdGDWLy1r5w8C9lHvUt3ErwSrFi8U1X3uzFGFL32wFE9q7MSO9rneDwcMNs7C1pmu2Ka3Dzi6B+92XQOPbt5Frzeto8806oUvYqYOL1edoC88A0jOWfqEbsAXJ88yJDlvLppJbxkwRg9L6WTu4O1tjzQc+e8VySOPCljEjuMmnU9nO9LvRXcKzwuHRs9h+fGvH+TFzzkeS8811uGPHT/I71l0Qk8a5sDva7FwLyroyE8ife3vPji8LwO+ak9JCGRPJg+2rw6G2K96jzPujYAHT2pkzC7IpCBPHxT0zxRQ0k9jTk5POhAxzuUNMg8TA0GvUgw5juqk3W8b4nLu2dHNrvSJlM9tIPzOQPxhDygmLa8zgR6u39UTDsgvCE8I0txPahbmjthMru7Ju6YvPTpbrvxdxs7efoXvTDpV7yXYeI7cP07PBjRAD3jZcQ8M1BqvWH4wrwhkkc9FiOYPCia5LtOACi9FmhRvHtuiLt7bgg8y51nvLHXp7y2siq9WkeavAjMhzzg/jE8Ccrqu8XEgTzJZYy88zBFPM4EerxSrHO91Q40veTkdTs9X4G9PkDovP2+jbxL3k49ye9+u40sqzwWIXs8cje0vS9qpjsnRY29tIWQvM5di7zH1B89zQaXu1oqHjxXwe68zBFYPZESbzyluPI8uphuvHjLYL2mrTE9uZqLPdmvvrtHMgO9Z0c2vZHNNTssx365W7uKvOD+sTtEEKo8wxaZuwRwNryYcx08xrejO4zysrvJSJA8h5bhO32m4zyluPK7N6w7vaXyarzwSOQ6icUYvOm0N72lOcE7cquku+D+Mb2Cu947ZlL3PBdAlDziZcS7gjwtOlEFBT0TAT+9zr/APG9P07xRLUI8zJImPS9qpjw3csO8+cTxPBGNTrxM8Ak7C7JLPGYNPrxOV5w70achvVqpT7w62dU8WW/XuxrP4zzK5D09CcpqPTzM97zZTQm88zDFvLl9D7xxuAI93NzYvIAsDz2TwNc8evh6vEwNhr2pWf277OFRvFHm6zs5ICy9+OOKvOekGT2ubni94bfbPEKcOT2gGYU8A9SIvFFy+zwJhTG9DezDPO9I5LyjRp87JjPSOnkXFDzFfas782q9PDzM97xW/QO8/aERPSFYzzxbuwo94vFTvbuNrbxM8Ak9g7Cdu2Gx7Ly70mY8t+wiPXJxrDp/jkQ8JflZPDxNRr1BOgQ82yOvuxkJ3DvVjeU7kNj2ulPbqjzY9hQ9NEWpPbPKyTyI0Nk8FQYcvWaODLyJ4pS8YHmRu8L5HLsC/MU7gYODPKpOvLx5BVm9Lfa1ujxNxjv/CCS8kRJvvRJlkTyzkFE8dti+PA1r9bwcGxc9e4sEO0xSP7zg/jG8f1RMO86/wDpQkZQ8AvzFvOQe7rqCPK07dti+vBYhe7yFQQo8lu3xvIocDTp/DxO9cAh9u6T/SL2+dY68qdpLPX9UTLpytmW9L2omu3uzQb26XnY8r+SFPUDuUDwaxKI8UyBkPQH8xb1b48c80LJiPcBosDx/DxO8n8KQPKAZBT10ZE68t+yivFIg5DsKvyk83JcfvNrpNj1lmU097OFRPPgLyDprhou8cZsGvej58DzfxLm8EFNWPY1mozzALji8DDOavDbxdLxvJ5Y9TQvpuxy3RL3k2bQ8TQtpPaT/SDxqLxe80LLivMrkvby37CK8mz6CPA0x/TstO+88O5L/PL/0P7xW4Ae9r+SFvSZtSjzC3CA8s0sYvFd8Nbybg7u7ihyNPJ/CkLojBji9qZWSPHymY7y430S8YD38PWdHNj08TcY8D5qsPPty2jxwCH08BeSmO4To+LyU7w695ROtvGn1njypsg48wefhPAMOgb2dMaQ9ye9+O1nwJb1mqwi9byeWvPl/OL5sIjm9V/0DvQAJpLxwYY48ryk/vJFMZ7s++y69IhH5vPeMFr1J66y8fpsivcmqxbuzysm8Qad6Paby6rxou6a8ZF9VPPr+6TwYlwi9hWnHu5123by8x6U98wgIPMQUfDrgt1s8bKHqvPo4Yj1+GtS7XPUCvWbIhLxuiUu8uGATvMIh2jxdkbA8shGgPCEwkjxUFaO92Lr/OyzHfjxww0M9dxI3Pett4bwy0bi8YFwVvZccKb1qLxc9UiKBPN6KwbxFA8w79OnuPCR6qDyU7w696PsNPC72tbwBYJi7FnqMPJmO/DynLGO78rGTvF2RsDw35jO8/9lsunxsa7v6OOK75Nm0vLzHpbt1HxU7VM5MPHcSN72P9w89iQpSvJPA17wY0YA7sRzhu7OQ0Tz30U+9x7ejOhKfiTwNpe29+/MoPCbsezzbomA8WfAlvCzHfrpKX526FHUvvHnAn7x0ZM48ZlJ3PlIigTyBR248cjc0vWjG5zsXIfs8rym/PC28PT1tFdu7H+RevGUYf7wwwZo8+3JaPMMWmTzdUMk805pDPdTUu7wb4R49qZWSPckpd73K5L08v68GvZibWjzKvAA91Q60vOA4qryXYeK6+v5pPMpj77zt1HO8+rmwuxpDVLw0imI9b36KvTctCrplNxg9cnGsPLuNLbz30U8996kSO8HnYbzKn4Q68zBFPeUTLbyaAu08YTK7PBWvJ7yzykm9/9lsO2VUlLx/VEw7koZfPDvOlLxZDSK96RgKva61Trzcl5+8FiOYO+Lx07tZDSI8bdtiOyMGuDyiYxu82mjoPJPAV7xY++a8GLSEPNn0d726twe7ye/+PECMGz0JS7k8Y+AjvR1yCz0u9jU9+3JaOOm0tzzC+Rw90zgOvCAeVzwOYDS9xQk7vaU5Qb3KY287n6P3u7ABAj2GInG8CMwHPYp+Qjy6twe8uEMXPEpfnblCVeO7nXZdOyFYTzwDNj68uZqLPDDBGr01xNq8/wgkPFqpT72WRoM7qXgWPCAe1zwwpB49crblOyEwEr3S4Rm8+X+4vEWhFj3SxB29hl4GPB5wbjv+FYI8CcrqPBiXiDtcnPG7dCrWPAN7d7w0Rak8NxAOvXXjfz08TcY7cZuGu2HQhbs7E069Ezu3u3YdeLz4RcC81NQ7PbkkfjwRjU69JyZ0vS0BdzzUGXU9ieIUvdOaQz0Bws08ySl3vC0Bdzs6d6C9gjytvMOVSr2f3wy9aLsmvO7U87xb48c79himvBX0YL2A0327k3sePSqsHz2J4hQ9XPWCvRKCDb213AS8j9qTvEixNL0tvL28EoKNvIBJi7ybg7u81HKGvN6KwTyh0q48vnUOPSYLFT3jnzw9Mtz5PNUOtLzX2Ri8anRQvO6POr29AZ48c6sku38Pkzvez3q9v3NxvEe89bk7kn+7PQbwPBlQsjrrKCg870qBPeRaA7zmTSU9WPvmPA7hAr3bIy89o2MbvchwTTwofwU+ZTcYvBt9zLwUdS89g/XWu6uIND2ujRE9yuQ9PUKcOb29Hhq9ziMTPT0G8DxSIgE90ziOO0FiQb0V9OC8W+PHPIYi8TuPWUU83opBvAsWnry+O5a8bRXbu1QyH708CA29A/GEuxiXiD1Ml3g79OluvJhWoTxEyVO8cESSPEQQKrxXGgA9NjjLPFKhsjxhsey7cGEOvb1GV7yU+k+79CWEvRErmbvRpyG9GJcIPBrEojxgvkq8D5osPXdML7uyVlm77Zp7Os6FyLwYFro8Qpw5PYCOxLvQMzE87o86vDbWlTtGvhI9bdviPAeSDzzH/Fy8Zg2+PDdKBr1yN7S8flRMvEMb6zzkPQe85FqDvLHXJ7zjA4+8ureHPE3GrzvU1Ls8fpuivXF87bxrowc7XsuoPHyogLyADfa88LzUuoZ7Arw1xFq7kkEmvYZeBr0yl0A8lSkHPVvjxzwNxIY8zJKmvGwiOb0qj6M8S5f4PAt4Uz2ucBW9Cr+pvOOfPLxNxi899d4tPDI1i7xmjgw9N0oGvUbbDr3Ohcg8k8DXvOm0N7wudWe8CgTjPJccKbzrfxw82i7wu2XTxbxLmRW9oovYvM2FSL3ez3q6ImqKvASqrryf/Ig8wvmcvCyCRTuWJ+q8+OMKPWJsszx9puM8VuAHvTp3oDx9YSq9ftUavGyharzYO846nqUUvekYiryCu9679V1fPJ7qTbyf/Ig8kgcuvS07b72oIaI8AX0UPFSU1LpL3s68gNP9vKqTdTxRcvu826LgPLb34zmbIYY9NxAOvaVzOb2ubni9CYWxPb/MAr0X3EE64bdbPS9qJr3NBpe8ezLzOruNrTyTmBo9SSWlvCYz0rwMM5q8shGgO086IL2Vs/m7yryAvNefID3T/hW9PzUnPFSU1Dxg0IU5olFgu4UHkrzOQA+8wzMVO94LELyHlmE8qNpLvH7gW70RDh09myGGu99iBL0vaia90ezaPNaCJDvxd5u8bwqavOunWbuPnv688rETvUJXgLx7boi8y1iuPBI7tzowI9C8KtTcO+A4qrs9BvA8TlecvI+e/jweK7W8RzIDvYnFGL7wvNQ8HnDuuzLRuLy6GT28W2L5O2BcFb3WSKy8IVhPvUsYxzzbomA83s/6vDsTzjssPYy8UXL7u4UkDj3NBpe81Q60vKjaSzzJZYy8Y+vkPO2a+zt+4Ns8dVmNvFnwpbzIggg9pi4APHK25buLVgW8zNdfvXPwXTsdrAM8U9uqvOm0Nz2vqPA8luIwPdtdpzzgOCq93glzPEY9RD1sIrk8z/m4O8MWmbxlNxg8wzMVPdVIrDtwRBK9RYQaveLJFr0yUOo6Hiu1vMZ9Kz3y9sw8kRLvPKOAF7wryRs9j/cPvQ3Ehryzysk8tT46PNfZGL3c3Ng8sRxhvJ2w1bx3Ere8Fa+nPDIWcr3y9sw8KH8FPVXDC7wltKC7hxcwPfhFQD3R7Fq7t+yiPC4wLj1Ll/g882q9PNaCpDxviUu9rTadPJ2w1bzgOCq9BO/nvIUkDj18J7I8OCvtvKIMJ7ocGxe86flwPB2PB72XYWK8ZdNFvTpaJLux4mi9UPPJPMlIkLyiUeC6+jjiO8SI7Dw7E868pNcLPUDu0LugGYU8jKtcPD3BNjzHNlU970hkPFkNIj2fNoE60Hjqu1Pbqrzi8dO6CFZ6PJNeIr1GvhI8AUOcvJ2lFDyPMQg9U9sqvRDxIL3eRYi9d0wvPBDxoLxbgZK8H2UtPSETljwSZRG8MCPQPA+aLD2HF7A8/p90vTJSh7wjpII8/lq7PP/Z7Ly5JH69Dia8PCAeV7zqM+m8+EXAurABAjwGndC8a6OHvJuDuzuJClK9CxYePZmtFT1IsbQ8X4TSvHBhDjrnwRU9V0K9vC13BD15BVm86b/4PO9KgbwYFro8fKiAvOsoKD2XHKk8Qpw5vbCo8LspmmQ7EoKNvNPUO7wsIBC8Ye2BPD81p7zi8VO7TYw3PaFRYD1j62S7KY8jvEsYR7n30c+7cZsGPSqsH70rDlU9aMbnvEuX+DwjpII9n8IQPcRO9LzIDhg8fuBbPfOv9rzbXae66TWGujmf3byW4rC6hOoVvCS/4Txoxue88vZMPTFdyDwLPts7YTK7vCD2mTxEydO7seJovZT6zzyM8jK9hUEKO12RML2ucBW9sdenvFb9A7yU0pK8j/ePPMTPQr3HNlW98Ehku3yoALt2V/A7GNGAOwL8xTy/OXm8pfSHPU0qAr1GPUQ9j9oTPYpzgboyFnI8pP/Iu/8T5Tzwgty8YbMJPVXDizv06e67lbP5PM+Xgzs7zpS7lqg4PaT/yDzrKCg8QlVjvMAuuDyQ2PY8INmdvLoZPT2Pnv48+cTxPBdAFD3Wpw27MhSEPct65ry1ZtW80S2tux/6rby+WhY8WuW+PJ8vS7pzpAK8PhcgPHVIozy4Lrw7MfA9PL7FUD1AAgA9cI4VvPfvjLviqqm6ilSgPCoLIzxekfO8UWPKPIGEpTzlDp28XQkFPWybIb0RWri85nKQPEVuBzwFCRY6LRM3veIxljyMx+67FoaSPKAohDxqcJS7X18fvVZkl7x4XpA8hrdGPNdLLjsnbkm7nOeJvN/iwjwmURW7Za90vcVqPr0AnY48wwZLvc/XEr3Far683tRpPTS4pLrk4w89Dz0EPXo7l72PObu8UM2CvTYA5rwAnY68cflPPaRi7LuQna68n7a3PNxwdj0DLI+8iKImvOEGCb0ezyC9cvnPPF+YhT2zic68CqdxvRyr2rysa808xf8DPUACgDyxJdu6I6ZiO6qcHzxy8gg7eYmdvNgvfLlH9nW8nb3+PDFiijwfz6C7stCNO0nhVb3/Yyg605GgPCuvwzoyzcS8xH9eO4xqjbxBX2G95OMPPO/mKz222CG8vejJPIpj+zwbJG48QtGtvMMUJDwqCyO88wv0PHUs8TwY8Uw9HaQTvV8Y4DyoKtM6CFHXPL/TKTx7WEu8TAUcO+mseL36zBO9IOzUPKH++DtJdhs9fry+PBHhpDzDTQq8iNuMPDnrxbxgiqy8x8BYuqc/c7xEw1Q919lhu4PomLzkAES9qSOMPIxOW72jBYs6SeHVuzsPjDy+xdA8Z5pUvbdRNTy+2vA8SigVPHUs8bwHZvc7gOAEvdMR+ztNItA7Ix/2OzUxuDz/cYE8WWwrPQWQAjv5U4C7gRLZvIiipjsUqYu7W1cLPeVr/ryFmhK9EkWYO023Fb1JaEK9NarLPLpnojzZNg68H957PDyIHz3tdN+8XEkyvYmGdLyrAJO8pNv/vES8jbyBhKU8l5/9PMmruD3vHxI9qBx6PGea1LxfraW8U8c9vKPp2LxFrrS5Mz8RvETDVD2tVq26n7a3vG+xjryB/bi7oaEXPK/PQL3cfk884yM9vIFZGL1Bbbq8mzUQPfXoerz9Bvy8D2H/O4CLbL0nfKI8K70cPDsPDLoMklG8U06qPBDTS72Bi+y8rGvNPIc+M7zVQ5q7OauYuMsBUzwL/Ik8Gc5TvEooFT1GJ8g81JGgvV6fzDzIR8W8RW6HvOhBPj0MhPi8andbPLGlgD2xHpS9eBfRuQouXj0NGb48Tw0wuxsk7rspWSk9kvPIO9G0mbxnaIA8L9MJvBKwUrz84gA9pyrTPG9jiLv5RSe9Mo2XvJ7ZMLzsgjg9vS8JvTWc8jyAWZg8SH1ivM+74LyWSeO7WuU+u1peUryb7tC8AzPWPEauND3N3lk7fy4LPN5pr7wfuoA7FBTGu1NA0Tx2gQk892ggPc6sBT1b12U8ue6OvNVup72vuqA8HR2nPDccGD2Nx+68Za/0O2NZ2rjx0Ys7uadPvcuWGD3tkJE7dwl4PNwTlT30oDk9Ix/2PBb/JTu6oIg74jEWvX+ZxTwZwPq8owWLvYNhLL0CAYK8FQbtPKrVBTw5MoW9GDiMPXGAvDz9hiG9NZzyvO1Ci7y+TD2+wSlEvdg91bxAAoC85t1KPFj6Xjwilwe9EswEvGYhQb3G1fi6GOPzuubdSr2pnB+7pzisvPMZTT3BKcS8L0wdvQaCKTw1Mbg8k3q1vNoaXLxWZJe6p5SLPXeePb2fPaS8SVrpPGLgxrtK7y49zJYYvNBQJr3sCaW8dyUqvUBturuhkz48o3BFPfOS4DzMiD+87ftLvfubwbpi4Ma7OtYlPUoolT0IH4O8PhcgvAUetjybZ+S8jGoNPTpB4DuZEco8j/mNPEj9BzoKPDc7Ide0vBb/JTw8Opm8yh0FPIGEpTyj97E8lOXvu/qwYTznVl48LRM3vQOs6TyAmcU6QPttvGWvdLxQRha8BFccvC0o1zydvX69LChXPddZh7wfc0E8K8RjPMMUJL13nj09RyABvddSdbziqqk8NxwYvt33Yjwx8L08XQkFPXL5T7kx8L28IV6hPCUYLzzrZQS9Jvz8Oxt5hj6IG7o8dyWqO328Pr2wrMc7iBu6PIVF+jzJMqW77e3yvFIjnbzQiYy7Ra60POMVZDzoyKo8sxA7vOqzCj08pdO8TuIiPbi1qD0MGT69ilSgOzB3Kr2KPwA87IK4PDK/azzgsfC8o+lYvBWNWTx+vL68l5/9vJMBorz8Bvy75PLqPGtwFL3TCjQ6yuQePJ+o3jyCdsy7ymsLPc/Xkrx2Osq8BFecvH28vjqWNMO74yM9PL7FULxFNSE6PwlHvaexv7wdiGG5XiY5u8kWczyvSNS8txGIvKXiEb2xJVu8nz2kvN0+ojzqHkU8lZAivcsBU7xrcJQ8mB+jPDJUMT3OrAU9RwTPuwSXSbuwMzS9uMMBPRfj8zxT1RY9MlSxPIYw2ry8Yd080xH7PHvfNzw1I9+4lN6oPAygKrtZgcu84yM9vXPI/bzqrPg6hkwMvNphG7zE8So9e1jLvAgfgz1/mUW7Cjw3PH1DK7xC0a27vwyQvIe3xrybNZC8i+rnPPKuErxnLxq9hncZvfV9wDw7XRK9ij+APJkRyjzOZUa98vwYPekBEbwINCO8anCUuyu9HDxjoBm9Ak+IvZf0lTxfrSW8bxzJulHx/TyT5e88oYXlu1PHPTwEl0m8nb1+PQb7PL2ey9c8ZMumPBYGbb1/IDI8vuECvQd0UDzX0pq8xznsu4vqZz1C5s08GWMZvdqTb709l/o8fnyRPYzjIL0EEF09ScQhPVnzl7vt+0u7Il6hvWBu+ryiDNK8TjApvc3sMrwByJs77rsePMvknryCNh+9npkDvJgfIzyJjYY9W9flPNoaXL3xwzK9MlQxvCyharyQq4e8sgLivG3GrrwI2EO7xf8DvcdHRbsx8D09iZTNPFlzcjv7FNU8m+B3PR/6rTxLN/C7rd0ZPFHc3bwZVUC9o2JsO8CwMLyKP4C8M0bYvaGhlzyHPrO8R/b1PNooNTwXeLk8uoRWPWLSbT2uFoA7vX0PPQBkKD0dVg29p7E/Pd3FjrvyrhI8StP8Pfhax7wNGb68IHNBPe3t8jp5bWs9wukWPXWz3Tsm2IG9Ln7xuzUxuDzGKhE9hjBaPYmUzTsZYxm9PDoZPKPp2DtH9nU89BlNPEBtOr1Kdhu89QStvGzN9buC/bi8Ix/2vDYOPzxpd1s9j8AnPNgvfLyfqF48fUOrvBpAoDzYxEG8bNSHPKkjjDw1MTg8dc8PPfQL9Drnz/G8yM4xu8zzebwMdZ28T3hqvKMFC71FoNu7EkWYO2l3Wz3cBTw8LRO3vJ+2N7xHBM+8KpKPvGLgxj0yYgq9sJ5uPVNcg7yT5W88xf+DPYv4wDzWpw07Od1suzfOEbxJ7y685IcwPIzjoLyOzgA86qz4O0la6bzOZUa9AzPWvBOi+TtvlVw7IclbOwaQgr3F/wO8OGTZPIo/ADz2b+e7X1+fvIN2zLwqCyO8oCFyuxlVQLx87ZC8entEPB0B9TqaWAk8LG+WOypLUL2ZA/G89QStuyFQyDzZryE8HVYNvTeHUr2nP3O6e2akPHEHqTrBole8550dPZxgnbyPwCe9HDJHPdODR7zVbqc7tFh8vW3/FDx/mUW8cQepPPQnprrUyoa86EE+u2vN9bzmVl69LkydvKvyubzCole9/jibvLg8Fbu+xVA8iKKmva9BjTyxpQA93HB2vMsPLLvu9AQ9/2OovMkW8zxDkYC7/QZ8vHclqrzOZUa90Mm5vOkBkbwkO6i786C5PNmvobzzJya9rLIMPTDiZDstmqO8iY0GvXb6HLsW/yW9c8j9PAHImzuZEcq8//FbPXp7xLw6T7m8sDO0vAlfMD1QRhY7CEP+O7mnTz19UQS9zVftvPwG/LvK5J67Ow8MPf4NjrysKyA8Udzdu9EtLTy/t3e8ue4OvLqgiLz19tM8qL8YvQjmHDyC7987uC68PB9laDyyl6e88yemPIJ2TDt9UQQ939RpPIzjIL0CT4i9J25JPfHRi7ynOCy9mhFKvV6fTDxuuNW8nRIXve9fvzyORxS9FY3ZvHvfN73X0pq8a9vOvCC6ADwdiOG8JSaIvc7e2TyiGis85uujPIELEr13M4M8bf8UvQx1nbyQJBu+MVv4PGubobumTUw7xioRPLVY/Dt4rJa8d6wWvFPVFr2Qqwe89z0TPPDY0jvDTQo8t1G1vI6yTry5mfY8BN4Ivcvz+btiZ7O7+BoaO9Vupzye2TA82EuuPDwsQLuhheU8gC6LPPNgDD0460U8P56MO4LvX7xEPGi80abAvGHDErs8uvM8jrJOOypLUD0Q08s8DQvlvAo8t7vfW9Y8NpUrPZxgHTsUFMa7UXGjuYo/AD16e8Q8QtEtvd/iwryB/Ti9CV8wPZXC9rwNhHg9fyf5PMIb6zwP9kS8tkPcPHU6Sr38jWg8tN9oPTJUsTyl1Di89X1APWRSE73m6yO95IewvEeLuzyCvYu84X8cPWaa1Lvb6Ae9H2XovJCrhz3nZLc8v9MpPKuA7TyxJVs9nRIXPTSqy7tZgcs8qgdavfE8RjyjcEW9gjYfvcdVnrzgRjY9UWPKu05pD70OfbE74yM9vThk2Ttp/se8WEGevNRDGr3XYM680phnvedktzx8GJ68l/QVPFD/VjyDYay7E6L5Oyfn3DuL6me7Dn0xu5mYtjwhXiE8GyRuPfG12TujBYs9TT4CPbICYrzaGty7fyAyvFFjSrvxw7K8/g0OPT2zrLxDtXs8j/mNPGCKLLxHBM+8Eze/vE8NMDynRgU6xzlsu4a3RjzL8/k8hqltuwJPiD3Tg8c7VTJ4uRBaOLv5RSe84qqpu8fOMTxISw69QHsTvem60Txz5K+8CkqQvNDJuTyA4IS8gu/fuzYA5rtVsp28Tw0wvZvu0DwqZ4I7OTKFvJ7L17wdAfU8Ow+MPHyfiryzEDs9Q98GvZCdLj2ujxO91XyAPOSHMDyktwQ9WlB5PDpPubxIfWI878r5PCf1tbwLtco8jrLOu0cSqLuy0I28AwECPNMYjTzxtdk8HKtaOr3oSbynRgW7JRgvvA6LijuIGzq97ruePBBauLs2lSs9COYcPRkVEz0f3vu8bf8UPNuagT2ocRK9/v+0uuulMTw460W7o+lYPAhDfrwn9bU7hv6FvKpOmT1abKs8Dn2xuxb/JTyl4pE6L/4WvCuvQ70PYf88ywFTvXzRXjxen0y8cYA8vEnhVTzcBTy8AN07vMsPrDwhUEi8XTvZvCwoV7uc5wk85XnXO61WrTww4mQ7RxKovAaCKT1AbTq9wLCwPLEelDyWyQi9xlzlPLQ0gbupo2Y7o/cxvIES2Tt73ze83k19vLxvtrr8jWg8gRLZvLCsRz08Opk8QMkZPfxblLyemYM83mmvO0Q86Dy1ZtU8DaAqPO9fvzxmtoa8Wf5IO/jO2Tz4P7S8ZVbkvAuqNbyba5u7IFpsvPPlCTxY/kg8zvIPvJCiJb0nLxA8C/yYvNKUfjw3UrA8NbnrOq2iML3dpQG9TLGvPDK6l7y5sge8Jwb6O1/dwrtliVA8GM4BPQiCyzv12ge8R8ezuoCJWz1btgS83QE7vBG8G72x6OU8GCq7vJcQRTw61lM8vhe0vN7DTL0wDd68SkEBPbWfdTv/rVO9yf70vCBabL1BRHM9RQWivJl2Hb3TvRS916eQvDdSML0qlLy7Z7G6vBykiD2dYBk7iJvBPIY16Ts0hn+9tLSWu0kOFb1uFYS9Ci8Fu0VhWz2dVvq86uj7OoqQPzyJARo9C6o1vGrZpLxTpB691PpWvfmbbTwYm5U9XkR+vC5LzLz7Z56818aHvPZ9ojytMdY7MQLcu/2F6TyStho8Jk6HPNix5jzM83K8/FwcvbOBKj35pQw9Wf7Iu1EBBLwqOAO9Ul29vHTBkbsZhvS7xesrvSo4Az379sM876mqvX3SyzuohUg7M5sgO+JwBr18gRQ8+D+0PGT6KrwLbMe8bO2ZPJphfDwp0qo8NSrGPI24qbzmCB89lMoPvIsVDzx5teM79qZvvPtS/brXIkG9k5ejvJ4iKzyzgSo7lqrsPF9OHTxmIpU7Ux9PvRf3Tryt9BO9hXPXO3ltHzm/DLK8F/dOvNEQ27vBUxO6o32BvfrD1zxnS2K8BvOlPOkwCbwzxG09k2Q3PddVLb0bhRE9lJcjvFkxtTyH9/q8SeX+PM3eGr3H4Ck9qnpGvBamFzzkrUi7DPGWPDlHLj09jWM9xq09vBofuTyT6QY9KmHQuqs8WLwnbFK9GZCTOweCy7x3Jj69MMWZvOQTITsJtTc9K/D1vN9nE7yr/5U9SYlFvXbAZbxyerA88+WJOiJkC70PI9c7TaatvA69/jx8Q6Y99n2iPPOx8TzdpQG8rsD7vLQQULtJLQw8SfofPL2mWbwEmE89n7HQvB5l7ry5YCS7GCq7Oz8mqDvO6HC8enf1O5agFr05R646WMGGvCN4gLyN4Xa7Ul09vMS4P7znWgK9ommMvMn+9DzE9q08YdLAuwRQC7uUyo+9Vnolvb1zbbwWxGK9EIkvvbyxW7u1lZ+8hWkBPcEBsLzJ1Sc9MjVIvNzOTr0P+ok88i3OvI//CrygsVA9oqbOvMknizyTZDc9qq2yvaBA9jqic+I7QhumPN3OzrswQEq95BOhPEkOFT2XTrO80LShPDyiBDsgWmy8p0gGPTGmIj1+Bbi8uGsmvaXOOLyrCWw8BmQAPRt7cr2alGg9Q903PEm8MbzBXWm8NrnrvJTz3DyRMUu8qT2EvFmN7rtP2Zk98PCLu2oC8jz3sI68qwlsvNciwbzWYC89M/fZOv4eLj1Bd9886VnWOzSbIL2vJtS8YQUtvbiekrta88Y888YSPOUx7Lv/UZo8oED2u5oFQ71m7yg9oz8TvNLSbLu3lPM8aisIvGa8PD37NLK8C2zHPOB7CL2z0w08fmHxvCcG+ryKwyu9XuhEO5cQRTwM8ZY8p/YivWdVgT1EQxA9toodvYggkTjQtCG8wAwyvjLE7bzJ9J67EUtBPNFDxzteRH47aBcTvfqGFbzgKaW718aHvPuaCr1BGya9uX+bPIN+2bvhPZo6GM6BvY/Mnrwu0Ju8DtIfPVPXiryq/xW9JRH8vLmJcT3YIkG87dL3uzBAyjqtorA8X4EJPWgNdDw7CcC8FtmDvXltH71hV5C7zr+jPMFd6TyFc9e8niKrPHbzUbwg/jK8I3gAvHm1Yz1wuB492tlQvBf3TjnhPRq7hReePFjBhjxnsbo7T5srPSPzsDw+MSq8aBcTPKFzYrygVZe8wV3pvIxSUT2gQPY8QCYoPQ8jV7tbJjO9dKKaPKmFSL27IrY7UZApvAhEXTwAFCy9BkUJPMT2rbzvBeS7cesKvTxa9zxhBa27YpTSPLyIDjutojC8MgLcPIFgjrtBRPO8OglAO+J63L3pMIm7JEToO7jHXzydvNI8tN1jvBfEYjvXseY7+HKgvPItTjyrMoI+KJ8+PbunBTxmIhW8kdURvBCyfLpGLu88gPq1PPRVOLxl+qq808dqvSc55jwUc6s7azXeu5e0C7njrci8ek4ovRm54DyG2a89ubIHvY96uztx64q9ubKHPFg8NzxxR8S8AzwWvRtSpTs7mGU8mwXDurgtuLkrxyi9DfvsuueXRD2hFym9h/d6PJhDMTwp0qo8ZPqqOjHP7zxHOA488bIdvTUqxrz8moo8MA3eu/qGlbqXgZ88zujwvDBAyjuE5DE96CZqvMd60bsQx508jYW9vEpBgbviHiO7YEMbvSqUPL3IPOM8CzlbuwyfszvCw8E85W/aPOdaAj2w6RE9HXoPOQVa4btlvDw8y/NyvTzL0TznHBQ9HzyhPQcmEj0Jd0m96xvoPNpzeD3P05i7ipC/POuBwDlmQYw8LMcovAcmEr3L8/K84h6jPBofuTsOLtm8RQUiPUAmqLyaqYk8jCkEvCGDAr1RryC9fEOmPDcfRL05epq8JEToPINVDD0e1si8jIU9u9pKq7zrTlQ82Re/vNrZ0DvQtCE9EImvvEC1TT0hy8a80IE1vWRMDjyo9qK8IFCWvA6Usb2Qb7k8RWFbPOccFDwyuhc8bsMgPZSrGD3Jojs8NrnrOfbZWz2hShW8TwyGPN/2uLgLEI677LQsPSBQlrvWspI7y5c5vM7yj7zRdjM9L364PPv2Q70jHH69t8ffPIkq5zxFVwW8770fPSRZCT2h5Ly8TUDVPNIFWb2ouDS9IFAWvTXigbyM9hc7J92sPJSrmDyVG8e8FroMvfH6YTsGHHO8CAebPJvHVD0bhZG9rBMLvb/ZRb2R1ZG830gcvYqQP72gsVC8vIgOvEMQJD2jaGC88+UJPQuqNTwM8RY9z9MYPduwgz0acZy74T2avPrDVzznyjC7ZEwOvT8mKDuw82c858owPZbehL156M88vzV/vBMN0zyBYI476TCJvPPlCT3Acoo92tlQPO/H9TyATJk8COgjvZnSVj0ccHC8LwOIPDO6Fz4NvX69uPpLvbPdYz0RGNW8oEB2PE1A1TwO0h89LeXzvNexZjyTwHA9ek6oPA1hxTxVmZw8bM4ivap6RrwijVg7mLQLvKReirxukDS8dTFAvSV3VDzLyqW8aBcTvV8Qr7zvBeQ5JERoPLWVnzygQHY7j+CTvLdrJrwU5AU9qEgGPDikkzw2e/08aaY4PaBAdjx0y2e8ipC/vFtkITuFFx48uC24POlZVrw0zoy7eIL3PH3Syzx8Q6Y8YmFmvD5Fn7zzp5s8wsNBPf2FaTqC7zM9BhxzPNSenTx7EDo8E34tvYbZrzwXxOK8nkt4vIRAazoEmE88ImSLPIZzV7xbtgQ8SS0MvGgXEz34DMi8Mc/vvG8fWryH9/q8U/YBO72cgzsn3ay9Ux9Pve9rvDw1XbK89n2ivKqtsrwpQ4W9kctyPPLv37uP4JO9IVrsvJRZtbwPlDE95ggfvb81/7zhXBE85v7/vACu07vkb1o99n0iPXeCd70iZAu6bh/au0yxLz0dR6M7TgLnOzVdsruYbP68do15vAjoozt1McA89kq2Owjoo7xN+BA8exA6u8kTFj1nsbq85THsvDikk7yGc1e8suhlvRRAv7vJ1ae7Hgm1O7RDvLzE9i07dMvnu9AQW73P3e47tXYoPS28pjw0zow8vRe0PYibQTwfjgQ5XCYzvE34kLwQx528nMfUvH9rkDxBRPO8+QHGuqf2Ij37Uv28dW8uvZXehDouGGC8DQUMvDbs17xpc8y6A8s7vLPTDb3dzs47eFmqvBiGdD1CG6Y7lFm1u5Tz3LwIB5s9gyIgvY3rFT2r1v88w8NBu9rZULzvqSo6hLFFu09oPz0t5XM8Dr3+u3roz7ueIqs8cqP9vI24qbzbm+I7TfiQPap6Rr2Oeju8Ci8FPQNvAj1F0jU80wVZPK8m1DvHCfc7fdLLvN7DzDxoFxO8+AzIvGg2ij3U+ta8FEA/vPPGEr17quE8kP7eOds/Kb2VG8e8vFWius7yjztpQGC908dqvBLvB73rJQe92korvMn+9Lw3UrA8dyY+PRHlaDzqjEK8F/dOPC8DiLzstKy8xFwGvjlHLjyxv5i5wmeIvP9RGjyQ/t68qh4NvCzbHb0nLxC9GV0nvO6pKj1PaL+7GZCTPIVz17zK/vS7rTHWPN2lgb3BUxO9UMT4uiPzMLxhBa084PY4PcpGArxhBS08P3gLPQHWvbx4Waq8FHOrvCvw9bwFMRQ8RZ/JPOfKMD1T9gG9LYm6PNZgr7wEmE89Mmi0PGzOIr1raMq8Zu8oPevd+TuRMUs89RdKO0YFIrznyjA9e2IdPV1ZH71LA5O8/3ARvV8QrzwhgwK80qkfPTbsVzs44VW6lRvHvDpleTxcguw4YgWtOblgJDwCCSo8tJUfvf4eLjwcFLe6uWAkvSFa7DkfjgQ9YVeQvMUU+Tw099k8s9MNveQ8br19n988YdJAPUm8MTsHwDk8d/PRPG+FMj2o9qK7DQUMvOyBwLwQx508k7YavWEFrbwjgtY8Ayd1PFjLXDwnEJm7zVnLPORlhL3N3po82UorO/Tk3bw4FEK9/SmwPGKUUr3ckQw9Zhj2umQtl7tRAYQ8zd6aueryGr2G2S+8xwl3PLG1+TuHP4g8vzV/PEpBAT1t4he9xPYtPfjOWTtka4U8Uc4Xvd0BO70Vppc81yLBvHirjTwCo1G8t2umvIJBF7ux3g893V30u8Xrq7yNR887U9cKPFRSOzz6Xf+6lxBFPUQ58TviHiM9E36tPBnOATuZdp28e2IdPEUkmbzXp5C7FMUOPJ0tLb0Q2xI951qCvUJOErx6Tqg8IY3YvM1Zy7w17Nc6gEyZPJwtLbyGc1e8GrngO6ObzDzuqSq7kTHLu5CiJbsYhvS8wVOTPePgNL2GpkO5yaK7vAdP37qaOK88/LhVPbY4Oj2GNWm80BDbvF536rt7tIC7OdZTPU1A1Tzu+408Ada9PHDh67zQtCG8oUoVvLJOvry1lZ+86CZquyExHz3guEo8rfQTvUY4Dj3E9i27vqbZPH5hcT1lvLw8i8MrPLvvybtwUkY9y+kcvVP2ATzs3Xk9YS76vP9Rmrx4gne7lPPcO0B4i7ueIqs8b9eVPSMcfjvWYK88aDaKPFOudD0VAlG9oz8TPXyVib3YseY6FUC/vDbigb0uS0y8UQEEvOwQZrx11QY7BhxzvMvz8rwxAly7D/oJPGI4mTwXxGI6D5QxPC0OCjzbXiA9K1ZOvSwtAT0Hgss8vnNtvUHoOTxxFNi8j+ATPAcc87zfSJw7Gc4BvOy0rDzGR2U9lbXuPJ+x0LxkLRc92n0XvClhUDxsaMo7C2zHPIYC/boJBxs8XqrWPM3emjyP1nS8OwlAvHj0nruHxVo9YbevvFGAtztNaMq8gYaMO1VJLjz0UqM81/yfvMYnuzyj4ga8thZ9O8tl4jwnvDI8kAhSPc8u2TuipYa80ZQVvYM4vTuvE4i8ASM4ve+JrDxw7YC6DvNMPCfPzzyvdRs9/QpLvTho27xudCc9wXFhvCZHgjoD6we9L8PQPPgF+7zsS4U8fW6fvFyMJbo4yu68NfKDvC2vjDtQ9ec5f0mMvJet3LuNQ4Q87ObvPOxeorxR4kq900ZGvWHdaTwr5zy9DaRWvGZX6rzT5DI9BscbORKWCT0JZq88C98Ivd/wIDxUIHK9dyzPvNL3z7yh8NM8+C63vOyX+bskCgK7K5hGPaFWELx44YE8vqjqvH6C47wePeI8M+5aPUuRBrxlbQm9nO6FvUjuSTwrhSk73bMgOgX/SzwJ7nw7sWMlPNtNZDyc7oW8i1L4urHFuLtAmDU8BU5Cvf1GpDyJK5c74GVRvXN29bsvTqA7NfIDPFOqGr2D/OO6yqE7vKGhXb0Wcp27Cj1zPUOwIrtRgLe8rK1LPCPKfzwn+Au9ErzDPB7bzrzkRQ68TKQjPVlhGz1Yh1W9RGGsPBp0a7yUXJg8L/8pPUxVrbxRHqQ6sYlfvf1sXjzkLsg8mJo/vLTKCD0BwSQ9u4EJPcBKgLzgZdE6X7YIO6PiBryngRo9oHsjvZbojj1EnYU8eJILvZh0hb0VwRM8mOm1vLXwQj35p5C8yVJFPL6VTT3k8m69/QpLPWOSHD0386o8QWCFvP27VD1AIwW9h1AqOzfzKrzTbwI9PERvPMQmFDwkCoI8ag1EPNfpAr0Sz+C8Vfq3O6fQED2cn489O6kEvW5hijuYrdw8+GoQvYzwZDseebu7kBvvPCsjlrw+l448sRSvPGoz/ryDS9q7JjFjPK0P37tXc5E84Cl4vB4XKDyxFC89L7CzPUMSNjwjQjK8iwaEvJZKorwa7B29jUOEuwwvprwBSfK8m3bTPFh0ODtoDB29e5OyO12MpTstEaA800ZGvXR6HjtcAVY5ePSePAm1pbxG2gU9OKQ0uxicALx3jmK8KYQCPRhNCjzGsgo8wumTvHq57Lm6akM8Dc0Svdc1dzvO9QE9UZNUvTh7+DwSHlc8xhSePFvtEby0ygi8wKwTPWOSHDylalS9rTibPOoOBb3ParK6pH3xPHYZsrzBXkQ9tY4vPUJzor2j4ga8f4JjPT5IGD20ji88TFUtPV3FfDw+5gQ9td2lvP3OcTz9znE8sdhVu90CFz3bdqA8uUQJPFklQrxIFwa8ajYAO+uE3DzGxae8uggwPV3F/Lxyss48chTivLHFOLwuTiA9Uc+tvDttq7xest88WdZLPSMG2Tw/b/m6f0kMvAEQG70fPWK8eEMVPXtX2TxVSS49hyfuPNsnqrwLQRy9dqSBvd+0RzvgeG48mRMZO1g437zYiJY7pLnKvGPhErx/0Vm9bhIUPZqxhby6VyY864TcPW6a4bulG149YQamO3In/zzbJ6q8usxWPIzdR7qHFNG8kh8YvOsiSbvjQWU8clA7vDfzqr2pXIc9wksnvDNQbr39f/u7yvAxvQgXOb61ji+9scW4uwtBHLjKe4E82yeqOxJaML3MuAG9Beyuu1nDLr1EYSy9TXtnvQWw1Tz1eF28K9QfPUSdBb3G6+G8r8SRPPh9LTukucq8ulcmvG4SlLzhfJc92tizvGG3rzwanac8Z6oJO6W5yrvfAz48bq1+vKB7o7wzUG68HcgxvHv1RTweUH88n45APJwBozvMy5695PJuPGmCdDx7pk895BsrPcWca7zbJ6q8ajP+vEDnq7xVhYc9mHQFvKREmrxdjCW8xgGBtwvfCDwUIgC9ElowPY+AhLz3uQa8RGEsPWbPHD30PwY9CWYvvURhLDsSC7q8GhLYO/V4XbsSHlc7ZuI5vONqobwNzZI7ag3EPGaApr3kfb48+N/AvKBoBroFEmk8UTHBvDdCIT2cUBm9vjO6u07Ohjy9qOq9AXKuPJf80jp/0Vk80tEVvAVOwrwt/oK7kFdIPAE2VTzXIto8iwaEPqB7Iz0K29+7Td36vHEBxbvAXZ08BMNyPZyfDzphGcM8WzwIvcmhO73G62E8viAdvHEBRbzsD6y8yKAUPXtXWb213SU97eqYPR7bzryP4hc9EuJ9vBZc/jxq0eo8QG/5O8egFLwkbBW8dlULPNiIlrzX02O8L/8pvFWFBzys/EE9erlsvRr/ujwV1LA8XhTzPHQYC7u6feA8wukTPJLQobwjBtm7FoU6O8KtOjw++aE8jaWXPFklQr07k2W8i8oqO109LzwrXO079FIjPJsnXbyMjtG8pOIGvYPWKTyMoe67KTUMOgDBJDyxFK88FIQTPDIqNDzCImu7QKtSPbYW/bv9u9S7g5rQu6Klhr038yq89SnnPBrDYT0VSWE824m9vFHiyjxyKgE9hyfuOUzdejxqq7A89t4ZvD5ImDwanSe9i7eNvKwi/LyURnm8Q7AiPAru/DwnMeM8QEm/PIkrFzx4kos7tmVzvHqAlTzo5CG9U6oaPb0NgLoAXxG8ErxDu/9wB70e2068f2/Gu4UAjbyLaJe8xnaxOoUAjbs4aNs8K8ECPAByLr0CTZs7SIy2vNtjgzzJUsW8Vb7ePM+5KLylG967yj+oPOzAtTz1LRC8SD3APJG9BLsKjGk91/wfvWHKzDwD64c8r8SRvNsnKryBhgy9e6bPO859TzyY1hg87MA1PQlTkjw74tu8DkJDvcN1ij2LLD49WEv8vA3Nkj3o5CE9TSxxu5C5Wz3YiJa9kESrvAoqVr3B0/S82xSNvP1GJLwyKjQ8AcEkvTxaDr1V0Xs8O6mEPGoNRD22UlY9hU+DvesPLL1yn7G8mMB5vHeOYrzMGhW9wq26vB7bzruQudu8Ny+EPD75IT0V5808EQu6O87f4jz2fIY9+KPnPMHT9LyDOD281b+fvCtyDL0+l446LWCWvKm+GjxuOE69QFzcvFALh7xIn1M8lyUPPRTTiTxwAJ48WIdVPX+rn7qI2Hc80pW8PIssvrzEJhQ979iivMtl4jt2yrs99GXAvBphTrwa7J08AUlyuvQDrTtMGdQ8g5rQPE0s8bzXram8PpcOPRrsHT0A5948hj0NPF4Uc71yPZ68CirWPNW/n7xIeRk8WBIlvQDnXry6zNa8DWh9vC6ws7uLUni8j8x4vIMSg7vyZBk7lPoEvb5GVz3K3RS8DRyJPLpXprzKtFg8rZouPK91Gz2GxVo8y7RYvVHPrby1tOm6DwoTvYPWKb2swOi85KP4OmaTwzznHXk80gptPaHw07xu6Ve64GXRPFh0OLy5RAm9BTulPS//qbw3t1E9DRyJvE17Zz1/DTM9wSLrPMZjFLxDsKI89S0QvDcvBL2iB5o7z/L/PNeaDD2pqHu8O6kEvbWOr7z530C9PkgYuy1gljkO4C+7XSqSvQoq1rxVSS46JzFjPZSV77phpBK9sYnfO/RSo7u9M7o8ZkRNvfnyXb0YnIC7viAdPZwBozyDh7M86OShvGbPHL3lpyG8L7CzPHhDFT1yUDu9XT2vu5Qgv7yM3cc8lPqEPOb2l7vkfT49pVe3vNW/H70JUxI7sZz8O3Mn/7pAb3m8BMNyPdJZY7zEJhQ8GP6TPHu57LySHxi8L2E9vBTTib3T5LK8BbDVvN+OjbzOfU88C0EcvXc/bDsNt/O8nLIsPcJLJzyp5NQ7H1D/u9eE7TxMpCO8xmOUPO+JrLz0A608JLsLvVdzEb0FO6W8NfKDPF1jabx6avY6JoBZvQmiCL2sIvw8OFW+vMKtOryngRq9UZNUvbEnzDxVb+i8M+7aO0IRD7xsJIo96OQhvWEGJr1V0fu846N4PUTDPzw4pDS8sQESPBpOMb0mk3a7YixgvCdtvDwA59483LOgvHc/bLxshp2810sWPHNngbzs5u+88mSZvHpEvDti3Wm9Vfq3PDUFITxADeY8vpXNPDXyg7uogkG7zvWBu8p7Ab0dBAs7sdhVvZAb77wFOyU9Es/gvMzLnryY/NK8gxIDPeTf0bw4yu66kPW0vCS7C7sWXwC9gzg9vV1QzLwW1DC7K8ECPOzAtbwFnTi8TbfAPMY62LxfGBw8dMkUvTkdDj2+bxO9DwoTuzF4A76gaAY8niuGvLq5ObwizQE8y2VivPQ/Br2Bhoy8CipWvYd25LzGJ7u8QCMFvUq2GTyI2He7Zs8cvYfFWj1uEpS8cACeu8sW7LsBhcu7zxs8Pd+0xzxVmKS6upD9vP0zBz3w6z88QnOivEBJv7uQV0i8M1BuvbF2wjsF2ZE6atHqvNciWj3qISK9La+MPZCmvjy6G029Gv86uyvnvDwxKY089XhdO+86trygtPo7N5GXPXbKOzyLoW69nO4FvcmhO70tEaA8s40IvaCOQD2gaIa8YzCJPHJj2Lz4VPE8dmgoveioSLzhLSE6fzPtO5g4LLzkfb48xthEvScx47yLaJe8Lod3OlTRe71lHhM9hj0NPHfd2Lv3uQa8FSOnPOQbKz16CGM8JzFjPUTpeTw4GeU83K/3Oy2vDD2B6B+9LxJHPUoFkL17kzK951nSvLqQ/TzCXkQ8xethvbPvmzyXS0k8lIJSuQWdOL30KWe8eJKLvWX1VrtmMTC9h1AqO7PvGzwU0wk9cJ6KPP/SGj0eU4G8tqFMPaYfhzxZEiW5QnOiPOhGtTy+gjA9YQYmPQE2VT0PWQm7CaKIvHKfMb3PajK84RqEvNeaDLzoMxg9gzi9u9o6RzwdyDG8SWP6vGqYE703t1G947kXu1P5kDqtrUu9kb2EPP0KyzzftEe89SnnPDKMxzwA594825xavW7DnTxzZwE9/WxevCs2s7zoqEi9ezEfPTIqtLz0UqO8sz6SPIMloDow2pa7Afr7uxqwRDsrhSm8YfMIPW2tfjsrcgw9DVXgvC3+Ar0aYU67vQ0AvKm+Gj2rmQe9pAjBO0T/mDxEh2Y5thb9O6mo+zsn4my79LQ2vcayirvVDha8QKtSvV0qkrw0UO470tEVvLU/Oby0yoi8cmPYPHZVCz2l9SM7h58guypcbbs7HrW8YzAJPBrWfjrMuAE9e5OyOqtKET0S4n09QA1mPcbFJ7xOzoY6KyOWPS+H97ySbg69AUnyPEROj7yCre28vln0vHFjWDweyDG9U0iHPeK5F7oasES6AusHvGEZwzz/0po8l5o/vQEQGz0JyMK8fAwMPFExQb1zZwG99LQ2PJBXyLwvnRa9wKyTPEM48DoasMS8ZoCmu8bFJzuYwHm8e6bPvCvUnzyXrVy8crJOPUDnK73wJxk97MA1PYdQKrzk39E8wvywvC/sjDyM8OS8GK+dPLGcfLwrcoy8YQYmuiO34rwD6we931I0PSO34jvGic48pESaPP0d6Dz0i3o8VUmuvLQ/OT3XwEY8vOMcPddxUDxXLzM97GUVPZHwFb3QRgC9mRolPEEdd7xGCCa8GAbaPFs2HTzdRPe7rJFovAdA2TwLY3681hroPFFV2jwG38w8C1gZvLCYUrx00QA7/tB4vOtI3zvvfFq8nSz0PJYfmzweXfo8WzadultS2LwtNNG8IKLLPLPdI7xn9bO8apsRvSZ8pDuQVhi9HH+mPMpbUTzXqQC8HH8mvXdJUrwkN1M81/6sPKvsBb0W7xQ71Ef5vAr3jDwKAvK7pdk7vaj8YL1uvra85TsGvclsp7zGOCy8E/SKPf5CW7zu7jw97LrBPFxvjr3susG8VgeYvdohUr1KSAG8LGFiPMOSTrw+6Xu7CaHlu1B3Bj2z3SO8KS3nO7GH/LzgeHK9vpw6OoauRj37yok6CnRUvaY6SL01Goq7tgDJPB9Bv7wgJQS9vNohPbTpg7zzLhg857PXO0xfxrz1tz+7zQGvPJ+7DLyGrsY86fgovKOJhbxx8rG8c1M+PHWHubrak7S8cAOIvCOBGrx6YZK9J1p4uxx/Jjz+ZAc8UVVaO30jq7sKAvI868sXvQ0asryKtbC8j/ULPbfv8jzzZwk9I7oLvTHJWD0gJYS8BI+WPFe90Dxa1RC7AXdWvAHpOL2uZNe8N6MxPRDcyjvLeAc9JCb9PKa9AD2pXe28w9yVuz4XCL2EXpC8bOvHu8lsJ72sFKE8duhFPF2Xqbw9fYq9jXdJPGf1s7w0bzY8rBQhPMs/Fj1O3Qg97WWVve7uPD2o5Rs8GOoePP3hzrx/5cM8LcLuvGI4ET3ecgO9rtY5PDOLcTxBj9k8HW5QPYSXAT3EBLG8WtWQPL/9xjxkT9a5BI8WPU1Di706SY+8aFZAPBalzbzgePK7xdcfPImNlTyE29e8WTuTvOypaz2QHSe9y7xdvPTT+ju1nzw8X1lCvQuRirwlqTW8C5EKPR9Bvz18P+Y8KgDWO5YfG70upjO95TsGvJF+M7xXrHq8/fIkvOrn0jxyxSC8oUQ0vY68mrwpLWc7gwjpuoPEkr3iBwu93xdmvJUC5TuPq0S6NeGYPCdaeLsduBe8hfgNvOfErbyTihM9q7MUPLPdozxriru8FigGPOOhCL0p6RC9OtesPGxugL1kmR09odJRvAXIB713uzQ9arfMvKm4Cj3K6e67Tq98vRx/JrymvYC9kft6PMiZODwTuxm9i6TaPI85Yj0zDqq9bx/DvO982jxjcQI9kB2nvBOCqLz103o8/kJbPTnz57wQTq082TKovMN7CbyLFj09HA1EPPTIFbohA1i8ZbBivVNyEDwavQ092TIovbWfPD3Imbg8lh+bu5//4rxkmR29zvDYPCWptTwRPdc5Hs9cvFkCoj1qm5G7qeAlPGEb27wuI3u8wU39vP9fkTzyg8S616kAPC/2aTxH9089f+VDvc7wWL2CGT+9hNvXOqXI5TzJ+sS8w6OkuuMvprurvnm7VlzEvK11rTwvB8C7URGEPEIBPD3wT0m7ghk/PdKFYLztnoY8TwUkvb249TxTqwG9Z/Uzvc0BL73MoKI8LhgWO/hdnTyfccW8uEWaPbWfPDsDvCc7cWQUPEk8IbzjLya+hp3wvLuyBjwBd1a8g+wtPEJzHjzLvF294erUvNOiFr2OSjg8Mq0dvSoAVr1uO/47rIaDvMFCmDxZf+m8YAQWvXLFIDzVnSA9emx3vKh/mbvfF+a8UdiSPcwShbysTRI41Su+PLPdIzzbPog8vcnLvBJaDb3mUku9DRoyvXCAT7qiF6M8n//iPMFCmLvA7PA8ZN1zvaR4Lzz/X5E7LGFiPZQv9jy2cqu8irWwPCAlhDzl8b68PCdjPTqCgDymvQC77Z6GPNbWkbwpLWc8YD0HvQ2oT7p8P+a8LGHiPKHS0Txqt0w9lCSRu6XZOzxy/hE9B1GvvFV4fzvkDfo7zvDYOq83Rr3WDwM9JVSJOuBtjTyLpFq9sOIZPRa2ozuAyYi55TsGPedvgbzJ+kQ97RtOvCF1Or0y5g49a6b2vVge3bwGKRS8Vs4mPFl0BD1HabK8JmtOPJZ0R7twA4i88MErPbaDgT4H/IK7LGFivKwUIb1JK0s8e95ZPJUTuzw5rxE8Q1FyvDXhmLy9uPU6cZ0FPUaFbbwM8hY8vuaBvBrI8jy8V+m8na8sPZxOoD1d0Jq8gSqVvNYa6LxScpA7BKtROyoA1ruRbV28Ea85vNxmIz16YZK8na8svG3acbxXvVA8MUyRPbhQf70QTq080LJxPOkU5Dw5rxG7eGaIPKFENLy1ShC9uMLhvLPdIzxMX0a8xdcfPdTKMTw84wy8EMv0vBtXizwZXAG97u68O5kaJbwLkQq9Yo09vcn6RDsm7oa8qkEyvGsYWT3pFGS8Zd1zPLGH/DtMX8Y8hw9TPRLAjz2AyYg75WMhPItgBD2/i2S9SBSGPNz0wDxgPQc9KhEsPX8vC71+EtU7mRolPbzaobtHaTI9/IDCPI7YVTyk9fa7gFcmvW6+trygHJm8XYbTu32g8ry82qE8YRtbvKrPzzzlO4Y8pjpIu9EIGb3sukE73cevvNET/jvTWE89luapPCGGkDpoVkA8Sp0tvf3hzjwuprM8KbCfPFge3TzDks68zBKFPZQvdr2W5im9DSuIutYaaDnLP5Y6LiN7vceqDj3BTX281zeePIMIaTxedf27fy8LPV/LpDxCrI+6yIhiPb4q2LynHg09ZbDiPJCPiTrbgl46nSGPvQdRrzzSQQq94r1DvM7wWD16bHe8uMLhvEAuTb1cbw49K3I4PQdA2bwRrzk9yIjiPGkBFLv0yJU7HA1EvXMmrbyUoVi9PAuovPKDxLwqESw93GajPAoC8ryh0tG85fE+PMygIj1VbZo8kft6Pe2ehr1x4du6JmvOvDoQnrzDFYe8o5TqvEdpMrxfWcK8g8QSPF51/bsRPVc9GOqePJ2vrLvsukE9EE6tPU3RKD3LSvu8d0lSPFBmsLsL1eC8fD9mvOiXHLzGxsk8l9VTvQldDzylhI+8svlePEkrSzltzww8r8VjPekUZD3X1hG8ZhHvOw8mEj3aIdK8VephPRTjtLtXrHq8recPPuD7qrxBEhK902klPcbGybzWjEo9X8skvN45Ej2k9Xa9lnTHvBBOLT3l8T47zQGvPCxh4rzA4Qu9C5GKPP7+BDw84wy8R2myPNWdoLwqjnO9F6VNvGGp+LxedX28s1prvEqdLT0Tgqg8Z4NRPPZik7yQjwm9XYZTu2UzG7zRJNS8cm95PCg+vbrdxy89+w7guy6mM73ZwMW8DRoyugldD70ZZ2a7b5Glu4niwbr+0Hg8Ko7zPIsnEz1s68c8s1rrvJAdpzsuprM8IXU6uziSWz1bNh28QLzqO9yfFLtuvja8yIhiPUESEj3Nj0y8kW1dvNEIGbsxTBE8LhiWO47Y1Tw7OLk8cA7tO0dpMrxgSGy76NANvZRATLy5NMQ7R/fPPOVjob1vrWC9eQtrON3Hr7s2e5Y7CgJyveFcN70m+es8OoKAvPA+c71Iyj68gTX6uYYgKT0LY364LTRRu+7/krwhhhC8E/9vO4eSiz0jSCk9C2N+vOHq1LwfUhU8d8wKPSWpNTzaaxm83GajPN+anrxYHl28rBShPTGFAjviS2G8LwfAu8iI4jxXLzM8WXQEPcbGSTiM+gG9PhcIve9gn7w/P6O8B852vLxX6btYkL+85uBovY0FZ7wU4zQ87LpBvfIRYjxgSOw7eQvrO9/Tj7nDoyQ9Y+7JvIj+/Duya8E5oFWKvH/lw7wY6p68emz3OgF31rtKSAE7rJFovNW5W7xdlym9EsAPPdBum7zyg0S8Z4PRvLkj7rxZ8Uu7nSEPvf7Q+Dzw+py89/yQPWz8nbzaIdK8fvaZvfTIlT0UYPy8q6K+PKiK/jrTWM+85X/cvAQdNLsG38w8mMR9PFCCa7t0FVe8gadcvB38bTqBNfq8eu+vvPYYzLxQZjA9fMKevAZihbxbDoI89FYzPJRdArwrcri7rQPLOw9fg7w56II8ohcju6xNEr2GPGS9Z5QnPWUzmzxNTvC8pYQPvUAuzTtx8jE8PAsovWL/H7wf7JK8Zd1zvLURH72sTRK9lQLlvAy5pby407c7np5WvTcVFDywqag8t2FVvJ+Cm7xYHt08nIcRvBJajbyk6hG+SFjcPBnZyLqRKQe8vNohvMVlvbwpLee8QqyPOjiS27toVkC7L/bpPADBHbu4wuE8+drkvNUrvrrCewk99/wQvYW/nLwzRxu8v0cOuxRx0jt4LZc8Mx8APG4wmbwpIgI9tS1avG6+NjsDLoo8M0ebvEaF7bxpOgU9Sa4DPEgUBrz7H7Y8fVwcvKuiPj0L5ra75WMhvdf+LLyZqMK7nE6gPNNppTuxfJe77KlrO5LfPz1JPKE84DQcvV5qGL1h1wS9G1cLvIauxrtMqY08jHfJPAvmNjzBTf27ZNKOPL4q2Lwez1w8791mPJPO6TufcUW6Nr/sPLQ+MLxKSIG9vpw6vMTz2jtAoK+8QY/ZO9qkijyUsi69q7MUvcDhiz237/I8FqXNuyAUrjwOCVw8WmMuPXHysbxO3Qg9+UzHvEaF7TyBNfq835oevcXXH7zSheA8z8NHvLoHM73vCng8sKmovL/9Rjy6BzO7QgG8vO0bTr15ql489QGHvQ027Tw2QqU8BmKFPDXQQjxFlsO7Ay6KOi4je7yKQ048fLHIPMVlvTxtTNS7vclLPVkCorz2m4Q9TwWkPCWYXzya+Pi8XqMJvaFENDtALs28fhLVPNEk1LyGrsY8jko4PX1cHDxkwbi8E/SKvQ/tILwUcdK6vipYvBnZyDy0u3c9mDbgOzs4OT33edi7duhFPCg+Pb1JPKE8dF+eO6/F4zvUdQW8Cr4bvbZyKz1zN4O9ixY9u1yzZLxFlkO8u4T6u/5CW7ztG048XLNkveB48jvh2X49ys0zvEbgCrx9lY27u2g/PFCC67tKD5A9ikNOvdNpJT2dryy9vpy6OxjqnjwSEMY77jgEPUqdrbyBp1y8fvaZPG6+NrzNAS895fE+vGigBz0psB88DyYSvIDlQ7yGrsY8GWfmu0IBPDyJVCQ94kvhO9GWtjxGhW28+vcaPeXxvrz3/JA8YSwxPeOs7TxXrPo7sYf8PMOjJD2OSji9jzlivGsYWT22jua7PCfjvNJBCr0qANY8Bm1qvDXs/Tx4HEE9oNLROx+zIT2dIQ88Y+7JPNgKDb3fmh49yIhiveJLYbxhG9u7ZiJFvTI7Ozz05NC8QLEFvG1dKjy/i+S8G1cLvFnxyzwxOzs7cIBPPNQ8lLucPco8+F0dPSPFcD2dIY+9Ww4CPbtovzy8TAS9Usc8vNYa6Lz/X5G8QLEFvaIXozy6ldC7nMtnvJdHtjvkkLI8I9bGOxkjED0vB8A8s8zNPP1TsTt5AAY9BJp7PD7pe7wjxfA8LOQaPLtov7uDeks7ctriPBMSFT2ntai8ipDmvGCDXDxS3Qq91d85Ow5xITwxaYw8T7BCO5cDCr29kJu5P3ZDvK3vtjxWkyw8cphsPKF7Gr2M4p28CQLjPB7d1bwKEiQ8MH66uuJCHDyzkKo8YrCkPDw0zbvmstM7usq4O45WST2MOcK8s/cPuixR8rwXUJc7QPovvdyALbxjoGM8ZEk/u6ccDr2oTkO8WEnOPGbNKzw/uLm8RBe3vJvaJr3DMQ890QgdvLTCX72+wlC9Jq+FO38cSr3qNkC8Y7AkPGaYez2AXsC8YBz3PPKN1TuamLC9SM1YO7m697wUm26979ezvAcWGD2o9568NwqAum7iyruk/wY9fhzKuz00TbxIZvO8NaeOvZ+gCTtS/oU90RnXvDlu6rzTW029TNWxvIi11TwSWfi88lugu7m69zvvx3K8xQygPLxOJTybQYy8b4smPL4Z9TwjPNM8Px+fu3l71jq0OYa71a0EvVtm1TyzKcW84SGhvBInwzsmr4W7/HyMvSTlrjz2uh07fiwLPBrUg7xBo4u8lF4iPS/lH7yOre28xZV5vP0m4TwmrwU9K8gYPBSrL730z0s97j4ZvJR/nTwCt5o8EX5nPH3qlDs1pw69bG4fvNVGHz2FVli7OsAhPU/AA7zYygu7V249vT9AmjvjhBK8s/cPvOEhIbwB/QS9Qjwmu93CI7xYB1i8LSuKvVni6DzwgI+7Uv9+PL9ba7yhFDU9sxgLPbBjYr3pJn88CFiOPKb7kjv8W5G8+D6KPHv/Qr0Okhw9+QnavFJ2pTxaegq8Zc2rPOiN5Dz3lS49ClSavKW5HD12Bys9TkndvL3nvzzf36q9Us3Ju/nHY7wkTJS8R83YvB4SBj3Pleo8VjwIvcT83rwXloE916kQvaheBLwf7ZY8hFbYO6DSPr0SWfi7ew+EumFuLj3G57A9nU7SPB0CRbmRYpa8QOruvBWrL7w6sGC83bJiO/02orwtPEQ9LSsKvTPdN72U53u7BvWcOqrSr7wOo9a8CpqEu1fFYbxGi2I8xk6WvAIf+TwJAmM7yzZtvNhjprx/HEq9QpPKPCoOgzwHjjc8sk60vGnqsjrDIU69GGFRvVf2HbsRfme9wc6du1xm1btV+hG9GtQDPULEBjyBOVE9qtKvu1CblL1VUTa8Fh/bvFL+Bbwa1AM9hYcUvQKWnzyo9x49YINcvdT0Z7xYoPI8/PSrPJY5s7tjOIW8gPdaPKyd/zybc8G8ycLBPMnCQbxk4lk8vKXJPIiDoDyRQRu8T1keva3f9bzVncM8gntHPUVJbL1IdjQ9IYYxPFs0ILs6J4e8ugwvvTI03DyTxQe55XBduxD1jTwtPEQ9Umbku/kJ2jz0eKe8X5MdvVE0r7xbvAA9QpPKO3NByDwuPEQ8lOd7PPx8DL2ivRC9Ux8Bvc66WbyfOaQ8MEiRO+2FfLxWk6w7beJKuzFpjL1k8ho9Z/9gvKPeC7svbYA9nk5SPJR/nTywc6O8pJghPDI03Lw5buo8TMXwvGAsOL1y2uK8HFnpPHcHK7xndgc8xk6WvEcCiT1MLFY8miCRO01uzDmqKdS7f8Ulvk+wQr1CxIa7iIOgvGIXiryFVlg7FERKveXnA7xnD6I5zHjju0m4qrwT8Rm9G44ZPXz/QrxYSc48AdwJvQ6j1rwa5b28opwVPaPei7xA6u679lM4vSfQgD1ymOy7s/ePuvUAiDz0z8u6wJ3hPK+5DbxwzRy9k6SMvdwpib3VRp+75ecDPT+4uTxymOy71IyJPHpmKL3qEdE8xQwgvHvuiD3MiCQ9l3spPAgn0jvUjAm7GuW9PP02Ij1jOX486s/aO4UxaTsbJ7S8jHu4O9DX4LyrFKa57WMIvV5RJz2zgOk8xGNEPSEvjbxFsFE8InGDPNNKE70eNPq8CQLjO6XK1rvqEdG8BbOmPI69LjtbJF88pnMyvW8TBz0Vqy+86t8bPDnVTzxTD0A8AsjUPIsoCDw9RA69VtUiPW175b2KBw29S4P6uofqBT0Ctxo9rpiSvBo84jsu5Z87vZCbvDZhJD2cg4I+TrDCO733gDsrHz29+0tQOQcWGLyFhxQ94akBPaZzsryOva67ORdGO982Tz0pzIw6IbhmPAyGT7y8PmS8Xf/vvPURwjw4xJU9+glavMdvkTvOYzW97LosvHDulzz1AAi9c3KEvAeONzs3CoA9EtAevU/Ag7tX9h29c3IEPY0UUz02uEi9ByfSPGW96jyUKXI9WbAzvFCL0zwmrwW8W4vEvM262bze9Ni7JSclvWAsuDxWkyy87fyiu1L+Bb33he084BHgvMUtmzwVVIu7r2PivNe6yrz7Oha8dIO+vGEsOLzqABc9HNCPvHQsmjzuHR48PJuyPFs0ID3zjVU9luIOvHBWdruV97w6PM1nvdou9jxLggE82j43PQjQLT1PsEK9RjS+O21JMD0NYWC7KEQsPV/6ArxrLCk8iyiIvEzVMb0+dsO8DdiGPNWthLwG9Zy8sGNiPFIPwLwMhk+7/c+8vHXFNDsVhkC9T7DCvDtJ+7z9z7y85YAePWeY+zwbfli7uwwvPE4XKL1hbq487FPHOYBuAT0NyEU9f05/vE1uTD02uEi9Y0k/vatrSjwUAtS7bAe6PHNyhL3FLRs9MfJlu4LirDwJqz49JsC/PMIhzjofzJs8Kh+9uwblWz3F/F68dIM+PWAcdzx44rs79SEDPb9rLL1V6lA8kgxrvLMpxbw0dlI9mYjvOtuArbwVVAu94GeLPHNByDyhe5q8xk4WPRe49TzPDJE81IyJPBf6a73SsnG8bDlvvRInQzxq6rI78AnpPDHy5TytRlu96PRJvcE2fDx5vcw5u5QPPbBjYj0NyEW9VpMsvBXtJb12Xk+8PAIYvfMm8LzUBCm8M0SdvHPqIzwTEpU8/xGzPIw5wjvV37m6VsXhPOxCjT1p6rI8y99IvTtJezzG12+8nvctvfgdj7z3la681DbePAmbfb2dtTc7XHaWuw+j1rsSJ8M7bG4fvEY0Pj1V6lA9IB/MO+TGCLreBBq8xaW6vIxJgz0t+k065D6oPHsPBD5EsFG9Dgo8vRSrrz0ARGi8adrxPLGlWDzElXk9/HwMvczfyDs3oxo9X+pBPN702DtL6t83EtAevTg8tTzfRhA7KoaivA+zFzuivRC8IvpcvYBewLuaiG+8Nur9vI+Yv7zwssQ7h+oFPQ75gTwkbY88LGEzvfZDd7vapRy8wTb8u6mQuTydtTc9E2m5PI4UU7xeQWa8dcW0vOkmf7scwE686mh1vFCblDtqtAm8NB+uPKXalzxD1UA9CZt9usdvEb0om1C8xj7VO9A+RjzbgC09Cpv9u/FboDzG57A7rK1AvYtrdz1ke3Q88BmqPEY0vrzDMQ89eRRxu4Bugbyh0j48/c+8vLLnzjxkizW5YCw4uy2jKb31EcK82PzAO7ffZjxrbp+93gSavdnrhrpVkyy9QpNKvMPKKb0nAja9SkCLPJnvVLpqLKm9C0RZvD5liTvq3xs9MooHvNZ41LxeDzG8i9LcvOgEi7x8qB49qxQmPWEHybw7SIK6re+2POgmfz04LPQ6yp3SvEGjizzzJvC8Y7AkvAblWz25IV08vfcAu2cPorxm/+A6EifDOx/MmzxS3Qo80E6HvMcZ5ryNAxm86yESvXQsmrvmCXi8BkxBPO4dHr2+KTY8NlFjvKPei70RFom6guKsPPpwvzyZiG87841VPXW1c7oxAic6BPkQPA3IRb0NyEW9TDwXveWAnjyYvZ+8vim2vHq9TD16JDK8850Wvf94GD2w/Hy8Z3YHPGeY+7wAEjO8c0FIvXfiO72/BMc8DbcLvRF+Zz0vbnm7sPx8vEI8pr134rs92GMmva13lzyNe7g6WLCzvL9bazsFsya6QjymO+F4xTyra0o8M0SdvABEaLwZPOI8p07DvFlJTr3k18I8GhdzPVaTLLwxwLC6LOkTPNSMiTyoTkM7rARlu6iAeLk5buo8SA/POFRB9TrSsvG8dgcrvfJ8mzxPWR67FYbAvIvS3Lyq0q+7c+qjvIaYTr17mN28d6BFPDejGrubymW9OQYMvdvnkrxWPAi8DMjFu2IHSb3wskQ6vNf+PFJ2pbzhIaG86ng2PeF4xbydDFy7LSsKvnagRT0Gfna8RyR9vARxMDw5F8a8UIvTvKel57xoqLy8lwMKunSDvjyirU+8ycLBPLs+5LxJqOk7sHMjPfLjgL3/eJi8NQ9tPE6fCDwruFc8/r/7PIqQ5jzYyou8f8WlPDoXRry2FBe7woizvFCL07ziQhy9V/adPKtrSjwpzIy8VEH1PDKrArsXH1s9InGDPNNKE72A91q8dcU0vNKycTz1qtw8+zoWPcWUADvnwpQ81Z3DPEVZrTowsG+8/TYivXjRgbzmGbm88AlpPFskXzvVz/g8w7rou55/Dj1hbi69gUkSO2DFUrpkJNA8a8VDvAQajDtxqC29vwRHvfR4p7zvx/I8RvLHuxVUCz1Dfhw9DC8rvU9ZHr3lCXg9N/o+PSofvbviujs8GTziPOF4RT0wwLC8gG6BPMO6aLwgH8w8VZMsvdFvAr0KRNk84+zwPLG1mbyYvR+7h+qFPFEk7rzonaU830aQvJvaprznoZm9cP/RPKmQOb3SW808C+20PFYsRzzR56E8LOmTu4m1VTxV+pG89+xSux1pqjzbCI48wBSIvDkXRj1JD0+80eehPZi9HzzPpas8aDCdvPURQr140QE8arSJvMZOljzpRgG9CZt9O7EMvjy+KTY8VepQPF2oS717mN285C7nub/SETzYY6Y8N/o+PdClq7uIC4E973DOPDmw4DooNOu8LfrNOk5JXbpa4ug7MVlLu5vaprzUBCk9MVlLvbkxHrwf3VU8iU7wvO4uWLzqeLa6qxSmPCV+Sbzqz9o7WzSgPFmwM7xhB8m8jlbJOiWOCrzNEX67X5OdPfaFbb1SD8A8qcJuvdaIlbvvXxQ8GPrrPHJzfT1qxcO8gF7Au34LkDyt77Y8aKg8PbVagTx5rJI871+UvNepkLx0HFk8KcyMPGM4hbzaPre7BTuHPJi9Hz0E+RA7yCmnvCAOEj3pNsC8/EtQPNchMD2LKIg8y0auPJzaJjyC4iw9MVlLvWPiWbqfwn097S7YvO4+mby6yri7yBnmOtSMCbv0aOY8kxysPfHCBTw/Hx89iKSbO0pRRT1aegq9nIMCPeTGiL3WiBW8uTGevKT/Br3oBAs9OrDgu/LjgLwBVKk6Qwf2vJgkBb0SWfi5+oAAPan3HjxtSbA5lOf7PH8cyjxbvfk8GdV8vdepED2q0q88VhsNvaZjcbyMSQO9Dvr6u+1Tx7yb2qY60imYvJnemjzpz9o8caitPPTPyzpYSc48ZPIavMqd0jxmVYw8HjT6PBNpOTuu77Y7zCG/PLTCXztui6a76ASLPIf/nTyaC+k8YtZcvB1qLbyUnNi6iBc6vQ70sbxwziQ7ji1IvGfsaryl+Cm9q/SNPOlk2bo03Aw7cRoSPQKubjxRiSu9wUzGvCv60jwweAM71lgOveROy7tdjP05kAYJPN8EbDwkpew7CgPVuyWLwjz+8GI9KtUhvf/WuLvhtvC6j1L5O475dr3Ntzo8gwGsvMP+SryIF7q8TfFQvKm1tTzTWpy7AwfxvKc3gryr9A29Rl0PPS+33ru1xye9DxljvScLgTbNtzq9DEKtvI+r+7kvhRg9dbDhu/i1Izz5qA671E2HvSHONrytckG95gBQvWNjsLwnCXY9nW9yvEgA9DyRxaK7VWvoPNnJLDl4fA29jobKvMLMBL3inMY8h5mGPfvlW7yyvKC8wjIcvUO4H7wr+tI87fyzvL7OkjzKrLM8AKPnu9NanDogdTQ7YtZcPKX4qbsewy89jK8UPcs5h7xQIxQ8mMEGvYV/37yEJl07Xk0ive0wBb3lc/w8KGJ4PFHirb2QOM88V1G+u/9J5TuaPzo7mj+6PMySCTxe5X+8lzSzvFq1x7yzrws7Qx43O/WqHDwUL/G8KGL4PPlnKL17hxQ82AqTuTGdtLyQbKA7LyyWvVIH37uHMWQ8QWyyvCLzZzuh0/s8HITXPBCmNr2db3K8/0nlvNsVGjyMR/I7L5KtvBXwlbnvBzu89/R+vNVlo71Ydu88IHW0O+rxrDtkFbW7KqFQPVjekTwBiT29nW/yPKzAPDw9e9U8U+20vB1qrTyUKSy9r/B0PbQIDr2V9do7VZ+5u1IH3zydb/I84F3uPKbrFL0Q2gc9ji3IPIN0WLzAGPW7hFouvWTwgzx2PbW8WHZvvLRuJb3tlpw87uIJPTdAFr1WLA29dsqIPUC6Lb352tS88kYTPWxqGzye/EW8/9a4u2S8srwT1u48U5SyPefmJTyXNLO7DA7cu0zMH72hYE+8MioIvUg0RbwxaeO8Qd9ePerxrLvSzUi9CjemvOg/qDzLnx67c/7cvKZRLLwMtVm8pqquO3diZjsr+tI8/302PFw1hjwolkm84MUQvdWkfjxSO7A8pqquu6mB5LzGu1a7yS6AvVWfOb240i475afNvCRmEb31dsu8iIpmvDTcDD0ZrSG78/iXPBBAH7yUw5S93t86vJ98BL3+vhy8hgwzPbBLArwMQi09d7voPJTQqb2Vgi48gwEsPE6jVT17U8M8R9vCu7aT1jzostQ8Jb+TvC/rrzzQ5/I7/iQ0upWCLj32m/w8NrPCu7ieXb25UOK63KBiPEETMD30kHW97npnPcdIqjxrqfa8ZEmGvLBJd7z5qA493PnkuzB4g7gLg5M88hLCPV30nzvKrLM7V4WPuz4IKb1tW3u8pusUPZ8h9ztkSQY9ghvWPPvlWzyIvre8wXMCvdfj1rwlv5M8uneePDBEsjztVTa8xAnSPMWWpbtb2ni9yfquPLcGgLteTSK8X8tVPYHC0ztBOOE8DvQxvChi+DzeEwy9svt7PFIH37wYk3q9wXF3vff0fjxwJ6c7rXLBOyl8n7ww3po9dIswPUs/TLyZGom8DvSxvHMyLr7pZFm9heeBvPP4F73EPaM7Ecvnu1bTCr0+CCm8frfMvNg8WbxK5sm8gqgpvWfs6jxlOuY6h/8dPTUBPr2gOx69NiZvu0ETMD0PGWO8Nc1su1Vr6LsX+5w9fZIbvRbjALyHMWQ8puuUPGQVNT2+QT+8yG3bvPJGk70IH4q80MJBvBEzCj0i82e8NwzFvMwq5zs4mRi9m/G+PIZAhLpCkWM9ByyfPJK4jTvZyaw8Aq7uvDbnkzyvJMY82rwXu5YPAj0BVWw7O/2huY77ATxlogi960ovvPmoDr3nWdI8uncevHtTQz1GKb68TfFQvaZRrDsFRkm9uhGHvF3AzrrK4IQ82HAqvY66Gz2w8PS71r6lPGGxK728wws9bw+LvKK50Topu3q8ETOKPGQVtbjcLTa7mgvpvNpWAD2ul/K9XqYkvRl50DnZlds88kaTPDE3HbwQ2ge77NeCu3YwoLzUS/w8Q1KIPjxWpDsoYng84JG/vPLecLil+Km65XWHPFMhBj3tyOK84/XIvAneo7yYWWQ9VywNPGU65juUKay7aEVtvGbHOb1DUgg9h/+dPUg0xbzs14I8hthhvIJPpzxCXx09lYKuvAxCrbxLDYY8sH3IPHmhvrwp78u8226cvC3gqDyKlW091opUvQiFobvQjnA89JD1O2U65jqO+fY83t+6u1b4u7y+De68QTjhPJGR0TqTQ1Y8XfSfPIdltTse9wC9kxGQO9WmiTw/Yas7aK0PPG1dBr22ICq9fKxFvPw+3rvT9AS8WVzFPBiTerx7H/I7WZAWPMMjfDu+De45R9tCPcFMxrxvDws88GC9vLgrMb1BOOE8vei8PPab/DzkGvo8jxMevUs/zDw7cE49EHLlu1BV2jz+JLQ8Wc9xO8WWpTs4ZUe9/woKvVvcAzzbe7G8SAD0vEZdDz0fHDK8cCcnuy+SrbyQBP46BhL4vEg0RbtvdaK7cnOUPFI7sDx15DI9ShobvCxTVTyRXwu9ODOBPBlFfzs/Yas8cM6kPPf0fryrM2k9joZKvMpTMb1vdSI6Nibvu7/zw7sWFce9VdMKPPBgvTwSfWy7twYAPX8QzzyMR/I8CjcmPPi1ozpagwE9/iS0vIYMMz1waI27GOz8u13ATj2m6xS91WUjPKmB5Ltn7Gq7Cd4jPSm7+jww3hq9orlRvTgzAT28W+k8WukYPLlQYj2i7SI9D020OxHL5zxJWXa92u5dvXS/Ab2cfpK87iHlup98BLygB808AhYRvRlFf73EfH67iBe6O0fbQj3oslQ9/HKvvRtfJrzUf029/lgFvWSI4bzkGvq8JKVsOWfsarwTCkA8a93HuyiWyTx804E7vprBPBv5Dj0Yk3o9uYQzvElbAb3tVbY8r1iXvIJCEr306wK8FkmYO03x0DzpMhO96r3bPF7nirnbbhw8xrtWPO2WnLt1GIQ9SDRFPf3/ArxT7TQ8VZ+5uBqgDL3QjnA9twaAvAtc1zxkiOE9fV5KvXe76Lz8cq89UXyWvLyPOjwAZIw8vw1uPDDeGr2N1EW6Sw0GPQKu7jw/Yas8oHr5PN8E7Lx8OZk8TfFQPC8sFrzSmXc8MpCfvOkyk71r3Uc8F/scOkAt2ruXAOK8XqYkPOiyVD0ykJ88HvcAvfwMGLwqodA6ywW2PBY8gzzmzgk92HCqPCi9BT0QprY8T/zXuwxCrbz39gk7UYmrvP5YhbxQiSu7t3ksPNhwKjy9HI482DzZPHEakrwdaq28O/2huktznTwuOSu8j62GPdyg4jvIoSw9HasTu7jFmbwchFc96AvXO3diZjwFFIO8wXMCO4PNWjsQpjY7IWifO1O5Y7xBBps8V4UPvfozV7x4SLy8FGPCvI0IlzyhLgk8JwuBvQcsn73oC1c7WukYvDo+iLz52tS8cUxYvWIKLjqnz9861gyhvbK8oLx80wG97chiPILpjzwaBqQ6sEl3vAuQKL1m+4q8Jz1HPbjSLjzNtzq9VZ85vDTcDDoHLJ88mCcePKcDsbzKU7E7NNyMu1g3lLx0izA9cJrTOzazQrzQwsG8VZ+5PA3cFTwIhaE8mj86vNcXKLzKH+C83C02vGh5Pr3jw4K8Ui4bvbjSLrs+ohG98bm/u1tCm7vK4IS9OfIavHRX3zwvLJY8ErE9PDZ/cT2CTyc8sf2Gu5AGibycSkG9cMEPvTWOkby8j7o8RHc5vHlt7bxuHKA8zCrnvG62CL0Nm688KMqavF/L1TtXUT69oWBPPEqy+Lz75du8e1PDuxoGJL2jRqU9ji3IO3aWt7zNg2m9PtRXPdX/C71CbLI76NmQPO6uuLxbQpu8hU2ZO3di5jse94A8uJ7dui7TkzuIS4u8ji1IO+bM/ryd1xS9NVrAPAfGhz1Edzm90gGavEbQuzy7agk9Aq5uuzNPObve3zq8bASEPAD8aTx90XY8L+svvCm7+rxS1Zg8yKGsvBY8A70nPce8+E+MPF5ADby4XwK9e1PDvL5Bv7lbQhu8eEg8vZX12rw/Yau8/r6cOsn6rrqe/MW8sdZKPOJo9TxVnzk72cmsvCiWST27agm9WZAWvH0sBL4FRsk8lfVavP3LMbww3ho9xWJUvKZ2XbwlV3E8/HIvvY9S+Tvh6sE8U8gDvPTExjwe9wC9IpplumurAT0FRkm9IKkFvZ8h9zvngI68sxWjPMFMxjx1sGG8TRgNvGGxqzwqoVC8ornROpgnHr2AadG84g/zvGRWG7vbR+A8W9yDvJhZZD0RjAy9a91HPaLtIj1INEW9LFPVux0RKz3ZYxU8MHiDPKpCiTq2ICq6x0gqPaQ5ED2LIkG9k3envJhZZL0RWLs8jdRFu2NjsDwQcuW7QLqtPBduybz9yzE9g3RYPOJDxLvTJks8Ky6kOM3rC70JeAw9o0YlvfJGE71fclO80yZLPBhUHzsWFUc96AvXPGSIYb1oeb68Yy9fPAmqUj0YIM67myUQPTSoOz3US3w99MRGvH0sBLtG9Wy82xUaPc4QPb3WDCG9T8qRPE0YDT0Ssb07yKEsvOKcxjyyvCC8Hd3ZPC+33rwC4r+8twaAvd8EbLyx1kq9rMC8PLie3TteTaK5TJjOPIGQjTzDV028kh4lPPsZLTyAnSI8H7aaPM4QPTxutgg9lwBiPFQSZj2W2zC8smOePE1+JL2Me0O9PCLTPPG5P7wdai09DTWYvDfY87xoRW08F25JO9nJLLoBvQ69ETOKvBqgDDsbK9W70gEaPPlnKD1eQA0879NpPcpGnDxMvwo8VBLmvLsCZ7zNt7q6U7nju8vR5DtrqwG97iHlPDv9Ib24nl08kAR+O3x4dLxfmY+82WOVuzKQH7wncZi8k0NWvMa7VjyJ4+g8UeItvfi1IzzAGHU84tAXuwo3pj01jhG9PFYkPW2PTL2wSwI97G/gPNz5ZD1Hp/E8lqffvCpvirzzN3O75XP8O6SfJz1wmlM67e+ePA70sTx3I4u8dnGGPDGdtLvlc/y8qJCEO6wZP7zcxx49xT0jPEETsLxl4eM8NibvvAV6Gj2J42g9/D7ePJjBBrwncRg8vFtpPbHWSr3V2E87TCWiPfG5P71CkeO7AVVsvLd5LDwNZ9688e0QPQM7Qj3HFFk8w+QgPQXtRjyYWeQ81jFSvZ78RT1ypVq91djPO/CUDr115DK9YgouPO38szs1AT68Ab2OPMAY9bwKA9W8rBk/u3AnJzzCzIS7wyWHPEdO7zzWDKE8r/B0PReimr0ywuU89aqcPElbAb3iD/M6H+jgvJTQKTyBkA28fKzFPF+Zj7vPNe48c8wWPRQv8TykORC9TzApPdIBGrziQ8Q8g3TYu+HqwTxl4eO8JP7uO06jVT3avBc8ByyfPHnVjzw2uSk61OgSPe3SZrwSaLi8T5BBvBjbnzwDaDs8soJIPXKqaTr9Kx08An0UvSQYi7wzQJ27OI93vO11JT3ouLg8lvvavIMW3LtVgto6l5z8u35Zb71pLAi9lcauPFMW5bs8F7g4TzOAPBT2nbwTrBi94II/PGBoqTwTneS8CVpUvV2lFzslTbe87NSDu48JQrsaCqc7XpC+vN+q1Ly67wo8BAldPGyDpDvknoo7k4LOvP0WxDv7aAu8blnyvEsXNb2QquM8PeBuvVnT0bxhCUs8Rm8hPVfGurw1TTQ8lI9lPMPGpb0/kMS8WPtmvUbbFr08dPk6IJBKPZmrsLuDgtG7ubhBPBrTXTvt0ma9sOGmOzLUp7zT+069LRe7PE4kzDxvxWe8P8XwvO6XFb3b/Bu8RiWcPDR1Sb2E7sY8HHacPFZaxbwKsw09IkAguyPUKr14VBq8+vwVPdokMTva7ee7equ2PPudN72RqmO9gPYIvY1Z7LyFxrG8q4F7PL0xzrv80mO9CmkIummruTvouDg8rcVbPDfbGT2BquY87isgvVvg6Dzul5W8q6UIPaXomzyi7sA89DD1vCMJ1zyvQAW8zdLsPG7HBD3BuY67g7kavFcysLyzI+q89hcUPX0kQzzf4R09cuEyPUviiD3nzRG9VE0uPIOC0bxTqu+7carpPMwxS7srCiQ9GO7bOxHFebx1R4O9PBe4PLqlhbwiMWw8TYOqvI4x17vrspM7g4JRvQTUsDxcg6c87peVPB/vqLwVdc88/XWivA2YDz3ATRm8M+E+O19oKbxZCH49NrmpPL1oFz1DYgo8xOgVPLpbgLwKH4M7c00oPUW5prxrF687lwqPPG0kRr16TNi71PtOPMxmdzyRquM7ELhiO5ZnUD0Cxfy82Li7vFzgaDwj1Co8YvaOvMmlgrw84os8jsXhPALFfD04j/c8cQnIvDj9Cb0eBAK95dM2PHHS/rz3zQ68uODWvKkXIz2RqmM7BuFHvaCqYLylj2I8MemAvCxOhL0lzoU8gJ1Puh+43zs1TTS8z00WPZ8JPzxWkQ48sSUHvGNNK7wUCdo8Pu+iul/8szykWra84nwaPOMyFb0bZ+i8wUv8POSc7bynCO88fLjNvG9oJr210786ZlrCvGAxYD0nWs689T8pvV7t/7rwbwC9Gp4xPSbu2Dxpq7m79QhgPJ/2gj1E4bu9VSUZPcK38Tu2Cok8d2dWPKYKDD0FddI8anTwuz2DLbwFqn48syNqPAZNPTyyuRE9FrmvPGsXL7utaBq9AO8uvav8JLx3nh89VbkjvZh2BD1Ij/Q7SI90vFJAF70xMem8VpEOPRx0/zqZzaC8GJEavP/fej2JqzM8sE0cPIE+8bsfJNW8g7kavPLE/zyXwIk8KwokPCWC4zxcg6c8Oz9Nvd8WSr0GGBE7Jk23OwC45TwuTGe8ogMavM8+YjwYj/28g4JRvZ+KDT1pdg08wYLFOz4kzz3v3/08iMCMPBVikznJOQ09WuKFvLZUjrtadHO8wQOUvYCKk7ytxds73GgRvP6qzjyigku9BNSwPU5ZeLaLORm9xQoGvVcysLuNkDW+aGdZui9ZfjuZF6Y7NM6CPHVHgzvtdaW8700QvSiRl7vVMHs8YGipvMEWUL2unca8iHYHvO9NkD3p7eS88/tIvJ6dyTzcHgw9ntQSvYGqZrzxfBe9ThGQPblMTDzUng09keEsPNv8GzsQJFg9IkAgvL5AAr2NkDW9/uEXvRe5rzp/aCM9upAsPKcIbzxPMeM7GbOKvfiB7LttJEY8+x6GPeZ02DxekL68lp6Zu1Ulmbzb/Bu9OMZAPflZ1ztw1Ju8Ify/vF7t/ztD9pS84e60vFosC7t5LAW9auICPBZNujwN4pQ862ZxPOr6+7yy7j08Tll4vRVikzwaCie9eMAPO8EDFL1eEQ09/AktvPzSYzzR7je9mkzSPPmQoLybkDK9rcXbPKirLb3DWjA8JhbuvLDhJrxInig8R/vpver6+zwY258890xAPWWRi7t/nU+8uYOVvLJvjDvFCga9i0xVPCyYiT65TMw8F+5bvFkKG72UkQI92pAmu5wkvTxOpZo7JeFBOkiP9Lw8q0I8i0zVPKd2gTw0dUk8Z56iu0Ex5jvvAwu9YDFgPAzilD3JTMm8856HOsbTPL3JTMk8bVuPPGDUHr3wt2i8uluAu9oksTwT1C293uEdPCfuWLyIPz48wUt8PV4Rjb1Xj3G7YqwJPQpn67tkb5u82sXSPMVUizujt3e8T5BBvN4+3zyX00W8H7hfPB2DszxamIA7gNJ7vPLGHLxS9pG8300Tvbq4QTvXF5q8UxiCu39oo7w4xkA80YJCvXNNKDw4s4Q827KWO6xZ5jqmCow8D7hivATUsDwWqvu7ooLLO0eRET1yqmm9/T7ZPEIJ0TzRuQs9SXYTPVgKG7wu7yU9/RZEPFoI/jxgMWA9AukJPXNvmDwaaYW8MTHpvD7vorycJD068O4xPAR1UjyUWrk8+IHsvC1OhDzSt266g7f9OejvgbzMncC8CVpUO1nTUTukI+28bccEvI91Nz34gey7ehcsvWNNqzxXj3G82e+EPIB1OjwK+3W8XVuSPQH8xbpa4gW9HgQCOY2Qtbye0nU8mkxSvWy40DzTfB28HHR/PNHutzwTQCM9mHRnuwFbpDyW6J47bSTGPOQIY7y+PmU9TiTMO4dnUzri+8s5iaszvZ72AjwjdUy8WPvmvF78Mz2+Zvq6w8Ylvb5AAryaTNI8W+BoPbd04bxHs4E9kKrjPBJouLyBdTo6WNNRvf6qTr2J4N+8FWITvffNDrw9gy28SJ4oPKJvj7z0MPW82u3nufQw9Txu/LA77xbHPJbTRb0eBAI8SdNUvcqQqby8xdi8NHVJvSpnZbyP1JW8x6unPNXTubzcioE9lwoPPZpbBjzRgkI9QdSkPYzt9jxhipm7KEeSPN+q1LwaaQW9hSPzPMK3cTzrMcU7ZIJXvSmzBz04xkC741QFvapMzzxPkMG7tI9fOo+KkD0vJNI7tZ6TvH2QuDxexwe9MMeQPeRUhTp/Hh47HZgMPrWeEzyKOZm8+e1hPTiP97yc7fM8BXXSvLvtbT28spy8EukGvaq4xDzK/B4982e+O+dMQzzT+069S5gDPSqeLj05Z2K8x3TePJwRAbz7aAu91xX9uwaC6bvCt/G804/ZvMY/sryAQA49wUv8O67UD71wipY8UuG4vIMW3LuQrAC97iugPFaRjjzAqlo9DeB3uM3S7LzUMhi8vTHOOrc/Nb0muSy9SWffvPZhmTyqOZM8u+3tueQIYz3EfKC8aNPOuzQW6zodTOq790zAO4QlkD2b7xC9CrMNPRThxDve4R25qRcjPeQIYzyenUk8znUrvPOeB7wECd28PeBuPMpZYDwVYpM8QdQkvH/UGL3zZ768vZ3DvJwkPbuH00i8rbKfPD2DLb20xii95mGcvGPhNbsQuOK7FyUlvDx0+bxiYoQ7srf0vPbgSr0vJNK8TYOqO7c/tTyRFtk8HZiMOxLULTs/ERO9I3VMPCkyuTzh7rQ87GbxulkKm7wlzgW8ohbWPFJ1wzyFI/O8rPwkPTyDrbxhCcu8PluYPeL7SzxPfYU7XvwzvckkNDzDI+c7MdQnPL5m+jkvJNI6P8cNO/r8Fb3TZ0S8djIqPG5Zcjup4Fm9/XWivM8+Yju0j987eMCPvW0RCjukI+27WcAVPVnT0brVCgM9ngm/vMsxyzw3Wss7PIOtvItM1bzi+8u8jx4bPYUjc7xLdPY8lCNwvBtn6DtCrA+9FhZxu4Yyp7xsuFC7Sj9KvTs/zbz0qx48PE4BO3fTy7q1Mp66tlSOPRLpBruAnc+8GcZGvQr7dT22VA67M0AdO/C3aLwKH4O86Li4vBMJ2rurW4M78sacPOeBb7zP4aC8VSP8vM51Kz1KwJg8G2fovACQUDtnj249BECmvHNNKLxQaCw8NiUfPHDUm7yygsi841QFvRThRDz2YZm8tsCDvFurPL3cioG9bO18PVBorDzKWWC8bIMkvbzF2DzuqtG6SPvpvPlZ1zuy7r279NMzu5TGLr1s7xm9XhGNPBs/UzvdnT28Vu7PvICKEz1OJEy7voqHO2GKGb0G4cc8lLf6vO6qUb3PAxG+guGvuzdaS7scLJe7skv/vAoyPzxx0v68WT9HvIMWXLyiA5q81QhmPdarJDyJ4F871j+vvNv6fjx8Www9uKsqu+XTtrzraI48Ru5SO6FNHzwWFvG6t3ThvC1OBLsh6YM8eqs2PFgKG7y9HhI7meBcvAX2IL3axdI8R/2GvEssDr3DxiU9OI/3PHkshT3h7rQ8BzoBvRqeMTykj2I9oyWKPLDhprnlPyw7D0ztPG6QOz1zTSg97NSDvGyDJL39Plm9Gz/TuyARGb1qqzk9mkzSvF7HBz3tCbC89hcUPayQL73DfCC6x6unPJ7SdTyIChK9aSyIPQn9krzMshm9KmflvEfGvTxm/YC9auKCvBYW8Txm+2O8Te+fvMYIaT0sLJQ8i0zVPEgyMz0XuS89n0AIPZQjcDsE1LA8+vwVvWL2Dj0lgmO9ekxYvRPULTk4xsA8lwjyvH7F5LzU+867fRGHPBtn6DycEQG9ACTbvJJNIr16Fyy8yBedvSrTWjxiquy8JrmsPLPbATwpMrk8k4JOvG7F57qZ4Fy6WpiAO0NNsTzE+9E8w8YlPeZ02DtwHiE95T8sPLrtbTwRM4y8rPykvOkkrrvaWV28Bs6LPIb73bz9Plm8qYOYODwXuLw7LBG9EvxCva9Ahby5OZC7u1njvMFL/DtJdhM9jwlCvBn9Dz3edag75quhPFcysL2zWrO8p5z5OyWEADzm4E29x3RevUgyMz2QrIC9IJBKve7f/bsEQKa820ahvN+XmDmOaCA8n9J1vRnGxjyZOZY8EcX5vDQW67tZCP47FECjPD2lHbzng4w9pPtXvJNvkjyqJDq8xnReO20Riro/WXs9EFuhPPZ0Vb0PTG28wEt8O4aP6Lw0GIg8jO12vEmeqDyvCby8b8VnPDiP9zwU9h09lugevFosi7qHZ9M7AjOPPHksBT3ngW+87qpRPW2llLzqMcU8R8Y9PacIbzw9pR28hz++PCARGT0G4ce7ohbWu5gIcjyWnpk7djKqu7c/Nbz7+vg73nWovHk/QT1hipk8CmfrOrFNHD0o/Qy7GmkFvI8JQr06wBs9JeFBvUnT1LuLTNW8+x4GvaLuwDy+Znq9DavLvAaEhjz24Eq9H++ovL7Sb7ok9po8MMcQOqRatjwcq0g9hftdvPPEfz15doq9bLhQPfeDCT23CGy7tWdKO3H2i7wvJFI7HD/TvOfvATwq09q8urjBvOPoDzyMW4m6kgMdvbJvjLt3++A82BV9PLk5kLq2wAM9yTkNPfLEfzwjdcw7q/wkPLX7VD2Tt/o7wA/UO4T0MDtPfv283HiIvPqU8rv8UwC8g5j7PLv7oD2nWcK8b6T3PPSYlToolvU7TK4pPN9ZD71PLFg9FVBMPOhOybz5A7a8BojRO4/iRzxM6Hi9rG11vEX4Bj1GJms8bQ5zO2mLfDzpjWA8MgQDvVSvTrxtK5E8PT2cvL3L9LzuZ0S6e+5DvB+tpjzTGy46VFjhuqO+9bssiK+8KJZ1PEfUxTz3eZw7iMnMPBVQTDwolvW6WeCfvBS/D720NEu9b2oovAaIUb1XSpu8FBG1vBAfez10RAy8LcdGPfZo6TxORK69viLiu0+bm72A1JK8bdQjvYbtjT2/M5W8DErfO78nqrw8/oQ8LIgvvQEFWzwmV168Fqc5valSnzzaxeU8kMpxvKQygb1EOXm9XgwpvCCVUD1MEYK6qvQOPevMdzxuvM28sQEfPDGcYjycd5a8b80Au+E1zjx8RTG8bCbJPHE6fDykMoG99O8CveBNpLp77sO8bImhvOvMdzs6os88RedTvZImp7oo7WI74h14O4ye6LvdCUW8il/RPEtvEr27pDM97WJ8vL4/AD1WRVM928qtPNQDWL1dtTs9qe9GvI85Nby1HPU8tZCAvF4MKby4Gpq8nM4DvNaZXDsUonG8hEbWuVLTDzwzTwU9Y3dJvaQV4zz2Efy8t7L5vJVqBj2ERta8Fqc5PbqwHryPRaA7B5mEvRnrGD3EO927AQXbPFA9CzqomFm7twnnPIaKNb3JZ2Y9kn0UPSjtYjyTZb68b6R3PZc6Wr0dbg891vBJO+ilNjxZiTK7mZYPPdUUCz2xAR89xOTvvJJ9FL1CwJI6m4MBPctU2DwTHSC9KAqBvLOGcDu/MxW9vzOVu9LEwDyO+h09OAxLvUFppTu/Jyo9rgP6u9bwyToOphQ7ErX/u6Uaqzyuyaq8ihkXPLL1Mzw4Y7g9auexPKar5zsgldC8j+JHvQMKo7u7NfC8O4p5O0U+wbwWpzk9SCszu00FF71tK5G8EgztPJxrq7xXVoa9kiYnvGCiLT3yk808E2PauXBSUj25n+s7HMA0PNvWGLzX2HO7YKItPawzJjyQ5487OmiAOgZOgjuq1/C8dSw2vLJMoTwolvW7DuBjPP2B5LwNT6e8wSCHPFecQLyif149XgypvGHhRL1/w987bdQjvQAdsTzZ3Ts9o771u4Gw0TyJIDo9ORGTvZHPuTw0cf48JGrsPGAzarxX8y08nRmGPOYPsjtcdiQ6pVT6PHLoVjw1yGu8bH22PPXXLDyqLt47RJDmvGHhRL0dbo886ju7PHycHryPRSA95RsdPQu5orxqkMS8ObqlvDC0OD1Z4J86r1pnvBjOejx22pA9QqP0Orhg1Dxhite7reEAvegIjzt0J249uk3GO/G3Djy3zxc9EYcbPbOGcL1ZMkW9HMA0vHlYP71oXRg9HajevJuDgTxF59O8mtWmPLPdXb2E9DC7yb7TOyXGoTyPObU99JiVu9dHNz0ySr278jzgPN9ZD7xf9FI8IE8WvV5GeL29kaW8IoJCPPKTTTwp8io9xem3vAEFWz3+3Rk9PeYuvXiqZDvX2PO8+QM2vmN3yTtnEha7u6Szu9MbLjxuEzs7j+JHvF66g70dbg+8P3yzvARJurw15Qm98GyMvIaWoDuUvCs9IFuBvENigrz+L788b6R3PQEF27yPObW5rgP6vHlYvz2BsFG7p1nCPE7tQD3bc0C8nqrCPD5367zKbK680TMEuxanOb3jy9K7p7yaPD6InjzRM4S8RiZrPET/qb2QyvE7f4kQvGPmjD2sbXU9Hz7jvI5RizuvsVS8YUQdvdEW5jxeRng8zu+kvJmWD71Q2rI8TOh4vGDcfLxcB2E7RT7BvE0/5rtlfJE8twlnPHBSUru9kSW8/Z6CPHR+W70SDG0828otvdEWZrwlbzS8jjRtPGk517wh1Oe7kc85vbOjDj0LxQ29g+/ovIfhojvCpdi8aTnXPLlIfr1VXSm7mOi0PDG5AL79geS7dY+OvBZVFDwg7L27rdUVvJQTGb2SfZS8QRI4uxF7sDzEAY4+yb5TPQWgp7xeugO9qvQOPVPHJDztiwU9h+Eiu25lYDySJie8CV3tvBxpxzyLDaw8DU8nvO1i/LuLDaw66vUAvXrp+zybD3Y9BPLMvGZkuztJ2Q29kXhMvItwhDx+2zW8v2H5u877D7ybZuM7oOnZvMln5rxmx5O8XroDPGa7KD23JoW9T9XqvBX53jwaKrC8HMC0vBiUqzkESbq8RFYXvNqLlrw3tV09UWvvPMm+0zzZQJQ76p6TO24TO72YSw08920xvUgrs7sStf+7yWfmvB2o3rzmZp+89dcsPGpKCr1nTGW8MfPPvKXDPT3DUzM8PpQJPJfj7DqAcbo8SRNdO5K34zwudSE9aaiavdoc0zxORC49LYGMPCqD5zzrI2W8+0JNPQ1PJzzAD1Q7HrkRPT/fCz15WL+8OGO4OwwQEDieAbC83AR9vHhTd7wkGMe6iw0sPZHPObwE8sw7IZqYPMZAJTzN6ty8+azIPCQYRzzh3mC8H60mPPKTzTobu+y7BojRu8Tkb7wTuke8wH6XvE0Flzy+eU88llIwvSdcJj2WtYi8WJUdvTFik7s0N6+7whQcvPlVW71fS8A8MfPPvG/NALvdYDI90YWpPHnHAjz92FE8rXK9u8NfnjyDmPs6p+r+PCMwHTzxVLa6pgLVu9JtU70Xj+M8cTr8vBu77Dy2hJU8e1EcvOa4RL1OUBm91RSLPReP4zw15Qm91ANYPdriAz0cwLQ7GUKGPExXPL1F+Aa9ZQ1OvDFik7ylGqu8zbANOze13TyfWB29PyVGvNRaRTz5rEg9zercPFQGPD3SbVO9mXlxvJ+S7LqxDYq88GyMupDK8bw7ONS84E0kvBS/jzsiK9U8TqcGPT7OWDsfBBS8yYQEPZCQIj0/JcY8d2vNPGx9tjtreG68oEDHvEkT3TsUEbW8e+5DvBePY729Org8llIwu4pfUTsMSl88hoo1vANEcjyLcIQ8cz/EPBHeCD3pjWA8M4nUvF8Fhj3hNc68sMIHvccozz2XkUc7wmuJOex6Uj3OmDe9GeuYPM8p9Lt/bPI8+0LNupwUvryeqsI7rRtQPNj1ET0FoCc8RiZrvSdokTypUh89kOePvIaWoDxYhGq8HGnHvIOY+7x/iRC8mD8ivdEzBL2KJQK9++tfPJImpzyPnA29CSMePSnyqjoYlKs8dhTgvLv7ID3EAY68xyhPPYtwBLwCXEi9LDaKvJPUgTtDqDy9VV2pu41MQ7wsiC88lftCvE1cBDzdYDI90NfOu0SQ5rw59HS7vTo4PNDXTjxfrhg9VcCBvMyrxTyg+oy8TK4pPegIDz2UTeg7iXcnO82TbzzKzwa77hDXu7PdXbz9khc88KbbPBkl6Lzuypw6skwhvcmEBL2if168ACkcvJ5T1TxVXSm9KZu9vLmf6zuGG3K66KW2vGvPWztp4um8Lh40vNrFZbtczZG7156ku2CirTs5ERM7pRqrOiuUmjowCya4ZF/zvHEArby9nZA8gbBRPPBsDL2qnSE9Wx+3vJQTGT3+wHs8/t2ZvDuK+Ty4cQe9Kix6vRS/Dz3MWSC7/25WPPLlcrxTHhI97HpSPBK1/zwz+Bc8CrTavMFmwbxtDvO8zercvIhyX7wtKp+8yb7TvG/NgDw6XJW8Z0xlPCYAcb1imwo9iiUCPHLo1jw1H1k7AB2xPNInGb3cW+q8Vu7lO4Sdw7xcB+G81APYvAWgJz1dbwG9w1MzPBRoIrw7UCq8KoPnvC6v8DxP1eq8oPoMvSqDZ722ys+82sXlPLpNRjytcj09I9kvuwfHaD2LDay8ys8GvU9+fb0XrIE9jUzDuoRXiTztiwU8vONKvE0Fl7wTHaC8IoJCvD98Mz3uZ8S8XHYkvXgZKLwPjr47sJn+vAtiNb00Q5q828qtuqwzJjyg+gw9z4DhPE+bG7wdUfG7ng0bvcaXEr1H1EW83CGbvLYhvTkNWxK9yxqJvftCTT3Cpdg7iIOSvA79Ab2BH5U744UYvE5Errw6XJU7dO0eO09+/bySJie9pSYWvASskrsl0ow8mD+ivO0orbw9SQc9++tfPMgQ+Tslb7S8kXjMPMd/PL3cste5dyUTvs2T77qcFD66e12HOqvcOLx6ryw8oSjxu+++sTx9Ldu7d8I6vFExoDwyrZW8QbvKO85ByrysbXU8qUY0PWKPn7tIvO+8LnUhPTHzz7sKC8g8TkSuO3fCurxBEji8QGTdO3FXmjs+d+s7RuybPBIpC7xf9NK8d8K6PPPqOrxqkMS80NfOPDZ2RjxS0489EHboPFDasrxeDKk6aPq/PCR7Hz2q9A68fYRIvZImJzwdFyI9qJjZurQ0S72ReEy9CB7WvOn8ozzVQm+8mw/2PFjbVzy5SH48ddVIvNTJiD2GirW8sZ7GPDJKvbzIOQI9Mkq9vMyrRT307wK9ubwJvTQ3r7w/JUa8S6lhvUup4TwE8ky8O1AqvHgZqLwl0ow9jaMwPPpaIz1P1eo8VK9OPN9IXDrlG528zu+ku0Bk3byP4kc9HGlHvWa7qLxyohy9HGnHPKEocbwHNiy9+MSeO9j1kTxxYwU9TOj4vJHPOb31OoW9DqYUvex6Ur1FPsE8O4r5vIbtDbjTA1g8K9pUu5rVprv3eRw9dtoQvHtRHDx4qmQ8UINFPTSahz1h4cQ8hpYgPd63nzxQg8W8y1RYvUFppbxCF4C8V/Otu4sNLDzi4yg8DuDjO5CQIj1vaqi85LP8vJg/Ir0HmYS8fEWxvGZku7ySYPa7kCHfPF1ezrtCF4A8FQoSvElqyjoLYjW9NY4cOl9LQD27+yC8aagavf3YUb33FsQ86AgPvek2c7yPnI28aYt8PAc2LDsZfNW79mhpPIbc2rxmxxM90C68PLzjyrzzQSg7ShilPPxHFT0Wp7m8E7rHPGwmybxOUBk90sTAvFjb17w9IH68l/QfPdvKrTzLVFi8CrRavNdHt7sE8ky96yPlO+E1TrzUFAs83QlFvUG7SjyDtRk9sfBrPUSQZrx+2zW9jjTtPGAzarwsNgo9ZCUkveE1Tj0nrss7vTo4PTpclT3+wPs860CDu5CQIj0I2Bs9brxNvTm6JbyWtQg8gR8VPY0GCTyCXqy7naX6O9/2Nr2+ImI9jaMwPXP5CbxQ2rI8qAedO89GkryX9B+9JBjHPHUsNr3nvQw8doMjvbkOL72oXoq6IaaDvc6Yt7wsiK871QigvbVz4rwKC8g8Zh4BPaGXNDxXnEC3tiE9PLOjjrqsbXU9MqEqvfSYFT0wtDg9+VVbPCnyKjwCs7W8Q6g8vPNBKLxKwTc9Z0zlulAxIL0FMWQ8eBmoPDWOHL2tcr07JcYhPQldbTukMoG8i0d7PJeRxzzO+4+82ZcBPeLjKD3mcgo9/FOAPPqZhTzT6PQ8wYGyvPxOCL0DSxy8IBj4vFCiKD0V1VI9znnau6oU0Tykm4y89Y5RvPEfN7siw1C9m3ZlPZo6CLv8rVm8GvTaOriACTybHKm7IBj4vMoKwLxRsWc8K0I0PQbdqjzr+5k89pNmvMhQKL15ISU8b0JmPLxsVLtjry69PkUQu3YMx7wTJeW8GDUuuovOTzxO98+87A/uvBrvxTsVdgE9qGn4vNtYGTwwsU46SlYCvKhaubxAXnm84ywkvQbdqrvY8yi9tUg3vSb2DbsuAWE9ODVHvAiSLTzBkPE8JHjTvXDy0zy30Ju9IpEdvUh+C7xMPTg9iRlNvNj4vbr3EaG7XmMIPe6/27yyiQo9W9sjvH3bPL1hWf07X6T6PGRksTqcJlO99zkqvUHSiTrL3SE9INcFvdp7jTxxokE9PWiEu+DMyDxpnAO8fDDku/cMjDysxL48TD04Ox5UtjxA+pI8haqyvOQ2Tr2hlW26B40YvP3bAb3IquQ7PZ/MuzNwe70o4lg6bTOnPBngBjyCT2w86wXEOBk/2DyFVYu9KpfbPApHMDoz5As9EXBiPQic1zwjbqm8xLkEPWjONjzbYkO8Xp9lOaCLw7yEfRS8b+ipvI/ZA7zAdwg8wZDxvPEp4TxgT9M8INwaPT5KpbxFHjC6NOkgvaninbwDh/k60tk1vOpQQT31Vwk9j9kDvQSHeb2LdBM9/g21vO66Rj1zJRE7pqW2O2fnAD3QHx69OIVZPYdp3zyWB0s8O+W0vCfdwzyce/q8OuAfPa/8EL2kwxW8zm8wvDMRKj1sLpI844t1PGrYYLz+Ytw7dooBPZKYMD2saoI8uxIYvc5qm7y/zC88RR4wvaoZZjt2DMe7QFnkPAic17rsCtk4FMsoPZwm07wFMtK8Ha5yuwz8sjsyBwC9lfgLvWt+pDv5wY48hKqyPeoArzzAfB07ncwWvTQlfr09aAS81ImjvENfA7whuSY8/xLKPKyXoLw9n0y9UFKWvK8z2TxLM46788+kvcoFq7wgGPg8gEAtPRTQPb2ghi49X59lvLmtpzxNR+K7Eyr6O/ujrzx5cbc8PO/euy+2YzugWZC50CQzvLAuxDuXB0s9nO8KvVkhDD15IaW76/uZvBIWprt12hO9eXE3PemqfbxLC4W91k3lPMThDb1iBNY8i85PPazEPrwkgn08HlS2PZQglb3ttTE8q2oCPYojd7uGLQK9HllLPfr41jySQwk8+pmFPA67Xzzl4aa7VsbFuxrqMD195Wa89i8APW/y0zqmqku9HE+hO6u/KT17Jrq6NMGXPRrqMD3weXO8Ft98O9gC6LwMBt087A/uuyKRHb0fXmA6anmPPelLLLt6HBA9gJVUvF3qYrxkX5y8LBUWPbtiKj0GtSE80+PfPEUUhjxLkl+9aM42vUqNSjytfla8eUSZPOHRXb3q9gS8NdXrvDQbVLx/Xgy9r4PrO8MJF7xizQ08qC2bPdoHfTyXB8s8NXEFPOwPbjxH8ZG8iiP3u1JhVbyHCo69I8hlvTFr5jowfxs85dwRPcIEgr15y3M96Js+PflN/rzZnoG8O7MBvZpsO74YNS68f5C/Op7g6rz7dpE8VcGwOxTLqDxyrGu9AyOTusM2NbyGtFy9jSkWvevTEL1SVys7o+YJPU7yuru8DYO7qAqnPAXTgD3/Esq81GGau1B1Cr0eVLY9w0DfvLgCzzwGsIw82f3SvBERkTy5rae8JHO+vE7AB72Kl4e9OQOUu6PwMzy5rSc7/VgyPVCiKDzgd6G9N4DEvPqZBTx3wUk9I24pPSDcmrwtUfM7dQeyu1vgOL27Z788mLIjPMiv+bxDjCG8zm8wuyXOhDuFfRS9BS09vOpV1ry6t1E8OIVZPD9POjxuC5485uY7uMsP1Tu2UmG8LvxLPEpWgr3AfB072AJovC+2YzzkO2O70+j0OxV7Fr2JGc05gqAIvUfTsry0nd482oCivP1ncT31hKe9AchMvACRBD0s7Qy+3F0uPLAuRLzEuQQ966uHvAT7ibogCbm8ZWQxve5lH71gT1M9YPCBPvjplzwb+W+8UaxSvW7oKT2AldS7aOwVPRaAqzwQYSO8B40YvF9AFLt81ic9w0X0PMabpTsxa2Y7R9OyPMyNj7wIjRg9a4hOPXUHMr0iw9A7eXE3vReParxJ4vE872q0vAeIg7yiSvC7xOs3PLgM+bxEPI+8hATvu0ozDjwlgn09uAz5vEVuQry2UuE8YPABOy1Rc7vE5iI88HlzvFkrtrsiyOW8ygUrPRlEbTy7Zz89/WdxPBcwGbnRKUi9XerivHUHMr3L3SG7qd2IPEYZm7yPONW8MFcSvQN4ujkOtsq8GUTtu3ayirtsiE48JX1ovJpnJjxtPdG8B4gDPXUHsjtw/P07ck0aPUK0qr0MVm872qirPNp7jTwavZI8wpBxvNtiQz2Yt7g890PUPERuwjz7oy897ziBvHIlkbxQp7079YQnvXsmujl79AY8RTwPt+wK2TwNsTW7Q7m/PG7jFDzwefM8qGn4vGrTyzxv6Ck8T8WcPKBZkLvY+D283F2uOyiDBzw8laK8V0SAu1Gx57uYsiM8IRj4O53WwLz7qEQ9rXSsvKndCL2nKAa7KIOHvJ58BDyUUki9GeqwPCztDL1Dub87MLFOPeThJjxVwTA8yFU9PD8iHL2EqjI9dWHuvAmXQj22/bk8EXBiPfc+v7yQQn+9Lfe2PJDeGLzEuYQ85vX6PMrYjDzBgTK9s+3wvOF8Nj0NBl09hK/HvJcHSz2hMQc9A0ucO3v0Bj34Q1S9enZMvBykyLyjRdu8RMh+vCbTGTnVORG8mxcUvTkDFL1KiDU6pXODPSDXBT0XKwQ9WYBdvdU+JjxJ3dw8Ehamu9AuXbyx3jG9mBH1vB5UNrxkghA9C0zFPKu/KT3uYIo8p1UkPL7HGj2rkos9hKUdPaT1SDzm5ru87AXEvHkhpbxpKPM7S1uXvHp2zLzgx7O8qd2Iu8hVPbwg3Jo81kM7PD6p9ro5AxQ8TD24PKFAxrodrnI8xpulPDu4Fr3oSyw9zcTXu4vOz7tYe8g9Ft98u1dxnrxhzY098ilhvbHoWz346Re83DAQPX3l5rzh0d28KmATOy1R8zyYsiO5V3Eeua3Tfb2sxL48mnFQPPjplzuBStc81+6TPA0BSLwBlpm8iR5ivJGTG71rfiS9sC5EvN+9iT2e0as8u2IqvU+dEz2Kybq8O7OBPNoH/bxSVyu6GeAGPU1CzTweJ5g6B+K/vMlVvbyQ4y05RyhaveJPmLtySAW9HlS2PKlk47tv7b48DYQXPWS0w7xFPI86/gOLvNSOOLyYvM06CZdCPahaubxySAU9a4jOvG7oKT0Ou988RyhaPExCTbzThA48TUx3PIkZzby4DPk6pygGOxc1rjzbvH+8GT/YvF6fZb3L3SG9E9A9vAHIzDob+e87d8ZevWtRBr2uHwW8bQYJvTEvCbv7dhG9bY1jvJRIHjstxYO6PZ9MvWp5j7wp5+08JijBPJjB4jyzjp88xvp2vNu8fzyqGeY86gCvvDbV6ztPxRy9ncwWvE73z7vzzyQ9RyPFPJOdxbw7uJY8ankPvZYCNr35mYU9DPcdvLGxE7yx3rG8KedtPL/MLztRUhY95DE5PDZxhbx4xt68s2EBvdxn2LxzUi88jwaiOwz8srx+6vs7LExeuCUjrLvh1nK955EUPXp2TLedzBY6/g21OwpCmzyKHuK8TsAHu2H6q7izYYG8aB5JvQfiPzwIki09+OQCvWt+JDxH8RE8njB9PBXa57z1jtE8Mbt4vL98nbzzpxu9NnGFvXockDzRKUg7mBF1PDQb1LyW1Rc9ncyWvEPDabxhVGi9YEq+Pbxs1LzRLt08NCX+PI896rxvR/s74UoDvLpYAD2vJBo9MLv4vIHrBb1lZLG83WfYuJ+Grjt9NXm94yykO/aYezmloKE82Pg9OBXVUrzYxoq78SRMvCmIHL3xJMy8lBuAO5cHyzw89PM7WEmVvFZsib3rAC89aoM5vOr2BL1vuwu9BCioO2nTS7kkc768g/Wvu9megbohuaa84MczvdPj37qoaXg7H2N1OzJm0bznlqm8N4XZPFvguLsL8oi8jwYivfcRIT2gi0O9GOWbux4nGL5MPbi7FYVAPEYZmztfn2W8MWG8u01Czbxv6Km7b+2+vJwhvju4srw8rMS+PIqXBzwa78W8CJKtPNEpSD1UEUO8oZXtNxQq+jzzzyS8aoO5Ou9qtLvWnXc8GDpDvLtnv7tILW87zLqtPEfJiDxMC4W8Lqy5PLSYyToE+4m8NCDpu7sSmDzjLKQ8/K1ZPUQ8jzzobqC8WHtIO2koczxAWeQ8Zxk0OysVlrzHcxw87sRwPe84gTzfvYm9A4f5vPTZzrzUk826eiElvUtbFz0cqV27MLHOuynn7bzji3U9t/gkvZpxUDx4Z428/E4IPeeRFLxdlbs8wNvuvPlN/rxIfgu9hATvPJDtV716dsw7eSGlPJz0H71gSr68hrTcPJ3RK7sikR09XZW7PCLI5TwCcyW7jwaiu87J7DqEqjK9UHofOmko87zZ/VK9dFzZvMoKwDwE+wm8usH7vE1HYjxwcA492f3SPI2IZ7zGlhC9a1EGvReUfzicHCm9VBFDuwU8/LxktMM6+qMvPB5Zy7iQtg+9wwmXPAwByDrzLna8EyDQOwXTAD0a70U9X0WpPKPmCT0S7pw8CkKbO9U5Eb0L8gi9nqmiOzFhPLwkc748fIGAu53MFrsPXI48eMFJvMRAX70gDs68f2OhvBeParzhgcu87r9bPBjlGz1KVoK8wzvKOw+2SjrTXIU8b0JmvdAkszunr2A9YQTWO6ExB715cTe9qF/OPD8iHL2Kybq8yxn/vMlaUjxZgF28D1wOvOaWKTxHyYi8I8hlPeXhJj0wsU68KpdbvKO+gDzh1vI84MczvCfYrjxKiLW84oFLPVd7yLzjJ4+8HlS2uuXhJj2GZMo8jSSBvB9j9bt5y3M8S5f0vMRA37kAkQQ5GT/YO9OEjrvn8OU8fYaVPJrGdz0KoWy7RRSGvDBcpzxSVyu8DQFIPTJr5rxWlBI9hi2COyG+Oz1maUY9Yv/APOQxubxsODw8bugpPY0pFr3BkPG8gROPPIkeYjxNR2I8enbMvBttADyx48a8u2c/PUco2jyf21U8x6A6PTQlfrv/HHQ4sehbvf5iXD3/Ekq9EyDQPB5ZS72Fr0e9mLIjO/HtA73arcC8f2MhOyNuKb011eu8iRS4PPEfN7xSV6s8W9uju64fhTw3TpG810jQPMhQKL3kMTk9HllLPZi8zbvLsIM8ttCbunKnVrsM/DK9z3naPGD6q7zbYsO85UB4OyWC/Twm+6K8pyiGPGt+JD3+Ytw7jSQBPEV47Lmgi0M952kLu0jTsjvBgbI8pXODPH7g0TxjeA29k46oPD5Zy7x+2fq8RmlvOm2Dd7wNZI08q/RPPb+P5TwzswM9KQ/HvGIuQbyqRWG71NnpvI88yjwQbB+7H9YzvLxDDjxZRj86Vr/yPEAxqbwz6vy8jLV9vENaGD0X2qC8GzPEPDkUOboLLtK868sXvDAfazx2yda8z0NGvUZ2uzvOJyO9P1KGPNLKkjze24O4Gyb4vEu0CL1ERoc8gc37PFjo4bydYhk8CLRRu8WQMjx0oOe8gtrHOzDbJb0ojoE8gyQUvQDFirxKyBm9JhQBPUWDB738r6y6kwCXvB8nxb2MIKe8rzlivdSVJL29IrE8i7X9PEoZq7w5NZa8oihxvJwlmT1c3GK8DajSvGSoQbx9iOm8ShkrPdSIWD26qLA8HH0QvUNNzLsv/IK8NMLaOvo1rLytzC08Fj9DPTswXDw0cck8+pMJPbdPDT3uF++8ObbbPMxPxTy+vY687nVMPVyLUb3lXRa8GQpVPENNzLqIx4O8LEUCPLSYjDxKdwi9vXPCO1iX0DwB6PK8POwWvDkUObzbA6a6QDEpvdJfaTz3LZq7cjMzPSQO+jyILCY9SsiZvLwV5Twd/tW8hx/auiB41rsMJw29C3/ju3Sg57yRtsq7nHaqu2icwrxxJmc8Xqd0PeVJBT2TPRe9w4PmPKHICL12Gui84mTbvAouUrxyMzM9xZAyPHHVVbkBU5y9/23yPFTtG73MSIA9vz7UOrqosDzcVLc8yYQzvcXhQz2dxzs8Mqa3PA0GsLxDqyk9Iv+ivdxhAz0KO568fLaSPCTKtLyxYlE92TgUPXYa6DreEn283XBaO/GrBzxgtEA8nWneu3Ya6LwzswO9MNslPGj6n7zYD6W81dlpvEzXcDxyhES974IYvL3EUz0ZCtW8v5wxvdJfaTwPIlO70P+AvDXPprvJhLM7DCcNPX1EpD3G/WY8Hxp5uxbusTs5WH69yvHnuzenBL2xwK68EBuOO5FyBT24LrA8DqENvWq4ZbxrxTE9vz7UvLhydb0aVCE8bwrEPARi8zvRjRK9OmVKPD4Iujufks288U0qPF0KDLwYuUM8zEgAPe4X77yCibY7VxYLPFiX0LwkeSO9p3rPO8DtQr33//A7GzPEvEHG/7yQB1y8FNIOvQljQD1hf9K5bZBDvd4slbyr9M+8BGLzO8Q/IT2VCKk8AUZQPeMglj3dnoO9ZPlSOtp1lD2QB9y7/KLgvIfBfDyBzXs9trSvvFpvLrw+FQY9VW5hvNCU17yeQTw9nWIZOy2CAruxs2K8BbkLu5OOqLuFsiU9iurrvBO4dj1Mk6s8u5vkOyvnJLxYpJy8FWAgPV6EjLyBzXu9X2MvPfp5cT3xbgc8+oa9PNcPJTy2+PS8fYjpvA7EdT24f8E85YD+PNYwAj0bhFU8jM8VvdQq+7uvlz+8Ej72OmE7DT22tK+8Pkz/vNk4FL2QWG27BG8/vTOmNzzsqjq9UKiJPAPNnD2Yxm48dsnWuajL4Dp5Q9c8ef+RuruoMDsQbB+9AehyvYZw67sMJw06i7X9PP9t8jxY9a2852WoPXLiIT03SSe9GRehvBfusbzntjm+DOoMvdSVpDwT5h+9yCbWutratjy6m2S9y6BWvQUKnTzMT0W9wsUgvF+0QL1AMSk7LQNIPM4no7utzK289Z8IvYnq6ztu2o89VtkKvc14NL0e/lW89TRfPYAPNr3zxyq8i3G4PPO63jxURfI8F5BUvXEm57xTsBu8NHHJvFIiiruLZGy7Z3NTuk4A4Dx55Xk7rjlivGicwrvUKnu8AxFiPQn+nT3UlSS9EfqwvBUyd7yJSEk7Tq/OPGYiwjyAD7a7JMo0vK+kizwicRG8Y3gNvRFLwjyblwe9N0knO38wEz1azQs9Q6spPXC5Mrz14828t0+NveBVhDwb4jK9UiKKvNdtAr0nN+m7usmNOpGpfjyQZTm9vSIxu0Orqbugiwi9/F6bPERGB715UCM9REaHvTplyrzWgRM8eeX5vZnvXbxjyZ67ZnPTPJ0RiDww/AK82wMmvTkH7bxnvR+8rB2/PHF3eD7a2rY9x074uuMglrxvW1U91qT7vCeI+jy0fvS74Iz9vEDTy7vg9ya9nREIPVg5czwwihQ6x074undreTwL0PS8DWQNPaBOiD0360m9pa+9PDUgOL2JSMk8N6cEPanEm7zCxSC8sh6MvLN+9DzNeDQ8NX6VvLSYDL3PNnq8CFZ0PaIocbzZ54K8Hv5VPBVgoDvh4xU88xg8Pckm1jvDsQ+96FGXvLrJjT1y1VU8QwkHPZAUqLxT9OA66t8oPLjQUjz8Xpu8LfZ7vOKShDwTFtS6DyJTvBMW1Lz/HOG8e71XvUPMBrw/t6i8WEa/O9kryDxTAS09QcZ/ukjjbz0QGw45FXSxO7kaHz2Uehe9ef8ROvWSPD3Q8jQ9UHrgPDV+Fby9xFM9/KLgPIlVFT3sWak8jzUFPSfzo7qxBHS8xJCyO0kM3zs5WP68IZT5vEyTqzyVnf88O6+WvM14tDvJyHi7sm+dPJkdh7z5efE8z8KAvCjfEjwNZA293GEDPe30BjulXqy8EGyfOhkXIbyNL/68PhUGvJ9BvDugDE68DOqMPZy677qAYMe85oaFOwW5iztOXj08DfnjvMas1TtDWhi9cjOzO7jQ0jx6/xE9Aj+LPDshhTvYD6W8P7eoPD0pl7xOXj09wWdDu2yxoDw+CLo8p/mJO3rrgDwr56Q6NSC4PKdKGz0+qtw7e71XvfqGPb070n493843PbYFQb0Kf+M92KoCPQhwjDzm+v48QMZ/vaWvPTy4LrC8k9JtvGhLsbuH25S7AQKLPC9wfLwuEJS7i3E4PVzc4jylXiw9PSmXPOaGBb0Q0UG8tekdPB1PZ7wrCIK86dJcvQH1vrwr5yQ8bjJmPWXyjTy0i0A9Kzg2PY27BD26qDC8eVAjPXT+RD27+cG8v49lPReQVLzw70y9ykJ5O8sLgDw5FDm7K4lHvS32ezxfY687WEa/Owi00buJBAS2Cn9juu4kOzwbhNU7UuUJPSeI+jst0xO97sZdPfhdTjlLBZq8FGflPe4Xb70dC6I7BYtiPXMforxAMSk93iyVPDAsNz3mhoW8911Ouqcc8jyqsAo9el/6O+f6fjzt9Aa9wWdDPKd6Tz0R+rA7Udg9vIN8ajwhlPm8xeFDvUIdGL06Zco7GgOQvSVs1zwB6HI8FWAgvUCCurxLtAg9ogWJvCbm1zygDM68tmOevH6I6TtqZ1S89ZK8PBLtZLzUN0e9RJeYOm6QwzyD2se8VXutvGOb9TzxTao8XlbjPEF17jyqRWG8meCGvB1cM7wxzlk8SgzfvJ1pXj0zSFq8vcRTPV9jL73Zzeq7K3z7Oz5mlzvJJta72wOmO60Qc7oz98i4bjLmPL+PZT3WAtk8kyN/vP9tcr0U5h+8kzBLvLubZLyZnsw8qXMKPFw6QL03SSe9q0XhPOA77DxrI4+8NBPsvLh/wbzSG6S7cx8iO9ulSL2CWQK8Fu4xu1DLcbxquOU8XwVSvGSoQTxOr868ejySvJ7j3jsVdDE7wO1CvYlIyTt9lbU8Dy8fPTrDJzueQTy9FOafOiHy1ryZnsy85jw5PSOaADyXMZi8me9dvDXPJj1wF5C8CRKvPBHt5DlRKU+8/23yvNU3R7wOV8G81DfHvDuvFroDHq68uqgwPQb2CztKarw7UwGtvSOagDzgppU8YdDjOXt5Ejyk1187Lfb7vKhKm7s08IO8KytqvV6YHTygiwi8wwKhPBAbjrylXqw6wYggPLwV5bzGrNW8qCk+PSNQtLxI4++8OPgVveyqOr0Lf2M8KRyTPDKZa7whIAC9AxHiPPSzGbwmFAG9uIyNvSAaeT2lAE+8aI/2PPXjTbxAMSk6kwCXvGRKZLyJSMk8/no+Pc7JxbylonG7h303vQaYrjwpD8e8WJfQvOhYXLtif9I8iepru2xgDzv33Ii8G9XmvDa7lbquuBy9m/ypPG2QQ7z/er485esnPa+kC70368m8DldBPcMCIb3JhDM8+VYJvTyBbTxmIsK42ySDPAnBHbyRtko88O/MvH7Z+rx7eRK9+K7fPK+kCzwuv4K8ozU9PHbWIj1bEdE8SYsZvP2vLDyGTQM9CRKvvMdOeLwFuQu+/9ibPJv8qbxMNc484DtsvC0DSLxh/gy9913OvDHOWby6yY286TA6vcb95rxW2Qo9OOSEvKlzCjzitew8YGOvPEMJBzx66wA9OTWWvD3YBTyFsiU7x/3mOj4IOrzq3yg8r4rzvEAkXbzxTSo8120CvJ6STbuc1Ic8JA56vDAfa7yMzxU9d4WRvCJxETziBv48Tq/Ou9IOWDtbWx09S2o8PIk7/bl3a/m7l9M6vI2NWz3UN0c95F2WvcWQMryrReG8yNXEO76AjrxgBVI9jo3buv7LTzu1Jp68w4NmPUq7zbxnbA4957a5ut4S/TtxhMS5AfW+PEiS3rwfGvm8+oa9vNp8WTy4cnW9p/mJPOt6Br2HcOu81kSTvNhgNrwL0HQ8uqiwPNhgtjyNjdu8ARYcPH7zErvUBxO7cLkyvVw6wDotVNm8eHEAvX1EpLxktQ29IZT5Ora0r7zHrFU8I+sRPZG2SjwUdDE5nkG8vMOD5ryHLCa8SgzfvB8nxTxDTcy7bYN3PNGNEjzA+g69zxOSve7TqbtcOsC5QII6vIPax7wfyWc8BGJzPPWfiDyj5Cs9MccUPIRUSLwo3xK97jEHvV6EDD2qo768MCy3PBBz5LuT0u07L3D8O/FNqrwT5h+9E7h2vFj1rbviZNu8y/6zuxpUobzRoSM9dFyivH7mRjz4DD284Ix9OzD8ArzCxSC9lQgpPTzfyrwEYnM8jkkWve37yzxvaCG8vz5UO7ly9TwNBjC8u5tkPOZJBbzRsHo8oK5wvK5nCz3lXRY8bGAPPVP0YLxYOXO6s370PJ0RiDxyMzM9ExZUvJfTujwlG0a8AIgKvItxuDwJ/h09cBeQvKTQGr0Fi+K8oNyZvOwIGL1v/Xe7+BmJPJBlObx9lbU6K4lHPHxsRj0pYNg80weTvPctGr1S2D09k9LtuwPNHD0osWm96o6XPa0qizyHcGs9M+p8O7ndHjz9DQq9bMUxPN/bgz0M6oy9EpxTvZCGFj1bwD87n+PePOJxpzlhOw28TPEIvQ9zZD2mvIm84nGnvPU0X7vfzjc8Q/y6PDV+Fb1m0bA8NWT9vJ9OiDyUKQa9cFvVOxbh5buQFCi9D9FBvfhqmjweSKK8NBPsvO37S7v65Bo8lQipvL6ADrx0XCK9FJWOvJ1pXj1KyBm9mqsYPTQTbD3XvhO9prwJPWN4jTpd6S48llk6vZcxmDtsxbG8N0mnvGhLsbxUo888UiIKvYKJtjuuOeK7ZRV2POwImLwqCAI9vEMOPTlyFjsuEJS6I5qAO78OoDzUN0e7lr9zvHToaDvBzje9xBymvJPo0jrQV9+6JuWfO0d5UT1y9828YlQsPVLd6btTy4S72ORWPBJ9wrzRziw9ny2JPIu4Lr3WXYw7F/8kPPYaHbylv2i9UAZJvG9jhjsSfcI8PRW5utmh/Tx24wA8NqI7vAdCibuALZ883YCzvPWwTL3cqRI8YlSsvJRfoDyDiAo8wnFkvEI6SLzsCdu85HzjO/TzJT1Rl5A7fNKzPF0iIL0Pci08qxhsO01yAb0d+1S97SPVOgT0Gr2H2Xg7vWbPvP766jxQBkm7XVv8PB371DtPj3u9hK+BvGvuoL2YajU5CLzWvLyPLj3lXQG9iPPyuneTKjwqZ4I7Ln8UvRGmIbynuoC8t3ccvej+RT3yvzE9CBkqvFSIK703Joa8N7y1uxyOBD2zX4q7UAZJPIZ5pTyLuK48Ty8oPdsyRTzqjw29xGL/vLvfBD3F2Uy8GXlyPFNusTxP7E69ziPrvEaisLzXJzC883zYvFj9kLv8I8o8Egb1vK+A1Dsoeec8FRuHOvJi3jwxBl+7os7NPA5YM73vwRk9/CNKvKV5Dz0xBl88C2eYu7t1NL1X1hk9KgqvPF0vHTxm1g674gIWvXzSszw7MRu9tdnXvASXxzxmvBS8X6nqO0LddD3Si1M9/vrqvH4GKDruPc+7ip40vJ0ycTzWDba8ixUCPS4VxLwQL9S8vKmovRaIVz2vgNQ6snHvubI4kztRihM8t1CluCJ9N708+z49NMsaPT1yDD1jbia8p/PcPO0jVb1Kxz89Rxx+vG+p3zu87IG6GXlyPaV5Dz35dQg9j8PDuhtnDTxABlQ8aReAPBAvVDz3h+28a0H3vN6arTzdCea8Ut1pPA9yrbzSpU084YvIvL1mT7xybhs9dbwJvacNV71S3Wk9YZcFOpfz57whYz0789mrOvUNID0Tl7w9hnklPCBJQzx6hMW86o8NveR84zx2HF298Ys9u1y4z7xr+x09CTMkPaRflbx244C8m7ijOwN9zbyFAli9L4yRPM+auDzIngg8r4DUPG08jzzBOIi8XkkXvLNSjbztwwE8UlQ3vFKkjTwHT4a8eg34uje8NbtzK8K8lF+gvNzDDDuji3S7qZGhPGJUrLzyHAW81g02vFavorxEEWk9z/eLu9YNtr0/mYM8VIiru0QRaTzDpVg9ikFhPOKlQj3gFHs9ZxxovcfK5zzBERE9hV8rPdKlTbzZoX26GdbFPLS/3TqyRRC8YCA4PVL3Y7zugKi8FW5dPSdf7TzGlnO8J0XzvDTLmrxybpu8c5p6PEI6yLxe7MM81ZboPCskKb2vgFS8yf5bO4nUED0oJhG9TRWuvCFjvTxqhNA9C2eYPDNUzTzDAqy7lALNu60TBLxXecY86E6cuwp5fTyoyv08onF6PdICIb23DUy9c85uvHtB7Ls8hPE8RMsPu4RFMTnEHKa84fUYPHbjgL25QUA9xGJ/PJ6pPjxyOqc9OgqkPIRFMT1eSRe9IwECPZLO2DxkiKC7VxzzvLR5BL2ERTG7wlKCvOtMtLyXUDs88eiQPDKXpj0jIGQ8m1tQvZpB1rsHolw8RG48vqW/6LzD6LE6rQaHvM8ECTww7GQ84fUYvaIrIb3qMrq8uv7mvLpbujtFiDa9Mt1/vCxLoDtn8Ag9Za+XvOaw17uj6Mc8tAI3PY2Pz7zpaJa8KCaRu15Jlz3Wd4a6f8POPFKkDT1jtH88tHmEPCqt27zyDwi929XxvGfwCL3WXYy7Wa26PG08jzzmDau68mJePPMpAr2htNM7/Kx8vNlbpD3nylE98g+IvDqtUDvBERG93potvToXIT1gILg8nN+aPFiTwLxKauy7nTJxO4SihLrjYuk7PFgSvUye4DlI8J488g8IPXP3TbwFVG69b2OGvFBwmb3XkQA8PXIMvTP3ebzJqwW9kIDqPMsYVjwxYzK8MKYLvaBHAz1rnsq8QcP6vBeiUTw9cgy95ZbdPGVFR71TVDe9Jculuy+ZDr63ah880egmvJFhCD1ZUGe8/az8urr+5rxXHHO8IiDkux4VTzyeIIw+LD4jPZA6Ebw0yxq9Wz6CPFokiLwz9/k8X6lqvG8GM7wSfcK8hQLYvIGa7zwCY1M8AUnZO0I6SLsSzZg8Pi8zvYK06TwT55I95HzjvAbLuzx/Znu9SzGQPKG0UzyAgHW8VxzzvLjKcrzDAiw8FFTjvEBjp7slyyW8kREyPG5WCTyGHFK9RkXdvMuPIzykAsK8kN29O9VDkjvEYn86u98EvaOLdLyaQVY9N19iPPPZKzzbMsU7Ck0ePSLairwtnvY7aWrWvJnUBb1PSSI7O2r3uhGmobt1AuO8iu4Kvf/BDr0H5TW8l/NnvDpQfTy6uA08JculPETLj7o8hPE8CwpFPCYR/zqdqb48JuWfvbAEHz2HrRk9auEjOvl1iDzXJ7C8cytCPaBHAz1prS+8fC+HPNKlTT3Si9M8tL9dPGwIm7wuFcS8v5pDvBsKurzBK4s8+jKvPPEuarzPmjg8qcp9PMxMyrxD9269jkx2PGeTtbsbCro8yzJQO4UC2LsX/6Q6HMdgvJY2QTzN0BS8UKn1vN6aLTwEl0c8AHK4u09Joj1HvKo8DlgzveeHeLw+0t874HHOu6mRob3jYmk8mSdcvHwVDT3THJu7uv7mPIknZ7wrWgW8aP2FPPj+Oj3swwG9xw1BPAAv3zxX1pk8IyBkPNICobxsuEQ7+o8Cvbr+5jwXolE9w+ixum7sOL23sHi9Sa1FPQCMMj2F6F28hOhdPVs+gj22UCW7eFBRPFccc70FVO68P6aAvDRux7sJ1tC8JLErvKdqKjxaMYW7aRcAvXruFTzBceQ8MOzkPIMrtzxCl5u9/IAdvCGzE73nytG8hOhdvY4TGr0DIHq8g4gKOzXYl7uJ4Y27ZgLuPPrV2zwbreY7oPcsPK5m2jxQ7E48904RvTHNAj0bCro7ltntvIVfqzzU2cG8fqnUvBw+rr0a8L88CpN3vCkmEboeFc+60FffPJY2QT1UK1g9qlvFuzDs5Dvnh3g88M4WvUd5UT2Hkx+85+TLuy/S6j0i2oq8IOxvu6+AVD3Nw5e80egmPae6AD29Zs88pALCOj1lD7yB90I9F/+kPJBHDjwxY7I8/GYjvS5ylzzugKg8FojXPPbKxjr9xna8mkHWvEO+ErwMx+u7DlgzvbDdp7xsCJs8c7R0PAm8VrziSO+8Y7R/POeHeLxEyw89Q7EVvcp1KTscJDS7J6JGPNzv6zyX82e8hV8rvdC0sjvxi728mGo1PLMCt7wKk3c8RBFpO3PObrq8qSg9JRF/vJtb0LwHiGI8NG5HPfN8WDzBEZE9loYXvB1YKD0SzRi9QqSYO67DLT0UDoo79bDMuCXYIrxP0lS8MKYLO1fjlrwpk+E8IQZqPFpq4Tqewzi965yKvGGkgrypkaG7u3W0PLJXdTwj9IS9BQ4VvZNFJj2icfo8wSsLvSh5Z7piioi9bLjEO9hBqrzhLvW8XSIgPCeiRryiOB67gnuNuiRU2LzumiK7FohXvQ3h5TsRwBs9hr/+PH2P2rzUNhU9/uDwurMCtzy0v1277GYuveKlwjwZQBa9qUHLvEKXGz1l6PO8JLErPMZdlzuHNkw9DsKDvOMpDT25npO7tw3MPBhfeLytBge9NYhBvS5yFzxlr5c5yzLQvNawYjyMddW671fJPPfkwL16J/I7D8+AvFrHtDyYDWI8Mt3/PDb/DrzDi1680kj6O+kYQL1gcA69z5q4u09JojufOga8xCmju10ioLxi99i8rI85vYPOYzwJvFa8dnkwPC/Sar1m1g69k4v/PJgNYjxQYxy8YMPkvGNuJj3/cbi8H38fvVsxhb0A6YU9XLhPvAT0Gj15aks7SiSTvGJULLw0y5o6ZxzoPAFJ2Txlopq82WghvZFuhbwnX208nvmUO0BjJ73q1ea8XS8dPf/BDrwFG5K7UI/7O9y2D7u4ynK8FFRjvYfZ+LyX2W28YMPkvGgKAz0KTR69kEcOvSdf7TxJCpk8R1/XvAY1DL0O+188eK2ku4OVB70OtQY6iA1tvJQCzbxD9269qIQkvHx14DwmiEw8KHlnvP5XPrw+LzM9kW4FPUe8Kj2/mkO8YlSsPBM66bzM1Xy8nfkUvvfKRjy4kZa8IElDvMsy0Lz9rHy6PITxO8ZdFzzxAgu9swK3vF8Gvrm6Wzq7nI9EPV0iIDkmiMw8acepPAl5/bw7JB69i1vbPEaiMDz5dQg8g4iKPOuph7vzfFi8GF/4PGbJkTpGDIG8TJ5gOhXLMLw5k9a8Hy/JPBLNGLsPcq284YtIPW9wA73KdSk9ueTsPDtq97zuPc+8pjY2PSKzEzyo89w7h1DGO/wJ0DxUK1g9/Kx8OwDpBb335MC8tHkEvTe8tTxYyZw65Nk2PScZlDyIDW07R3nROcuPIz0J1lC8X1YUPUb/g7vo/sW6MKaLvJyPRD02oru80otTvSXLJbwQjKc7IJkZvdHopjvyHAW8w4tePDI607z8ZiM93I8YPEoXljygmlk8NeUUPIfz8jw1EXQ89m1zPLdqH73/cbg81fM7vadqKruBmm862rt3u4qeNL3ySOS8cCAtO0ZF3Tpuj2U8fgYovOEu9bwCwCa95fMwPGrhI73dgLM8vcMivY3SKDz779U8Q7EVPIK0abyEr4E8Q/duvIAtn7yN0qg8uxjhPFg27TwBpqy8o1IYPUXyhjyIDW07/CNKvQ77X70Bpiy8Y26mvAVUbjy4J8a8fCIKvAnWUDvsCdu8aoRQvFokCL2jUhg7B+W1vEdf1zrxLuq8sovpPLAEH7xc+6g8Wz6Cu5+A3zvdgDO9J/+ZvN0J5jy4J8Y7xCmjvMQpI73kQwc9ulu6vDmT1rx2HF28sug8vLRsh7zz2au8Wa06vDaiO7xqalY8E+cSPVCPezxhlwU9+bvhPBM66TzHd5G8bLhEPZ35FL1gw+Q8O8fKvJV5GjyIx5M7cjonPdfK3DwAL9+8SzEQvf/BDr0cPi69M/f5PGrhI7yEogQ75zQivNYNNrzmsNc8JwyXPBf/pDkeuHs8/lc+PGEguLvDpVg8RqIwveKlQj3EHCY7QiBOPfK/MT0pk+E8vQn8u8LoMT2Ti389SiQTvYOVBzz/FOU8uv5mu3Jum7v5goW8fY/auuMpDb1sCJs9sR4ZPfK/MbzZ/lA9E+eSOwm8Vjz4/rq81fM7PPUNIL3l2Ta8eFBRvQJjU71n4ws8i7guvRhf+Lypyv07u9IHvbJxb7wt+0k7FSgEPRhf+Dv8cyC8iYQ6vXzSs7vG80Y9yORhvSFjPT1d0kk98M4WvdS/RzzwFPA77/p1vM6APr3k2bY8BJdHu1kKDr1FK+O8yEG1OrcNTL1TywQ9xdnMPF1bfDvgFHu8+bvhPErHPz1Rl5A7N7w1PR1YqDw41i89lAJNvTFV67t4/B0852zkvP4dSb2RX2E7gfmQvJ16vzyMlCY9w3gpO6eLbjy3RAC9hBwLPGXzCrxXXfO7FEC4PNNKhjxpqom8Pwndu52E3TxhWuY7MtpCveQmgbuKgNk6aaoJPatCbTys0eI8kEYWPMnSWbrNcA08AUbSO8a07rwdPSu9SBBuPLsKLL0bM3y8DVKDu7XEN7vl09C7y+YmvMpXsTx+W908ydx3PPOHwjxUK8y8ZyAjvCx7g7yLBbG8GppovTUCzDsKOae8KwVZvO0tkrzL5iY92i6dvIbJ2rx4Fem8DNK6vXXjQbw17o+9qBpkvT165zsf6no9J0Q8vaEiETtfwVK8FcWPPXEYB71Hbby7K+wNvHCna703EQo9NQzqPE/lVzyEHAu9kVVDvZBLpbudcKE84G+CvAzDDTweR8k8kEslO3j3jjtI7YQ8ezNUvHmk3js6SEA9cJ3Nu6PU7zwkF6Q8Xig/vfN9JL3pcYQ8PWEcvQpDxbzTSgY7vigXPUXeRr2CHPo77kHOPN/+5rtu+pu8ngm1PMURvTxfy/C8tD/gO4jTiTwf4Nw8oraVPGNkFT1P5de8Be4jPRgLc7z4wxg7F16jPLsUyrxR7wY8s6ZMvVQXkLxwk688CZuEvJzrST08zRc9ODRzPQZ9mbwDWp87QROMPGFQyLo5r6w7OCrVuzm5yjy/y0i884dCu9Xeir0shSE9MTygvGX9qDw2gpS8NH30OxgB1TzcvRK99q9LPaXyWj1SA8M83/TIvAm0Tz2VDEK8ZyCjPIbTeLqTZIE8WwA2vAR4eT3L4Rc96pRtPPdI37wF7iO8dEouPMFk3Dze6io8QSdIvWSC7zti1Z885KtHvcpNkzu0NcI73Vu1PMaqUL0wxvU6nPXnPB/q+rz2oB68MtpCPSII5rvuNzC8RdQoPF+oB7sEZD09Y2mkPd1btTvlv5S8JByzvPjDmL2Tbh+7f+rSvO+8B70GeAq9NHNWPWaWvDpI8hO9Y2SVvKy9Jj1QWwK9+eFyvUypkjzODjA9Iv7HPIsFsbzkOj09bvobvMvcCDnkRNs7abQnPAXuIzx140E9mlxUvBdyXzsRGK878FAMvUypEr2XII88Fc8tve/GpTsqXRi8nXAhvT7rgjy7FMo8VCEuPVIX/7yTcy695ETbO0qfY71/4LQ7uOIiPU04CD1yu7g8/g4cPUPAW73jq0c8PXBJPVsAtjw2pX28iwAivPv1Pz0gWxY6JBckvBKiFbvSxa47nOtJva5q9jwr+zo7ji26PMpSIr3YH9+8XI8rPTLk4Dw/E/u8QR0qPNaGSz1UNeq6MtAkO1jODr2ps/c879rhu3gV6bvgdJE8SPKTPf4TK7v+CQ09jkH2u3maQLy+PNO8v8tIPVBloDwO8CU9Ep0GPbyZIT3nbGS91nKPvFdJt7z74YO5/52RPBmGLDvzm368qAGZvIsZbTxi3z293WXTPGclsjsjl1s8y+amPa/goLxta6Y8rVa6vKeB0DyPrYI8LZTOPECONL2OLTq9sf6LvLjiojvQsWG8bXVEPf+svrwi9Kk9QROMPDalfb25AP28WexovPOHQr60P2C8UFuCO3zM57xnICM6H+BcPO43ML0yxga9AsGLPO/kf7xzxVa65cQjvW4EOryTh+o7/idnPE/bubyGv7y8ghJcPBZUBT1OVuK8DNK6vEeBeLzxVZs91GjgvC+jDDomv+Q8w4zlPLbOVTze4Iy7OaUOOdXeCrx0VEy8TT0XvPpcLDyhO1y7O1z8OYsPTzxNTMS8ykgEPMaRhbyv5a89DuuWPbyZobxMpIO8BG7bu3qu/LwlMO88XhmSutgpfby7Hug6iwCivIH+HzqaUra8aC9QvKCs5rzjteU8iNMJPcBQID2grGY7Li3ivMnSWbl0QJC9rmr2OwRkvbzC81G9M1oLvWNfBro2pf28H9a+vC4PCL0ZkEo9/gmNvHyzHL1WxF87ydx3u1pxQD0F87K92i4dvEy9Tjy22PO9U5I4uzNfmruBCD48ehoJPF+3NLyRX2E80LHhvLse6LtqPg49MDKCPmBBGz3Dgse8UGovvVOmdLu7Hmi8OcPoPK/56zwnNQ+8X8HSvFQhrrtQaq87ma8EO3Cn67sXcl88SPwxPOjnHb2l3h48MUGvPbddy7wF/dA8RE9RvV48+zsGfZk8nOvJvPQHC72rQu285cQjPRgBVbxyrIu8T+VXu14UAzxysRo9uWyJvB/WPjxwjqA8s5IQvXmk3joF5AU96pTtu9Cx4bvjoam8/Y5TPR/CAjxaXYQ8NfitPMNuCzwXXiM8dFTMPAmqsTwjeQG9ina7PHQ7Abz1INa8H8wgu+5BzryXKi29fmX7u1sAtju0NcI8pE8pPd1Rlzw5uUo78FUbPay4l7wqXZi8ydz3PJabN7084VM9crs4Pa/lLz2S7ta7NH30vIpsHT3nWCg94Jd6vD1wyTwqbEU9ERMgPOREWzz5zba86xnFuVsANr3vwRa8Jr/kO82JWD31IFa8tCukO5LuVjz2pa28y/BEvXZjCj2ZtBM8LHuDO4+3oLz/mIK7Wl2EvC4jRLxxIiU8uwUdvBXZS72v7028zX+6PBXZS7xDyvk8DWvOO61gWL2GyVq8++YSPE04iDz9epe9oSKRPEO2vbyhIhG8zYlYPOQwHz3+Hck777yHPEQ2hruAg2Y9mD7pvKE7XD3HQ+S8PVwNPVsU8jt/9HC7g5ezuzE8ILzFEb08j9BrPazHRDyqLjG9SO0EvVIDQz2hMT49xpsjvRjtmD1Mx+w8GxATPdLAnzxiy4G9JBIVvYa/PLy+PFO8Y2QVvPpcrDsAwfo7fMLJvAR4ebxzxVY8Oa8sPCdEPD0SnQY93NZdvWclMr1hWma8w3OavBEsa70h6ou9j62CvMvhl7zDcxo97+R/PCx7gzzRQFc9o9RvPO5L7LrDeCk9s6ZMPREs67zWfC09cI4gvcLfFb3kMJ88q0LtvGvSkryqLrG9alfZPPalrTsXfP06AS2HPML9bztxHZY80tnqPFsANjzwVRs8KmKnPIWwD70rXZg9hauAvB5HybzE/QA+oKzmvJLuVruTbh89AsGLvKCYKj3+Eyu7Ep0GPaEiEbsamui8ylcxPbQ1QrpXXXM8d3xVPP+svryiytE8pd6ePMOCR7x17V+7nh3xuzNai7yaZnK8ehqJvKj8Cb0V2Uu8+nBoO7sADjzzfSS9eaTevJ2O+zxWq5S8kvj0PFB0zbwGjMY87Lz2vJBLpTx148E852LGuxgL87xtdcQ6wumzvKzR4rwIL/i8j8bNPFQcn7zvxqU7d3K3PHPP9LzKUqK8ZoIAPQ1hsDy3Uy09XIqcPZLaGjsJqjE90s/MvI+8rzuTfcw8ALfcPBsLBLwdOJw7yci7vPQHi7zSwJ883uAMPfQWODm2zlW87Ki6vNXtt7uPxk28TKmSOzm5yjy0JpU8uwUdvTLaQr0shSE6h04yPA11bLz2uem8HT0rvTLk4Ltwp+s68uSQvbENubyda5K8y+amvPOR4Dz3SF+70s/MOv4JjbzKTRO9Xjx7PIQmqTyjRYu8sGqHPLjYBLwRE6A8I3mBPNgGFL3gdJG6VCvMvDzhU73V3oo8uwosPDg087peKD+85ckyPaj8CbwkHDM8iOfFvFsANrzxc/W8mlxUvZNzLry6e7a8Yunbu1/L8LyEMEc9zX+6u9/0yDxfGZK9POtxO6Zohbs5w+g8eYsTPMLahjtyrAu883gVvc+ThztBHaq99zSjvP2OU7yI2Jg83/TIvO/BFr18ro28ALfcOzXuD70f4Fw7SAZQvH09gzvzh0K9w4JHvRKilbqhRfo7DMgcvHXUlLwzaTg9iw9Pu2BBm72sx0S9Lg+IPUEnyLyHTrI8/hOrPB09q7z3KgW9NHNWvBdZFDz3Uv08KmzFvLQ1wrzhAwe9fK6NPGFGqryXGwA7PXBJOo4eDT2wfkO9lSD+Okj8sTzxc/W7zX86PNmaGL26hVS8ngm1O+Q6vTy7Cqy7cRiHvcFu+rxXSbc8Uhd/vOOrR7wXaEG9eZpAPBsfQLuU+AW93L0SPCONPTwgefC8hDDHvMpIBLwBRlI8HkfJO0RZb7tTiBq8eAtLPWaMHj0bM3w8rmp2u4sFMT2uava8YVDIvEsVDr4Awfo8UfmkvIdJI7y8jwO9L7I5uxEiTbz6XKw8rMdEvdLZaryhMb66Y3hROw8E4jy/wSq8NoejvPUg1jymdzK7YtCQOztc/Dy5cRg8t11LPesZRTzgeaC8YulbOryZIT2BCD67bWaXu4OXszxtdUS8NqX9vOQ6PbwxVeu8DWGwvAC3XD21upm8KmInPZOH6jznbOS7d3I3OuXEIz1bClQ8XZlJPKmfu7xUHJ+6fMznPIp2uzwqWIm9mkgYvbBvFr2Tfcw76opPu/+sPj2Aeci8nXq/PEXexrx+Zfs8sIjhvLdOHj3Nfzq70LHhPFa6wbu7FEo9QqcQvREiTb1eMt28Y3hRO0ZZgL21tQo8VBeQO3mkXrxHgfi8IHlwPaokkzyWjAo86orPPKLAs7uRX+E8SYsnOt7qKrtxIqW8GZDKPBCJOb2isQa82bjyu84Yzrn8dQg8X62WvGLLAT0JtM88PusCPUj3orzJyDu8QTHmvNC7/7ti0BC9jJ5EPTFV67tnICM8qBDGPJBBh7ydhN28L7I5PQXuozuTcy630sWuOyvsDTxwky88XjJdOx/q+jwEZD072B/fvARkPb31IFa9lq9zOxdZFDuKdjs8Zqp4vP4dybys0WK8ZRHlvFpnorv9mHG7LZTOvIdJI7wNYTC6kVXDvCsP9zy+KBe8GproPKZ3sjzFET08F1kUvDLk4LsvqBs9X6gHveqKT7yHSaO9g5czPPpmyrwzabi8tCEGuwDB+rvKV7E8p4HQvCpsRbxIEG68dF5qPHRFHz2der88SPwxPECOtLtpqok8h2LuvF4Ugz3gbwK9qPwJPYjdpzsamui8ObnKO4qK9zywkn+7iop3vXCTL70RGC+8s6ZMvSyFIT2OLbo6nh3xuzzNF71GWYC7tbUKPAEyFj1hRqq8KedtvKmVHT0Qf5u8vJkhPfcvFL1WxN88SAZQvF2ZST3o8Ts9WM6OO5Ug/rv3Un09M1qLPdLZar0jjb08kuQ4PejnHTv766G60SybO3oaCT2l8tq8WexoPQ1SAz0bCwS84RK0PN1MiDyTfcy7eq78vFBqrzygrGa9bPBsOhETIL2TZAG9KliJPCamGb0M3Ni8HK41vLOcLr1tZhe85CaBvC4ZpjyI3ae7H8eRPJNkgbyrOM87sH5DPbDvTb3YH988bg7YPIsFMbyHTrI8ATy0vObd7jsshSG9xpaUPF+3tDqfjgy8IHlwu3oaiTzV3gq9dDuBPHd8VbpvhIK8TKkSPM+dpTwdMw09OaUOPVIDQzxs8Gw7dDuBu14y3Tv8KkO8vWKGPL8l0LxB/KO8ZtWbO7CCo7xZlNQ85JKSPaMTXrsCzho9pv48vJJ6Ab33SbS6M/MqOxZHBT3Dd/w7OW5tvKHqx7xF4po8Si/fO2vkKL0iZR88rM+Su8kPAz2Ncd08TgoFPfxdqbzAtLK7PUmTO6tzFj0ikx29vG3XvB0exLwQ1xO9Z9CzOk52ujzw7mO8zr2rvBsAf7xfQn08c7AWPSDWvDxCltc8uE4RvbYwzDzC3Ui8IDwJvdJCPr21oWm7lplHvX8vFTwyMWK9p1q5PDwbFbw3Rdc74BjRO82Ulb3g3wG8gbmPvSgDj71OQ1S7w3d8PV5C/bxwK4Q8JlF/vJG4OD1sRY287lSwOpw8H7y4WWK9+dgWPX8M6Dx4xIs8PU98vXO757xc4Be8fy8VPdh/Sbw4B6A86UC7O1g4WDuref87vAGiO2WnnbzZGf071lazPK4rj7tMvsG8Si/fOmsi4LwfR9q8rG6uu09mAb3lxvm8NFr4u+HaGTtEv+28ddksuzqRGjvIi3G7kJpzvO1ZmLtxJhw9OsppvaPaDj1m1Zu7OAcgPYVsIDvxDCk9AT+4vOl+cj2wwNq6iuxKu7p3pzzZTOO8QpbXu9MEB71qiCy9lzP7PEbdsjvPJPk81cdQPLbKfz35BhW8DF1SPZ2j7DtYOFi8OsppPGOJ2LzxDCk9t4zIO+4hyrpG3bK9TziDunN9ML3x2cI8M8DEu2Fgwjst5B09DAFWvcJxEz33STQ9GZ4ZPH8vFb2zbYI9MDuyvEA62zzadXm8m3pWvIR8WTuXZmE9ndbSPHeWDT1vyh+8qCfTupHrHjwveek8j8KIPGxFjb2FbCC8OW7tu0uLW70ApQS8YMaOPHH4HbyvJie9c7tnu27a2Dutyqq8F65SvBEFEjzPV1+88T+PvPyQj7q1lhi6wLQyPWxL9j1QbOo8POguPL7J07w+pY+91/Dmuvd8Grz0JQa9fT/OvCiiKj0K2L87aogsvXDFt7xc4Bc9AzVourQ6HL3vtRS8E48MPa3KKjxpxmO8VqMMPYvcETwCmzS8XjyUvEwavrrgS7c8xdN4PGItXLxR+8y6V2s+Oxh7bLwBch69p8AFPXTeFL3DbKu6VUIoPFLI5ru4G6u8Yry+vLHjhz2Ncd28CmeivTdFV7werSa9KphaPFYPQj1YOFg8JeqxPHLuTT0WH3C9TK6Iu88keT2xTz078zU/vd2Tvrz0kTs8PUkTvHEmHLxpxuM8S1KMPGJQibyexhk94Q0AO1KKrzzuh5a9CUldvPT3hzyt/ZA8cPidvIKGKT0IFvc7DCQDupJSbLwMkLi80g9YPQzxnLwkW0+8Z9CzPFVCqD06kRq7IjI5vOX53ztJYkW8Bl5+vGsiYD0ooqq8PPP/PEjT4jw86C49YJ55vQwkA71+zrC8dToRvGZBUTzO+2I7pv48vEy+QbzDd/w8TnY6vfUrbzyQKdY6OsrpPCtaoz2vZF68fHccPd5VB7wBch49bs8HPa6XxDr6NBO97CsavcTNj7yLSMc7uehEu7QHNj32IJ68D3uXPVKKLz2VcLG9vyXQvGCTqDvgSze+4nRNvGV0t7ltQKW8vsnTO5XRlTyRTAO9uqqNvNMyhTvnVdy8Kf4muxNcJr2j2o68vslTvFlbBT1cspm8NIINuwM16Dso1ZA9DR8bvWSsBb1xX+s7FClAPYHE4LyDrz88KmX0PNWOgTxePBQ9EaQtvOixWLxZKB87i9wRva4rD7u56EQ7TU2kPFkoH7zQ5kE7L6xPvTc6Bj2Chqm78BGRPRtmSz1Egba8RL/tvMnn7bvvu/28SfYPPf25pTwVuKI76LFYPIq55Dx7fIQ7r/NAvOoCBLuHNNK8PbXIPHKCGD0Tml09ENeTvMLdyLwXrlI8hZ+GvC1Q0zxJlau8djWpvPxdqTuEcQg7li2SvN7vujvrzx29XExNPbi/rjugjsu7ImWfuxT22busbi49efhyvfBK4LxMvsE8qPTsvZ4yz7vrDdW7ldd+O2NW8rw3EvG809xxu/4g87y+lm08JnkUPagcgj6OcV09hme4vOuct7uWLRI9Es3DvJxH8Dwo1RA86LFYvAhJ3by6d6e83WBYO8Oq4jxDhp68MtVlvIiQzjzM0ky9M8DEO9jllT02tvS677CsO+cidr3eJwk8/JAPPeMDsLw1Tye9HbKOvB96wDynWrm7ZzEYveqhH7xTJGM8dOT9POCsG72JUhe6ppIHuwzxnLwxon+7vpbtOyqYWrw16dq7ONQ5vOMDMD2LSMc7nEfwu2CTKDxnMRg8F+E4vVqJAzzH8b27X5gQve2S5zxvnCG8s22CvEaqzLu62Au9fqWavEtSDDuoHAK988kJPc77YjyAi5E8zx6QPPXyHz3gS7e8SJoTPUmVKz26d6e9unenOwhJXT2it+E8sU+9O2bVG71keZ89kFy8PLHjB719cjQ9rpdEPWNWcryMFWE8ubXevK6XRLy70yO9R3dmvF7bLzygjks9C87vvMka1DxeqEk8WDjYvK/zQL3CcZM8IAkjuo+PIjpX0Yq8NzqGPKi7HTyQwgi8Hrj3OxfhuDxssUK9jNcpO3U6kTx2c+C7J+BhPTLV5TsMJAO9oCKWPJydA73Ua9S8wU5mvXN9MDzgrJu8w2yrPOGnsztXniQ937zUPEtY9Ty5fI88LhIcPdrbxbwhcPA8zS5Ju27PhzuIwzQ8dTqRPKpFGDxK8ae8AQzSPKpQ6Twz8yo8hD4ivUO5hL2it2E9yj0BPc7CE72OlIo9I/QBPRCvfjxi76Q8oxNevbsR27wy+BK8w2wru72QhLwPSLG7zGaXvLWWGL3Ua9S8L3npOqEdrjzq2u48VOYrPdOeOr3CgUy87CsavScTyLw7vxi9PU98vYiQTrzbN0K8d5aNvAFynrs0jd47UGzqPHJUmjsGIMc7HYSQPejkvjzCcRO8I461PAbtYLsdHkS9dabGPLHjB737zka7j8KIvU208TzjAzA9PUkTu/oBLT0ho9Y8BV7+PPAXej2wtYk8zyT5PCKTHTwYPbW8d5x2PU6poLyt1fu8v+wAPusNVbx9P066OW5tPU9mAb2I9ho909EgPEVOUD0ho1a84zaWvGH0jLsLAda7tGgaPVu3gTw5Yxy9m628PHQX5DyvZF68ePIJukdsFb1R+8y8uXwPvbPen7y5fA+99MQhvBsAf7sy1eU7lK7oO/jj57s3Rdc8HI/hu6Uxozyy3p+7Yfp1PJiP97wVGQc7giBdPFNXybxVTXm7GvqVO9BMDr2a63M7/3aGu+lAOzzQGag83MakPK3VezsEKhc7NFr4vCbqMT0ARCA9Zg7ru4GRej1Cltc7FYU8PYH3xrwjjrU7Kf6mPIXY1TxqiCy7acbjPCDWPDvymwu8q6zlOwbt4DxsRQ28JeqxvMzSzLxbIze9d5x2u4+a87w/3l48+j9kPE84g737zka9rDtIOce+1zzdkz67gIuRvOqhn7zwfUa7xcinO31yNL17Fri8HMLHOoalb7tbveo8HxT0vG+cIbpJYkW9ODUeO5coqjsveem6IjI5vNMPWDz4Fk68HVEqPYzXKT2OMya9+XLKO7vTo7xFG2q92Q6sPGFgwjuexpk6iJBOvLCCIz0bM+W7rmTePBszZTu8AaK8A/yYvOPQSb3QGai8xM0PvO4hyrsuEhy9DF1SPX9o5LwKyIY85hyNvcKBzLuzDB687+5jPSKTnTyC5w08j81ZvPT3h7ut/RC8Lh1tvL8l0Lws6YU8YS3cPJn1Q70qCXi8WladvAxd0ryLrhO9d8/cOwLOGr0MXVK71yPNvK6XxLwQpC09oFvlvO1ZmDyjE968xAZfPVH7TL3KdlC9Hrh3vWLvJD0Lzu+8XduvPF0OljyQKda8EOLkvBIAKjyeZbU8CjQ8PT5EK73gSze9ldd+vLIRhrtYLQe9ywUzvJN1mTqShVI9BZHkvDjUuTyC5408ePIJvFQZkjxPOAO8QAd1vGNWcrzDbKu7/F0pPMZi27xUs8W8VLNFPU208brym4u8JUsWvegXpTwcVhI8TK4IveAY0bzdkz479u23vAgW97zm7g694Kwbu90niTxlp527/fdcvGhq5zzv4xI98O5jPExNpLsWH/A8Si9fvSZ5lLxImhO+4giYPGWnHbk/q3i8rM8Sva3KqjxN3Aa93u+6O0KLhrxFTtC89lMEvLRFbTyOZgw8kR6FvKQIjbwamTE8Q1igvMIQr7xtoQk9zZQVu/9ICD09tcg8hD6ivFuEm7xMrgg7mh5auznEAL0ikx08SfaPvOENgLwAfW87mI93u+dV3LsgCSM9Q7kEvaeYcD2lb9o8o7dhvEUb6ru+lu08CAumPEliRTw88/+8q3n/OiP0gTx3nHa7Hrh3vXcCQ71TJOO8aoisvB6tprxYONg8cMW3O+5UMLs3RVe8klJsPde3l7xzfTA9hQs8vKKskDwpCXg7XqjJPHWmRr2p6Ru9y9wcvbNtArvaGX29rM+SPG0NP7ywgiO7Nt4JvWV0Nz0TXCY99CUGPSzBcDwnp5K80546PE8QbjyxT708nJ0DvR2EkDp8sOu80tYIva4x+Lw5xIC7lBQ1vBbmoLyKhn67hQu8PEyuiLo5xAC9vyXQvMLdyLwfesC8D6mVvWnGYzv/SAi90XUkux7gjDwWR4W862nRvLCCIz15IIi8p8AFu5coqrwz86q7BVMtPZPhzrlEtBw9ioCVtqCOy7vTMgW9cCsEvQzDnjrzyYm82BOUPKNGxLqVPcs7U1fJPN7vurv8vo28V2u+vMDy6bwwOzK89u03vIGRerwZ1+g8kUwDPLe/Lj29L6C7hme4OyQo6bzuVLA8DR8bPVAzm7yW/5O8TK6IvSgDjzxP0ra8w6rivBFxxzu73nQ8ryYnPMzSTLwcVhI8lBQ1vAWR5DwLAdY8f2hkuxmeGTwlHZi5xDnFPDYMiLzwEZE9tsSWvAF97zxoXxa9CAumO/HZwjw1HEE9G2bLO1V1Dr1VQqi87rWUO84uSb2RTAM9nmW1vD/eXrv/SIg7d5z2vKxurjwb+hU9sulwvIj2mjzPisU8v12evLe/Lj1aI7e84aczPayhlDsbKBQ90546PYqG/jyM4vq7LYM5PYH3Rj0VhTy9Dk2ZPHpOhjwFU608HYQQvYULvDzPJPk8VYDfvGEtXD21lhg9uBsrOysnPT0SAKo8eMQLPXkgCL0VGYe7l1sQvRd1A7s0go29IZgFvUwavrt841G9e3wEvRYfcDwD/Bi9AaCcO9iyr7wwOzI9nEdwO/oBrTw3Oga9DJUgvM69Kz1bIze9BMRKPbLpcD3/4ju8e3yEPJn1w7zRgHU8sI10vL6WbTwmRq48HYSQuy4d7bw88/87Hw4LvXO7ZzyAKi08erq7uC4SnDx6h1U8+gz+PCGYhbwm6jE9w5+RPEbdsrsQr/68jsaFPNHTAzsQlfe8auIdvSkW2DvEdCG9iTnyO1L2ST1DVq82ZXugPG3iTDxjaKY8X2zLvBBnubzeYKQ8egR6vAXH/Dvn8em7zWwGvHGK0zmYaha9nmagvAUunLzGsQW8+6CqO5MDGT1TniE73DYLuxETZTxTtUA8Fo0tveC0J7wqgfo6qgrgvJTGYzyf0UI8eplXvPk1CLxW39m8sZt2PDvFGDwicvY7o4wUPfZn6zt4QQC81hTrvNkjEb0m7D69P66oPPlQ+7wnlBa8DOkcvR9bKD3nRT68kkQiPN5gpDxy9XW9K0Bxu8yDpb3xJgS9QqqDvBr0Kj2/4zm91OpRvERtfbwsEjM9zUZwvAPxNzxPIIW8Vp5QvSJEuDyLcoI8u4+HO8UJLr3ykSa9oHmaO5noAz2xrkG8RNScvI30wzy/JMM82ridO5hqFj1PzDC85QSGvGY6lzz1u7+80q3tPCTCpTx+Qd68GV+evK0wJbxZmiu8HR7EvFsYmbtdQjI9MTinvMsYgzx+PYo8QFpUOxLOhzw7BiK6OPd7PLYCdL1sZN88WIfgO2k6xjzEeHU8zIOlPDmItLw4yT09PLLNvBY1BbwdHsQ8hkyOvAkEYTuCpAe9NDQCvSqBejx2wxI61hTrPI30wzz6zug8ovcHvS48zLtKUmi8ee2rvK7FsTybFvG8tVbIPKN5SbsQVG68l4G1vdMrWz01zeK8xfKOPGHqODyf5A09eyoQPb/jOb0/rig99+EEPQy/MrqEpDa9KtVOPa7FMb2hOBE8K0Dxu6iyCLuYQCw8QCyWPQy/sjxsYAu7gJGNO076brxYL4m8hw9ZPNrPPD3y0q+9BS6cvGi4hDqgfe68pDjAOT8sFjxGKKA8nZAKvRycgjzNQhw9X8AfvASZD737oKo7vPqpvK7FMb0V4QE8N0tQvM1G8Dz+ysM9Xu7dPA49oDxrpei8clyVvdiSWLsh2RW9z4PUPHDHCLwQVO48spciu430Q7wHawC8ZBRSPfH8GbziH0q9yl1gPMgFCT0eym+8ee0rPPWNAT1yCEE8xEo3vPoiPbnnRb67lvD8PMuH+TwZY3I8eyqQPMaxBbsRE+W8nOiyvOPHobsiLRm9v+O5O9wMIb2N9MM7KFMNPU5Ow7va/Xo90QFCvSMxbb0gAwC8B5m+vO1YZzw5tnI8eawivKchUD3X02E99ah0vZzoMrwoV2E9J6u1PDDNBL2KCzS8mxbxPJzoMjyLyiq8LdGpPP52bzpOTsO7x3TQPMxZOzykSwu7Yeo4vJgpDTtsYAs9LjzMPIoLtLyXgTU9IdkVPYH8L71uocM7a6XovEfnFj0qgXq8/3IbvV/AnzsgB9Q9FD3+OlgviTzcNou8Yeq4vDXJjjoG2sc8RREBPMuHeTxh1+08EFRuPN8jb71RN1O8t+eAvH2C5ztroRQ9CxMHvfY5rTqusua8OXXpPIBQhL3Uqcg7R72sPCVAEz2cEp09OjCMPDOjyTwZXx69l8K+PGcQrbzhYFM8bGRfveUbJb2Ybuq8vOfePLACFjxhkhA9Fc42PARvpT3jy/U8TcyBvV1CMr3Sfy+8FFBJvqjgRrzed0M8pyFQvItyArzPf4C88RM5vUr6EL3zPdK8slYZvfWodLxuoUO9FPz0vAAIqDoOJgE9kxo4PHdvvrypiJ4850U+PZTCD73v1tS8Y1XbOVR0tz3bjrO8LX3VPE83JD1H6+q6o4wUPJDd07wQlfe8AXPKvASdY7wG2se7HsrvPEqmPD2Aa3e6wsxJPFnbNL3CDdO7c8e3vP7KQz3iMhU97NYlvB0eRLvBTty8IbP/vJerHz2W1Qk8exdFvFRdGLzaz7y8w56LPC3Rqbzowys8OXEVvTaMWTwdHsQ8u48HPURtfTz/SDG8F0wkPHAIkrwvDo48sAKWu6mfPb3TJwe9wg3TOVpCg7usm5i7QoTtvINn0jz2erY8J6u1vEAZSzx1Lga9nxJMPa7vG71oJ3u8QesMuxc52b0XTKQ6dTJau7fB6rsoU428rIjNvB9EibtyCEG8EGe5vPKRJjwCYH8+XS/nPOgXgLstvl47KqeQPA/py7qf5I099/gjPFvERDzU6tG8ZVE2vRW7a7rx/Jk7dLCYOk3Q1bva/fo7YdMZvRl2vTz1zoo9wWGnvMjyvTwenDG9U3Q3O+guH7sHgp+8F0ykvOEM/zpChO08zK2PO67zb7wWdg69YNdtvDaIBT2mo2K9ewAmO1XyJDyF0nS8RYBIvDwd8LuDZ1K8/0ixvOuZ8Lxcg7s8r4SoPIjhmjmzFRC7RhGBOn2VMr2VRFG8H0SJvPY5Lb3g4mU8P1pUvD9a1LwbsyG9LP/nvFL2ybyPcrG7b0mbvK1HRD1AVgA9speiu0e9rDzeYKS7vPqpvF4BKT1B2ME8tKocvXUuBj0IRWo9iDlyPAJFDDxnEC29yi8iPUe9LD3v1tQ7zgVnPMuHeT2GTI656MMrPWwj1rzO16i7Rv41veVFj7unXgU6M6NJPcpwK71Oj8w8y+6YPMX24rxfwB+9/EgCPUrU+jt2sEe7dgQcvMDQ7rugeZq881AdvP815ju5/k44BxcsvdV7ijtK58W46m/XvPWodD0XNQU9cN4nvaK60rwG7RI8Fc42vFutpb0WjS08dG8PvGA+jTz+nAU9edpgPK6y5jsSzge8Gh6VPGt3Kj2x78q8q8UCPJMauDsEsC69KzydvOgXAL0oaqw7+gsevS3RqTwcX808pEsLPZAeXb0j8GO9rJuYPYB+Qj1uiiS9SqY8Pelrgz3wPaM823toPNMnB73jsIK7TzekvI9f5rzzftu848chO+fx6bu7aXG8zhgyvEtls7uF0vQ7EuUmPaCQOT2Y7Fe9/zVmvAMEAzzd9QG9eBeWvPZ6Nry3vZY6zVm7vFI307oueYE8B6wJPSe+AD3s2nk7L+j3u/oiPT1oJ3s8QoCZu1nEFT1UYew7mG7qvPWkoDtz9XW8KpTFOytAcb0/WtQ7KFfhPGlNkTyOs7o7/3KbPP9IMT1hFCM95J23PLYCdD39C808dsOSvMLflD2OoO+8NcmOvLg/2D25ERq8QdhBvHPaAj2EE/681bwTOzQhNzzR6qI8UXSIvGk6xryQGgk90QFCu/H8mTyl4Be7IkS4vGY+6zwIWLU8rq6SOoEq7julti28Cy76vPT8SLza4oe8F/hPvXI2/7uHIiQ8AwSDPEuPHTzd9QG9DO1wPHIIwTuh+1u6AkUMvdM+Jj0UPf68og4nPU/MMDzVqUi7GMqRvILpZDuhTzC9BLCuOv3djrwV+KA87ukfvCAH1DusWg89gunkuy2+Xrymo2I6vaKBuzOjyTtKuYc9b03vOiJydjwfW6i6TeOgO9xNKj21AnQ7o3lJvGHqODxV8qQ7R70sPIWNl7z/NeY6NGLAPHSwGDtaRle8R+vqvFpG17zg3pE86AQ1O5bVCT2PMSi99bu/vG31lzwEmQ+73yPvvFddxzt2sEe9/XZvvNBVlrrTK9u7FA/AvLHBjDxXcJK7H4WSu02iF71ytGw8HfAFvVUcD7wTY5Q8X6mAu349Cr1q4h09YpKQvM/ACT0m7L48y+4YvTj3+zzHRhK9tVZIveSdtzyu8++6ZH90PEh8Izo4Ckc9QBnLvEtlMz0qgXq7HpyxOwMEA706MAy9pCV1vbAw1LzWOoG7km6MvCMDrzwJv4O8OYi0PB+Fkr27OzM5yxgDvFC5ZTy4UqO7rTT5PKB97rrta7K8IoVBPGgne70gA4C87NalvCe+gLwrU7y8OXXpuxEmsLyYQKy88QDuvEnnRTyEE/68fvwAurk7BL2Q8B69w7n+OwtBRbxJOxo9sxlkvMggfD0aNbS8NeCtvOdFPr3fNjo9vxF4vMovIj1rpeg82o4zvLfUtbyLt1+88QBuO2wjVj2siE28EuUmvD+b3bsD8Tc8bo74Oiz/57xnEK28gT25PLAw1DvCIJ48cYrTPBCoQrwQlfc86BcAvQFzyrwG2se89ybiO9I+JjzLHNe8EJEjvcmeaT2jeUk7tOulvFRhbL1hGPc8SrmHvDWMWb2Ybuq7OMm9OyeY6ryTGri7DaznvGwfArzVvJM7DX6pvIcP2bxVIOM8wUqIPfi3mjsj7I+8BtpHPOy/hrx6lYO8mGoWvqw0eT0FLhw8Es6HOxuzIb25qno8naepvFdK/Dx8vxy8/pwFvVaeULshmAw71joBPegun7xTdLc5gqjbPOPHIbstvt68qLIIPcpd4LzF9uI8OjAMPOdYiby1Q327eC61PODi5TyAa/c7i3ICu3SGrrzm2pu8mG7qPLqqejo977E7PHHEPHJJyrw6Rys9RMHRPCJuIr3AixG9a7gzPe6oljwjAy+8CcPXvJMaOLxBxfY8WwVOPFnElb3ykSa9qgYMvUb+tTx6mVe8w7l+PB3wBTtUXZg84OLlu5tXej1pOka9kPCePM6Wn7we3To775VLvI9bEj2eTwG9bx+xvS3RKbz2Y5e72KUjvbwo6Dss/2e7nxLMvJ2Qir1Zh2A9MWZlPYZMDj0fW6g8A97sOmY6FzyVRNE8JtnzPNkjkbzLh/k8j3KxvBaNLb2kJfW8+WNGPRdMJDyuxTG96DJzO2NoJjyxrkE9RYDIvBBnubzhYFO9oHkaPNfTYb1AVgA95QjavINn0jyybbg8yxiDu5GcyjyfuqM8YamvO7GuQbyRif88MM0EPEBWgD28+ik7d28+PSVuUTxB2MG8gT25vBXONr2wMFQ8VRyPvEeq4brv0oA8ki0DPR6csTygeRq9P5eJvOza+bxuoUM7sa7BvHJclTiBPbk79+EEPU3MATzL7hg99mfrvKUKAj3dyxe9MSVcPHqZ1zxFPz+7dTJavAMEg71lUbY8vyTDvDO2FL1aRtc6PtxmvAeZPrzoF4C8xEq3O430Q70MADw7thU/PbiAYTwb4V88lUTRPLDvyjs2jFm7/QtNPRoeFbwHrIk8MuRSvcBhJ7wfhZI72s+8PMCLET1gK0K9emsZvcCiMLx4LjW9TA0LPM9/AL2/0O46sa7Bu3DHiLzs2nk8SudFPRY1BbzSf6+8J9WfPBCoQr0M6Rw9Rr2svcixND3DuX673DpfPR6csT3VvBM9RMFRO11CsjzYjoQ9wNBuvdMnB7yqS2k8XisTPYXlv7wU/HS8CFi1vAsTh7zDnos9MSVcPdWpSLv8TFY8FnpiPJMDGby7jwe9AAioOzmINL2uxTE8cRsMvQy/Mr24fA28tZfRvKFPsLxV31k8rJuYvX+/y7xN4yC8/F8hPYlMvTwxZuU8rTClvAFzyjowzYQ9IwMvvYNn0jwxOKc8g3odvZPCDzx4QQC7Tzv4usvbzbvi3kA9x3RQPZgt4byCpIe8MvedPGf9Yb1clgY9pmLZPLTY2jy3vRa9oU8wPQtBRT1w3qe8Fo2tPPuN3zwe3To7kN1TvPVx0bwPVK08+oYdvbs5P71k5SM7gBv+O+voKjzIazk9a8zVPGGI7DzleIG8he89PYeyYjzIKi293+EcPTZFebzChIe8lCXpvIZiFT2osWw8ZDFAvfB/j7uRXhO9IKYDOj8HSjs+RKU8s12dPBODyrviTZU6O4yQO7nR97yimO+80slzu/4zoruoYZ88R+PrvOVCBby/5kO6QW8RvRSHezw7S4Q8S09kPFeB3jzNHG+4AmM/vOopt7x3FPC8FfYhvU+lPLytRCC9Bo6rPB4M8bxRGBQ9u3rLu2I4nzo1glQ8ytOAvS+q47sklJS9kTfYvA+VubzIA3I9aUYMvcyLFb1x1hE8MwcbPbdLLr19E5w8wdAjvMPFE70gtUQ8QjI2PeJNFbzkUUY7v2hcvaN+nrzVXCc9KEGZO0wqg7x+bvk8ZXLMPPgapTwyFlw7yCqtu7Wi2rwiN908U8WYvFdyHT24vgU9jctfvTAs/DqCtZC7ScmavBbvQr3ayJ+7Y26bPKrYJ70Hgxu8WQN3PP9pHjxooWm5twoiPVJOkDyX0m29z4Q2PdLwLjwcxzO8T6W8PC/r7zy2iAm9VAYlPX+Z5bwJfDw8id1OPGsNYry03zU8dngGvR7L5LxMa488LmnXuvSuLLwUtZU88yyUPOg/V70yFlw8DFuMvGDFx7wbHuA86lsCvdcfTD0YVwq9i4YivM1Zyr0/B0o9ovwFvR2K2Dz98hU8EgEyvAUBgzzu1ru87ZUvPUEuBTzX4nA93XlVvb38Yz287aK93HUkPZfS7Tv32Rg7nk8BPAfTaD0j4LA8GJgWPOf6mTtoUZy8eym8O45wAj3uCAc9OXBlvS7nPrwZ2SI9JFMIvQZCjzsymHQ81VwnPYkaKr0AHgI97G70PD3CDL2/1wK90DiaPLjNxryNy9+8Wt6Vu4ODRTvleAE9k2LEPd44STwP1kU7gBv+vKRBQ71B8Sk9/rEJvU8jJD1dCQK9Hk39PDitwDzi6f68d7mSvHQQPz18q1S8ciZfvTVBSLnkUcY8P3qhO9GI57vrnA49TqGLuGhg3br1sl278UK0vJ7nOTyoL9Q8Irn1u1PUWTw8zZw8Q/VavPlQIb09wow7py9UvCPgMLsqe0a9KvktvDuMkDvtlS+9AqRLPYx7Er01w2C93ve8PKvcWLyhBxY7PYGAPBS1lTxfAiM9TbvcPPCZYL3fX4Q8a4tJPXVRSz1cVR68vD3wvExrDz1qCbE82g3du6hhHz20EYG7dYOWvDZF+Tw8Heo8SCT4vLyslry8/GO8ako9PWC2Bjx97GC9a70UPS8oyzxJ/xa8gcCgu3VRSztYwuo8sbTJu7jNxrwpUNo8jrGOPUlAo7vHZ4i5ASKzuwWOK73tExe8pEHDPHBfibuYNoQ8s3fuPMNWbT3fPHq98vYXvRJ/mbxLT+S7IfZQPbdLrrwbHmC8kfr8vDVzEz3lFGu99aOcuwOo/LsHFPU89CGEPZ3nubnGQE09KZFmvJPk3Dwde5c7p627PA6RCL1ldv28nCSVvDP8ijxFuH85xTGMPEr0BrxVuog9XwIjPby7V724vgW9sbTJvEw5RL4hN107YLaGPH9UKLzCxRO8UOZIPIF/lL1ghDu9RLj/vBLApbz/eN+8ls48vXTPsry8Ob88owC3PKZsr7sHFPW8UCfVPFdyHT3BETC9d1X8vGEG1Lyb44g9M5j0vL9Zmzx1Ucs8mTq1PCr5LT0gtUS9YfcSOg3sZbsEZ3C9K7xSOrNdnTuDg8U8dI4mvP4zortV+xS90vCuPD85Fbz182k9id1OPVOPnLwV9iE8v+ZDu0m+Cr3qAnw95FFGPIc0+7zO2+K8WKgZvH0TnLzYI328NgTtPH3s4LwieOk80vAuPLu3Jj28PXA8PoWxvMqsRbmRXhO9qhUDPOWS0rzSyfO8RZ4uvZYPSbv/5wW7lQuYvNiHE725/5E8niz3OwbTaLy142Y8+uH6uc6ABT3s7Fu9H019vepbAj19kQO+DuzlO6KYb7wPlbk8CPojvbFzvbxcFJI7Gt3TvLXj5rx4fLc8D8eEPoLEUT3/aR47ZvRkvHpmFz2gEqa7p627PIvHLjzTckc8dngGvbEysby4jLq675ngPHJjOryVCxi85hTrPE34N7250Xc8HIanPbgOU7zAGI88jctfvYsEiry3yRU7F3HbvL5kK70AeV+8sichPWpKvbu1YU68zBi+vElLMzuxtMk8QfEpvY8zpzzvPoO7KM7BOwJjP7sK5IM73nlVPDsZOb0fsRO9JwANPTGUwzzCxRM87KtPvJIhuLuPdLO8zVnKPDAs/LuxtEm9UQ0EPHZ4hrxJyZq8SMkavZo+Zrtm2pO8TfxovAi5F7yI2R09DFsMPUR38zmBwKA8mLicvJB4ZLxdGMM8Y6+nPF3XNr3dOEk9/Ag2PYhbtjy/pbc8Vr65vIqgcz30rqw89Mj9O+CkwTzTs1M9RLj/Oxey5zz9DOe8CsH5O84CHjyfEqa86SUGu7G0yTzNGD68BtNoPMkfnTwyxg69mFDVvOCkwTxLtys7g8RRPBzHM7xdCYI865yOvGV2fbyXUFW8QjK2O/JGZb2YdxA8j/KaO2v+IL0vm6I9ZbNYu+0Tl71Ppby75hTrPAEiM7zHRH69d1V8PI7ymryjfh48Vv/FPD9I1jyBG346Gx5gO6rYpzxrvRQ9/o7/u5Fekzx+1sA7ET6NvLdLrjtGUhK9j/KaO/t7Db0wEis9viMfPQOo/DvrLWi9JGJJvZSjUD3h5U09mj5mvAMmZD38y1o9+Bqlu6IW1zs/B0q9t0uuu4XvvTwko9W89O+4vC0kmrtgtgY8mHcQPMW+tLtgxcc87OzbvPt7DT3e+209FW0qvZn5KL2lqYq8Kjo6veMQOr01ADy8UantvEOlDbzuWNQ8UtCoPPHEzDstZaY8iwSKvJ8SprzkUUY9RyR4uXbT47zFMYw9f5nlvH5UKL2b4wg7cmfrvKASJrxfwZa98Bv5PJdBFD0o0vK8TbtcOzXDYLyhFlc9MdVPPKL8BT0kU4g9DClBPH0TnLzcNJg9eym8vM0c77wQlbk9Wp0JPMeB2TtYQFI8nuc5vUt2Hz3mVfc58vaXPNYQizq4jLo70S2KPBQFYzwP1sU7IfbQOzmxcb1PI6Q8OxUIPbXj5jg2qQ881DVsvEQclrxgtga9cF8JvDtLBLwpE/+8xoFZPGItjzwvT4a8DCnBvOe5DTyQN9i7esH0O9vzi7wqbAU9SAqnvFYxkTxXch08cwyOvO2Vr7wEDBM7i+F/u2zzELuF7728ztviOwG667sgtUQ9+BqlPDS/r7yINPu7YuwCPGzMVboQWF480vCuPed8sjvAGI88uM1GvH2cEzzhZ+Y8kfp8PPgeVry/14I8cZUFvestaLyqGTS8S5Bwu/TvuDw9Axm85XiBvMrTgLyU5Fy8ApWKuWLsAjtWvrk8o78qvXFjuryDqgA931+EPOjvCbyvC/Y7kuArvRyGp7x6gOi7JsoQvRIBsjx6Zpc8PB1qO/c09rsfsZO7XRSSOg2rWb14rgK97z4DvEgk+LwKwfm5THpQPeVVd7xmNfE8D25+u674g71ldn27kbnwvDQAPL0k1SA9FPYhuxYwzzpTxRi8GwSPPavc2Lzr6Cq7pyCTvAmuhzxpRoy8OrHxvIK1EL35X2K8KZFmvPAb+byERuo891uxu0LmGT3hZ2a9PoUxvG8pDT01c5M8B3gLOhlbOz03K6i8GJgWvAaS3Dvf++28Dd2kOwuA7bzyh3E7BlHQuxygeLwWbao6VJNNvD9I1rzBEbA8uEAevUTbCbseDHG9q5vMvKZsrzwuZSY6/LwZPcJSvLsK5IM93bYwvNOkEr2XgqC8//ZGPfgaJbxT1Nk8v6W3vAtmnLyB2vG7dlFLvOEXmbyLxy49mz7mu+4IB71ldv27hG2lPFfC6rvhJlo8PsY9PKWpCjzV9N+8EZnqO+Y7pjzOAp46he+9O91qFL1jbps8ic6NO2SkF70xlEM8o36evLWiWrygUzI9zRg+OoDacbz2oxy94gyJPLP1VbzCk8i8g0I5PH8XTbrlktK8J401vT3CDL1T0Ci8ZxCQPIxJR7x4fLe8HgxxPdYQCz1W/8W7b2oZPHbTY7xALgW9pisjO4nODb6iV+M8/+cFvMGPFzsPlbm8qhm0PIkeW7y/14I8v6U3vaMAN70W4IG8AaCautgjfTx0z7K8qVaPOySfpDzf4Ry8F/PzvG22NT3jzy283HUkPaDGibtBsJ285VX3O8aBWT31cVE8ApUKPRSqBT3nvb68DGpNvaDGiTwDFyM8bjhOu0lAozwheGm8mfkoPd/77Txm9GS8TfzovNAGTz3dtrA88+sHPAbT6LwCpEu8KZHmPDJX6DsGUVC9Ce8TvRYsnrzkUUY9kDOnO8xKCT1TETU8k+RcO/mg7rwiN908318EvcW+tDtfgAq9dlHLO/SuLLxemls9R2FTvQJjP736xym837phvCSjVb0X78I85MSdOZi4nLygUzK9yrB2PYmcwjymK6O75/7KPGyPerxiyXg87hdIPPMF2TxNu9y8StF8PfDAG71s85C8g4PFOipshTwOkQg8JKPVvM+2AT1sDeK8pakKPGPwM727esu8BRBEvWDFx7xm2pO9z0MqPRzHs7yrDiQ7BQGDvKxe8TspUNq8C6covL7XgrsTxFa8yazFPPTI/TwZWzs9K62ROtXaDj1HR4I7rIyLvD6FsbzeqyC9sjZiO6SCz7y1YU48WKiZPKZsrzz0rqw8VboIvXHWEboIOzC7kuCrPO7Wu7wk5GG8k1ODvGZcLD3eeVU8wlI8PLgO0zy8Ob+6JYkEvUmMvzyvymk8K+6dvJVMpLzRR1u9dI6mPBLAJb0dOgu9GVs7uxODyjwuWha80UdbvCr5LbvBETC8ZvTkPG7ogD11ED886qcePJ5PAbvy9hc82EaHPOTEHT1Z6aW7bMxVui1lprx3uZK7D8cEvC0kGj1cliq6x2eIvFofIr2Lx668nqpevYjZnTy1Ug288bULPHPLATujALe8THrQPHGglTzfuuG8T2QwvWV2/TyQMye8F662PBbvQr3O2+I8svXVusFOCz2HV4U9AuVXPQnvEzrk0149e+ivPcxZSr2j2Xs8+oYdPbiMOjzhIqk8JKNVPEWerrooD86891uxPRsEjz3tla+8ha6xOx2K2Dz32Zg82v6bvCEonDwcwwK9p98GvMLUVL13Vfy84GO1vCp3lbxvKY28+sepPCr5LbwR/YC8PJtRPAzotDwcX2w8wOp0u5aNML3ayJ87id1OPTKUQ71clqo88UI0vCy80rs8m1E8sG8MvfABKL2dpq28KTaJPOcwljtnEBC8QjK2O2nidbw/+Ai98AGoPJo+ZrwA+/e79CGEPDggGD2e5zk95M+tOiK59TsAHoI8HUlMvFHqebzVTQe7GIv4O6q377wYGWk8bG/dO0xTGLyb3nI8I5JpPWS8j7wEtdg8zOgjvKG9KbxNksw8CauJvFId4DzM6CO7teIFvehG+rx5rpA8eyx5PLUNnb3Z2Jq7f1WFu6hknjwzj4u8aY4bOtUpYjxIpN87Mmvmu9+i4rvkdO68z4LtvAInaLyAjHW8KGT1PIcIUzz7LKK8mpd6vFLWZ7soq+08KQ7HPHFljjzmrDA987/6vOQt9juOoJG6bf3NvF1rSb3KjY47V+/rvLBeZLx88qu8RxbvPBpRq7xnM4a68YiKu+sMrb3Fl928132FvXyPUr1SZFi8hlcPPUqxCr35Qxw8X+oDPGi5Mj1HXee8zQQFPdpeR7zW7xS9SmoSPVhSRT2nOQe85JBPvd5bar2SKyW8A70cPRu0hLzKaek7hLUBPa19orv6yci8ObwsPFjgtbz0/4C6U4A5Pfn037zgvsO7l/0wOsqNDr1sBZK8/g1kPHfoXbwWDRC9yrDhPIFh3jzx+hm9iLKkvMpGlry6SXQ4o5ISvNVFQzyIsqQ80XO3vBU4JzyCNke8Yf4gOpFeADzFJc48Y1k2vbr7CT3psRe96Y3yO/lDHDwnHX28weGyu6YJCb1IwEC9fPKrPOt+PLw+AMg7Z1bZPOn4Dz3/4sy8R892O0A4irwK6j28AWIHPXMyM70e5II8pgmJu6/Qc7yBsJq97ntfPYJ9P71YxFQ92kJmvPVpTDw4WdM8rVILvYbdOz1XqHM9sTPNuV6HKrzIpIg93MEgvSQ8uzwLlI88fN4OvPtzmrt8AWI9DgsGPdzBoDvvCVC8kV4AvV0k0bvQV9Y8OS48POaBGb3Q5ca6/AELPIE+C73VKeI6X6OLPCA/GD2M9r+9CEBsvBU4JzyBsBq96Y1yO43LKD3haJW7YWhsPM/J5by95I87jcsoPdCeTj2612Q8Mmvmu8b6NrvkdG69Ge5RPMBbhry2TNE77l/+u8UJbT3XqJy7WMRUvcikiLxihE09BYrBvNVFQ71ocjo9qnB3PfSUY7v0IlQ8sXpFPWy2VbvgvkM8o9kKu/AlMTwtffk7GsO6uynHTjnWYSQ6Z51RPIJ9v7zgTDS9hsHaOsn3Wby9nRc9tpPJvBU4pzvwbKk7GIt4vMAMSj1RbBy9Dn2VvekbYzzs4ZW8tSG6u7tCAj1dJNE7f1WFPdaMOz0E/FC9HsBdPZKdND0550M9bG9dufTb27uNPbg7Q6e8OXKkwrtSsxQ95oGZPFRVIr3ADEo9qPKOPP5/czvwbCm9pVfzu2kcDD3+KUU8X+oDvY2EMDwnZHU8fjmkuzxW9rxzwKO7PxwpPUNgxLkJh+S8pVdzPFeFoD0F0bm7UUh3PHSVjDri9gW9rX2ivI2EMD0/HCk9kKxqPbSi/zxehyo90OVGvZFeAL14BL+8kKxqu37HFD0z1gM7U8exOffohjihLzk91OJpvTm8LLti9ly8zOijPHMysz0TR127i0zuPD9jobzaQuY8eNknvFKzFD3QNIO8o5KSvVUqC73sbwY94L7DvII2Rz1dssG8yiJxPW/DgDzAN2G90J7OvMTC9LjW0zO+9qGOu/WFrTt7LHm8bdI2O3zyKzzVcFq9rDYqvYRuCbysYUG9MF+NOgWKQb2mc1S7rVKLPDkuvDzlZbi86368vBjS8Dwumdo8DNsHvVJBBb1dJNG7YoRNPZcoyLyBGuY86qlTPRsmFD1P9SU9/3iBvFc2ZDzaZgu92q0DvbUwcLsv/DM8d+jdO0PS07vGsz68z18avTSjKD3kdO68zzt1PUIhkD0px047sTNNPCNn0ryG7PG8wZq6PGgrwjv7LKK8BdE5vKirFrvkAl87fN6OvC9DLDzb7Le8eSAgvAT80DxxrAY9pnPUvPRxkLxMDKA8GpgjvaBiFD0gzQi96bEXvdIdCb0TR908RDWtvNW30rwPSjq9OS48PdqJXjygzN+8/uoQulLWZ7wjkmk88UGSvUkHubyQrOo7zfT8vQZ7izwoXYM7aCvCPEJoiLy7QoK8aLmyvEwv87woq+08U/LIPMKLhD4udoc93vGevNpC5rzU4uk8mpd6PDqRFTxRq1A8Y6AuPE8RB734rWe8z6YSPShdgzsVfx+8vSuIvHbM/Dys7zG9WfyWO9IdiT2SK6W8FpuAPEvoer1+OaQ636LiPE3hCDtHz/a8Okodu1xzDT1MDKC7spYmO+KvjbwSlhk8z6YSPUTuNL27Ht28nBY1u5E6Wzu3r6q7jqCRPMW7gjuXb8A6GyYUvY2EMD29K4g8bzWQPDl1tLvUVHm8t2iyu7r7iTxvfIg8GgozvToDJbz5Zm+8EB8jveFoFbxxQWm8tZsNvUTuNLnKjQ69GafZPH9VBTzZtPW7pZ5rPKWeazwlEaS8+WbvOx3rdDxwrIa9C7+mPP7qkD0enQo9weEyPOsMrby0on89SdwhPZJWvLzvCdA8pTQgPS0LarzMdpQ8QrbyvN4U8rz5Zu87OtgNvWzh7Dos6BY8AdQWvZsl6zsFpqK7i9peu5EPRL0aCrM8kdAPu//iTLzCi4S8oMzfu8rMQjpFCpa8XOWcu0FEYzyVfva8wm8jPNFIIDxDpzy7SDJQPVVxgzzQnk69H2ovuy/RHDwEQ8m7I/2GvdteRztt0ra8dlptPNqJ3juR0A89lgznPMeIJ7y/qfA8x4gnPW3SNrz36IY8KIDWu6hknrvqYlu8XSRRPJCsajzwJbG8BYrBPD1PBD0btIQ80XM3vdszML02BoI9bCjlPHjZp7xXE5E9aUcjPd9/Dz36yUi8rBpJvcs+UrwF0Tm8+RgFvd4U8juSVjw8sIIJPX2rM71XWgm8CasJPDNcsDydXS09vSsIPdqJXr3UeJ67hnrivPRN67xNkky91XBavUQ1rbyxwT27fjkkPSQ8OzwO5+A60mSBPUR8pbwBGw88pTSgPb+GnTzE5pm7L/yzPKzvMTqr09C8aLmyPAtNl7xYUsU7uISTvQSSBT3LPtI82kLmvMsTuzxjoK48t68qPJyIRD2sqLk8EwDlPB0PmjzwbKm8gWFePQO9nLzvWAy9sOzUPbEINjqBsJo75N8LPeGTLLoUHMY8huzxO66Zgzx0TpS76WqfvGEh9DwPdVE7vSuIPPYTnjwPkTK9d+jdPBO57Dxsb928sXpFO4u+fbtxQem87u1uvULal7zaM7A51U2HvJe2uDkyJG46WkOPvOQC37xI69c8scE9vIz2Pz00FTi9UUj3O7V3aLu1vuA8sDuRPAT80LxSj++8sk8uO23StrtN4Qi9GgqzvJtsYzzW75Q8Hp0KPdVFQzywpVw7DqDovD6OOD31hS09YoTNO8KLhD3+KUU8GYQGPeo3RLwVOKc7THbrPAqjxTzwJbE8kdCPPLXihbz7LKK8FfEuPSg53jwjZ1K8Sy9zvD/xkbxi0wm95jqhvMazvrotoZ453MEguxU4J70viiS9KIgaPOdWAj1I69e7+54xulxPaLyj2Qq8gdNtPAPgb72HlsO8pnNUvFOAOTwZNco8vDo+vL0rCDy1MHC9sOxUvRXGFzzezXk5mIshOylVPzxJB7m8haX5PGzhbDtouTK9fNbKPBvfG713L1a92hdPO7UNHTyBsJq7gsS3uxOWmT0ARiY81UXDPOVlOLzqN8S8KDnevII2R70QH6O7Rxbvu10k0TsYPQ694NqkPMUlzrzJ2/g7+Ve5vfn0X7sz+dY8SQc5PdulPzzsKA49sIIJvWI91bxcT+g7rBpJvSiIGrzzBnO8FTgnPbW+4LvqxTS8L9EcvGHa+7yivSm9oyCDvN7xnrw5Ljy7OpEVvZvXAL3WjDs9M7Leuiir7TyWmle8Cc5cPSOSabwflUa9NxqfvZ0ylj0viiS83AiZOi2hHrxC/eq8V8yYvBrDOjvfxgc7cdcdPfQqGL3AFI68GD2OvPbMJbzqYtu8GpgjOqpwd7xyXUo8llPfvPgf9zwG7Zo7gjZHOzsfhjxVcQO9C5QPOsUtkrxRAX88GsM6PK+J+7xP9SW9xmxGPX4ODb3smh29q4zYvPueMbwpx847FfGuvC5uQzw0XLA6RDUtvXg8Ab3eFPK8H9y+PB5OTjxJlam7+YqUvKwayTzaQuY7Xvk5uFUqi7tE7jQ9/AELva1SizzFdAq+Tme1Og9KurzWGiw8VSoLvfbMpTvsKI68p0i9POXXx7yoOQe9iYcNvAwigLy8gbY8sXrFvHiSL7ys7zE8faszvD65z7ybSRA96sU0vB8jtzzfMFM6ytSGvBU4p7yBhQM90QEoPJIrJb1s4Ww83ltqvItwE73QV1Y8h09LvdSbcTywyQE9gu/OvAZ7iz0KMbY89WlMu3YTdbuCfb88BV8qPPRxELuv0PO8bOFsvEwv8zxSj2+8LplaveVlOL2xesW8XWvJPGLTibt2oeU8bqefu7q0kTvG+ra7I5JpPfLPAr1J3KE8OXW0vMzoozxYUsU6kTrbPJzPPL2MaE+9KF0DvcUlzrzRcze9fWS7O7F6xbuC7868zvT8usuFSj2LcJM8cl3KPGkAqzwr/xC95R7APBqYI7qnj7U8eEu3u7yBNj3Qns68a5r0vFehgTsewF28UmRYvCgWC71y67o8Uo/vPKMggzwv0Ry96j8IvZE6W73C/RO9v/BovcDF0TyLTO68bG/dPJsCGDzbpb+838YHvUmVKT1C2pe86RtjPB4H1juhE1g8V6jzPIYzajwflUY9IPifOnzWSjty6zq9fPIrvQVfqjqXb0C76RtjPJO5lbz+6hA82W39PC4ny7wY0vC8yvfZvHu6abu7ZVW8RZgGvP+b1LxS1mc7aRwMvDnnQzzUVHk8kwCOuzm8LLz6EME7UqvQPDnnw7z1hS08CfKBvWKEzTzcwSC91tOzOTrYjTsVxhc8l7a4OgBGpryiBCK8yOsAvRvfmzvupvY8qSl/vHROlLzqN0S8I/0GPTIkbjtTgDk9OFnTvIwhVzz/VNy8qKuWvOzhlbx3xQo9aORJvJcoSL0E/NC85vMovBg9jr2LBfY8Tme1O6CpjDy/Yvi7YoRNO1gLTTxP9SU9cgecvNpCZryLTG49mWAKvX2rMz3aQua8gdNtPUpqEjuAjHU9PgBIPVjEVD1xrIY78JdAPYI2Rz3Um3G9EySKuxmn2TwM24c8BsKDPDoDpTyNWRk9YSH0vC1SYj04oEs9+dEMOU/1JT0OWfA7Ji0FPfCXwLxIeUg8PU8Evcr3WTvkkE+9nBa1vOxvhjtENS29+hBBvUJv+rqLBXa9DTadvICM9TqHlsM8cqRCvORRG7vp+A86U/JIPKdIPT1Y4DW9DudgPfQiVD0jkuk7QtoXPJiLIbyczzw7E0fdvKvT0DwKeK48E08hvHMyszqlEHs8eAQ/vbsPpzszXLA8GafZvIHTbbw3WVM8spamOzTOvzwwGBU9KVU/PYmHDT2hocg7rmioO6+CzTxzRoS8r66ivGhwmLxOBSC9j1i0PKeqpT3brYm8gN3MPGsxdbvJYDM6FfwCvPw3wrzE1no9ctS0O0MvtLwd1Cq9YWwbO80FLzzfJjC9bDDXuqwICTxVUDU9JsZ3PNJjkjxIAIW8IgY5vfeTZLvDW5g8LWm3vPgFNL0u9km8DEC8vMhh0TukBAy7pTl0OynwELyNzL+81d3WukCkXT0u9km8MijYPJL+zbxTN648m9XXvDS0zLxNk1C9gpUWvRT9IL2qUD+9xXSfvENKdz2p3u+7cOeCPB4aJTx4BaW9cEhAPAxAPL1uWw69KDepvF4nPz1y1DS9Yj+oPExfBrw94wA9W5zovFVreDx9Una8PnCTvaU59Dt3k1U87VsdPLK1eb3qtYO9fqmCvMlgMz21sz06D+bVPEx5Kz01mYm5L2gZPHalBTvuSe27wxSAPFHXjjyWo0m8/u+LOu0UhTx6rNy8nxkWvHPu2TzkhBO9QRYtvC+uk7wNWuE7KmtzvcZibzwbu6M7zXgcvAgNkLxHR508S3rJPLPGC73z06U88mFWOpX8kTwXzw89FYqzPGPMOr13k1U96HCnvFXDIjqejIM8xrqZvAYPTLxG1c27bIiBvCl9ozz3k+S8Mw2VPH/DJzyt9lg9L64TvRt0Czup74G8l4iGvEt6STxK7ba8tSYrPUIxcLzzYLg7+axrvb3jDz3NBa+7IO0xPSOTS7yramQ7pR4xPapQP70U/SA9A/bEPG9J3jxw5wK9T5IyPe9IT73hPzc99NIHvYco4jyZoY28ShkMPag3uDyNPy09v6TsvF4nv7x9NzO8eCDoPDLHmjx1ek69jj4Pu/FHMTz8xfK8OT6FvFfcqTtncbY8sIEvvVIdCbwMbJE9q8IOvaU5dDvc84M8mM4AvHHV0rtzYUe8epGZu+SEkzyFnO09/t75PKzcM7siIXy8tVKAvSEH17tUNhC9iSfEO51GCbq8/tI8cEjAvDUmHL2kBIy8uuVLPIUPW7xY9k691N50vKF5tTzXaUs9XYAHvd5TIz0d1Co8fqkCPCWRD7yD25A8BfWmPFeVEbyi6wQ8faqguQgNkLv6kSi970hPvPqRqDyi6wS9A/bEO/uQirx0CH+8QjBSO1+00bm1Jis9qd7vvCSSLb0VF8Y5zSByvJH/azzE1no9LE8SO3LUNDyjBao9gfdxvSDtMTwnOEc9sZtUPH04Ub2JJ8Q8daYjPWPMOrwygAI6aYq9PMcAlDw1zvG8wr3zPGzPmTsYopw8iLX0vL79NL1gJqE7+jl+Pfd4obw/pXs9eCDoPDydhrvlhBO81Wppvfh3gz2dRgk8WGk8vCAZh7tXhH89hK4dvJDlRj3dmju7vP5SvEx5q7w4+Ao9aOMFPb1wojwG9Ag9+JLGPAacXr2QygO9BNsBuitQsLxTN648Inkmvculj7pBFq28YUBGu1XDIr3ELiU9Nc5xO6jwnzxPkrI9Tq11PBt0Czs55lq81ty4PL6Kx7wxKfY8T0saveFaer3RHRi9EFglOcMvwzxgzvY8oXm1vfUYgj3SN708fMVjvRcwzbzni+q8YUBGvq+uIjsMzU48l4gGvTS0TLvv1n884rGGO6+uIr2uIZA7Y4WivDdaZr1DoiG9zr6WvGoX0LsYvd8860IWPN21/rv00gc98C2MPSartLyQyoO8OllIvH/eaj0ygAK8VVC1PEwykzxhzdi7ls8ePAkntbyVpOe8P4o4vMZHLL3JYDO8sQ7CPED8Bz1uvEu8YCYhPCHsk71Ovge7THmrvDmFHT1Y9k49MPQNvSbGd7yWFje8J2QcvfHUwzyAfI88g/bTO6zcsztOvge9Vt3Hu/gxibtjhaK84vievFwOuLuXMNy7LE+SO4Qhi7u9cCK85+MUPJxiar3uvNo8FBjkvC9ombwcuoW7pjhWPOLMybsM+aM7zDIivWsWMj1cDji8ZeVBvL79tDyPhIm8oQZIPT3jgL2au7I70ThbPM85+b0VF0a7xroZOyCmmTzSYxK7jfgUPLKAEb0s9+e8brxLOxxi2zyvZ4o+kMqDPSbG97ydYUy9OD8jPRGeH72+ikc9vracPMAXWjwkki28rw9gvNLwJD2ytfk7JJKtO9oPZTrRq0g8LvZJvXONHD0nxVk9BGgUveJZXLuClRa93idOPHONHD2mq8O8FKX2Os6SQbkQEY07JK3wvFuBJb255mm8cEhAPHkfSj2p3m+96P25vJMphTuXve47SXtnOqCUeDxVfIq8aYo9PLQMBr2qUL88pKzhPLZAUDxkPgq6u//wu0dHHb1SUnE8yEYOvTeyELx2eTA8TiDjvLsQA72GOhK9GeiWOweBG7xYIiS8dGCpvMTWej1MlO48EuQZPHtKgbx5vgw9F1yiOz0qGTyUthc9OebavcGjTjzrFkE9EVcHPaOSvDyvrqK8wDH/PEShAzywnPI8eR/KPKaQAD1kPgq9hQ/bO/XsrLsCTw29cboPvc+Ro7z5H1k7k/2vPN8mMLwC9+K7dO07PLWzvbo85B69Kt7gOxxi2zsXozq7nxmWu+Tl0Lqzmja8Dz4APPVfGrw2s668j1i0ug74hTq8nRU96qTxvDEOMz3PrGa8qTYavT3+wzwmxne82INwPA/m1bwXMM08h8ekvI1rgjwrULA8+HeDPLIo5zxkyxw88XMGvL8X2jwym0W9zpJBPQY7oTs9/sM8ikHpu5IqI70oqpY82YLSujD0jbsyxxo90B42u0EWLb3anPe8KN9+PXV6Tj3/NYa8TwSCPU2TUDymkIA8K3wFPaxpRr3pF1+8NkDBu0rttryjkjy8NLTMPLv/cDwBalC9EFglvHNGhDz17Cw9kXG7PF6aLD08nYa9ZHPyu1+ZDj1so8S8ZVgvvDnmWr255um8dqWFvD+KuDw04CE9JtcJPSre4DtJ0xE7Jx0EPStQMD0eYT09cOcCPGhwmDw/F8s6RWP+vGRz8jtBMfC8waNOvBtjeb0dAIA8AvfivNuBtDz/UMk8p1J7vBejujzaD2U8iMaGPFM3Lj0Yvd86srX5vCIyjj0jIN68QaM/vDAQ7z3vdKQ8KVFOvDMNFT0vEO+8REnZPLMnyTpIYUI9fTczvJ1GibxkPgq84+ZuOx5hPT3/NQY8eZI3vatqZDwPPgA8AHyAvFqumDz6kSg6MihYu+682rwjk0u8fsRFvTnm2rzBiAu9j1i0PMKiMDyT/S+94c3nPA3n8zp0YKk8my2CvJeIBjxPH0U8BfWmPIT1tbwKmQS94rGGvGXlwTuWFre8fqmCurD0HLwfe+I8MijYvN60YDzFdB89QIkaO7XfkrxU3mW8u1cbvBJxrDys93Y94WuMvBxiWzz3k2S8RS4WPd4nzjyhebU7VFFTvDtyTzwWpNi7nNS5vLINJLyPc3c8DviFO3cymLp/a/287L34vD4Y6byzJ8m8QRYtPPNgOLqa54e8hyjivBejOrwXMM28PotWvLCtBL1K7ba8260JvM0Fr7zzYLi8KfAQvT79pTyViaQ85uSyOwq0R7vxABm8dpTzu7da9TsDlYe7XA64O2VYr7yBal88QImavMcAFD2f7cA8oF8QvSStcDg5PgW9XJtKvTXOcT2WFjc8xbu3PBLkGbzfJrA8nowDPH2qID25hA67xEnovDjn+LyglPi8BpzevAxAPLyxOhc8Z52LvKzcszwfe2K8i0BLOzjMNb1YIiQ9iiamPOTl0DrI7uO8iJqxPLlYObykSyS8uxCDPO1bHb3/fB69v/yWvEoZDDz6Hru7nnvxO41rAjxcOo28j3P3vEx5Kz0Rcsq8NZmJvFzHH70a1ma96RffPEIw0rwt3CQ9HmG9vHNhRz2Awgm8WCIkvF9BZL0eGqU9gHyPvE2T0DwJQng84c3nuzKbxTuFZ4U83PODPJX8ET08jPS812nLvH1SdrzRxe26sK2Eu0W7KL3M64m8jj6PvBT9IDsr3cI8cbqPPGKylbyBCAQ8OMy1vOJZXLzL7Ce8AoR1uzUmnDvlyg29mc6Ave+7vDw8V4y7veOPvLc/Mr1BQoI83rRgvJFxu7xWwoS7DEC8O+m2Ib3yuQC9tSYrvFVreLz/fB48dXpOvD3+w7wVQxs9GknUPGLn/bqFD9u8hQ/bPD9DoLztojW8gpUWvvJh1rvE1vo7m7qUu7VSAL0nZJw8ZuQjul4nv7uIxga81/bdvHLv9zwoUuw80EoLPAFq0LxZEPQ8HmE9PVw6Dbz5rOu8OeZaPRQYZDypw6w8Wq4YuvgxibwJmqK8Tr6HPFM3rryt9li8p6olvCrDnbwLJhe9Iga5u4knRLsWiRW7keSoPHBIwDz6kSg995NkPGPMurvSqio830FzvAP2RD1Boz+7DT8evU14DbxpGG49/Kovu/xjl71dDRq9qKkHvfcg97s9/sO70zafO/7eeTxTN667mbxQvGeMeT1dDRq9keSoPB3UKrwkvoI9PXGxu/7e+TwHDq68ts1iveP3AL2R5Kg7OlgqveLMyTwh7JM7qGMNveP3AL2TcJ08TDITPA9z6LkkvgI9I5NLPPcgd7uPc3e8ejnvvMVIyrz3eCE93rTgvL3jD70+/SW9M5qnPE2TULyF9Be92zocPA3nczzNMQQ9r4JNvPi+G703Wua8nUYJvU4gY72jvpE8BINXvJGMfjzY2xo8IwUbvA3nc7xmctQ8hyjiO3PTljvhsiQ8UB4nPQm1ZT3DvNU8ahdQPeAlEjuee3G8UsXevC72yby6ygg7cOeCPKSsYTyrT6G78mFWPJcVmTycAI86Ba4OvX6pArxqF1C8/sM2vKY41jl4rXq7UdcOPddOiLyRcbs8rNwzvMyT3zv+7wu9IQfXu5rnBz24Wde7RWP+vM+s5rxzRgQ9MyhYveTl0LyNP628Ir8gPfh3g7xZIYa8iJoxPLvkLb2UF1U9TAa+PNDXHby0DAa8gWrfPAq0xzyXiIa724E0PehwJ71vSd48PXExvP/d27xbgaW8Kt5gPVzHHzyc73y73rTgvMEwYTwBalC8wc8jPOPLqzt1Xwu8MToIvRpJVLshB1c930FzPZzv/Lzl/3W9oXk1PVVreLzuLio96rUDvYYOPT3dDam8JL4CPaKTWj30GaA8sZtUO/urTT30el0901FiveM+GTpsMFc9j3P3ur+kbDxrFjK179Z/PK71Or1hQEY9YlprPWNZTTxocBg9rPf2OzIoWDtiWuu8BynxO+M+Gb3x1MO68NXhvHLvd70krXA7NLRMvYJPHLtl5UE8LGpVvXG6D72OWdI8iJqxPOVy47pOrXU7/KqvPIwliLuvD+A8x9Q+vdAeNj2xm1Q9PJ0GvNyb2TspUU68cdVSOzE6iL1pthI97S/Iu4HcrrzYaC2531KFPHJHIjlKCHo8tAyGPMS8VTyAUDq7V/dsPBYWKD0mqzQ7wqIwPV5TlDwQ5bc7k/2vPFoSTrsTn2k9Ibwxvd5dQ7xACdq8CremvOs44juYbQI9rk/Euw9btTy1hlS8z347OlNq1jtM02u89FFBPbus17xM02u88Y8BvUzT6zwjPqa7iE0AvTly77qkZ4E7rN+LPLs78DxmPDo7Ry/dvE21Or29Lsw8yOfQOeGAjDxYUA691KS+vHMo5rzUw546PrgBvYyRNDudn3q8cQZMvD/JjrsF4ns8lLe3vPXTtTw6g3w8YZgrPDslAL28TP288V5lvTbfbbn1AvS86vgWvW0CYzx8Eoc9vs5xvP2rGj1uRIw8G9Z5vWgvFjzkEw69P8mOOz0W/rw89OM8tSb6uoZrsTymGLS8QhsWPa/RuLx+Y98897UEvNGgVb1UfJI74gFSPZI1w7ssl1C9Ifx8vdysELwJppk8vY4mvXUKNT29Lkw9+4hRvEV+Kj05Q7G8lJmGPAYkJT1SKou8qz63vL6fMzyAdRs6y4tfvRKPi7zXJjM7/ImAvOXjoLyn+oK8tmgjPM7vIr2ARS49HxyMupy/CTxNtbq8ZFuauwZT4zyeIW+9vY6mPFggobxPZxw91XWAPe261jwW8h+9Zk1HPY3xDj30IgO8qdpzPLdoozzODoO8+IRovK/RuDxdNOg8FiHevA9btTxTata7ffL3PJgsCL1JsoA7ZcwBO7HiRb2JXg09M135vDhikT2Gy4u8ArCDu7eX4bwduMg8OGIRvQZCVj30UUG9+xfqO++tsjzkcjm9kkbQPBDdKT3D5BY9ymnFvBsHljzDQ0K9c4hAPcraLLuIHZM8BeJ7PAMgvDz4VSo8DXqVPLgZ1rqPQxY9Ivx8OgVC1rtiCRM98m9yvSUAZjwEkaM8Af4hveHft7y8fRk9tHVHPfJe5bsjbeQ7Is0+PVBIPL2CZ0g8/QrGvD7nv7zDVM+7F5LFvE/X1Dxxd7M8+hfqPY8TqTz4Vaq7T2ccvf0od71YICG8fEHFvFqhZjvHd5i8P1inPAtXTL1uE3C9GvaIvMX0dDwaNtQ7pwuQvWJKDTw7JQA9kgYFPct6Ur3FZVw9Qvw1vDw2DTuS1hc7soLru82dmzzhDvY8oJJWPP2rmjscGKM7lqoTvSJc1zsDT3o9m31gvaZYfzwA/iG8lFfdvDjwejxNVo+7mOpePS+56rwRfc+8iS3xPIWKEb3fzio8eU8YPcppRbrXN0C8Puc/PVmRiL0A/iE81iYzPXwShzx1exy8o8X9PCG8sTzFZdw7U2uFO78QmzygpBI8Ed0pvG7kMT09Fv47wyWRPBBswrycn3q9SEEZPZ4QYj2fIp686YcvPWXLUjz/e628yfhdvG71Pr3FZgs9E/9DPLus17wsaBK8uBoFPTz0Y7wt96o8zx5hvLMFD73MnOy8QhrnPICliD32c1s8WqHmPNQzVzy1hwO9RR5QvTr1kjwVENG8RX4qPDlzHr2oOs68p/oCvCG8MTwWId68P8kOPbs8HzzZSE08ltoAPkLrKD3/ey27X7eLPDlDsTxNlwm8WFAOvE1V4LyIjUu8sLMHvcNUTzzevZ05dXscPfjkwr0bxWw9e192PACex7wc1vk7w0NCvYn+Mr5rgZ26CrcmPFuyc7zQj0g7Ifx8uxXhErwncU292yqcvLusV7t8QUW9PGXLvJpOojuKnlg804KkPB3J1btMpC279OBZPA9bNT3Qj8i8cQZMvFHpEL0YdJQ9XfQcO4Wbnjut3ty8cJXkvB4pMLzp54m7AJ5HvESc27xHMAy9WWEbvN17dDzmlYI8OoP8Oyp1Nrwsl1C9m31gPBXhkjxu9T49Aq/UPYFWu7vxvj+8iE0AvO48y7qChfk8FHArO2vyBDyqXGg8w+SWupndOjtJQOq8jjHaO4rgAb2iJVg8760yPXCWEzwg6++7xCURvIntpbtWP4G9iv4yvAoXAb0b1vm8PwqJPHYbwrxOxkc8pafMPJKmKr2twKs8Yqm4vHtBRbp2vBY9lchEO+2cpTxky1K9Ip4AvC8ZRTwZQ/i9QQlauyqk9DutT8Q8Ru+Rul0FKjtv9T68Iz4mvSM+JjtNxkc984B/PgQxST2Gywu99WJOvVJqVj0G4nu5xLQpPQtXTDydEOI8CremvAMgPLyJLfE8Af6hvKB0Jbw/mHK8dhtCu8U2nrx70N08LIZDPT8KCb0QPQS7crd+vBh0FDyfklY9oJMFvb0dv7yIjUu8s9UhPdIRPb2BtpW8KZNnvBijUj3RoFU9nL+JvTqDfDu+zvE8HBgjPSDr77usnhE8hsuLO4o+/jzA3368J4LaPNnYFLyPJLY8LCbpPGnPu7zikOq8nO7HOwYTmLwtN3Y8Hljuu2hfg7xWXbK8ZFsavZ9jmDzHR6u8gEUuvdAAMLx3u2c9GbRfPDjSSTwcuEi8L6hdPF0j27zTgqQ8swWPPGE40b3joXc8l3n3PCiCWjyf8rA8BJGjvIntpTzbaue7mt26PAiVDD3tuwU9iv4yvc9+Ozy+EBs7slMtvd9u0LwPW7U8jfEOusDf/jwzvoI7rzGTuwTBkDxOxke8XWWEvElR9zsgS8q87jzLu1Ho4bvQj8i7mcwtvRvF7LyjhTK9KIJavbio7rwcR2E7lCgfPT+Y8rzgzqo8HEdhvZ7hI73LS5Q8+FWqvMY2Hj0bNtS8SRGsPNjXZb170Qy8rJ6RPZXZUTxaoeY7CdaGPGWclLwQbEI9BhMYvaImhz2OMgk9l+sNPUV+Kr0Ou4+9BrM9O1yDNbywAHc7VY0fPSkEzzwOivO86zmRvKQ25Tx70Yw9QRuWvFHoYT1tAxI9goX5PPiFFz3gPxK9U3tjvArnE71l3F+7jkMWOUF6QbzTk7E8t9mKvfiEaDwhzT48Zx6JPNlIzTzE9HQ9kqaqvLHElDjD4+e5WfCzvIyRtDs48Hq9327QvOmHL72fUos8kgaFPItvGj34Zrc8lqoTvEP8tTsT/0M9spP4PNq5NDxV7Mq8LakMvJzQlrxzt/48C/fxvGvx1byWeXe9sNG4uRJfnjut72m8+Ga3PB24yLyUyEQ8T3d6vFffpjwcuMg73DspPJfrDb3J2iw9J0KPu5xfr7yLr+U9GKSBvMDBzbxyWYI9ldlRO5TIRD0/WCe7gEUuPd5dQ72XSjm9PPRjvCnEgzzCMrU7vz9Zu7BxXr0g7J485HI5Pa/ROLxKkyA8UjuYvK7wmDyiJge9UcowvIaa77yN8Q69GYUhvYXpPD0Rfc88uBnWvJ+BST0zXfm7nXA8PeXjoLwALg89AW+JPP97LTyU5vW8FiKNvT9Yp7xMpK26spN4vVb+BjrIuJK8UbmjPKImh7oWIg09KOI0PRSwdrscR+E70aBVvX40obwYo9I89CIDPbJkOr2afeA8EMwcvVjwMzw14Jw76RbIPACexzwEwRA9drtnPLs8n7x5v9C8pDeUPATBkDwk71i8jJE0vEOLzrykZwG9rD43u3kOnjuXSrk8LIZDvVjwMzx2G8K8xqeFu/eE6Lsng4m9JN5LuwhlnzwmEXO8kqaqvHgOnryWOSw91aS+O2Ra6zumGDQ8pGcBva5PRDw5c547MLoZvdJAe7yVOSy5tHVHPUlR9zqf8rA8CebkPFvjD72t7+k8CGUfvFHpEL0o4rQ88K0yPI9zAzzaubS8b1WZO7YIyTzpt5w81hWmO39kDr1Nlwm9EAzovNmop7zTwm86zQ1UvOc0ebyitZ88cJXkPD5HGrwHxMq8CJWMPZ3QFjxgJ0S8s3XHvErDjTw69RK9tgjJvEYvXTwzfQi9nyIevVX917xwZqY84pBqvCG8Mbwt9yq8z367uzNdebw/abQ8phg0u7WG1LvkE4684d83vV0FKry7bAy7nI5tPHSqWrzDFIQ9/3utPFyy87uEeQS93DupPb7Ocbw3UNU8xLSpO+WDRr0Ktya79jMQvN29HTxpzzs8l3n3vMDBzbzaGY+8QRuWPPbTtbvnNPm82lnaO6LlDL1rUTC6zx7hPH40oTzodqK6ie2lOtIRPb0kfyC8UlnJPMoa+Lu9HT88NC47vQiVjL1cgzU9c5lNvKzfC731AnS8hIoRPCyGQ72gMnw8ymnFvAmmmTx7MDi90oIku5S3t7ySpqq8v1BmPFIqi7za6PK8RA3DOA3ZQDw0vdO78O39vGDHaTxaoWa8FbB2vPQiA746Q7E7OdLJO0IaZ7sgS8q7r9G4O8S0Kbuc7se8hppvvCKegLxQ6OE8TsbHu6jac7piOQC9Vb0MPcdHKz16MDi8RX4qOwoXgT1mTUe8oQO+PBnGGzxSWcm8WnKovL2Opjs5o4u7TbU6PLL0gTz9aqC8YThRvfSxmzyJ7SW8gVa7u0mx0TtJsgA9x0crPcNUTzw8Zcu8FBEAPUozxjseKbA7SKBEukigRL1dNZc7PMUlPYcMBjyPJDa9qlzovF406LthJ8S8MkzsvNTDnjwuqF263l1DPKYYtLxFDUM9Jo9+vULrqDtYH/K8glY7PSyX0Lwxyvc8Nt/tvKIUy7yF+km9QAlaPFiQWb3REb08QAlaPCyX0LwDgJa8mcwtPUwVlbo4YpE8dKraPNYVpjwCPxw8GHSUvFHpkDvOrfm8lTmsO6e4Wb1o/vm8Rd4EvIB1mzwjf6C8fFOBvD64ATwPbEI8SwSIu54QYr26bAy9ac87vcxcobwzfQi9mPtrPL2OpjsdWR28LxnFPE/Ygzucju27y0sUPSZgwDoT/8M7pKdMvBF9zzy5uXs9TbU6PU5mbT3Hh/Y8qMoVu0sEiLwmYEC8DMgzu2ZNR7wLaYg7sOJFvAtXzDuT5nU8j7POvGzxVbzmlNO8YZgrvUHaG7y97gC8hem8PCNt5DzWFaa8g3mEu5dKOT3/u3g8/xwCvbsMMjyy9AE9l+sNvJHV6LykZwG9gziKPDY/yLyCVru8Iz6mvNUz1zzpFki7EN0pvWqBnTyUKJ+8HYkKPYDmgjweWO68PvjMu6Cj4zwk79g8o4WyuxsHFj3Coxy9EU6RPD9YJ7vbKpy8wIECvWceCT1kW5o8chiIus6tebyHDAa78E4HvaPF/bzLelI8ra8ePC4IuDqafg+8hpsePT13hz2gMvy79QL0vGzTJDz4Vaq8Aj8cPQnWhrxL1Bo9JK8NvKAyfDwsl1A9RR5QPf8bU7xZ8LM8KZPnPOLBhr06Q7G7aO1sPK7wGDtRuaM77sySvBqWLrzPHmG9AI06PT52WD0VIV67sLMHPWbcXzzxjwG6Rd4EvPz5ODqe4SO9qrzCPCnzQb2UyMS8FgOtPPp3xLyn+oK8wjK1uznSybyUWAy9xqeFPOQTDj09dwc8sHHeuysWizwEkSM9Ra3oO6pc6Lzl9K08+geMPUOLTrugMny8MCrSOcCwwLzjAoG90C/uOrWG1LzMXCG9jK/lPLgaBT0+dli8Ra1oPIDUxjwHVBI8JkIPPJDEWzw5o4s82uhyvGrgSDyLr+U71QSZPMLTCT2a5Qc81IRTPcsV2bwuHUe9r/2fvK4Surx536w8G9OTPfrZa7ygAio868QPvS5HezoNw4O8vJmKO8fOAj1mOzo8OIRaO9+5y7xRihQ8tchpvM0N8rxHTbU8LgitPLo/yzzkTa48m4vIPCjrCr2tIgi9K4F9PLd5zbxQvC86EhoovSENt7zFnnc8NCCDvN+5S7zCtqy67acOvBP9przaA5y7yjrBO3u6xLxWVV48hl6WO3M2MDteOxm94LHkvMbjHL2i7Q+97N51vfnpOb1p14M8SgaAPc/OozoLm189dhkvPNvzzb3RqTs92KSQvU1lC70wbx+9WQ4pPeW0oLrmG5M4RnKdvHBbGD10pYm89EA9vAyGxbyXH4q9QrnSOSmJZD26P0u7leJLvQ7YHb0mw2a84qn9PLFkkr0eVOw86PYqPYV7l7uojiU8gUbAvL7wLjy9GmM8oAIqO+j+EbyJytQ8W3UbPNR3IL0qzgm9nGGUPPUOIrzwj9m8pcgnPM0NcrwdTyC9Rl2DPFZyX7w3oVu854KFuttNjTymwMA86+bcvI40A7ujVAK9zfhXPRC7HD0o64o7iiQUvbLDnT3HSg89VYf5PJibFj1Gf1C8js2QuxrwlLxWtwS9F7u9PJ80Rbx4CWE8nl75PCem5buy5eq8hXuXPBjI8LwceVS8gzZyPd7OZb3vj1k9f9KaPIjK1DsV2D69yamaPC06yLz6zLg8e5CQvO+s2jwmJQ09yiUnvc7w8Dyp2BY9kEG2O+vZKb0mJQ09TBh/vTH43jwmtjO8nl75PCEa6jokxgE97CuCPAMs5Txo9AS9CxKgPJba5DyFe5c8BAKxPFzUprszNZ07SEVOPFVdRb0V2L67qmk9PRmJIj2H2qK8rwrTPA1pRD1dQ4C9Sj3nu4tuhbyWuJe7nXt6vINTc7zZCwO6V1XePNc9nj0sQq88J5myvPNq8bw1GBy9mL3jvOvED72dwB+8y/MLOxXYvjxBwbm8hgRXvcwAP7qvH+2780C9vNA1lr3HdEM9GnQIPA9MQz1536y8oQ9dPS4lrrydZmC77MnbvPSvlroKwMc8DcMDPZq1fDwgN+u8WEDEvDDzEr2j0A48xJkrPecg37wvKvo86WWEvAqrLb3xZaW84XKWvGceOT1ZG1y6mbX8vLaJmzx4Tga8QE2UPGceOT1M/hi8lVmMPIKYmD29dKK9+em5PNg1tzysu5W7RKS4O/QrIz3OUhc9vRrjO3yy3bz0OFY8wjqgvDlvwLuJtTo9foDCPBqBOzyz0FA7eq0RvXnCK71NC0w9Ifgcvbo/Sz3bag495DgUvU/Rybxjgu+8NgMCPVa3hDtoCZ+8ridUvDLjRD0ZyPC6wNMtPej2Kjsk/ei78I/ZvO6fpzt0IRY9rUTVPHvP3jwCSWY8yUd0va/ohb1o9IS8B+UvO+gTLDytRFW8w6ESvZGTjryp9Ze8TPaxvOrEjzxe2XI8SxOzvKe42T0V2D49su1RPZ80xbVc1CY8FsOkPN7jf7sXpqO8aQE4vXdjIL1jWDu62SXpPCA36zoOVKq9NDUdPYutU7vkTa68DlSqPDpSP733Bju+mrX8OvQjPLtRpxW9PBi9O5McTrydWS27f3jbvOrZqbygF8S8VWWsvGNYu7wDH7K8IBWevEo9Zz2PNIO80n8HvfNAvTxc3A09iNK7vNdf67ufJxK9AVm0PbPDnbxKPWe8dhFIOz/7u7ziaq+8ZG1VuyiEGL0mJQ29WvmOvQyOLLzPsSI9SyDmPFZyXzuBTqe77Z8nvdg1t7q2dIE67YqNPL/oRz1s1Gg8gNIauyyxiDrsyds75j1gPey8qDugH6s6TRh/vHJTMbzkTa67LLGIvNhC6jvtIxu9ELucPIBjwbte4Vk8XEOAPOtAHDvzavE8YK8+vXnCqzyXuBe9lc0xvDaMwTuCPtk7f4BCPXdjoDzSodS8XjsZPc1vGL3d3jM7RYe3PEdqNjxTj+A8+P5TvVHB+zniai88N6Hbvb035DymL5o8ULwvPeKpfbwMXBG8OVomvT0YvbxugAC7far2PBxXhz5U6R89tp61O7o/S7199wI9P2qVu9C+VT1IvI48yLEBvNgYtrzIsQE8FOAlPRCeGzz0QL24OVomvCw6SDwHTKK8RJzRPJ5e+Ty0DY+8jHu4vKEXRL29Iko7b/wMPdgt0Lw3Yo28PgOjvBRkmTzq4RC9zfjXuyEiUb2uJ9Q8Cc16PdkDHL3WStG5ULTIPKIHdjwTEsG8MlIevI5r6rxTj2A82whovHwUhD3uDoG7mJsWPa0iCD3yavG7Q48evYm1OryI51W9n0F4vNdfa7wDNEy9bZ0BvRtsIb1xhUy8GpbVvGCvvryfSd+6FfW/PAUk/jtkx5Q8WZKcvD7uCLtBtIY8hRnxukkwtDyW2uS94qn9PMQAnjzmG5M8YK8+PQ9UKrwfHQU9yUd0PFgrKjzG4xw9YadXPKxMvLvKlIA6tpZOvMSEEb3dyZm8gim/u1Ok+jvvBho9sB/tuhgql7upflc9LE9iPA1ckTyYHwo8hPejvMdCqLxut+c7B/LivHulqrxM9rG8bhkOvZuLyLwXu728Ex90Oijrijypk3G8kBeCPePZCDyI3+68OHzzuwxxq7ziai89olQCPHydwzzrxA+9x1+pPFVdRT3Qxrw8i6XsOyiEmLzml587tLNPPX9jQb1LIOY8Xbclu1k4XTz/gmi7kZOOvRyObjx/75u7B91IPEAI7zyKtbo7z86jvO+PWbw43hk9d/RGPVy/DLzT+5M9EifbPODGfjpT8QY9JP3ovBX1v7vjYki9dCEWvYyQUjyCKT874oz8PAFEmrxvgIC8ChqHuk/RST1gmiQ9B+WvPc/bVr2404w5UcF7PJ8nErs8NT48Y+QVvSENt7xfxNi8c0tKPLWzzzzHzoI9wcvGPHGFTLxO2TA9DPUePZibljxQyWI86tmpvJP/zLylsw27/orPPONqr7kNk3g71N6SvWw2D7rCtiy8xXyqu3M2MD3YLVA8ExLBPB8/Uj1IRc48XeHZPIIxpjwLEiC9Fdg+PeoYeLydPCy8bNToPfjcBr2I3+68mvqhPalxpLwL/QU9WCuqPH94Wz1wkv+7CdXhu85Sl7x7KR49as+cvKa4WTwT/Sa9s64DPQBEGjwOdne5m27HOn5rqLwCPDO80DWWu1t1G7wfFZ67p7DyvHYRSL0AZmc98emYPKcSGb30rxY9U6xhO/NAvTxlqpO8LpSHPLECbDwzxsO6+6+3vCAqOL1hfaO8vvCuujlnWb0RiYE8ejEFvOu8qDwU4CU88IImPKaWDD0/CG88v1+IPAFmZ7xdQwC8CpaTPAyOLD29L/28OT0lPSpnF70+JXA8BBfLPOCkMT3s3nW8EgWOPC5H+zwCPDO9JiUNvfZ1lLzT+5M8jYhrOZ80Rbzq4RC9Y2AivbO7NrwEAjG83TCMvPHMF71P2TC881XXvCvGorzQ0++7G9MTvNvmmrzgsWS7PgOjvPSvFr24ZDO8oB8rPdgYtryCKT89eAF6PCiEGL2a+qG8NvuaOjtCcbxo9AQ9KXyxPIIxprwkQo68VYf5PFSPYD2RFwK9ed+sPEIwk7zqGHi8bqo0PdV8bLtCMJM8vTfkvEkbGjwTbIA7nl55O8lP27p8FIS8pcgnvK4vu7zvpPO84ZTjvJp2rrl9qva8SgYAvcIlBrsPNym9bDaPvP5oAj0fAAS9yhCNO0Oxa7wzNZ08Tvt9vUhaaLwvMmE8sUeRvAu44Lz6ooS8yGzcO2F9o7w2tvU8W/5avFv+WrxJOBu8tXSBPJiwsLs5Ur86aOydvPfxoLxb/tq8J5myvEITEj2ZAgm81UWFPWvcz7yVzTG7QOttvTlFjD3A/WG8bbIbPas/iTzGZxC9/4pPPAFZtDzC2Hm6Hkc5vGjsnbwPTMO8y/OLO55J3zzVZ1K8DIZFval+17wMcau8n175Ohmz1juNc9E5vBWXPN+5SzyW7/68J5myPDO5kDxulRq8id9uutP7E7wnpmW943fiPG4ZjruoeQu9M9tdvCLwtbr/bU69CbOUvGNLCDziVZW4VYf5vFlN97xo7B29su1Ru87jvTxT8Qa9ps1zvGn50Dxj5JW87LwovBMfdL0RL8I74nIWvT8Ib7y1DQ++HlRsPP2SNrv3G1U70qFUvJ7AHzowb5+72EJqvLSzT7s9h5a8bo0zPXJTMbznPWA8ukcyvYV7lzwFD+Q8IHyQvLFkEjwallU9etfFvA5UqjxmSG08ou2PvI+wD73EAB47Vmp4PB83azvq4ZC85oIFvezJ2zszxsO2afnQvPjpObzq+3Y8ZEMhPJIkNT2CmJg8x84CvTWcDz0rbOM8ICLRO97Bsjt5wiu9IQXQO3RDYz0CPLM7kjHovEdqNr0ly0289/7Tu+RNLrwBWbQ8nicSPFzcjTzk0aG8j0mdPBbQV70McSu8HGQ6PegLRT02lCi9KZ7+uL4FSbyYqMm8f3jbu30MnTu4eU29cXCyPKppPT3s3nW8WfmOvGNYOzzpeh48NpSoPIuYOT2BRkA9VYd5PHI+lzwj2xs8ULwvvZGTjrte4Vm9SGLPvPcGu7yEIVg8WX0CvEITErz7mp28QrnSu8WRRDyH/O+7W/7avIM28rzfEwu92DW3vTS+XDzqxA88ASeZPNN3ILzMKnO8vviVPNcohDzHzgK82C1QvMC+k7yU6rI8AFk0PWGK1jzvj1k9Ev2muUkjgbzmGxO8hRnxvMO7eLvZJWk7NanCPMsq8zu/Enw8EgWOOwyGxTv9n+m8KoH9u8/OIzubbke8wrYsvEZ/UDxDuVI8JOjOvB8quDz62es7qZNxuwmzlL0tLZU73cEyPAJJZjxjSwi9cJpmvL7wrjzul0C9e7rEvHhOhrwKGge6gHhbvHYRyLw3mXQ7l7gXvc3rJD2p2JY8d2OgvEsg5rvp7sM8o+UoPBRkmbvnE6w7qmm9vCmefj1VSCu96Rj4ux4/UrwfP1I9dvytO8K2rLvUhFM7OWfZu51EE72mzXM8vSJKuojfbrvr5lw6RIc3PMBCBz3KMlo9M86qvFKXR7vnKEY8VkirO/vEUTuj8lu893UUPWydATy+Bck7m+WHPC53hj1p14O8tvANPfuiBD07QnG9SyBmuyAqOD1uos27jmtqPKw3Ir1NSIo804TTvOu8qDxp14M9/QGQPI3qET3C2Pk7i8LtPLhks7yuJ9S6aAkfvSjrijxwhUy9cJpmvAXtFjzLFVm9TRh/O/jcBjza+zS9k3YNvREvwjxE9pA8nESTPAI8s7xBySC8Xsy/O9r7tDw9GD29z86jPIR7Fz3xZaW82SVpvAyOrDx2/C24hfejvTwgJDzVWh+82Bi2vIMUJTwYDZY8Nn+OuzwgJDyZtXw99E3wuwqWkzu6VOU8ZS6HPKxZb7sBLwA9atcDPf2f6TxZfQI9VgCWOz9m3zy+GYm82PQSvLEDt7zEmmK5OjySPPxTgTxNuF8880asOthLH70iZi298bS+OmKJH7q1Xhs9gFJIOYgpYby07DC9wbHoPDC4LTwAXku9sceIuzJra7y41aq61NVcPHeSNT2OpEi9akXavOTVdTxmrke5DeYHvA09FL2gjds8ox/JvCirWLwE2bK7SMpAPPg0S73EeRK9NqtxuwsCM7zp+dC8BUudvD/uArxsgLs89SoBvceDXL14QM68CwKzPF4uO71emwC8NoohvOJ+aT2jJG47vh97ugnjfLuIKeG9aFsTvSg4ob2r2ja9F8fqu74ZiT1bRcG7vMNJu3MASLw6yic9abKfvIKNqbukWqq8MNl9vb/+qjy07DA99tgZvS5BHrxsKS+9HFiLPMgrA70ZAsy80nmrvN39Dzzo2IC5jzERPZ9si7tpsh+879DpvJqfPD0ezxo7gPs7PUt9frySjUK9+8Y4vUMzrrzJ2Rs8ibYpvIu7zrtmrke7n99CvR1YC7ztHSw9WCCZPNPrFb0CYqM8tJWkPBUULb0LArM8mZoXvb4fezyUzUg8MxRfPLzf9LzwBqY8KQEYvHDbHz0mwRE935Xvu6/I1byyHhW9uYPDvGIXNTzr4sq7imRCPWokCj3lYj491NXcvAmmgTx57Zm7sayqu9YQPj2Maee8tOwwPQSdhDvPkLE8e7aQvZ9sizxJ5R69FYdkPKqDKr1Kz+U8HianPOJ+ab2nZHQ96C8NPbGsqjtLszq9ZQAvPc7iGL2sTCG8tUO9Otq9iTyvGr26oXEwPcOwG71m5AM9fNYTvFqXKLxlAC+8NNyIPX1pTj2YZNu7vvmFOn0SQjxOnLS8E9lLPKdDJL3Mpzc8aLPsvHAXTjyqpHo9tvHVvDKhJ7uR36k6pQjDO5fS7bxlV7u8Z1xgPMI+sTzz7589NE9APCnhFD19EsK79Z24u2hbk7q9Gla85r7vu0JPWbx/F+c6VY/4vP159ryxxwg83pDKu9ysdTyHe0i9GP0mvaFxsLwka1K8OiG0u2Dc0zx9EsK7kx8wPEp3jLzkYr68C3XqPPJBhzsnprM86flQvM9Ug7vgyyu9RhwoO8ts1jwKx9G8h5EBPJYjCL3ZFeM6CRm5O3hAzrwwuC09zFArvABeS71dgCK63ufWuwYUlDyAFho8rY10vM0ZojyjVQU99tiZvU5meDvsxh89C1QavII2nTwpAuU8jzERPZhk2zzfPuO8gQBhPUyzujwUMFi8KFnxPMpsVjpkyvK7ZiF/PD3U8bw/RQ+96KJEPGVXu7y+H/s880EHvCO9ubxj+wm9sawqPP/KED2svgu9lnvhvB7w6jzFfrc9NGoePSemMzxCpuW6OsonvA2wy7vq3aU84l2ZPHM2hDy8hxs9X4XHPPb56bwlwl69C3VqPCHZZDk7BQk8GlnYu07um7wbPS09mNEgvde+Vr3ookQ9ae7NOyErTDw/nJs9zGsJOyMwcT3Lw2I8owMePf9dy7xChRW8pHv6O+zGH71TM8e8h7GEvK9xyTtMs7q8DV5kvTwFiT0RfRq8lggqvcAD0Lr/Xcu8NU9Avi0mQL3+IR29QoUVvWyAuzyrg6q7ICtMvb4Zibx26cE83Tm+OhdwXr3AA1C9Mr3SvGT7CbysTKE8/XOEvORivrx8ZKk8EfX2O74f+7xJz+W76+LKuzZU5T0nVEw7JKEOPVkFuzwigtg8SibyPMR5krvUXQC9p2R0vEMzLr2YDc87FRStO7meoTxgEpA8N49GPNa5sb1F4UY509A3PDp4QD1fhcc8LJn3u/b56Tph2wa9FxnSvEpcLj3G1cM8imTCvMaZFb3GSPs7akXavFRuKL3g5gk8nvogvQILFzvJgo88sh4VPT0r/jyvNRu8OOZSO9KUib1Ubqg8tppJu0sKR7uBqdS8C6umvMe5mLwHwqw8slpDvcts1jzOVVC7aEC1vKpN7jx0jRC9hnYjPLsVMb0vK2W8Tg9svAHwuL0igYs84ez7O20NhLwhK0y8H5iRvP0BmrvKS4Y82BVjPGTKcjxIV4k+qZ9VPJA2NrutNmi9P0WPPEOmZTztdLg8LibAujnlhTuuGr28ZuSDuzPCdz0dXv08QbwePCUZ6zumtts8f8X/vFu4eLhLIIA9OiE0vJcp+jzXnQa9Y8VNPR+ZXjzdVem8RE6Mud/GBjy7viQ8kN8pvXAXzjuXtsK8w0NWvAjdij2w/hG9EZ5qO9a5MT2/rMM7FGYUvZnxozoZq788JEoCvShZcbwJx9G7X0kZvLJ1IbtQSk08uojoumHheLxHykA94MsrvHxkqTyz5ws8xOxJvESKurxlGw29uPb6Oy3qEb3aayK5ZRuNPM4ZIjwHjPC64pSiPKbsFzw91PE82lBEPLaaSbw1M5U8/gY/vbd+Hj3qTxA8d5I1PYD7uzwrIZu81n0DuvUPIz0W3aM8HpnePEH4zDxrKS+8lyn6OnntGb2aSLC7ZMSAvAX0EDxeLrs8oTv0PD4PU7yaY448EoK/PJpIsDtQoVm8W7h4PMYsULw1psw800IivUt9/rzIECU97gEBvUhXCb0DKxq8WemPvUSlGLqbDAK9qfG8vBH1dj09Cq48fRJCveR9HD3PkDG966acO+zn77uFQOc8xNAePEhXiTxCpuU62hQWPdoUljyJ13k8j1Jhu7EDNz2eoxS9NGqePHAXzrsjFEY8Pu4CPWTKcr0Lq6Y8KDihPCDUv7w45tI8oDWCuxj9Jr2HJDy98ngQPQhwRT1DpuW8jcBzPfAGJjzAOQy9idLUO3AXTr2kWqq8Gas/vcxxe7ykzWG8MfOOvDo8Ejzm74a8Bt5Xvf+vsjuVe+E7ttAFPRyUOT2bSLC9sB/ivE7uG70+D1O8AbSKvNoUFrxWABa8OeWFO7dI4rklGes8rhq9PZPIIzyxA7c8SeUePE9KTT1D3CG7y6KSvE4P7LmxA7e8n2yLvIm2qby7FTE9/VMBPIexBL3yC0s8jEiXu83+w7ssIRs9jqTIPIpkQjus39s8v8huPJnxI7uVe2G8+WqHvMmCjz2uGj285RDXPEg9+D39UwG8Dwx9vGAzYD3uIlG9epx/PP+Th7yWsR09a0Vavcm+Pbz5agc8P5wbPdziMTzArMO8ae5NvVTgkrw81PE7BJ0EvNJ5K7yQAHq8NlTlvKRaqrzPVIO78AamvEWP37xyxWa96VDdOjePRjrap1C8wZCYPdqnUDpZkgM8vWw9vBBHXjzp+IM8IzDxPBGe6jwQ8FG9c1IvvHU7qbrYbO+8P5wbvUROjLxR3Lo8eCQjPS6zCLt5ey89RRcDPAOeUbsADOQ8GBgFPMe5mDykWio900KivNnDez2f30K8aEC1PI0Rjj3hrwA8a9KiPEp3jDufbAu7RE6MvAOeUTvzueM8Ch7ePDg937slTye90csSva1sJL1zHHM8C6smPMOwGzzSQ2+9v8ehvF9JmbuA+zs9jzGRvOviyrz22Bm9IO+duyArzDzkC7K8i/EKvVXFtLz7HUU9F6aaPAaHS7yU6fO8kzoOvWUh/zxFj188488DPBIrM72WIwi9EoI/PNTV3DwSgj89YomfvJv2SD3dOb68etK7vAurJj1e8gy7go0pPcGx6LwJGbk8RzcGvCkBmLvPqw+7DLBLOtqiq7vaFBa8NTOVvF+FR7xnO5A7ro30vKTMFD1f1668EdSmvDjmUr2KZMI8Xvh+vB0hAjx1Voe8fC7tPHl7L70E2bI8cm2NvDjm0jwEnQS9pV9PvWhbkzwIcEU8OsonPYexBL1uuxy8l182vdq9iTzjz4O8dunBvLSVJL1PSk29ocg8PexvE7xSitO6TQ/sO3M2BD0DntG87R2svPZLUb2G7n89BfQQPAsdkTzc/ly8apxmvUU4U7vQ5z28bWQQPGDcUzwlGes73KaDvA4GC713krU81hC+PLu+JL1qnOa88Cf2PMTsybx3doq8mGTbPJV2PDwhuJQ8fH+HvATUDbwoq1i7oh9JvYtkQjwQ8FG9uYPDvATZMj31nTg8prZbvC14J73ekMo8t0jiOSTYF7zfxga8rN/bu8NDVrwvYaG9qfG8vHwu7bzkYr487edvvKa227t1O6k8+8a4vK7ejjzrphy9d5K1PFoK4LrT0De9tQcPvjrKpzz6igq89tgZunxkqbuCjak8UEmAvMgQJb3Lw+K864u+vAxZvzsnVMy7YcCoPIOu+bzymBM76d0lPYbNr7ucLAW8qX4FPfqLVzx3dgq78XiQPKAaJDyLElu87o8WPZUDhbsDnlG9pcyUPN6QyryZEnS88xBwPEJP2bnUXQC9rEyhPQpUGrpRpn491yscPf1zhL1yqTu78HndPOkvjTzCWQ877T78u/AGpjv6wRM99GEKPSmPrTssQuu8yGcxvfJBh7qvccm8oyTuPLvZgju9ceI8bi7UvP100TwoOKG8LtRYvMpLhrvPOSU8ae7NvNcrHD1KXK686+LKu9ys9bu4LLc7lnthvfSdOD2mlQs9DussumMcWrw0+LM84dBQPXMc8zzG1UM9pLE2PeMLMj19ac6850u4PEH4TL3l7wY9hMgKvVzSib1XePK8150GPKqkejvZ+Te9HJQ5PCems7uT44E8rho9vendJb0J/Q29fWlOOx7war3oZpY8wyIGvLD+ET1YyQw84SK4O5KSZ7wrlFI8ticSPZkSdLzJgg887MYfPRuw5DhE/fE8AmIjPZhDi7xpsp88ujFcvOndJbxpCnm8KnOCPD64xjzBAgO70D5KvNrDezyau+e7xOxJvegvDb0hglg5ECaOvK6HArzHuRg7/13LPBgedzvJ2Rs9dVz5u6A1gjzJ2Zu9czaEOt05PruEViA8NML3vNPrFTvap9A8Br2HvZPjAb1lGw267T58vOa+77uuFRi77G8TvPBdMrwjFMY8zzklPTJKmztc89m8liOIvGqcZjt8Lm08+hggPVHcury07LA85LlKPHH7Ij1BoUA8oXEwPfNGLDuxAze935BKvAywS7uXKfq8+C8muw1eZLwya2s8ZFIWvBUUrTq1tvQ8chYBPSnhlLpSpn481X5QPHg/gTwaWVg8hkBnOgILFz2fjVu7fLu1PEBmXz28hxs8UEpNvFpAHL1DMy49Tg/svIKNqTycTdU8X0mZvJhfNrw0pky7C3VquuDmCbzSIh89r8jVO80Zorpwblo7tUM9PLyHGzxFj1+9ew0dPD0KLrziecQ8K8oOvXBuWrz9cwQ8eoBUvZq757yHP5o8clIvvXrSu7xyqTu7eZYNPUY4Uzym7Je7jEiXPDK90rzyeJA9YjKTPEOmZT3DsBs9x9VDu+A9ljziecS8FYaXPJ82T7zjtKU8Kz1GvFeurrudTAg7go2pvFjP/rwZHvc76FDdPHSuYD3JEKW7hFYgPVsJEz3gIri86+JKPWIXNT0zExI9qp9Vu6Fmy7vB5yk9+nNlvRAO4rsUbkq889IQu1vqyjy8YDA9zcHVvAOnCD2jvdC7KTwOPYlOODy81WM8ISFlPVn3AD2kb668n13ovFWvEj3F41a7euBcvWp/Nzw8kH08fDWBPO41fjuTqk09QPBlvb63NbwNA547bNY8vEfMA7wkjoO83PkIPL1RmTyiCZK7w9rzu8h3BryCvtu8QmwbveK/DTyoHbk6Ky/YvPHwvrv27Gs8ogmSPIvz37x9EFG9cwJevYMTAD3hzqS9KlSIO1ABiLkOBf88xePWO41vFT2WpJk6wDVMvRSVWzxNB7y9DzOSvAguAry9QoI9DOujvDKYoztY4ee7xW4jPTz0uLxadZc7OevVvJSzMLydghg8XGYAPZM1mrw24JG8UAEIvfmYFbzfd5+7Z9oPPMdh7Tuw+7c8GRzVPAA4iTz2UCe86jnRu2abBLw0ZFw9CxI1vHM/iDzaVkK8QPBlvX3pP7wg+lO8VJcYPSPcJbwMxJI8zA0Xu/URnL3GR5K8N5RQPcOMUbtK/li9WV0dPMlq0LoefD08qg4iPQydgbyfNte8YywFPTXvqDxsiBq9VAxMPT7A8bsJ4kA8rUB3POJb0rzGIAG9JFFZvc9VBTqty8M8vre1Ow3cDDwEqek8Z09DPe9yqLxP6Q09JYFNvEDuhDt3YkY93dTYvDz0OD3pXgG7kzWavIJJqL2Ex7483ytevf0uJj1cZgC9OU+Rur63NT2yoF+9KwhHPXiwaD2QBSa8vVGZvLMcFT1ka5C8fTfivLwSjroefD08snnOO3Uy0jw1yBe8O2nsPE1V3rx5BY28VAxMPJamejy8/PQ8HJprvfhDcTxD0jc9i/NfvOVktbwkA7e8RZ7wO5VlDr3hp5O8/S4mPeVktbz2AoU7SIDCuoTuT7xIp1M8ZsT2u8ieFzzqEsA8qyacPcE1TDxxNiU9ogtzvGDm97yOI9Q6nl1ovCixQbz6/rE6g2EiPbT3ZLyiCRK9PplgPKw+lrxadRc7QPBlvQhVk7ykIQy9yGFtPDDdYjwLEjW7uKVvuitsArxqWCa9ln9pvHPbTLyEFWG6UCp6vEFUoTpKsDa8K7okvKhr2zuCOhE9UdxXvQJS5DvwPIA8/MrqOplhO7w95aG88GMRPX+O57uaYTu9VYriPMwP+DxA8OU7a3CgPOfiy7ypzxY8SM5kPTOwnb2kYJe8cttMPf+FKzyfD0a7oD86PLIrLDwxWRg8ZwGhvLCGBD0nJJQ85GQ1vLOpwjzvJAY9+PVOPJmIzLuQU0i7ISFlvUiAwjqKGBC9KnuZPerrLrxKYpQ8Q10EvZdY2LsmgU09ocoGvWJ6p7wCefU8Jv2CPfYTfTyY+548B4u7vMPa87wagJC88/khPbAiyTxN4Ko8FjgiPciI/jwJbQ29UkCTvemFEjz98Xs7eBSkPP0HFbtOqoK7zZpEuwRbx7wcJbi86V6BPczmBbxUWm66lNrBPV2P8rzqYGI9La3uOz4krTxUvik6ZyiyuWxhCTzmCd28DpBLPL+oHr3/Nwk9bXkDvM5Vhb0ycZI9wTXMu2C/Zr2h2/68VbHzvJcxR76ouf28Uo61vOQAerwBUIM849cHPHjtEr1VsfO8SjuDvAhVk72zqcK8zXMzvRlDZjuQLLc8t3X7PEDuhL125C88VbFzPPbs67pgmNW8eGJGu0/T9Lww3WI98/khPEinUzwX7OA7ac1ZPHfVGDtHzAM9FjgivSpW6byyBBu9XuQWvOQ9JDxD0rc8WsM5PZQo5DyVjJ+9ernLPFKONbyyKyw9yDpcvKDKBry1WyA8EOdQvSsvWL3mVR495T2kPDlPEbzbfdO8iU44vALdsDw+/Ru9PsBxPOyQ1ryDYSI6yOy5O3rgXD34pyw9EJkuvUpilLuEUou8AitTvLAiybzki8a7OBCGu30Q0byj4oC8FG7KPL4sab017yg9zcHVvG0twroCK9O7vIfBvCsIxzwaQ2a9VNajvB/K3zq81eO9XWjhPCsIR7otESo8dtWYPE2SiLumYni7Z9oPu8lDP7qZYbs8jW+VPsXj1jx9N+I8VIF/uqPiADvK9Rw8SmIUPU83MDzWgSY9cV22vNhyDzwLh+g80vosulxoYTrMwdU6d2JGPQSp6bw4nTM9I7WUPT5LPrwmgc08r26KvIDLkTz4gBs85NlovJtqnrv/+t474g0wu+O/Db0TZWc8k4O8vFNa7ruj4gA9daUkvUqwNjwUvGw8CLsvu1gI+Tt4iVe74uaePBCZLryS9g68cYRHPabGs7wE5pO7LYZdPJkTGTzY2Ku8RZ5wPCYMmrv5mna7VL6pO+GC47xeQdC8YRZsu3hiRrzDjFG8uQmru59d6DvFCug6t3V7vGn06jyoHTk8VmNRuXGExzuYlQK947+NPB8Hir1gccS8lwq2PIFwOT1G2xq8Q4SVvJ/otDyZ/f88kN6Uufzx+zzP8Uk8uFfNPDmdM7wLYNe83NRYu/pM1Lzxya28+FmKPM8YWzwg+tM3vgXYO1TlujuOh4+8cwJevGtwoDzvSxe9//pevJAFproziQy9myuTPNPtdr2vlRu8xePWu4DLEb0ZgBC8TS7NuzuOHDwrL1g81FEyvNL6rL3c++m655QpvDeU0LzFlbS8QS0QPGAjojm7ISU81qi3u6bGMz3DPq87VHCHO9X22bxqpsg8TeCqvPx8yDoh+tM8PPQ4vPlz5TwMnQG8p5ALvPqwDz16B268NRY6PVUVr7zDZcC8UdxXvfenrDycah493CCavPK6Fj3PGNs8eIlXvQQNpTw+Sz69lIwfvE/pDb23ixS9cilvObU0jztUDMw8vIdBvVyPcjz+Hw87LwITPNbPSD3st2c95m2YvZ/otLs89Dg8VOU6vH6zl7wXE3K6K5OTvMNlQDwyvzS9d9UYPMA1TD3ELxg9kKHqPKCNXDwe7w8980dEO3ZZ47xVY1G8eNf5uxuYCr1U5Tq8SFkxPNSfVLwin3u8epK6ulAomTsPWqO8KLHBPDLmRTzKHK48/9NNPWnyiTwVbko7CeLAPOFbUrzIxSg9BIJYvVQMzDw5xMQ9g2GivIknJ70cmus8ZyiyvNiZIDvwPAA9n13oPEV3X73lPSS9zz9sOqtNLT2C5Ww8pWJ4vDTIl72+LGm8WN8GO3ZZ47uhGKm7sElavEPSN70TyaI8Sv7YvKRvrrzDPi+8ZYMKvVhFo7ykby67JAO3vJQBUz0yDVc78pOFPCWBTbwieGq8UhkCvEiAwjyouf08ggx+vUjOZLwwaK878PA+O11mgDv4Q/G7b7iOO/OV5jvgtqo8ExdFPYIMfrxSQBO8EYx4PTM9y7wEDaW8RVBOPWcosrzxya09FhGRPKhEyjypzxY9mLwTPTvNJ70Bd5Q82lZCu7T3ZDjYdPA7QS2QPEpiFDwvKSS8IEYVvfv+sTuOriC9QPDlPEUpvbuEoC06Dmm6vf4fjzrVQps83PtpPZSzsLyouX26lLOwvO6ZOTsj3CW81FGyvE2SiLtieqe8psYzPfF7Czw5Eme8Wl/+ullFI713idc8jq6gPOrEHT2lYni9QXuyvInq/LyvlZu66KwjPZOqzTq9BVg9lNrBvE3gKr200FM9IfrTu4JJKDyZr128o71QPM9m/bvxya28Ann1u2J6pzzI7Lm8mToqvPGinLz2nkm9PM0nOfHwvrxPXkG8W3UXvUPSt7vJ3aK8sK2VPQs5xryJdUk8ljHHvMW8RT2pz5a82smUPM1zs7tSQJM9yIh+vBu/G72r/wq8OZ2zPLZMCTzKatC8RdsavYLlbL1IMqA8DrdcvZmITLxUcAe9NGRcvSpW6TyUjJ+8MGgvO7+onru+3kY9pmL4vHWA9LzhNEG8Yu9aPY7VsTufXeg6LdT/PEkjCTpQAQi9XGhhvOXvATxSQBM9XfMtPO8kBr27+hO9mhOZPCUzq7vQlnG9N5TQvM8YW7qO1TG9pu3EOiBGFT05OXg88WXyO62kMjuzqcI8psazvOJbUr3K9Zy7CTDjuwF3FL2yUj09Q4SVunVXAr2rdL68eDs1PQcWCDxYutY5r5UbPMNlwLwmDBq9JCpIvdQDEL1QKnq8wQ67uwIr07wtht27erlLPAYln7xBLZC8zehmvaVieDwILoK81UKbvLP1A77FvMU8GqehObVboLykOQa8+KcsPJ9d6Lw8pha9QclUvcg6XLzfaIi8X70Fu7kwvDxDqya8ykO/vOy3Zz0jeOq8K5MTu99oCLyZr908BxYIPRwluDxVsXM8lHQlPII6ET1/juc7K+G1vGwk3zzAqn+8M4kMvTjrVbt2WWM8TQc8vM/xST1eQVC76YfzPEV33zzzblW933efPIdF1Tz4HGA8Y2sQPHm5S70EW0c8ng9GPTgQBjyckS+9fXQMve4Obb3KuPI8GRzVvGfajzznbZg880dEPITuz7xQA2k80SE+vLCtlbsXd608oT+6PIJwubzS+qw8gjoRvYulvbwxMgc4CC6CPAzrI72f6DQ9LeqYPNh08DtcZoC8+XPlPKYU1jwQS4y7vgXYPP3ggz1NuZk85e8BPXyDIzyw1Ca9MLbRPJiVgr2zHva8E2XnOhlqd7xTgf87CDBjvZ42Vzy2J9m8ln9pPMndoruJ2YS8Drdcva+XfLz1E3294N27POVktbzYcg89ggz+umyvKztWx4w88T5hPCGssTuyec48VL6pPHgUpDxSGQI95NnoO6smHD0t1H88QO6EvKRgF71UDMy7F+zgugeLOzyJw+s8WpwoPME1TDuwcOs8VL6pvDcQhr2DYaK8M7AdPD7AcTsJ4sC84YJjvNLTmzxDXQS82y8xPYoYEDyZ1I08yd2ivTf4i7s5nTM8yIh+PEJsG71+QEW9Ez7WPFYVL72QLLe889IQPG+4jjwyDdc7kFNIvFJAE7vHiP67fZudPN2tR7wjtRQ9qGtbOxxMyTyL81+54qn0O22glDx9N2K9wrEBPF2P8ryWpJm65uLLO9zUWDzzblU8O44cvWzWvLxWPEC7O44cvZ/BI70ILgI8o5a/OxvXFTwc1xW99p5JPW6idT0KrJi7hx5EPPv+MTy3dXs8a3AgPRTj/TxY4ec8EJkuPHVXAj2TXCs9lqQZPXxcErw4nTM9SFkxPamoBb0jeOq8kMj7PBkc1bwCj468La3uvIepEDwJ4sC8DvSGPHoHbjxi79q5sPu3PG5U0zyr6fE8JoFNvbvTAj0Hi7u6SrC2PEXbGr1aOG27jH6sPHgUpLyUjJ+89gKFOrq7CL2lFFa8seygPFJnpDwJMGM87GnFvHONKj05diK832iIPfdBkDyWpJk8vrc1PfhZirxw9xk8YchJvBYRkTwQma68zz/sO4KXyrxlH8+8QyDaPLfZNrzY2Ku8HvFwPavpcbq8h8E7jnF2PFn3AD0TewA91CqhvAFQgz3Vz8g8ZygyPf/TTb3Jr5s7hZMrPYsIFb0mosm8diGfvDF1P7somcc8Hm0ePQIpaDszVWA8yRf2u5FmIbvZOIU8s6jGO8ECKj1cLM48wxmHvB41Fr0Qg8s87JlZPFa2mL1O0uo7oPBWPPAXxbscdiC8ZSglPVZ+EL2pRBW8krbSPOtJqDx2yTe8vGwVvaDw1jxnH6O8vvMCPEPGoDyasqk8Izs7vcdgtry99M48KOn4u/hsz7xQyei71SqqPNA8rjy4JjK9mgJbvWJq+7wlUhg9DQSUvTfzKr2ggMa70YzfPANgpLuTXZ+7y24RPCzHgb1Ut2S8/1FJvS5n5Lzpwrq8KXloPTiz7LsZP+Q7JKvLvE95tzttzeC8Zlj3O6a+87wlwii94Db0O+wJaj2uukq9lqROvHgYHb2qzM68IGScPKVO47shRL28fa6xPI3I1jyTza88LRezvD/vgbzmq128eaBWPWtGc7wJntE8CkWeu6AQNr3Rwxu8Sou7u6a+8zsGx7K8OXqYPE/pR7wsN5K9SJQ9vKTeUj0ZRxo8+rP+vE/RnrvQrD48Zlj3u9YKyzwbr3Q7HOawu/D/mzyEe4I7wZIZvckX9jwUsQW9RBWGPDPkAz0fvc+8crvcu5FmIb0DuIs73uZCO7KRaTwPwwk929hnPfKeMj3MvsK8/NIRPWoWobuRJmM7zC5TPbYP1bza+MY8WhVxO8DrzLwIvrC91iEoPPK+kbyTrdA8MuVPvQeH9DyzkB09bV1QvU+ZFj39Omw9XSsCPWoWIb3NnRc9gpytvFEApbr4/L48bJ0OPfYcHrz6g6w94k3RvAsFYDw7Gvs7SVT/uwan0zwi6wk9pFYZPQ2sLL3vV4O8EioYPQ/7EbwscGa8rRP+vPKesjwZP2S8RPZyOxNa6jx2Oci8HHYgvDB+wTvc15u7layEvN1/tLxdm5K5HHYgPfeMrj2+K4s7zkWwPEwyiLwwfkG9HHYgvMqmmbybkso7b+S9vAu1rjuasqm8FuALvdGsPjsNrKy6KXloO4m6e70scGa8bc3gvLuNQDuy6AS6zrVAuwFJRzzNZQ88zQ70vJzie7wB2Ta8G690PF3TmrzBAio8KgiMvH6O0rwCudc7X6o5Ob7Ub70scGY8TBKpvL4ri7yLmAQ8WTXQvK8qWzwsN5I7ZuhmvSw3ErxBr8M8bV3QPF6TXDyJoQa9osf1PNzXGz1aTK29g+xeuUSGYj1EhuI7KLmmO2JRhrx6ZwI8SeRuPFFQVrw+uEU9dbEOPOFtsLuCLB093pYRPWY/grxndwo8U8BmvBeIpLxaNIQ8mJvMvExLfT0htE29NoOau48v5bpbbAy81grLPOZbrLwBaSa990xwPBeIpD2gYOc8zpVhPLgmMrwO/N28ILyDvJqyqTxdfP+5tS80u3ep2DzVmjo98fflvEl0Xr24JjI8hCObPP/B2TyfoCW9NGw9vH6OUjydici87rA2vW90LT0vXmI8yTdVvK9hlz2Gqog8cSttPBi4djxXruI81IKRPKi1cby89E48JcIovekyS7zrubg6p2VAvO8A6DxfWoi9lY1xPbDRpzvIPwu9t34ZvJ2pJ73kZC6+0zMsvaKXo7vTM6y8BseyO21d0Lzr2Re9RIUWvLFBOLs+2CS9oBA2vb0ULr31BcE73paROsLiyjxh+mq9W7w9vE4JJz1La1w7HMbRvI6PgrxScDW92vhGPQY3Q7wlGpA8BJB2PBymcjz6gyw9/qp8PK0z3bzZUXq8weqAvThCELzWCks85lssPQY3Qz22D9U8ziVRvRx2ID3g/R+81uprPf1ayzwITqC81grLvDJ1P726PQ+9VNdDPYjaWjxMahC806M8vIf6uTy89E48KngcvXwH5TxBj+S8q3ObPGKJDj3N1Z89tn9lPcHqgL1WfhA740yFvbl2Y7up7C08WD2GvKRWmbxYdY68tb+juiD0Czx9Bpm9rkq6O2Z41rva+Ea8pI6hPCuQRTj25eE8tU8Tvd4mAb0wfkE8x9DGvWfnGj09+AM6y96huex5+jpqFiG8jo+CvP7Jj7oxdT+8PFG3ukP2cj7dX1U99XVRO0PGIL1ds7s6KkCUPHx3dT1JVP88835TPBVxR7td05q8Qo4YvAFJxzyaCpE8ccOSPAKZeD3eP/a8tBjXPKhFYT18l9S7N0PcPIbjXL3YcVk9/qr8PCEEf7ybkko6EWPsuwOAgzyMqPe8sliVOrEh2bzH0Ma8qUQVPeQk8LoUkaa6jjcbPQu1Ljzd78S82AHJPPKGCT0Z1wm9yOeju/tiAT3PJIW7O6mePDT8rDwvnqC8MZUevWGK2jwbPpg8EBO7O9tI+LxbvL28djlIOzbbAb1ZNdC8x9DGvCQb3LwuDrE7iaGGvPzKWzyh0Hc8mut9OiYS2jvC4kq8vYS+vKVO4zxKG6u8ZQhGu2KJDj3nO009WOWeuJlCGb3Swxs9tp9EPfR9hzzQXA09BR+aPIcaGbzyLiI8zpVhvOcbbrwPwwm90Ky+u3yWCD1wxN48J5lHvFT3IrsuDjE8WcW/vKxTvLrBAio8SVT/vMgHAzzJrxu8VGczvVPA5jzhveG8c/IYvBdoRbvJF/a8huKQvPKeMr33jK488Ke0PCX7fDyM6DW9LP+JO/067Lx0kvs7p9VQvbPIJbubkkq8QY/kPHbJNzytMpE8UViMvOkyy7yhJxM75ERPPVk1ULykHhE8NFQUPMDrTDyht4I8fT6hvDfzKruYSxs9KyC1vICFUD2Iako8ep8KvaHvir1snY48ya8bPSeC6rxK22w9H00/PZkLXb1DpkE8STuKvYNcb7qCLB29L54gvd1/NLxHfJS8u41APZakTr2XFF+8Me2FPBCjqrtC//Q8BXcBPQR3gb3rubg6KkCUvJibzLxsfS+9wZIZvV0rgryqXD68QCcKvd7OGT1MapA99AXBPNiRuDybIjo8JhJaPQUfmruO3zO9YlGGvMMZB70xXRa90Yzfu5ejgjy+K4s8OAqIOrafxDxbpJQ8Mc5yu5XkjDyYuys9o44hvNIbAz2PL+U8qeytO0xLfTu3Dom8MuVPPWIxp7z6gyw9VLfkPQmeUbxlKKW8CX5yPX2uMb3USgm59LUPPcFaET2e+Vi99uXhvBaog7zusLY8xrgdvAHZNrup7C29DoxNvKNX5TzAW908+vM8PAHZNjwvDjG9dSLrvBPq2by7jUA8aW4IvF3TGr2J2Q47mBOTOxGaqDrLTjI93e9EO4N8Tj1Pebe8tw6JPKVOYzwXUBw9eifEus2dl71sfa+8ZGF5u6lElbwYuHa871cDvIvQDDsCKeg7Q6bBPAqdBT3pwro8XwNtu1HIHD161xI7ZfCcvBCDSz0Qoyq8sCmPPVuklDxiiQ47TmGOPT8I9zzQPC68NGw9PEYNULwW+DS8GT/kPHRCyjxTMHc8RS2vu4H1YL3+yQ+8j7/UvBdoRT1lKCU8DQQUvM61wL0ITiC9blyEO+RkLj2ZC928o+fUvGMRSL3UY348krZSPCoIjLyWxK28pI6hvJfbCj33rA27Vz7SvFh1jjuNyNa8BEDFPMgHgzsSCrk8JjI5vWQIRrxDxqC7L56gPGOhtzwQ89u7NoOaPZWN8bybyQa86oJ8PWJRhruISus8eydEPDxRtzw8MVi8be2/u9gBSbzeJoE7YfrqvMJyurw74aa8vN3xurCZn7vA68w6aW6IvF3TmryZ6328SCQtvfzSkT1iwZa8AUlHvCM7O73IB4M9fQYZvP5xqLySJuO88IfVPCw3Er0/KFa9Q4biPAp+8jzMvsK6YRpKvaVuQr0i64m9VX4QPLFBOL3myzy8fHf1vDEljr1Al5o9d6gMvT0wjLxs1Za794wuPbuNwLzEaTi9MgUvvbSIZz0LJT+8CZ5RvAx1cDsebZ68wVoRu3rXkrxU10M8xvClPMbwJTwUkaa8ZnjWvFtMLT0F5xE8IusJvYH1YL3pEmw8td+CvAV3gbrwF8U8PRF5OwhOoDzyLiK8eoB3Ol4jTLyH+jm9ZVh3PCgpt7w+2CS9kPaQPQi+MDyasim9Pwj3vP5xqDwlwig85ETPvF9z/byWNL48mLurvHK6kL29FC69h/q5vKHvijzFuem8C7WuO0ZEDDzJVzS8HjUWvAme0bvnO0085GSuOvj8vrxLS/29iwiVPLkFh7oth0O8jHilvO2YjbvltF+9ol+bvPzKW72Q9hC8WTVQPNZafLxNYlo8Q8agu9tIeLwGVyI9hMx/vC73UzxSUNY8IJ1wuwPwkzx8XgA9uj0Pu/WVMLvXQQc9UnC1OzLlz7xgqjk9L2aYvN4/drwFkPY7QhZSvErb7LxrRnM97AnqvIzoNT3U8+08t0aRvRbB+LxWXjE9BqfTO65KuruJunu7RBUGPSkJWD0PMxo7f/0WvT7YpLzMvkK9+oOsPMk3Vbyj51Q9ICwUOaVuwjwP+5G8wOtMO8W56bw1vO67y26RPOFNUbs386q8iYEnPVGQlLxZNdC8NdzNu5C+iDxRACW9YMqYPGj/wzwxznI8MnW/vDaDmjxlCEY9jjebPFS35Dy31oA8jY+CO2Ohtzz+kYc7cDTvvOK9YTyUPUC9OarqvMEiiTwouaY7ShsrvCNbGr3R/O88J9kFOm/kPTtNYlq8VkaIvHbJt7zUg908AWkmvVTXQz13GWm7j0/EOeTUPrvqaQe8qwOLvCaiSbj4/D68mAvduo7/kru4JjI7NPwsPRG6hzxpZlI9INSsuzgKiDz4bM+8f27zvJzJhrxkYfk8Z4+zPIK8DDtt7b87IuuJOpi7K70fLWC9t+/1vG1d0Lv525O8GT9kvE7SarxnHyM7SVR/u4R7gj28/AS9YlGGPFlVr72zyCW81yEouzdjuzw8oWi8+0Nuvca4nTznG269mpoAvR8t4DtnHyO66FKqO2lP9bzZcI28cWsruyKU7jwEQMU8n2idPMJyujtKc5K8lB3hO25cBDzw/5s8+WsDvV9z/Tsc5rC8lD3APAFppjuEe4I8eyfEPOUkcL3Eabi8RU0OvR41Fr1RACW8jt+zu3tHozztQCY7cKT/vDiz7DxaFXE9PWgUO5oC2ztjEUg8fAflPJcU3zz0tY88Cp0FPa0T/js9oeg8idkOPV6zuzxPebc8dNI5PY43Gz3k1D69Me2FvP45ID0xXZa8KXnoO7qtnzoIvrC7Adm2uorxNz0MlIM8WcU/vAMoHD0rILU7E1rqPK8qW73ms5M8MxyMvIsIlTzsCWq9+rN+vGj/w7tUZzO9vDSNvFu8vTzHYLa8NLxuvE1hDrxcDO88CE6gvBzmsLtmeFY95su8vMg/iz2vuko7rMPMPCD0izz70905oge0PJIm47zKN9U8UMlovCgpNzx26Za8WTVQOvK+ET3+qvy7g1zvvG9UTj2s4ys8rKPtPFJwtbxrZYY8MgUvPWLBlrzuIEc9y26RPdBcDT0JLsG8GDsLvYiVXjwInQq9LFbCvPAzsbyAHxm8cInnuuKdCz08On47UKrIOuCVMLxQTeY8wkKUPBigPLz07tM8wL7gvAYRiLy6MQC9IDX4PGClq7xsDLG92k6LPEBpKry8h2U6cL+EPNht9TuoD8y7IHNkvJT8YztAKz69FK98vHwP47z8Fo+5IC2pvOC0Jjy8YCA8IDX4vEj+5byo8NW8fGzFOqzp5LvFeY+8bO06PAbyETxaPxA8/D3UvAhI97vHqC+9vkkFPcT1W73sWRi9BhGIuzyuBz04vcc7aDrnPHhztjxY0gO9kMXou6dsrr1kf8S7qC5CvChdMz2Eu0W90Fxhuzbriby61B087J9TPGRB2DnkSAS9pHOfu4AfGTzwMzE9pHMfvAy93rvUdGa98Fp2OqChVT0QMka7ZuQBvHwP4zscNBo8zz1rtzCNPb0IX568viqPuz46ij1ImTS71NFIPOgiHTyLjm29VB+wvP3BBzwEMPK7HsAcvVhWKzv8NQU9mK83vfBSJ72T3e08wmEKO9L/irxwQ6w8MrQOvEhbyLwUxiM81LJSPET9B728xdE7lJeyPGjVNb3QFqY8PBM5vZwFqTxUo1c90LnDvPhjuzvoQZO9KB/Hu2RBWD2oD8y6MDDbPJSXsjxIuKo8gOn7u5TVHrzkb0k7SNcgvIDp+zzUslK9bjMCPey+STzQPWs7RN6RvYQgd7zcu5e8zucFPdAedbz0iSK8HDzpPCz5X72AZdQ8qHR9PNBzCD1ghrW8UKpIPYAIcr12Ywy8SDzSPDx4ajwzIZs8Ll4dPSL3F7wMf/I85K21vLgpJb38mjY8ar6avNRV8Dzs/LW81E0hPPjAnTzsvsm8YKUrvRt6Vbysoyk9ujGAvUzQr7uwAeo8hCD3uoCEyrtoUY48rKt4vNw/vzwAN+O8frIMu6D+Nz04dww9RqgAPMxEXDwsdTi8kId8vWvORLwgDjO9eFTAOjDqn7zg0xw9LHU4vMgNYb1CMxm7eO8OPZB/Lbx031i9xJAqOhqoFz0L3NQ6wLYRO6S5WrwMtY88mDNfvFAHq7wcFSS8SN/vPCZNiTwunAm93keaPPTHDrx0wGK9bEodvYYgAz0AlMW8VJsIPbbbDr18BxS9qIukPNBUkrz8uaw7KB9HvPCQE72MZ6i8RqgAvAQR/LzYCMQ7nc+XuXjQGLzkMV093keavQghMj2EVpQ9PFElPbhnETzMob670v+KOmT7nDyKGZK8lPxjPXBq8TxO9wC9gIRKPYjTSj3cXjW90D3rvLB9QrtgCt08pNhQPEJSD71UPqY7sD/WvDSlQrwY/R68LLMkPEDlgjy4jta8RKClvHJLBz16XJs9qNHfPKh0fTsg0Ea6jMQKvU73gLtQqsg8+MhsPKCC3zzEmPk8KJufPMjHJb0Q1WO9bFLsNuRQ0zm3Ci89TtiKvKRceDy4SBu8kMXoPAx3I72WgJc8bEqdu5DcjzywfcI96zoivAw5Nz34Y7u78DMxPdQ2+rt/Rl466MU6vIi01Lzcuxe97iOHPAel2bxwS/s8YOOXvVSjVz1YGD88fNF2vUz39Dyezxe9cGIivhz2rbsmLhO8/MH7vEg0gzzseI48DH9yvTLThLyQYLc7KLqVvNB717y4b2C9CONFvIg4/LtMTAg9MKwzvXzoHb0UaUE96Av2PHZjDL2467i8SJk0vQSNVD1sSh29nMc8PGJvGjy8YCA8eDVKu6johrxKoQ+8sD9WvQB1z7w0CnS6IGuVO5aAF726Ego9tLQ9vPD1xLykFj09KD69OlicZj0MYPw8ZL0wvGPcpjqwIOC8kMVovDCsMz0UDF+7HJnLvHDH07zM/qA7APn2PBi/Mr2T3W08tE8Mvfw1hbx49908SHq+PQTqtjz8wfu8BtObuhxyBr0Yv7I7ZNymvBCuHr04Qe+8kJ4jvOxhZ7tKghk8FMajvQRmjzyOMRe8tBEgvTy2VjzinYu8KJsfPbx/Fr2IV/K83kcaPfSR8b1kA2w85PNwPDie0bwga5U728Pmu3Q8O7t8RYA7fKoxO/6ikTwkTX0+fEUAPTj7s7zIsP682GWmvMSQqjvyWgI9RMdqPBigPDz8/2e8wGH+vFzLkjpH9hY84n4VvFQfsLwufRM9gGVUvcqwCj2ksYs99HL7O1g3tTzS/wq98K8JPNovFTwAL5S8sBgRvZADVbzE7Yw8FM7yuxrmg73I7uo6uG/gvNDYOT2oiyS99McOPeoLgj3sn1O7OJ7Ru5hKBjxQD3o8QIigvBTGI7y7aG89/HvAPCAtKTxM0K87SDzSvBt6VTyw4nO8fwjyO9zD5rzglTA8zsiPvHyqsbxYNzW8lL73OxigPL2M68+6MI09vLoSijzEcTQ83F61OxigPLzyWgI8tBGgvKo2nTwEKCM7bIgJvTi9xzs89MI8ihmSPdR05js0Xwe9sF5MPRdD2jxM2H66rm2YPB7fEj0uXh08yMclPGBISbwcHfM8dKHsvECIoLxIuKo8rKv4PPQNyryQQcG7hJzPPBy4QTwYoDy9Hv4IPFpeBr1+0YI7uG/gO3QdRbgLdyM8OH9bvVDJvrzO54U8kMVovRqol7zglbC8yO7qPGhZ3Tx4saK8vH+Wvfx7QLwomx+7HJnLPHwuWbwoPj08vguZPJPdbbqgJX08PNVMPWTk9bzQe9c7xDNIPByZSz1Azlu8yGrDOxBwsjvjMd27ogYTPCAtKb147w68xBRSPBs0Gj2oLkI9ZCLiOzwTOb2QniO9jG93PczfKj0UxqO7IKmBPQCURT04OaC8aPQrPLwiNL0U7Wi9bK9OvQA347wYBW68ADfjvAQJLTwcuMG8fKoxPBQjhjxDJE08dMBiPeoLAj2iJYm9ANIxvET9B71I16C8tNOzvLRuAr18BxS9vQsZPDxZdDxCM5m8AtoMPUqhDz34Y7u7yAUSPdx9qz27h2W7vKbbvEyxOTuYzq28AtoMvQzUhTqE+TE71JPcu5Dk3rxURnU6vGCgvL9Zr7z6igw9bjMCPRxb37zUVXA8BIWFPGyvzjzglbC7lFlGvHiSrDx+0YK80uCUPFPhwz2a1gg8CMRPu5PdbT0omx+9IEyfPNB71zx0gvY80h4BvVyNJj0sN0w9nEvkPMCA9Dvweey6QJDvvNht9TzUslK7dMBivND/fjsYYlC8OJ7RvOgqbL1mxQu9AC+UPPjn4rw4OaC8EM2Uu/RLtjwUxiO8gIRKPSToyztoeFM8dN/Yu/JaAj3wWna6aJfJPKN7bjzk66G8AE6KvGyQ2LrUiw29ZGBOvKyEs7xcTzo9jCk8PWS9MD222w49FIi3vOrNFbuITyO8zN+qPLT6eLpAaSo9zERcvEqhDz2MZ6i8vMVRPSibHz0cPOk8GBwVvYCjQD3oxTo8rm0YvSyzpDucLO48jMQKPZmYHLww6h+9vL2Cu5R4vLzEkKq7CIbjPBjeqLwga5W9PFl0vZTVHjz435M9PFElvJ4NBL0UzvK8BMtAvMzneTy7aG+98LdYPMCfarzk1Po87SMHvDoDD7wMGsG4dP7Ou0qhjzy8SXk88BS7PLR20bzsQnE8ZCJiuxTt6DxMc008ph6YvASsSj3+gxu9fIs7vRBRvDzQ2Lm8THNNu1yV9TtQyT49NusJvZgUaTtu9ZW8tHbRu065lDssGFa67JeEvUArPr0Y3ii9YGe/vIgRtzwmTYm8uIYHvQAYbb1wx9M8nOayPDwyLzzchXq71IuNPQzUhbwg0Ma7HLjBvOTroTzYRrC8Yq0Gva5tmD3mtRA9lBMLuwLajLyvu668gOGsvfqpAj3EFFK9dIL2vGgb8bxsKye9vkmFPWi2P7yEfdm6BEeZO4Dp+zzglTC8DiIcvbDapLwzIRs9QnEFPaiTczw8USU8epoHvciJObs0pcK8FCvVu4A+jzykFr28wPzMvBjm97zEM0g96uyLutTwvryMreM7SB3cPIgwLb06IgU9qPBVO6QWPTrM/qA8VgiVuxCXdzwUzvI5at0QvazK7jpAaSq7xNblvABOij1QbFy8KoQEvZQTC70ss6Q8VOHDOwbykTwg0EY81E2hPLuHZbzsvkm9jK1jvfZTkbugwMs8gqsbvPweXjwfTB88APGnPGwrpzvslwQ8qA9MvIgRt7ws8RA8iFfyvbDD/TxwJLa6zFuDvLRuAjzM3yq81PA+vZyJULxo/Hq9hBgovRgF7jvEryC9iPLAvJj18jn2coe7trwYPUjf77ukVKm8loCXu+yXBDs8Mq88KB9HvORQUzyY7SM84BEJPUSo9Dz+g5u85Mwru8QU0rxzHUW99CxAvFh1obyElIC8lLYoPUi4qrxgzHA9mK83PS6cCb1AkO+70h4BPUBx+TzAn2o8IGuVvKzCnzpo1TU9IGsVvP6ikb3cw2a9VHySuz46ij0o4dq8xFI+PWxSbDzKkRQ8Wj8QvbgpJT18Jgq9pBa9OySLabzcAVO7pHOfO2hZXTzSHgG9aFGOu5ADVbxSDwY8XMsSvapVEz24KaW8iPJAPMDVB7tghrU877dYPToiBbnUNvo81FXwOfAzsTzWFxC7SsCFPLgx9Lz+g5u6bAwxvXzw7Lyb5jK8aPz6POMx3btgxCG9wDq5PEQkzbxrM3Y75rUQOqIGk7yAACO9iDAtvf6iEb3cfSs9XG6wvHRbsTzwWnY8jMSKvOimxLzQe9c8PLbWPIDpezzEDIM8pHMfPI4xFz1I1yA7BvIRPRRpwTs4Qe+8gAAjvaQ1s7w0QBE8wN1WPcRxND2EfVk7YKWrPLA/1jv/Dx48OH/bvDRI4LyUE4u81viZOzi9x7zuBJG8PPTCPORIBLvcnCE9mK+3PDzVTDw0Z1a9QAxIPJ7uDT28A7462Cc6vYDpe73g0xw9uFBqvY5QDTzeZhA8OEHvvLxBqjy8Az67OH9bvGTk9by8Sfk7PlkAPVDJvrskTX082m2BvFzqiLzo5LA84NtrPK6Mjrw8Mi89gz9tvMRxtLvU0Ug78JjiPJS2KL1skNi8aJfJuwK7Fr04vUe9CJ0KPEzvJTxkIuI7ZL2wvNAWJj0wEWU8zCXmPIiVXrxuFIy8nA14PKQ1s7yUOtA8aFEOO6TQgT2DP208sBiRPJKHCD38XMo8XI0mvFAmITzKz4A9+CXPvNhtdbvUNno94BGJPFxPOrzA3dY70Ng5PEaJirwIhmM94FdEPQelWTwIQCg8rOnkOwAY7TxMLZK8RIl+PfDWTr0AbYA80JpNvVQn/7xEqPQ7+OdivVwRzrs0Z9Y83D+/vMBhfrws2mk8DLUPPWamFTukXHi7xNblPK5tmLxgAo49x6gvvdwgST2Ul7I8qE24PKTYUD0w8u68gD6PO0ZqlLzw1k49PNXMvJDcjzxc6og8rB+CPNb4Gb1AkG89MrSOOrKFnTvc+QM8qMmQO5iQwTycYgu8eFTAPAxgfD3YCEQ8dmOMOy7vOLza9xI9MWGKvEOmZ724M6k8BeNyvFT1A7z3JGw9K9IWO7oa4DzMtg69IH7EPMAs0TtCWdU8OkHpPMuXSrxopre83q7Zu7IhuDz1Jo68okaPvGEocDwplrA7bUzSvE4R4TsiIAY91p4KvNrv9bv+VaE8tcFXvQh0CL2QfBK9uDOpvJuxIL0KqNG7lTlUPEbLJr0hnQi9rmLUvNt6kDwRB9U7rKnru8bxr7xMKqq7v3sFum5rlryd5em8I9FRveyLJD0G6W29/w4KOY0haDsb2Kk8qQnMPKBAFLwlJF88H3hJvd1KoLuM1FW97r/tvBXGuDv18KI9drFQvWimt7tW3Lo8fKwaPTxHZLx51g+6ol22vK40hr0hnYg8YK2PPf02XbyrwjQ7RgESvcQhILtSuZ08DEqTvBR5Jj3c9XA9vPIMPVLQRD0oKlq8/4sMPIUJfLu+JlY7bJsGu6/8+Dx8V2u8zLYOvL4mVjwT34E8XBz6vPF+Ub06p8Q7iRXyO18qEr2wG728+JBCPYWOG7wu7zg8pbDDPCBnHbtY4jW9/ouMPNaeCrw8GZY7hnXSPMj3Kjw/bCO9MCsfPSmWMLwySME84yYmPbrskbyHFxQ8rbGIvZPPH7ylmRw80ZKUPLgcAj32ike8R2VLPUYYuby9IFs8AFycvP/vRb33JOy74SCrvHvcCj16vca8o6rIukFynr0eeEk7p7Y+vElUnzzG2gi9/YNvPLtvDz1dJJe8xCGgPFroMDwr0pY7YUc0vBfMMz2ImpG9S1J9PLuGtrwfeEk8aY3uu1Bkbj2hwxE9u9NIOljiNbwcDhU8IZ2IPF4i9Txnh3M8/Jw4vaJGjztTt/s8Qe1+vUFyHr1ua5Y789OAPNjxF70IPp07tZMJPbXBV73DzHC81WifPLzyjLrY8Ze8Vty6PLXBVzyUny89t5mEPdrvdTx3S3U8+ipnvFzPZ72V1Ro8kpm0vHHscbzleTO8fMNBPQKvqbzw5Cy8GGbYuyw20Dyj91q7Uh3XvEokr7wIPh08Z4dzvB5hojrerlk8DwHaPHM//7yXpaq8pEyKvM8/hztq+cQ8ODtuPM2dRT1rZRs8XYjQvCZxcb1hMI087t4xvcYnG7v+VSG9dPjnvC+ooTwdkZK8dH0HPX3iBTzqhak8OsaIvPLLYzz7T6a80PBSPII7DjxuoQE9dKtVPX+qeL2SmTQ8H3hJPcneYTz6lr27eymdvFgvSD37ApQ8feIFvTutPz2x1KU87YskPMVXCz2gVzs9hLzpvEm42Dp3HSc7Qb8wu0YxAj2KaqG9p7a+PH2kfbxIHrQ7J8YgvQKQZbhxC7a7hkeEvDjADbxu6Jg97t4xPbIhuLs/bKM7hG/XujBCxrxlUyq9O2AtPY4pBT36tYE8M7QXPW64KD0p48K87ytEvT2ckzx7cLQ8RaziPOnrBLzDUZC8WC/IvAqo0TzfZ8K8CfcFPbHUpTzZJ4O79NFePaSR/zvtJUk9RTECvJYLBj28be27rMI0vOet/LzleTO9CfcFvZjZ87yaRUo6Vtw6O05ec72GEZk9Uh1XPG5rlr1gQbm7tHRFvDJIQb5DxSu9t3pAuy+JXbzSXCk88+onPMktlr11Rfq8j6wCuaDzgbtWxZO8f2NhvS3Q9DyhpE28E9+BPHMRMb2yITi9axgJPZ8KqTyCuBC8HZGSvBZgXb2lRG093vvrvA3NELwmcxM8/qKzPC3vuDxTt/u8y4Aju1gvSL1g2129PbM6vII7jjsJ72g8+n8WPSl/CbzWngo8Rfn0PADZHrzoGVM9HxLuPH5lgzuwBJa8ImX7vAv9ADspxP48nbebOwUCN7tKa8a8J93Hu/IYdrwGnFu8WRghvK4VQr2Sgo08iRXyPAcIMj0qfee6OFoyvY8n47uD1TK9OvRWPGCOS7xXdl+83UqgvM68Cb1diNA8+N3Uu1tUB72TmTQ92Ag/vG5rlrlv7pM7WXxavCZx8TxfKpK9RssmvTutvzykkf+9T323u/U9NTxz+gm6qlbevJEt3rw9Zqg8l4bmu4XEhryG2y07yit0Pl7V4jykTIo8P7k1vTL7rjvz6qe68yCTPIMLHjyBBSM80UUCvcaknTsabFM8FA3QPDTqgrwcck68S5AFO+MH4rzI9yo9kS3ePd5Ifruvt4M7k88fvXq9xjxIHrS7nbcbvO94Vr1Tamm83/trPCmWsLwC3Xe7csQevLQnM7uGwmQ9yrATPI52lzvbW0w8VilNPOflCT1LBWs8B+ltukT7Fr3NULO8XBx6PWN7fbuTenA8EtkGvIgPd7yeUcA8Q/N5PE99N7slJF+8gwsePFFkbrz9g2+8ne2Gu3lRcDxGGLm8pEyKvP/vxbvNOQw9Whb/POVijDyPrII8dMqZPOnrhLx1RXo7VY8oO9ong73oaIc8Fq3vPLA6gT1dO748mF6TvMQ4Rz0XzDM9B/GKPBsG+DxjNgg98X7RvASWYLx+ZQO92XSVu5hek7yAgiW9FCyUu5BGJz0QVom8DyCePAv9gLsZCJq8iMhfvbUO6jwQm347ovFfPBEH1bou7zi8MdxqO30QVL3UkHK8vnNovFDpjb2qVt63aPPJO4Rv17xxCzY9loZmPfU9Nb2+un+832fCPGiPkDzWtbG8BU/JPDFhCjy+un+8H+QfPd1hRz03iqI7uBTlPF5agrx4t0s9zZ1FvDBCxjs8+lE800PgvCIgBj1GGLm8UBdcPGWBeLyXpSo8IjctPVa9djxeIvW8TAtmvQRJzjwDGwA9QvUbvIDPtz3Tr7Y8OVqyOxslvDyd5Wm9EQdVvTDeDL0b2Km8E8C9vCvpvbylmRw8NehgvSPRUbxFrGI9uYC7vPZzoDxrRtc8VilNvS2iJr2gpE29KCravGTn07yKaqG77IskvfapizuoWIA8/Jw4vXUXrDxCWdU89B7xPDROPDx8dq892ScDPc7q17zH2og9eiMivHFYSL2TBQs9JD2ou1VClrx73Iq9Im2YPN8aMD38hZE8ranrPDz6UTvE6zQ8+n8WPZiMYT0YOAo98BJ7vEuQBb3nYGo9TAtmvOEgq7w7SQY+njoZvaHx37ux1CU9rC6LvLR0RT1bglU88MVoPbvTSLzwlxo9SVSfPAHfmTzrH048pGOxO+QNXb25gLu8y5dKOiXXTDzf+2u86z6SvO0lSb0PTmy68BJ7vNP2zTvhTvm6AxsAvOts4LvI4IO7GrllvMj3Kj1x9I68+zDiOynE/jv7ApQ8zgmcPFkYITzg0xg8q6sNvZn4t7z/iww86WblOynjwrztDqI7U4mtugKYArtLcUE9DUjxPP2D77w+TV+7CFXEPGcMEz3H8S+8C/VjPUAGyLxke309p9UCvVs1w7te9CY9nDQePDQBKrzTkPI68hh2u1K5Hbyb54u89fCiuzxH5DwEtaS8BWgSvZpFSrslcxM7KePCPFzPZztq+cS81rUxvX58Kr2UgOs8wjJMPV07vruobye9YX0fvQmiVrwQusK7Hd6kveKMgbzmE9i88p2VvJxLxTwdkZI8ZokVvR/F27w7lhi9l6WqPBXGODv5MgS90xUSPPU9NbwCkGU8n3AEPPDFaL2UUp24RPsWvH6yFb2qo3A97LnyPE7jErzJLRa9NAEqPU8wJb2SLV48+HkbvOEgqzwMYbq83RQ1PHhqOb0feMm8KHfsvD+5tbuCOw49Z4fzuppFyjvwEnu9jnaXu2sYCT3OCRy7Dp0gvDQv+Dwvid27nlFAPHC+o7wv9bO8+fyYuyuFBL1S0EQ9WOK1vNgIv7y88gw8/qKzvCw20Lxk59O6LAgCvZjZc7wMYTq9Rhi5u1kYITwL9eO8dQCFPBGjG736/Jg91JByvE3EzrxABsi8s9ogPfdDML3RwgQ8Wcnsu8QhIL386cq7pwPRvIRvV7sYOAo9WMuOvHLy7Ly708i8QlnVPOIgK7zRRYK8g76LPJg/Tz3/PFi9oAqpu2imtzx9L5g7AKmuPJv+Mrw0Trw7eVHwPPsw4rxRZG47TN0Xvc4JnLyNbvo8ImV7vLHUJTtiswq9ApBlPMbxL7pxCza85sbFu0eyXbzjB2K8MvsuvchEvbz7AhS9O477O3hTkjukkf+7Rhi5PD4fET0CYpc8siE4vFNqaTy0dMW8LondvOLZE754BN48QAbIvP/vxTvlWm+8uDOpvK7+mrzZouO8aY1uvV70prx1F6y8DUjxO+ViDDxi4di80MIEvXzDQT1lgXg7P7k1PH0vmLxhfR+83PXwPOet/LjI4AO9Fq1vON9IfjyLaH88EQfVPOFWljxm7U68ZqA8vR4rtzrPo0A89NMAvFYpTTvfZ8K8JXMTPZxLxTwUeSa9H+QfvACprjwr0pY8jnaXPA8gHruAz7e8BLUkPUdOpDvZJwO9f+iAvCnMG72Z+Lc8EQfVvBRa4jxFEj48lFKdvLd6QL2/RZo8yv2lvL3ZwzxwcRE9lJ8vvIMixbz6f5Y8yS0WvYZHBL12/uK7t3pAPFGDMr0JPPs8Z4dzPGIu67z0hMy89SaOPcktlj0/oo68YZTGPN6u2bqvzio82qoAPTEp/TykYzG95XmzPJvnC73tRI27xOs0uwv9ADu++Ic8N+7buyU9qD26Z3K9ELpCPM43arxD8/m8QlnVvKOTIb1ssi29W4LVPHHs8bvwzQW9wcb1u2KzCrmOQKy8yWOBO8Yf/juaRUq8yd7hPMszET1moDw8S3HBu3sKWT1bVIe8OkFpvWWB+LyuYlS9gIIlvNFFAruentI8VL+Yuv3So7tIB4072g66u+yLJD3pOJe8K5wrvPl3ebukkf87uByCuxR5pjyybsq8uBTlPOViDD17vUa8LDZQvYnnozxs/z+8IiAGvWbtzrw9szq9xOs0PVT1g7zcFDW92XQVPT9sI7pSgzK6lezBvMeqmLwCYhe7Zr+AO7IhuDywGz09jCOKvAfxCjvhbb25XYjQvKmlkj2Npoe806+2PJvnCzyUny888lCDvLkzKT3YCL872KSFvdFcqbwbJby8b1JNvUAGyDw2ByU8eFOSOwkOrbxLkIU8nwopO9tbTDwgZ527oPOBOzoTGztfjss7Q6bnPMqwE71TiS09goigPAv14zwUDVA94SCrPA6doDw0NxU9TxHhPQhVxLxpX6A8f2PhPJ0Erjnk3448E8C9vEzdlzusdaK8a+KdPUdOpDwgEu47Fca4O30Q1Dz1Jg49jW76vM+jwDxQykm97yvEPDg77ry4Mym6J5C1PKCkzbt+yTw7HmEiPaIQJL02PZC8IZ2Iuma/gLphKHA8L6ihPCd5jrwFT8k8xaQdPXNew7xkmsE8EaObPOEJhLxwviM9l44DvZHgS7yn1QK91RuNPDjADb3rH867rmJUvBy/YDwEtaS8z1YuPSeQtbyLoIw7sbVhPLZbfDxABkg9JnHxPNqqALx4t8s8t5kEu+AasLqzwVe9xD2fPL/hhbzQIoi8Rtn/O234kzz+l4S8dyqAPQdexrqvliM721ijvAdi9Tv0JiQ8GGDUPNJfej3pciC9ugcEvIzVqrxbeB09zbyOvNJXnL0O68Q8Qq7LumVvxLxsP2Y7kHoYPe7S6LvnhF66KuT5PD+L9bw7JXy7TWb+vHNKTbxihzO8JQKaPDHv4LwxLtW8z7KuvMhoU713tPW6frstPGUwUDx1OI88zfsCvW7qBDzuygq9S2gAvXkgIL0Mc408LzSGvcjiDLyFSCy67o/FPL1xLDnfPIU8om6Xu57b57yHuAW8z3O6vTroibxwJ/c7W7eRPUbZ/7xu6oS8LA2BOh51Gz1+PUW8HECHPNSIAb2a7ye94HEZvIlrgj3SlpC8c8i1vGKDBL1XlLs6I82FPFu7wLvg74E7fIYZPXPINT1e4sU8lo3dvFRx5TxZQwm9OyX8PGWuODtwJ/c8QjDjO8+2Xb0xLtW7mPkHvCrgSrtXmGq9r1tePK/Vlzw/h8a8yOpqu3oWwDyM2dk8Qu2/PFu/bzwv9ZG7Kh8/PFDEGT1lsue8MeuxPNLZMzye2+c86+YovU0j2zy4VAc7/CcrPGz8QjuaLpy87ReOPO7SaL11d4O8buoEPMinRzysssE8xALau3ChMD3diQi9iW8xPe0XjryCIae7paOrPOSczbz1HMQ8gqM+vTFx+LsqXjO93QsgOw4mirxNpfI7Kh+/u1eQjDxixqc7ENNVvVRtNj1UcWW8qjqKPJB6GL2sskE9QTaUvV7eljvgsA09yCEBPLN6hTyJYSI9UjgiPeDzMD2sMKq8rxSMPCOW7zsF5o48DmktPQrIbr073qm7P4v1PAUlg7wpoVa9/OzlORzGzTzgNlS9NFErPCOW7zxGU7m8Qu2/vNb8CT2asDM7xEV9PJ0aXDwCgJW7Ox2ePHpVtD33CoY89Z7bPOf+l7yv3XW9S+oXvPnBMb0AzRi8B17GvPJzJz1EXZm8gSVWvPXh/rrQpB88ocN4u2JIP71JubK7YoezO/QmJDqzegU9A/jMO0YQFrxe5vS84LjrvM80xjvd0Fq8FXSUO9JXHL2/ohE9LFAkvPXh/rycXwG9mrAzvFfTL71Pj4W7vS4JvW34E71JtYM8adW9vGU0fz1QzHe89V/nvPuzorshGom866tjvGXx2zvtVgI9k6EdPKWjKz3k20G9tO6NPK2ggz0/RCM998sRvd2NN73+l4S8fr9cuoySh7zrZJE9OHgwPWsAcrxwpV89+cExPW34k7zPczq754TePIiyVLtGTwo9ugcEvYVM2zzPsq68GN68OyNPHb2KoBa8w4BCPfD/nrvnQTu9g5EAPS3ErD3uUNE8dIUSu62gg7wopwe9mrCzvPzsZTzkHuU8kPgAPXCdAT0DeuQ8hUgsvaUlw7wYmxk8MXH4PCb4OT1XFtM7wdtUvArEP7vZ6Ek8aVMmvdlq4TzLCRI913CSOw6ooT2Bp+07P4t1PVTrnrzWBOg8W/7juaQpcjzkXdm84DKlvQBPsLwDuVi8CsCQu4g07LyDExi92xWAPbP8HDw74li9r9WXPOfDUjxlb0S+qIs8ve7OuTwVu2Y82aWmO+mxlDv+l4S95skDvR9v6rtzSs28KCkfvT3Qmr2Mlra8tK8Zu4Hm4Txk94y8DqxQvAP0HT3u0mg8YovivJ+GBr2CISe9s3qFPbTujbxX1947hUgsPdYE6DzwfQe8kPwvvC/1Eb0/yum8cCNIveQaNrx382k8DmmtPPXhfjwA0ce78vEPvdJXHD3b1ou8+QAmPe4R3Tx8hpm75FmqvF5gLrxixqe8pSEUPc80RjzkoHy8mPkHvTQW5rrBHni6HAXCvO4NLrwajQq90tkzvIHm4TxiTG499V9nuzGsPb22J1G7tC0CvdyRZjzS1YS6d7R1O6wwKr385Ie8+cGxu5EtFbx0Byq98rZKPfI44jasNNm3+YI9vK9TAD0KgRw9chEKvfJzJ70hnKA8l8givhfonDxZBBU9k6GdvL11W7vZqdW8+cVgOeJjirxLKQy8mjZ6PIyShz4sDYE8aZr4PCHbFL3ngC+8TaXyvOaKDz3ngK883ZFmu7ZmRb2FBQm9bTcIvHDgpLo4tyS82WphO89zujwjV3u9Jvi5PBwFwj0qXrO8d6wXPU1mfr1wI8i7VCqTO9LVBLyM2dm8P0jSOkl2Dz0F5g48I9G0vB9v6rwjjpG8oXymPLN6BTxQB7074HXIPG6rEDzN+wK8aNEOvFv+4zxCKAW9dfmavEjDEj07YME61r0VPQfgXTznBvY71oLQvIJgGz1lc3O8ugszvIIhJ7z044C6XiXpOcGUAjvrKcy6mjLLvE9Cgrz5hmy8AE+wPC2FODxlrrg8GB2xPNdwEjx7lCi9Cv8EPIVILDu2qei8xL82vIVILD2k6n094mOKPGIJS7ye17g8DrD/PORZqrsDM5I8O94pPb1xrLzPNEa7W/aFvXvTHD3kGra8KuBKvfRlGDyFDec8l8zRvNnkmjyhAu07GJ9IvV4hurxJ+CY8qAklvJXSAj1b9gU7rDTZO4nfCjy980O9W/5jumWuODxUrCq9F2aFvOeAr7yYupO8tidRPTGsPTzkHmW9GKP3ugM3wTyvFIw8NFErvdknvrqhuxo9LchbPI+C9jscQIc9LYnnOhgh4DqzAMw7buoEPUbZ/7vEQU68rPG1PPJ31jwcwp48h7gFvTSQHzw/Cd48VDJxu+5QUT1QRrG8HyxHva+aUr3I4gw8Col6PQUlA7w2Q5w9/GrOPBW3N7xQAw47NA4Ivest+7wlAhq7JUEOvQr/BL0YHTG8aRjhPK/Zxrx+v1y8ZTBQPH58ubsADA095N/wO0ZXaL29tM+80tkzvCgpH73CyRa9y8odPBOCo7zE/qq6OHxfvOQatrz14f48XamCvAJyBjxXlDu7EYyDPcTDZTxsOze862QRvOcGdjtULsK89RxEPazxtbw0Eje67sqKvRsBEzs/SNK70hzXu9JbyzzIJTC85Bo2PTMcFz1p0Q49JjcuPZB6mLwfrt684PdfPbM/QL2vHGq8/G79Ped8gL2JMD28hcpDPeQaNr1W3Y88eSCgPBxEtjzZauG8jgYQPXDkUzxiytY86bEUPR/pozyY+Qe9VxbTOyNPnTx5ICA6hYegO/nFYLz5xeC8GNoNvEn81bw6qZU8EFVtvA4qObvnPQw9B+BdPFTz/LzIZCS8l8xROxM/gDt6Gu+8NFVaPAWnGjzZqdW7EVG+PADNmLzSnm46fj3FOSwNATuzwVc8GFylu979kDwOsH88NoIQPTPdIj1U83y8ZLgYvXfrCz3geXc8GJsZO4GnbT2vW947HIdZPcT+Kj0AT7C7L/URPU3gtzqJriW9nCANO0m9YTlp1b28ZDYBvaVkN7pk94w85JzNvJeJrrwszgw8s4Jju/WeWz1nHhI9MW1JvMinR71igwS9iPX3PLhUhz1XEiS9QigFvQCSU72JrqW8Kp2nu367Lb3ngC88e1GFumJM7jyvFIw7a4QLu4Ihp7yXRgu9GN68Ogfg3Twf7dI8OyHNvLYjojznfIA6XmAuPCNXe7sFpxq9P4dGPXPM5LxiRJC8XmRdPVv2hbw3u1O81EmNvO7OOT0A0Ue9yOa7PIPUI71e4kU8HyxHu8ZuhLv+GRy9cOCkvJMjtbz14X68bH5aPJMfBr10B6q8OyFNvdkrbbzWgtA8bTcIvL24/rusc009v6KRu2sA8rmTJ2S7YNAHPIUFiTw7m4a9w4DCPBV8cjv1HMS8ANHHPEm1g7zn/pe94DIlvL1xLL0jFFi8dyoAvNtYo7x0xAY9Rtn/vKTqfTwYYNS8YotiPYPUI70Cvwm9AJJTvFeUuzxdJWm83dDaPEbVUDyJrqW8I5LAvBGQMry07o285BaHPEZPCjtbgPu8o62LvCofvzxkNoG8Vd0PvaWnWrycX4E9EM8mu3kgILsx67E8ERJKvLZq9Lo4dIE7+zELPQDV9rpXVce8xEHOuj/GuryCIae8KGgTPXzFDTxubBy8aVdVvWmWyTx618u8xvCbvJcLxrvLyp284Ljru6jKML0Yn0i9y4/YvJ7b5zzWhv+7iW+xuwcf0jzWhn+5wooivOTbwbyzgmM8fvqhvHDgJDzQ4xO+cOCkPAqFy7y/Y528j707vMuP2DtC7b+8cOTTvJ4Wrbzmig+9xALau5o2+rwm9Io8eZ4IvZ4WLb0HYvU8pWhmO88wl7zuzrk7g5EAPb02ZzyMFB+7KuDKvHSFkrzP9VE8ugszut1KFLyjbpc8NJTOvOtowLx8hpm7k2KpO70yuLy9sCA9L/URPVSsKj03u1M8kS0VvSPV47vEQU48awByO/B9Bz26Sqe7DDQZvERdGT1wJ/c5/GpOvWnVvbyTqfu8DqghPXa0dbziJJY8gaftPDMcl7wtgQm92ehJvM8wl7xpFDK8iWsCu2Uw0Dx8hhm8LUbEPGLGp7wcBcK8rDCquwyygTxdYC69dzLePOd8AD0VeMO80OMTvQdeRj07o+Q8wdclu9bBxDy25K08M1uLvN1OwzvbWKM8jJrlvP6XBLxJN5u8dEaevLoHBDuFTNu79Caku2kUMr2oCSU8fnw5vWLGpzzblxe8578jvSofP7wYXCU8r1OAvVSsKj35fo68y0y1PGnVPTxC8W481j8tvIVILDt6VbS7B17Gt5PobzxzzGQ9yRchPY7HG7xkuBg9hcpDPOC0PL3ERf28vXVbvYGnbTxXmGo7Jvg5PcmViTuzgmM7QrL6O3sSET0VfHK8yKfHvCNTzLmarIS7sceIO2jRDrxQyMg8VO9NPFBKYD2FCTg8GCFgvLboXL0FJYM8uo1Ku7s8GDzg99+8rDAqvdkrbT0tRkS91j+tvLN+tDt705y8cCNIvHqY1zr14f68VLBZvNJf+jw8D488AM2YPK/ZRjyXRgs9FT3+u1v+Y7yM1So9xLsHvY8/07uPwWo7mjLLvIDskrzEQU49vXEsvFcW07yjL6O73zwFPDsl/LxdK5o7r5pSO8GUgjzL0vu7QvHuu/KyGz0C9B08s4LjvFfTr7zr6tc829YLvGuECzz86Da7NM+TPcsNwTxPUBE97soKPSpeMz16WWO7LzQGPXCdgT3p8Ai9MSomvETbAT2srhI9OLvTvFYchLwxbUm6CQ2UvC80hj2FSCw97soKO5j5Bz2hOQO8ZDaBPaQpcr313U88qMowvBxENrtEXZm7qM7fvIkwPTzNfRq9wZxgvPJ31jyMV0K8CkKovH45lrwVNaA8oYDVPB+u3js7ZPA8HAXCO6Xinz07mwa98P+ePO5QUT1ii2K7usw+PdCkH7w0Ere85B5lvHAndz2FSCy966tjOjHnAr0jEKm8qEgZvTshzTwDO3C84DbUvGkUsrqeWVA9A/jMPDg5PDvLTDU8jJplPe6LFjrBXWw7VFggPBq/CD0ySkS9eMcPvRSAGzvcR5e8gsgjPGhaSD08S9i7RBgfPOhwK73TGT08O7GxuihJsDw8S1g9BFSau9ai0Lx7wkm9ROvYPI64pLs5lX68ddiiPHo08DuA2TY8/ACtPC4zVz3ocKu83wk+vAwl+zxf81q8MbzqvFjhM71E3ws7hPCjvMq6AjycCbk7p9G5u99KBL1prw693rR3PLyiATx25O+6artbvCT5LzyrYoA8vfvhvH6EcLw2DGu9WBrHPDojWL3DLgK9Hw+JvCLRLz2IQKS839AqPENRsjqBAbe93jaEPKYKTb38ega9LjuKOTbbij0cIBy9smx0PN0aUbwmmwk91uOWvINiSrvxnoW8ujm7vG1xtTtKnGw9GaNVvN0iBL0vlGq9GgRpOm9gIrtSMCC9Gr8IvF6SRz1tOKI8KqpDPPQTmbwdusK7FeEuvcR7lTxeWTQ7b2AivLSIpzxw+ki90GsWvKrMc7v75Pm66pgrvVHb2TwL4Jq8/HLTvEPLi7wby9U88rKFPLoAKLwAikC7DPSaPLwoqLuQ4CQ8PnNYO45rETxJQww8xvAoPSyZML0OTfs849OXuldT2rpSaTM96HCrvIobkbxnwCG9PIwevDmJsTyaU987IA8JPGzj2zzRuCk9k9vevE2TDD2yYCe7PrSevO4hPzwOTfu87ZsYPUaF/7oQ94e8nAm5vRe8Gz16+1y8KzidPH54o7xxO4+7RxsMPY4qS70ySkQ96UNlPcqyTzwkBf28hYpKPQ7bVL0w6bA72ViquwWt+jtRosY82h+XPCAjibvWFPc88nE/vF8gITy1Is47GwycPMiKTzyLAsu8swKBvPTaBT3Z0gM8pA+TvERd/7sJ/fq6z5ApvZRpuDkKxGc9CWsHvIfzEL2hICa8cpTvuf5hwLtzIsm8XQRuvNlYKj3/KK09IgpDPAY71Dy1W+E7aSE1vW8TD71tOCK9HfsIvbyigbyxExQ9NHJEvEsqRr1vEw+7KILDO0Cb2LnN9oK9LJmwPF0E7jqLdPG7xZviuzPYnTtE69g7GAmvvPY7mbwWtGg8ejTwunPptTw4wsS6i3TxO1GiRrzyOCy94fgqvV3L2jol+S+9J7vWPLJsdLs7sTG9pak5PP8orbx6KKM89SeZO6rM87yx2oA8v+pOO6fROb0wIsQ8nqPfvOipvju6OTs9l1ilvRjcaLxaCTQ90kYDPaeYJrlXU9q7fxJKPAsZrjxXjO28aJPbPNkLlzzzRHk8QSkyPaubEz0M7Oc72VgqvDBjCr3nG2W8qXMTPQN5Lb2jSKY97uirvL8XlTx5msm8/ceZuqikcz3lgT48S/EyvTMRMT1p9G49z1eWuzG8artggbS8PRLFvKeYJr0Ms9Q8hhgkPQFRLT3nIxg9jMm3PBvLVb0NQS69Gj38PHNjjzxmMsg8N23+vFAIoLzDEs+8rXYAvCpxML1UkTM9hhikuyQyQzz+mtM9Ba16PPl3GT0DQBo8sET0PHMiybtbQkc7bOuOvNNag70Mp4e8i3TxvJK7kToZqwg9JHOJvY9/kT0m6Bw8VjONvbP6zbwega+7AVEtvn8SSr3vdgU8O+pEPAHfhjomWsM7QvxrvZVpOLx12CI8ugAovbHSzbxaQke9FeEuu99CUbslzOk8yRgpvQn9erwEBwc9tRYBPSLRr7zihgS9dLxvvR6NfD3SRgO8iECku+CXFzykDxM95PNkPLrHlDtPuwy9AiyavVl7Wr1oWki8qKTzPFuXjTxC/Gs84mpRPE7sbL2E8CM9NgxrvENRMj0/yJ66xdR1ugzsZzr2iKy8dqvcvCabiT2kVPM8sDgnPM1oKbzIkoK8qToAPNBj47w9Uwu8CGPUvPw5QDt3ObY8vgOVPRJYmzxmMki9MkrEvHVKSb3AsTs8OAOLuzGwHb2lIxO8wqCoOjDpMDsmWsM841m+vdEygzwf4kK8oSAmvTuxsTpCt4u8EcrBPAlrh73ra2W78Ek/u07s7L3PkCm7PVOLPE3MH7yvsgC6uXJOvM8Kg7qbtPK8YhtbPBznCDtyT48+jWNePRSMaLyz+k29xDrPPMwTYzx7AxA9908ZPYOb3brdGtG8oSAmPQFRLTzpS5g7FIzovCnj1jpPs1k9gTrKvH/ZNj1Ct4s9KnEwO8bwKDy4Sk68XctaPAUbBz3tWtK8ICMJvbBEdDyT29486HCrvB9cHLztToW7UveMvHc5Nj0VGkK9ujm7PJDgpDy5cs48/dNmvIBnkDwi0a87R6GyvCkcarxA1Gs9zjtjuwrMGjzIkgI9pOLMO0NRMrzW4xa8JMCcO74DlbwRykE7UEEzvDMRsbz0Exm9TYvZvIyQJL112KI8+hFAO6eYJjwQPGg8OAMLPSkc6rt0g1w8UaJGu3AnD7zdW5c8ThkzvfyzGbwn/Bw9yFE8PSlV/brsMlK83eG9PPyzGT0DJOe6ZjJIPeZU+Dw9EsW7VjMNvTyE67vN9oK8DCX7vEnJsrxSMKA8g2LKPARUmrx7A5A6fngjvM0vljvN2k+8OZX+OxO5Lr22KgE8D6LBvIzJt7wE2kA8GauIvc+c9rsf4sK8kacRvataTbuEYkq87VrSvHS87zwSysG7bkRvvYyQpLqT2968/HJTO/pK07xGTGy7ugAovAYvh7tSMCA80X8WPfqLmTxpITU83RpRvFVkbTwjrJy8PRLFPJU8cjuzO5Q8KtcJPQWt+ryrIbq6rLvgPMQ6T7zDc2I9C4tUPDMd/rwoSTC9/++Zuq7Xkz2TzxG8NceKPSxMHT1ekke9PaAePVAIIL3dGtG8FIxovYpoJL0E2sC7fbE2PMLZOz0Rka68hlG3O0it/zsz5Go85taEPPEceT0pHGq9U8rGO4LIozv4sCy8l2RyvKVwprzxqtK8k9veu4jr3Ts209e7EmRoPavoJj16+1y7SQJGPE4ZMz34sCw9gXuQvC76wzzwEKy8QMgeve5ihTzK8xW7E/JBuz5nC70Mp4c8m7TyPLDGALydl5I81uMWvOh8eDw7Kws9M+TqPELD2DwQdXs8J/RpvE4ZMz36Uga9hGJKPBiXCD4qcTA6FeGuvCwTCj1wM9y8cTsPPWtJtTyArHA94mrRvKgmgDxlmKE70bgpPR3zVTzp0b47oVk5vfdb5jwEVJo8KIJDPMvOAj3Rf5a8Q1EyvWb5tLwhNwm97CYFvN3hvbwqqsO8d7OPPO+CUjwNesG8B9X6PBvTCDw07J08IXAcveExvjtqww49yaYCPcB4KDy1Ik69FeGuvLMCATr5vHk8eNNcPO+75bpf89o8QjX/O4LIIz1BKTI9IHAcvPNE+TvAsTs8evtcOXcAo7zx42U9gtTwvDpcaz2TFHI8kexxPLgRuzy3i5Q8TuzsvPjpvzzfCT67yvOVvIqhtzurITo9tek6PduAqrzAeKi8QfAePaEgprzmVPg8smx0O6qT4DvAK5W98rIFvctMdjzXqgM9gtRwvLa89LvdGlG9L4gdu0ukHzz17gW94oYEvQicZ7xPuww945JRPHPpNTz902a7PwEyvSqqQ7zOQxY9JdScPFwxNL2KaCS8m6ilPKdLk7vpCtI8SyrGvA5N+zzetPe89GCsO76JOz1w+kg8DLNUu9KL47zmSCs86pirvOqYqzvRuKm8ZEuOOxVbCL05iTG8xAG8vNKTlrwmWkO8CsTnu7lyzjz+25m8lQPfvMiKT73mVPg8kacRvCqqwzzZ0gO9V1PaPFioIL26DHU7qGtgvNrmAz0Q9we8+osZvST5rzvycT87Fu37vNDxPLwRysG8BFQavatazTzvu2W8VjONvOtr5byMyTe9d7MPPezAK702msQ7DOxnu+pfmD0hQ1a9CsTnvGn0br2AoKM9ht+QvAHDUzxUkbM75YG+vPBJP7yg05K8MSLEO5PPET0Bw1M8DhRovXarXL3IyxU9dqvcuxq/CL39joa7HGX8POcbZbzcjPe8zKG8PJrhOLyG35A8d3LJvCQF/Ty/6k67jMk3vcq6gjz1Jxm9YQ8OvfpKUz0KzBq8LEydu3xc8LybtPI86pgrPP3HmTtMxGy795T5vAsZLrxGhX+9R9pFvRo9fDlc+CA8duTvvLLugLy/XHW5NgxrvNDxPL0sC1e8o4G5PLRPlLw1xwq9uWYBvhySQjwWtGg8bXE1OwLzhryzM2E7nzG5vMfDYr0VU9W8JuicvLALYbxc+KC7k9tePe2bmLy6xxS9Yqk0PTdt/jswIsQ8+2aGvBHKQbpUA1o8qpNgPIlM8TvK85U7TqcMPb/eAbteWTS9NTmxPIXLELxBYsW7pBtguwhj1Lw9EsW8ejTwPAZ8mjyuECc93FPkPBsMHL0V4S483nvkPM7JPD0gtXw8hGJKvCXM6Tszn4o9TMTsPARMZ726ACi9T/QfvSLd/DxBowu9UEEzPdxTZLsOFOi777vlvMYpvDzialG9b5k1u9Ps9joGLwc9dp8POvMLZjxH2sW8CWuHvEEpsrwi0a88c7AivSOsHD3TWoM8OPtXvCboHLwYFfw8QgQfPLawp7yLdPE7mLm4POcjmDysr5M8Zvk0PEHwHr3CGgI88wvmvDPk6rvLQKm7Y3xuuwQTVLyJTHG9OyuLPAYCwTxDUbI8vbaBvOWBvrylqbm83agqvLo5u70qqsM8hcuQurjYJztp6CE8DLPUPLUizryPxPG7wPKBu5xCzLvRxPa7x7eVOvaIrDz2AoY89BMZPb8j4jzCUxW9RkAfvUsqxryyYKc89GCsvOOS0Tw3bf47ARiaPO2TZTzuIT+8zgJQvVGiRrxaCTQ5kaeRO3D6SLwuwbC7mCtfPOPTl7zVCCo9fSPdO/Vs+bpOGbO9S6SfOzPYnTu1YxS8DKcHvVEUbb0Lfwc9URTtvOlLmLui81+6DUEuu6TizLo201e89GAsO3o08LzqpPg74F4EPfgi0zzvu+U7WKigPAY7VLwC8wa8AhgaPYE6SrsTuS489frSvKDTEj1sHG+7EPcHPe2bGDyCyCO95lT4vOpfmLriy2S9ZjLIvIOjkLvC2Ts8JHOJPCevCb0ETGc9Ep37PJyDErtp6KG8oNMSPBuSQroE2sA8orrMO6EgJj0uwTA88jisPOnRPj2RpxE9h/OQO9jKUD2xExQ9wtk7vQ4Im7wFG4c8GNxoOwwle7ur6Ca8p5imPCwLVzynmKY81zCqPHr7XDyAoKM7Wgk0PA4U6DwrRGq9Q4rFu/Hj5TrVQb07jMk3vYh5t7u0iKc8rtcTvQ+iwbuAoKM8OAMLvQwle7yVMKU83rR3uq4cdDzuIb86LEydPZ3c8rwM7Gc9yRgpvYzJNz1401w9swKBvCqqwzwrOJ28vxcVPH4/ELyr6CY9imikvEDUa7wrfX26ewMQPcB4qLx/UxA9l1ilvBMzCLyhWbm8UzztPN1bFz0Zo1U8O71+PEhonzzJGKk8RSyfvCrIrbvrn6g8GWAsvTiK2bsY4ta7F7YBvevgPbyEyl89cflIvD2ZxDw7cUS9PRcavNnOEbxmHgi8jvv1O8OYurvSsDu8GR8XveRAvTwifgK8FVFBvX9OirwFe5U8zOJlO9v2ET1UOLE8wwIQvDrHGb2RYLY85ernPBfiVrw1IgQ8KjIDvTY2hDn73ym8vwt6uwSoKjo2NgS9ZV8dvTiK2Tt5F588qhLjvIcaYLy2FyQ8G8lBPHEiCb2SCmG9BiYAvcvPpbuJAUu9IGoCvAdOALwrWoM91pKRO0sa2zw8WC88U3nGvcqOkLyCioq9kh8hvYynILzl6mc9MP+YPPVnqbxKcDC7GDisPPM/KTxkoDI6L/+YujBALr3coLw8OIpZPc3i5bxV3ga9TWsbvWrXnTwmeK28TmpbvC0Yrjxobog8EqtrvI16Cz31Z6k8X5KHvAi3FTw72tk8d5oJPK064zz4tym81GoRvfwHKr2lgo08Si8bvXdxSbwBQ2o8c2LevHVJSb1wYx48SPJaO4kWCzz4ThS8GDgsvZ/ijDs4s5m8Fo6BPC+BQ73c4VE8oCLiPOs2kzsgagK9icC1PLg/pDye+uE8oaC3PBVRwbvdHpK8jWaLvLYXJLwIetU7jZLgO4YvIDyfeLc8xFclPbx65LxV3oY8v56PvFqbcTsnItg6uOnOOo16izxNg3C8eO8evMEzer2LfyC7alnIvE7AMDwqyC29wIlPPIPfnzy9omS9P8FEO+o2kzwnNxg9lEehvJLeCz30Kmm9IILXOxtz7LwHjxW5XUHHPIOeCj2l23e7KUpYPKiBzbwA2tQ7qWi4PIQHID3E2c8865+ovEtDG728Oc88iBaLvK9i47xCjxo8fBIKPc9HJrzQ8VC8jnnLPF1BR7xhO/I69Gt+PJ0Porz0Kum816aRvJfYNrirU/g8nVC3PYgWizxZm3E8iFegvNn65ryImDU8aDFIvAADFb1AEoW87seoPMu6Zb0UZgG9j/egvI779TwPAgE7bStzvc9HJjxISLA8ScYFvHYwNDzimuc8XtOcPNzh0TzxFym8v98kvFpa3DxUtgY76XcoPJHKi7uYw3a8TsCwu0YL8Lyb56E8rHt4vUZhRTwjkUK9sOC4vBgj7Lxpr527QZPvPHkXH7zVQVG9XUFHvNIuEb3r4D08kkt2OT8qWjyF8l+8NPlDPdSXpr2Gsco88z+pPGVzHT1NKoa7RXYFPQ/ZQD2G7go96qN9vEjzGj3IkuU78QLpvOT/Jz1aWlw92ni8vD9r7zrIKVC9wQeluwV7lTwoXxi93F8nPXIhSTw1uC69mUFMvFS2Bjy3gDk9mmnMvOxKE73MOLs83R6SPfYRVLx8Kl876U+ovHvBSbxguge80i4RPR1vlzuqqc07PdYEPR7YrDxlCUi9M+aDvUsvm7xGngW8WHNxPPuJVLzW63u62FA8PA5wKzxoWoi8Rt+aPKfXIjxk4Ue8iQHLPWThxzyDngo9nLoMPZ43ojwn9oI8KQlDvN0Kkrz8shS9VUtxvMdSEDvrIdO65OpnPC3bbb0xE5k9kPcgPNxfp70X4lY6CWKAOi4YLr5K7gW9O3HEvLOy47zEFpA82jv8uiTSV73MODu9Fo6BvJZa4by/ic+8Rfgvvc/JUL2B4/S8kkv2PC/C2LtE+K876XcoPHOLHrvDLyW9cHtzuucSaL072tk9EAHBOqdAODwXeUG7xcA6uxtHFzzIZpC8XuvxuhLAK70Fe5W89mcpO3nWiTz8shQ70EemPJ5j9zwyU269NPlDPOshUzwMxoA9crgzPUaehbwm4oI7oaC3vGvC3byEsoo90PFQPel7/bx4Ax891IJmPImD9bvS2Lu8GWCsPEruBb3hWpK7QGcaPeUrfT1Et5q7+WHUPCbiAj26Ec+8p8Liu2WgMrxeE/K8utC5vOOBUr2XGUy7MScZOSxuA73FQuU8GOLWPCHTl7xXBgc9kCP2PIhXoDxLAoa9flJfvCoJQ7uzcc69PoCvPFDT8DwNcKs5icC1uxDZQLzz/pM8pZriOtsiZzyG7oo8b/qIPnXHHrzS2Ls8jOi1vE0BRjx51ok8QaivPI779Tw8WK88fBKKvDV3mTuA43Q8lAYMPR2wrLxVHxy7PO+ZPL/fJLwPQ5Y8m+ehPa06Y7zC7o88BGcVvR8ZQjueuUw9/toUvaXb97xWYLG6SAebPH9OCr0NG5Y7hwKLO9wi57zygD49uhHPvHrWCbwZocE8SPLau69Kjrsem2w9KOHCvHorn7wQFoG8Q9AvPQ4vlrxS4xs9CSCrPAmKAL1huUe9X6aHPEffGrwNGxa92jt8PMTZzzmmWc280i6RO5SwNj0smxi9M9HDO8NwOjy/ng89mb+hPI3T9TwJIKs88z+pPL52j7xXyca7UuMbPadAOL3C2g89GCPsPH0mCj2Ig3U9KYvtu0RiBT1/u/Q8JNLXPNn6Zj0BK5U8SRsbuyzb7TzfyLw7X5HHOmSgMr0SKoE8SAcbPO/vqDmsT6O8UFKGPAyygDyAOco85EA9vHvBSbwjpoK8mX4MvUR62rzYE/y84m6SPOAx0ryRYLa8pPC3vNriEb0zOxk9iAKLPFXiWzubpow9yKclu4MgNb0FexW8ZF+du8YqkDxieDK8VUvxPGDSXDynQLi7ZCLdPBe61jyXl6E83OFRPGjwMr25qLk8hXA1vEmxRboaM5c8iiqLPCdjbTzdi3y9wAclPevgPTrWfhE8STNwPbFJTjurU/i8Fo6BvFqDHD1i4oc9r2Jju+OWkj2SYLY7ppYNPGSgsrotggO93PYRvFcGB73xAum8SEiwu7xOD71xOt48NrguvEXjb7wWegG8wDN6PO1ekzvibpI8DAcWvZ/iDLwDrH88GOJWO8RXJb2NUcu8ZnLdvMFIOrxpml07ez8fu/0zfz28emQ80tg7vBlgLD0HTgA96TpoPdUAPLwSwKs7FNNru3orn7x2cck89WepO2uqiDxOPoa9RaLaPD/qhDxsvoi7gPg0vAhiALp+Ut87sOC4PBqILDvfh6e8e2t0vAtIq7ymlo09EQFBvEkbmzz1k/49zeLlPG7RyLzZzpE94tcnvblnpD2QOLa6fRFKPbpSZL2ezgy9riIOPT4/mjzaeLy8rqP4u+cS6Lymlo28ciHJPPZSabyse/g8oQnNvL23pLtXR5y81ILmuuKa57yA+DS9FRCsvGUeCD13mok8DwIBvDHqWD3txyi8eQMfPG7SCLywXo48ujoPPXM2CT2X2LY7aPAyvVhHnDvYE/w6SfLavCj2AjzXaVG9vDnPPG87njyb56E72ZFRPcOYujuse3i8s++jPC3bbbzlvhK7tVg5Pb8L+ruPuuA79Kg+Oyd4rTrDmDo9OIpZPH0Ryjz6ouk8OLMZvJnrdrzFFhA7JblCvO9xUz0xE5m7NPlDve1yEzxjS528q5C4vLCK4zvQc3s7uD8kvdKwO7yXQgy9K/AtO7Pa47tF+C+8soYOu5Lei7x/u3Q7RmFFvQWT6rww65g6kPcgPH+7dDwPmKu8Mb4Dveoh0zzDcDq8PUNvPK+fIzx/Tgq9X5HHvOAxUry7u/k8dceePHNKib1ieDI98a6TvJeC4bwuGC49fag0vI16C7zMI/u8r58jPaOHIrsk0le8JiOYvOkOEzx96cm8a+udvPJYvrxMFga9JDttO8mnpbzTVhE85EC9vFzDcbzSQhG9F7aBOk2D8Dt42t48/i8qvQ1wqzxj9ge9YuIHO6ZZTbwglxe8wDP6vJrr9rwUZgE9TBYGvRFCVrtVygY9vooPOxcjbL2dD6I5fD+fvCyvGL3kQL287EqTvGnb8jyA43S8uhHPPEI6BbzWKDw9CmHAvMHyZL2XguG9+LepPSjhwrzXphE9JJHCuYtSC71g0ty7+98pPKAKDT23wc481pIRPFF6Br29dg+9IJcXPSlK2LvxAum8l1YMPZSwNj38Byq9EsCrOB2wrDyB+LS70xlRvDW4Lr31k368j6KLPKwODr2KKgs8fBIKvUyYML2EiUo9FVHBOx+rF7wRAUG9pllNPLx65DsxaK47dYreu0jy2juGW/W8kLaLvYXy37ycE/e7E+irPPogP7zi16c8GkvsPNygvLx3mom8O9pZvDW4rjxAqC+9L8LYvCCXF757a3Q80Ig7vIOeijwDrP+8GogsuwsL67yHmLW7p9civTxYL7wvgUM8SPJavFaIMT202uO8cHtzPBreAT1dfge8vHpkOzMSWTwJ+Kq8NqNuPPWTfjzwG368HbAsvL5hz7pNwLA8MCtuulWhRjxGnoW7rHv4vLjpzjtLGlu7SxrbvJrr9jwcWxc9llphPYF2ijx5Al+9AgLVOtaSET3EV6U8TAIGPIYvIL05ScQ7WVscPS3bbTxXyUa9njcivWJ4MrzvmhO8KCJYve7HqDxJ2oU8UFKGPPUSFL06mgQ9MCvuvA0HFrzsShM83aA8OktbcLymWc080i4RvWDS3DwIYgC9kkt2PGCmh735OdQ8OIpZPGUyiLwG0Kq8mqphPer50jwem+y7UOgwPTInGTzJp6U8QSaFvJPyizwXuta8in+gPI3T9byMKcu8lxlMvM4fpjx0cok8o1oNvdbr+zwX4lY8n/aMu18oMr0uWUO97seovGD7HL2tuLi9L8LYPO2K6LxJxoW8HkICvHkXHzwN2gC8K3JYPEDpRDxnct25lTJhPG/RSD06mgQ9eQJfPNygvDxWS/E7wbHPPBoK17xdADI6DbHAuzuuBL2hoLc8sQi5upeCYTkeQgI737P8vClzGL0aH5e8y/elvNPDe7xtK/M7YSMdPBFC1jxn8LK80kIRPUtbcDwH/P87Tj6GvZwT9zsQg2s8nrnMPN2gPL3JkmW9LG4DPafXorx8a3S9TylGvdLYO7t5WDS7K3JYvDN7bjxkIt28L4FDPejR0jyGL6A6dbOevAqegDyG2go8TylGvE4+Bj3ibpI8p0A4PT5D77s/Kxo8rzaOvNkPpz1RUcY8BlJVvfUmlDoSk5a8X5KHvD7BxLwoHgO8zmC7uzPRQ73g8Dw7CGIAO4tSiz09mcS5Zh6IvHwq3zsl+te8IqrXPBZ5Qbxns3I9qmg4vKRy4jwUp5Y9eQJfPaXb97s4s5k8zDi7PISJSr3O3hC8zh+mu2bIMjw8WK+7kLYLvOkik7wX4tY6pZriPAtIKzyWQow7VLYGPdjSZjp51gk9ScaFvRIqAT0eWle9O9sZvPEXKb2P9yC9ekP0vF7THL3hbhK799A+u3vBSb0iqte8STNwPH6PnzyVsLY8oaC3PItSizw0kC69y7plPWXIsryXlyE9U3lGPQ8CAT1Dj5q8HbCsvK53o7yZvyG9ZAoIPYvoNb0iqte89WepPLWZzrzehye9wUg6PRzxwbvyQ348948pu6AKDT2DIDU9TEObu1bJxjy5k/k84YISPXja3jyIRws8e9BSPXNMXb2HaAc8u3CBvOcS+LsvOw+8CjuAPSpMPzwz/Qk9OcDtvDKvuDvD8Wy8Ahvou5tU0jydqgk8rwGvvNcyBjyFYCE86kPAvL51Xbx6GjG8sCoRPI6eqzxqVD49aAL6PC9+cLw2vwS9HPr1PJBcszw7ErK76DvaO03clzzs2GU8L8jOPAYrNDyRyHY8hxo2vWUBEb2lTHE7aCtcPNpc0byJZf286yLEu9fopzxC4AW98xJ9vbINCL3yprm7LxYgvXDYM7teooq8aHU6PbLomLxDdas8cgWJvAjA2b3V4ME8vxGAvbhoG73J4Ly8nDPWPBIruTydXLi8l7fGvL6/uzz8dfa7yLdaPCdE2bwot5m8zfAIPfx19jwT4dq84w0cvWE/lrwtfYc8nRLavG/5LzzHjvg7x9hWOzGG1jvlfVI9Ph4LvOYzdDwAhsK8GF3qPB8rPjvV4ME8vyt/O5dtaL3YVGu8T3WwvMB9wzs5WJ28y55EPf4z/rzc8Xa9jsMaPHDYMz3wCS48vG33POfPlrwf4d86kvFYvWXcoTzYEQq98qY5PZDpcjzd0Ho709jbvGDI4jzu4Es9PdC5PLjQ6ztihmq8jp4rvJKnerpVGiI7COm7PL9U4TuCxwi9E+HaPE23qD0PRM+83yK/PN6RDL1iGqc8IhKou5CmEb1TXBo9tcuPuhfxJrxcdTW9cUT3uzt+dbzs2GU8ro5uvBo8bjx0db88lo5kve10CD01bUA9AtgGPCpMP73GIrU8qoWfvY/HjTwSuHi9r7fQPBBtMTylCZA8snVYu4WFED158c67nYWavJe3xjxU8T+8Da8pPR4CXL0xGhO86kNAPaSWzzyEpoy7bhosPLpsDj3o8Xu8gExiPEh++jyhbIS9XuH4O74NDT1Jp9w7tMccvK8Br7zx7KQ7XHU1PeamtD2gQ6I87EumPC4SLbwOsxy7zMcmvOMyizy7AbQ7agrgO3uG9DuqhR+9DNClvK+30LhGMzM9DIbHuzh5mb2k4C09J68zvKqqjjzYEQq9Nr+EvAUC0jza8I08J9iVvPsJM7w1u5E8Wm1PPFevRz1qfaA8UQrWvDYC5rwxhta5E5d8O/7wnLw5WB098OixvD4ei7rM7BW9PMhTvCPxqztGgYQ8N3UmvWT9nTzxVPW8X4EOPbn5zTpj+aq8zlzMO3GOVT2rroG95cewO5zp97tyBQk9Jxv3vJjgqDxup2s9DtQYPI0r67voO1q85sujvKQFnTw/2B894zILPTrpz7uVRxA8KgJhvSSnzbs7yNO6FAo9vGW3Mj2s0Oa8toWkvO8ykLxm4BQ9gExiPQYrNL2Cxwi8x0sXPZrojj3rbKK8kRJVvMmWXrx58U68azPCu8xU5jxbmiQ773Vxu/xXBD3u4Es7UVQ0vAZ1kr2ACQG9wzvLPNzxdjth8cS8p+wGuqdUV7wyPHi7jJZFvEwBBz1rM8K74gkpvIwqgj3Ny5k7vLdVPcKFqTuNvyc9WpaxuhRYDrzRsgO97AHIvJJkmbtljlC7oUcVPIXI8TsElo69JvmRPdGNFL2jKoy9QI7BvD3QubzLnkS+b/kvvPFUdbxrXKQ7oyqMPLBt8jmhr+W8G9wDvXIFCTwsCse8s546vZymFr3lxzC9SV3+vBFMNT1pwwu9HbsHPFjYKby7AbS8Ga8uve5TjDx7aIK9EZaTPZBcs7xK+aA8//SPvMKFqbziCSk9LlyLvEFEY7zf2GA8FenAvPP0irvMx6Y8D0TPPOwByDwV6UA9dzNHvRo8bjyLBZO8L8hOPadUVzwplh29iiaPvGE/FrzlxzC84gkpPRKahjy2hSS9BUywPCPxqzxPv448UulZuxmvrjwwp9K8xdDwvIF1RD3Npio9WdycvNJDNr3Sr/k8YhonvdyulTw3dSY6glRIPHDYs7k66U+8x0sXPVLA9zyJIhy939hgPBEC17u/nr+8mivwPNkz7zzyfVc9Jv2EvVDDgbwM0KW8kcj2vTlYHTyofbk7MR6GPH7YOLuM5Ja8sE+APC1YGLz5dA08j6IePTAakz5Yjks9UOHzPJaO5DvPhS48a6YCOh2WmLxoAno8N3WmvJe3xrxJ0D686RreO2vp4zzPqp287HCVO5MauzxdCts7A20sPSLIST0PRE+8U597PKqqjrxPvw48APkCPXtogr3hdAO9efHOvBU3EjxGXBW8Erh4Pb513Tplt7K8okuIPPZDRTqcCnQ8Y/kqvAZ1kjzrIsS8Bwo4Pf0RGbu+DQ28xBrPvB/hXzzgAcO8KG07PFkBDD2Gp3W8Q5oavMmWXrzlfdK8VTuevKD5QzxsyOe8zFTmOw6zHL13poc6E3kKPPciSTzrkRE8TdyXuxFMNTzk6Kw8kIEiPcRkrTwkXW+8cEMOvSUajj3FaKC98jP5PCkj3TyvAS89oI0APSi3Gbtjr8w62ssePbYS5Duvt9A8zhLuuUtl5DzQ8fE8yw0SOl2eF73X6Ce9vOA3PD48fTwAhkK6mivwvNQBPrqTiQi8zMemPDVE3jsIwNk7pb+xvGh1urtgyOK6yCobvd6yCLxMRGi8J0RZvJqeML3CXMe86Y0eOrrYUTvFjQ89AIZCPWXcobxUYA29a6aCvOEqJTwun+y6HnWcvNfopzzk6Cy9H3mPunfp6DxKhuA8J443vSnZfrxTEjy9B3kFPOamtLyNv6e7b/mvPIeG+TutRxq7rwGvvN0aWbumDQO8FVyBO4qO3zxOI2w8GfkMvci3Wrz3bKc7tqqTPWoK4LsFmoE8c5Y7PKkSX7sy+Ra8rthMvSpMv7y0fT69f5bAvHOWuztVPxG9O8jTuhIruTy/nj+9qDNbPAcKOD27cAE9YobqPKdUV71gEsG83GQ3vGpUPrxaI/G7YWQFvSwKx7zlx7C6EQLXPNJsmLybVFI9woUpPf/0D7yvt1C7qVw9PeG3ZD0nG/e8ZWVuPKjLCr3l7J+8QkxJPUuvQjuoM1s839hgvUBE4ztrgRO8Mq84PREC1zynVNc76Rpeu/e2hT0xhla8QkxJvPsJs7k1uxG9MdA0PdhU67xmI/Y8FMDePVTxP7vxVPW8a4ETPYN9qrzjMgs9wztLO5BcMz00RN68C13lvFHhczyWASU9irdBu0g7Gb1DK029/Oi2vKCNAD2G8dO5JYbRPH63vLxsyGe6sZZUvZnkm7yAvyK9OFQqvU6WrLxuGiy8hxo2vMF9Q7xDAus8meQbPHnIbLuqqo68JtSiPPu/VD1rM8I8MvmWO/ERlL36lnI8GhvyOwP667yEEtA8+79UvWMemjsf4V88lgElu9aWYz1U8b88jXVJuxenyDxXIoi8pUxxPAZ1Ej3aXNG8sZbUvCN+6zvTcAs9SGAIPUV9kTxWHpU8m6IjPZYmlLw1RF48ZuAUvThUqjw+hts7uthRPAyGR73Zxys8E+HaO7uO8zudyHu88jP5PERUL719Joq87pbtvBTAXrx6ZI87m6KjvHqn8Dz+fVw8Z0xYvUaBhLor4WQ71+inPIGepjwkp027GF1qPBOX/LzbqqI6komIPBZ+5jwE2W88/hWMvJ2qCbsaZVA8A20sPRuzoTx+t7y8VafhPLTHHLyxLgS8echsPBPh2jqp6Xw8fK9WvTVtQD1VGqK8pOCtvO7gy7ijAao81+invL+eP71dVLm85qY0vCevMzxIYIg6+bduOymWHb2pXD07SRodvLeJlztgEsE7lo5kO8Ez5by2zwI9crc3vYaJg7tcdbW8ZgWEuChtu7xefRu96WS8PCUeAb33bKc8D5IgPXnI7LtW0EO9J68zvL0JGrz/pr48WpYxvfVkwbwjOwo9SV3+vORU8DyMbWM8lPk+PUG3o7x6PyC8PBalvX3YuD12VEO9MdA0Pd/Y4LsfeQ+93Y2ZuBWf4rwAhkI9y57EvF4zvTy6r++8o7dLvLDgMj0b3AO9mitwvIQS0DyT0Nw8KG27vOEqJbxshQa8UQpWOwk3jbyk4C29+HCaOiU88ztrM0K9vE8FPU1tyrx58U68MBqTPRy3FL0Zhky8L35wvJcqhzvc8XY8gzPMuzlYnbxN3Je8hqf1vBQKPb3rkRG9tVzCvKcKeTuhr+W8XCtXvKMBqjtlt7K8FenAvA35B73yfdc7crc3vVzDBjyawx++A/rrPDieiLyB6IQ7q64BvTDxsLyRyPa8FMBevBmvrryr8eI64EuhPFm3rTznXNY82DIGver54bw2TEQ9+7/UvMQazzxXZWm7oksIvSvh5Dz64NA61LdfPJRDHTyWjmQ84U+UPFdlaTwgfYI8pJbPuxgaCbzn9AU97wmuvCT1Hr23rgY94gkpPPHHNT2FOzI928+RvTHQtDsDRMo8QGVfus2mKjy2haS8sit6vCJcBj0LGoQ6RlwVvcVDMb2oywq9IlwGvEafdrzdsog8RaIAPAzQJT1zTF297UsmPdMiOr1fgQ696yLEOzvI0zyZdU68EUw1PaFshLwcbTY8E+FavbpHHz0DbSy9ra/qPBplUD3/XGC8OjOuvMOqmDtybdm6ro5uPKfHFz0qmhA9eFypu2P5qjxzI/s7azNCvWP5Kj1w2LO61w0XvVLAdztwr1E88A2hu1qWsbw6n/E7z4Wuu+f0BTwLXeU5oSKmvKLYx7yk4K068hWHveeFOD2z7Au90GSyvJT5vju9CRq6WI5LvH+WQDwY0Ko8KLcZPBuOMrzNfUg9iWX9PL+evzu4jQo9hxo2vDhUqjzQiaG8j8eNvFVkALwr4WS9B3mFPCxUpbma6I48X+nevBTA3rzGr/S8W+SCvOzY5bulTHG8bMhnO4QSULv7CTM7RX2RvDT6fzxt8ck81SqgvDtgA71ybdk8SoZgO9rLnrx0vx29N5oVvSLIyTx70FK87bdpvV1UuTpMAQc9woWpvBAj07ytbAk8DfkHvXhcqT17hnQ8XuH4PKMqDLxMjsa7/Oi2O6bDpLw7OxQ9Erh4O24arDx+tzy9oa9lPOIJKbynx5c9q4kSPQlVf71I8bq7OFQqumtcpLsHl/e8jb+nO6xDpzwQI9O8j8eNvJe3RjxS6dk8jegJPExE6LwcI1g85OgsvKBokTyLKgK8ggpqPcVDsTw90Dk9pJZPPcQaTz3NfUi8GNAqO2Rl7jy1yw+9zlxMuzCnUrwm1CK8vr87PDlYHb3Gr/S7bTuovOlkvDzCXEc6c5a7u5DLgLpMjka7u3ABPauugb3ulm287UsmvdUBPrsaZVC9CxoEvfx1drz4S6u8fSaKOzgKzDyXKge9ChaRutxktzyujm48A7eKPBtE1LydhRq8MR4GvXuG9DwIwFm9VtDDPCavMz1b5AK9iWX9O5Dp8jq1XMK8zX3IvOMyizwOsxy9mOCovAHUkzvcZLe8GmXQOz48fT3oO9o81zKGO8ueRDyE6e08U4GJPYhHCzwT4Vo96kPAPMRkLbhh8cS8QzibPJICET2XYk+9yxLaO8STqTsBvYC8eZ/CPK+Hgz1vxre6VGPpPFeQVr0U16G7Ays6vMTOEbuE/Bg9U2uAvBIjt7yj8va82RhSPHpkWrzTzPK8bzyIuAH7mjyfVB67paOvPDRAHj2lo6+8svIKvBXa0zymGQA9RLGdvCDuRrwPydy8Qz7/vLtjwDwQehU963ikOdDoaL0cUyC9NnNvPKXkezwrS528P2KMPIaztbu3fzY8E14fvfRtJb0q1cy86FkyvGkrkb1iLnm7gs8rvfwnPj0bFQY8qXm+PMc5GTxlzoS9L+bDvImUjb0h4Eu8XZNSvJDVoz15KfK87qt1u2zRALwPARM9V5DWvA+IkDr1L4u7GPnFvQeFFD21Ukk9HJTsvP2dDr24fAS9YPunPB3PVDxXkNa88crnOwLwUTwhZJc8Gmf/PFm9wztnwzu6ppU0vAqq6jziRYk8SgAvPb85TzzTzHK9CQHJvMNjirvYI5s6MCEsvbzZkLxHHCW8oA7tvFmC2zttiB09g4ZIPODagTsvLye9gpTDO9zB87zgGBw9f7C5vKr18jwqX/w8LP+HO0nFxrzED148cPMkOqZazDurtCY8plrMvNRCQ7syEzG9EWyavGLtLD24fIQ68E6zPCORhDmyM1c9W2blvBaD9TyYUaK8uPtqvHxI5Lk3JKi77qt1PGh62Dr7Moc8nxaEvWqnxbviRQm9lquyOhvdz7zajqI8GpwDPcNYQb0nbfc86/8hPeoCVD0wneC83EINPQl3Gb2HalI8elZfvI6oNryYEwi9l5qFPew9PLvc/Fs9tGBEPNxFv7u75ws9YmnhPGh6WD18Bxi9fYNMvR/B2bvLElo4yeXsvBojATvD4vA8ogDyvL2Qrbp7kUc9jHgXvZWrMr38J748mrypu3noJbzFSsa8O4TmOnXGAT3cgKc9xwHjPH2+ND39JAy8zQTfvAorBLx5Iw48dru4OyzEn7z8J748DZaLvAWn7rxdk9K8ScKUPBvaHTuUNWK909QJPNhhtTzMShA9WJBWvNxFvzxCRhY8WYJbuyRIIbz0Mj07ETEyOwDD5Dy+w3658Y9/O1yhTbwj0tC8o/L2vB6G8Twx2Ei9dIuZvJX6eb1E7AW9U2uAvC8vJ73Fxno9yt+IvEgOKr3X6+Q8EbvhvLvnC70kiW08dn0ePMsgVTyCkZE9eK09vQg8sTuv0xg9SU92PGj+o7yaC3G8SgAvPbbOfTy0m6y7o/J2PY8kazuZRtm7J+4QPVWbHz3IdAG9sHw6PRqcAzwKLra7Puy7PA0SwLzQpxw9/wtIvP4ZQ72owqG8i8Qsu5ICET1PUvK8WfgrvbVPlzwgN6o9HvmPu2xQZ7zI7YO8SkH7OxsYODzw2OI83YAnPC09IjusIuA8UMUQPYY3Ab1FKiC9lLmtvILdJjxISRI9gOuhOqiEB7yaC3E8hMEwPBVQJL0aIwE9YIVXPLRdEjz6+tA9mQvxOjKPZT3EWEE8L2oPPXA08btLtBk8GpwDvQBHML3YsPy88rxsu1DTC7zEzpE8y9fxvA0Pjj0TIIU8jqUEvSX8Cz0B/kw7/Cc+vizHUb3wj/+72F4DvEELLrow45E7Puy7vJDVI70qlIC8FgQPvTX0iLxQjVq9qXk+vbYJZry0XZI3ntsbvG7GN7wDK7o8ZJZOPWRb5rzmohW8mkZZvBcHwT3hkR68RLRPuyJWHD1s0YA8NHsGPIelurx3MQm9nemWvRqi57x4rT07u56oPJs43jyHoog8BeLWu8Jjir2Jl7888rxsu8FxhT1tiB098RAZvQH+zLz6+tC8J+6QvLVdkj1Cwso8C6SGvN00ErwbGLg7paMvPOCl/bygj4a8UI1avRaRcDx8QgA9vZAtPUnClLybgUG8SA6qPNvJCr2+RJg8C+XSvECV3bt9Dfw6liEDvPO2iDwARzA8Mo/lvGwVfzxhPHQ8S/KzvMe4/zvAdLc79l8qPYEec70g7ka8JywrPOma/r28nig8kNWjPIgbizuHKQa91b53vB83Krzkg6O8NEAevOAbTj1dUoY+kZq7PGJp4TzUUL67uPWGvBf5xbwRMTI9S++BPMjz5zu0YES85bAQvTu/TjykZRU9GmGbPJT6+bvFha48gVnbvLj7aj0i3Zk9gWfWvFiC2zxZvUO9RSqgPJXs/jwtPSK9jiwCvWE2kLzyQDg6lPQVPAxbo7zbz268PPcEvZ9X0DxuQuy8sD4gu1qsljzBKKK7rKarOxG74TxiLvk7t8gZvdEgH7znGxg94dLquaZaTDzyvOw8JA25vM72Y7203Pg7ZoWhu12TUjxKfGM8OGX0O2IolbymWsy7WMu+u16QIL3TzPK68I//OwWZ8zyN8Rk9XJ6bPAg8sTx46CU9YIVXvNHihLx9gJq7WjMUvXob9zzolJo9+X6cPPvsVT2Sx6i8L6tbPU3kuDyC3SY8dn0ePbvniz3LINW8CDwxPQnzzbx2uIa8lifnvLdBHDwKLrY7zrt7PI8eh7zJabg8h6W6OtgmTbs6zcm8vN/0PMNVD70eRSU8ScXGvH2+tDxKfGO8F30RvR75Dzsf/EG8SJjZvDrKFzzaUAi8+b/oOwg8MT2Sxyi7hT3lvKzndzpSuke8RSqgPCrgFb0NEsA87h4UO9RCQztwfVQ8h2pSPETshbuBZ1Y8okYjvGGvEj1WTwq9XKFNu2dNazp7zK+6XRcePGwV/7zolJo8bJYYO0HNkzwrEDU9h6U6PGIoFb1ekKC8k3uTusLicD1miNO8HM9UPclpOD0rELU7QQsuul9Ei72enYG8B8bgvEWmVDy4up68HQcLvQKvBTtG3oo8Z8AJvUVrbLzHdAE8hMEwPI0yZjzes/i8u+eLvLRgRLxTrMy8dIuZvKl5vrwDKzq9iwV5vOoCVLyVbRg8PPo2PZ7bGz3QaYI8w1hBPT2x0zwVUKQ8UQMrvWRbZjvZ1wU8QkYWvRXa0zwEoQo7TxGmPK5PTb0tudY6cHoiPIeiiDzfJhc7mowKPJXs/jtarJY8kscouulIhTzMTUK8RuG8vBZCqT03JKi8jEBhvAMoCD4X+UW8zE3Cu6+KNT2+R8q7twMCPd+lfTyb9xE909rtvFp0YLys53c8oYGLO/zs1TxxNHE88nsgvQ8ExbtW1oc8+7FtOiio37sq0hq7H7PeOtqOIr0ne3K8SEkSvdsKV736QzS61m8wPUgOKjsAgpi8U6zMPG4BIDozThk91jGWuxaRcDxQyEI9NySoPOCl/bogeHa77SyPvBOZhztfSm+9svjuPGLtLL3gKck8ETGyPNxFPz14rT09bsOFO1DTC7w297o7xjxLPMRYQTsGD0Q9NnNvvESxHT2foDO9y9fxOmj+Iz1slpg8xsZ6O8CvnzsWkXA8fAeYvD4npLwnOqa8to2xPDPKTbz1bSW74VOEvMA2Hb31IRA8RO83PRd9kTzUUD69R9PBvDITMTtN4YY8EPZJvM3DkrwJuOW8k0NdvA0dCbyenYG8oUnVvLG3IrspHrC7lmJPvDOJgbyohzm83u7gvOS+C7xH00G6eSnyPCrSGr12uzg9OBYtPW7DBT1gvY08V5DWvHjoJT3Vvve8nSrjvL3R+Txb6jC80SNRPCLdGbywfDo9JnUOvZ3vejr3Fke8tNx4vJCXCb03bYu8CbhlvZv9dTuQl4m8doBQvBQSijxklk68RHMDvIvELL2y+G4832SxO6G/pTxB0EU7vznPPByU7LzhkZ68FkIpu35yH7yoSZ+8SA4qvcWFLj3KWIu8v/5mvNgjm7xPESa9iCFvvXpkWjtIDiq89xMVvSz/h7zmKZO8x3czPcnzZ7q/f4A7oA5tvGF3XD2KiUS9HFOgvL5Hyr1uw4U92ZydvNz82zzdgCc8uXE7vQeFlLy/vZq8uPvqPBl1+jxeCSO7SJjZvGyZyry7KFi8weoHvQvioLx1xgE8m/cRPfI9Brvo1WY8VOSCPCIbtLzuIca75qj5vLB8urvqwYc8qnYMvUN55zw0QJ684J8ZvQh9fT1HVw09jbaxu+JFib0KK4Q8tGBEvI9coTrdciy9u+1vPA0SwLwhanu9XgkjvWZHB7xYy748Qz5/PPm/6LsshgU9Q3nnvBVQpDyowqG7MtUWPbJuP70YsGK8e44Vvogbizz3US+8y5YlO/lAAr1slhg7mVRUO0M4Gzycrq686Zp+u7G3Ir0CdB29HM9UPdew/LuRmjs8VtYHPfiMF71mhaG8OggyPQ4SQDyk7JK8o/oNPNOLprxotUC91+WAOy70vrpbZmW80tSJPPiMl7oXfZG8u2COPLcDAjxJil68lfp5PatrQzuVqAA9EXJ+PC651rzYXoO7gKK+OzpJ/rqk7BI8Gxi4vKJGozuDhkg9EPZJPKFJVbwme/K8x7h/vOw9vDw+o1i9O7/OPJuBwTwaZ/+8OsoXvczJ9jySApG8KtXMvNBstLyaC3G8fbsCveR1qDyVqAC9vBrdu0hJkrsZ68o8T0yOveIN0zyK0ic8u56ovJedN71PESY9TO8BPVyhzTsIAUk8+UACvVjLvjs6BQC8S7fLu0wtHL3L13E7G9qdvJmPPL1+NIW8gwqUO3OZFDv3ExW9ll8dPbK3ojyzqae85HUovStLHb1j3zG8Yu0svKGEPb26KNg8RhwlvekQz7wGHb+7GHX6uuhZMjymlbQ7jfd9PIngIrzEHdm8TptVPSrVTD0eRSU8t0TOO3a4BjyKE/Q7jTJmvFCNWr0vq9u7LvQ+OqWjrzxynMa7QFQRPHDzpDoCrwW9fYPMuwVYp7yenQG8xjzLvBWLjDyMe8m6KKjfPDjYErxRPhM9iZe/PH2DTLyyM1e9O34CvGqkkzwv5sM88E6zu0Tvt72q9fI8Lj2ivB94dr2wQVK8uPUGvaeSAjp5KfK8mFGiPLRgxLyEwTA9xJMpPZ1iGT3gGBw7jHvJO+lLtzzAr5+8vzlPPZp+D7zQMUw9rKarvGXOhDybON68E5/rPM3DEj06zUm96RBPvNoYUjrwXK68afCoPEELLjxKQXs8yyDVu7VPl7xkls48CX39PKaVNLy1Usm8MGL4PBg0rrxfRAs94CnJvK+Hgz2U+vk7hXhNPW0Vfz1smco8liGDPBZCKTvkNw49Nq5XvQYdP7y2jTG7c5mUu5p+j7vJ82e7fQ18u/syh7zR4oQ9MdUWOzBclLs0ewa8MdWWO/aakjwAgpi9gpTDPOqGn7ydc8a5AvBRvUhPdr1ynEa7LP+Huk/TCzsWBI88RLRPveJIO7wWQik75DrAOVsrfbzseKS8j19Tu9gjG73vXC49Dk0ovYtO3DxJwhQ9UT4TvE2mnrq+R0q8Ly+nvOQ3jrygzSA8W6/IvBf5RbyCHnO7YErvvK1dyLygj4Y9FVAkPasw27oSIze9gCYKPXpW3zwV2tM85qh5PXa7OD2NtjE8/4+TPOC2DL2XaxE9q6Imva/IJLw4nqA8NyUCvQl0N7s9Jp49VIfRO0uK1Tw4niC9fXi9uhdbsDy+r508MmWjPLYvYLzSTNK8iZs3vdCIU7uYsG68M0ThvOU+irkSn/E7+ow+PA8qczxzaEK7ye3WvPXWArxUONE8mpEPvKxTprkzk+E3/Rx8vRK8E70PXrQ80W0UPNP9Ubl3vP68aCqJvFUdEjyuF6U8mX4QuoXy9zuHiLi87rhEvLeuAb0q5WW8GggQvXsWPrz5rQC9GInuvGtQhzyL+ZY8Bct3vExvFj1I5xg9YN6MvYyN9LuA7bu90zETuwkOGLuz7iI9gn15vK1PhruwKqQ7849CPTieILxxVUM8ITdqvB2ULb3dkA49TZ1UPT0mnruVWBK9G4EuvaMi6TpyOgQ8JtwJvbeuAT1w80M9pqEKPKneJzyFdTk8EA80vH8lnToqaCc8DsjzO3o3gD11e0G8+Mg/vfISBL3OdVS8WeEQvN8gTL2eHa08p5dnPAMH+bz6jD68kTKUPNqYTryjcWk8jI30vHnVgLuCffm8/O69O0ZRWLwy/wO8Y6KLPAXomTxa9A+9e2W+PB2ULbwm4Km7T//Tuj4F3LumoQq8JZEpvQTsubzSgJM81nLQu331e7vChhs9Ld2lPdC8FDzMYtU73FzNu8511LxdGg47ftq8vDG0ozyYTm+7eG1+O0ZRWL0o0ma8dt3AvDA7BT2/3du8vizcPCBYrDsfJGu9AnMbPShVqDxbVg89d7x+vE4gFj3FeFi9sHmkPMVKGrw8Qd06lb6xu/SiQT0K1rY8Ym7KO7u33bwsxoY8mRLuPEIrWj0syia82syPvKTwirwdLo48AMa7vLHEhL2dCi48q/GmPJfRsLy/jtu8tbKhPGVmirwk+2g8CwT1PIeIOLzWclA8t8UgveWNijyZfhA9V61PPURyGjyXTm86UUaUvGx+xbyx2yO88HxDvPhFfr1Jxta7gO07PZKYMzz62z69xl2ZvAWdOT2OIzW8iLZ2vVIl0jtQYdM8B2E4OyDVajzozse7+lj9u7dMgrufaI07nAouO2d5iTxd5kw9AySbvI4jNTwWk5G8sHmku0ZRWL174vw8i642vXCkwzzDtFm9AMY7vRK8Ez2pj6e7TzMVPYr9Nrrh5Eq9hBM6POv0xbx7tD689QRBPIjqtzxg3gw80ZtSPSK2i72aRi89WQ/PPBz+7LujQyu8hQ8avEQ+WT2pLai7M5NhvN8gzDwR7vE7WJKQvBVjcD2cpA49nNZsvJj/7jytMmS7G5ztu0w71Ty/jlu9f4u8PKM/i7yRmDO9p0hnvH31ezwRPfI85NyKOpN38TqbqC49X3yNPTR4IjwzROG639FLvJSnkrq5Vd68J6QoPUp31jwSn/E8HeMtPT9n2zy/jlu9qikIvQVOObz4yL87JisKPE3s1DwPRxU760PGOyzGBj2bqC69i662PLjz3juHiDi8fnSdPf8UPLzgBY09gJ47PQgSOD3cq808IhyrO7RQIrxATBy9oeErvf8UvDxg3oy8mRLuPF/5S70iBYw9RD5ZPPyfvb3tKAc83vKNvLAqJL6DLnm983SDvPSiwby1ASI8HK9sOzWmYL1pjAi94jNLPJpGL718RPy8e2U+vX+LPLyUinA6znVUPZVvsbwk++i8WUMQPQawOD1NndS89KLBvJL6srqYzZA95u8JvJ4drbw6sZ88ITdqu8WZmjwsxga8q6Imu6zQZL12jkC8ejH9u6j55juX0bC8jx+VPCc+ibvnHUi9H6esPLqkXjwJDpg9VppQPdzfjrx3vH68wPDavACvnLx+2jw9AEN6PBbiEb2yCeK8w+iaOhWXMTyVWJK8/lA9vBeqML2cCi67iv22PGCqSz2nZQm9lPaSvPYy/zvTrtG8kDa0PNJM0rtpjIi8iv22vC6OJb2GcRk81sHQu+2Khrzgtow9G4EuPMEknLyUDTI8VenQOwfe9jzAP1u9Bnx3vN8gzDx1YAK+rjJkvIjTmDzazI87phqpPM8Llbxibso8j24VvcWZmjy7aN08MOyEPmJuyjyloQo9q6KmvEuK1TzPCxW82phOPKRWqjxd5sy6yzSXvAqidTtQEtM8e+L8O/Y4gryEkHi7KTRmPIqXl7z//Rw9LrxjPSeNCb3ggks8mWFuve5pxDwxtKM8udgfvaDKDL24XwE8Ke8IPBZ277sy/wO9PSaePHfCgbzIDhk9N2rfvHWvArwRcTM9Ex6TvD3XnTye6Ws9pubnvN1BDrw4niC8NCmiPSuzh7qKevU89jgCPF7Ljbyp3ie9O8QePBwyLrzb+s28N4cBPZX2ErwLhza9MVIkPKYaqTv1hwK9rTLkOJLjE7wdLg49lxwRPQSGmjy6Op88Cta2PCZdaLxOIJa8jNz0PHYsQb1EPlk8gRt6PS/wJD06SwA9lW8xuyXgKT3j90k8sCokPJGYMz0Wdm899YeCvActdzwTAfG8stcDvDT14LywKiS8LalkPNkbkDwMZnS7ot2LPAKlebzqFYg8CBI4vQb/uDwKJbe8ZIHJOhNtEzz5rQC9UcPSul1pDr3Ajlu8N+0gu9HqUr20HOE8HkUtPLonIDzhZ4w9qHyoPJQNMr1QlZS8pNNouzOTYTzuuES9OrGfPPFhBDzuO4a7HvasPOmzCD2yPSM9bWOGPPoPAL3//Rw9f7l6vH14Pbzozkc7qXwovKDKDD2WIDG9+oy+PPOPwrtgqss8FDWyPF1pjruQZPK8kTKUvG0vRT2SlJM9BOw5vAuHtj1mlMg8mWFuu0uK1TsbTW29uHYgvWMfyrxd5sy8UqgTOqxTJr2cpI48uScgvfzuvTu3roE81F9RPA7llTvFmZo8tuBfvazthrxFoFi992bAvPQlg7yQNrS8IhwrvZxZLrv343489oH/vDJOBD063109tJ8iO2gqCT2YTm89rNDkPD/qHL2hkqs8Atk6OyYrCr1mFwo9FRTwu5bsb7wB9Pm84LYMPbWyoTuk8Iq8AMY7PPB8Qzz3F8A8zUeWPPa1wDuxWOI7mS8QvRq5D71mlEg9qtqHu3WvgrwFGvg9dHvBO3c/wLz3ZsA9FM+SvHkDvz0Uz5I8kZizPBDbcr2YMzC8S4rVPATsOTx+2ry7NBKDu+nhxrxOghW8f4s8PZzzjrwAkno8Atk6vNqYzrw2i6G8Z/bHvJL6Mr2TKHG9JBiLPNqYzjz3F8C8YY+MvAJW+TxrUIe831SNPIV1uToThDI8MB7jPKF7DD2cWa48tOoCvdVEErx1rwI6waHau6dliTw6Ll69eG3+PJMocTziGAw9NgjgPEXv2Ls3at85lb6xPEgV1zzSgBM7i642PYFqerye6es8RD7ZvHRNAzxBydo84LYMPcg81zwO5ZU8RtSZO4Eb+rxxiYQ7OQCgPMoA1jxKKFa7Bct3vMPomrygMKy8jXI1PNHq0jzuuES8Y1MLvTPHIr1op0e8mRJuPFFGlLnSzxO81iNQvNP90TkF6Jm89jJ/vUUjGrybqK68/2M8vLRr4TvPCxW7KaAIvDQpors37SC9PlRcPI9uFT16Mf283qMNPGq6xjyMXzY8SOcYPBtNbb0P/DQ8gU+7vOowR72nSOc8IbqrvKDKDL0e9iy8/J89PYSQeLw3PCE8/VC9vP4BPbw0eCK9wD/bvLATBb06mgC9cCeFO3ox/bwvioU8w+iavJJJM7yGwBm9Cr8Xu+JGSjwncGc988ODvNGb0jw37aC8D160uz/qnDvIcBi8SJgYvYjqt7xwpEM9ec99vRQ1Mr224N88OZoAu+7shb0iays7EIxyvBoIkLzu7AW9PogdvJ7paz0zFiO8NzyhO26RxLw8dZ49HMwOvYJ9eb3A8Fq9/Rx8PRlXEL2IZ3Y8RaDYu/4BPb34lP68EVqUu1MKEz2+LNw8hQ8avOWNCr20HOG8Mk4EPcPoGr2nl+e83N8OPSfzKD0IEji96hWIPJGYszyweaS73N8OvC2pZL29yty6L/CkPDpin7ybdO26O5BdvTY8Ib1oWMc8ngaOuov5lrxibkq93yDMPNOuUbu1sqE52WqQPPiUfrm1AaK8KmgnvZCBFL2m5mc87aXFPJtCj7t2EQI7edUAPSSsaDy4EIG884/CPP8UPD2LK/W8D0eVvLTqAr68TR68BU65vCTJCjzu7IW8NgjgOwJzG7tGAtg7+ts+vWFADLzVwdC8UnRSvbNr4TzaSc68KQYouhvQrjydVQ68e+L8uyFUjLtzGUK7LPjkuijSZruhkiu9r5RjvOegibsCcxu6cKRDu7I9oztlMkm892bAvB7Ca7wJdLc85KhJvCBYLD0OyHM8+EX+PHYRAjwSvBO9mWHuO8X7GT2YgjC895qBPPSiwbztB8U6g/waPX+LPDyakY+9ZNDJvOtDRrz4SwE9ti9gvYeIODswz+I81RBRvOdsyLxchE08osDpuwVOuTuwKqQ8GrmPvPNAQr00EgM9mZUvvbjz3ryeBo68I80qPKFear0TAfE8znVUPFcwkbyS+rK8ofxqPY+FNDys0GQ6MFIkPWQEC72rbuU8EguUu6TT6LlOnVS8FWPwO+P3ybz+L3u8MB7ju1iSEDvLsdU8WyLOvLYv4DwbTe27HDKuvMs0F70HYTi9fsOdu4+FNL0pg+a8kZgzPadlibzeb0y86M7HPHjwv7uN7/O8MbQjPVNZk7xw88O83b7MPJ047DxeSMw8pbgpOzL/gzwseyY87juGvAdKGb3P11O9lW+xPPSiwbzeo408/J89vXq0PrnA8Nq7HK/svEJfm7w9Jp68OcxevArWtruzuuE64AUNvdSTkjywKqS8OQAgPZjNkDy1siE8oXsMvd5vTDwcMq47bH7Fu3gkAb0Bd7u9HK/sPJLGcbz+AT29bAGHvAuHNrwfc2s8Azu6vHhtfjsP+JS839FLPcO02TzChhs8pNNoOonmlzuHiLg8u+sevActdz2a96679HSDPSwsJjw9dZ47iNOYvJ/OLD0YppA8s+4ivbRrYTtn9se6J/Movaq95TzA8Fo851EJuhE98rxkBAs8Nzwhu/dmwDw3uV87F6qwvB8k6zwIw7e8FvkwPQ9587xdaY49ZsiJOxTPEj0sFQc9NjwhPaF7DDwDJBs9pbgpPUH9G72bdG28aKdHPCYO6DytMmS73vKNu/yfvTxT1tG895oBPVnAzjzt2QY8JZGpPMIDWjyCmhs99ziCvf4v+zxop0e9x4vXu0iYmL1uFAa9GTpuvGJuyrsEuHi8Jl1oPG2yhr21sqG8je/zO/rbvrzIcBi8cjoEPMZdGTy76x67fzw8PQTsOb2r8SY9VelQPSuzh7vgBQ28fnQduyZCqTr5rQC9iyt1PaOOCzsH3na5ugbePPrbPjwW+TC9TzMVPXo3gDyy1wO7Gh+vvPcXQD1WS9A8pNPoPIcF9zyaw+08ITfqujjpAD3nLkO9Pm0SPLYfD73rpg69S0yzPGpKGr2VKp88syiGPSqY4LqRMBk9QOZVvdbUWbzEngK8n1DXu4r/5DwHJzC8uBkVvVdy67wjabE8y66hPK2wOr0KX1Y8hUn5Ozyur7weNIg7aSsKPXRw0ryHBd+7zI8RPDq3JjyIAmK8SstwvKXCKL2SrNm83YTLPPvAUjuBt588lKlcvVT8pLzfv+47gJiPuyhdPbycuwA8RhqHvCLobjyHxz6805yzvOG297xnUJS70KWqvL2MXr1nMQS91NdWPekrxrw5eQY9m1nOvIdIgb23/QG9d2pYvWkH+LzjdVq8/H81PYqAp7sSr5q8uFe1PBZEcTywbCC9CCSzuhPLrbyW5oS9Eq8aPZIODD1FXiE83MVovdIY9Lzrpo483UYrPD+rMjuBUnA6hwVfPamdnjxZ7TM9m7sAPTPGF73m8CI8LdILPfWRozz4yck7vobkPBs4fb18IES9nNeTvKEMPbxRQD+9cDupOxNK6zs2oY28E0rru20GgD3NJOi7jXqtOX9YaryA2ay7gJiPvFjzLTx7pAO9/hwLPIq+xzxufMY7JGY0vZIRiTxqSpq8L0tPO2fM1DvvHFW8muAKvEaWx7xAS4W7FkRxPCFQmzrYT6I8bEedPHphYT1k0k68kTAZPWMW6bob+ty7vUvBPGGdJb0TkAo8FkTxvIeJnrxSfl+9VbsHvHD9iLxnUBQ9PLGsu7tRuzzz0sC65y5DvSwTKTz6AXA8RR2EPar30byFSXk9pIeFvb2MXj0Sr5o8o6kSPM/jyry3XS89fxfNumnJ1zxQQ7w8WLKQPFR45Txi20U9PuzPPLLiZrzdRiu8WPOtPN+/br2nvyu9uVQ4vFI9wjz++Pi8NvtAPN+BzjwZvLy81ZY5vZMODDxZspC6G3ufO8S9kryzY6k8/3k7PSwWJj1Yb248ImyuOw0bvLxhfhW9pMUlvJ+Od7yJZJS8tZ5MvLIoBj2xaSM9VDrFvDk25LxarJY8Ia3LvLf9gb3HmIg8mF/IPMIEKryhzpy7ZzGEPDf4wzszBLi8OpgWuv95uzvxl508o0dgPZ5T1LwwCrI8B+mPvLsTG71/WGq9ir7HPKp4lL3MqyQ9aQd4va5vHb3pK8Y8Wuq2vNXXVjzF+zK8utB4vdcP/TvpaWa8iv/kOxSKEDvf44A8STMdu1W7hz1aaXS9E8utPGSULj2iiP0852zjvIFP87v00kA9Cx45vOftpbw1P1s9i30quwUqrbx3z4c9HrNFPUoRELzaLZU8+gHwvDHMkTwqmOA78Nu3vDU/WzzpK8a82JC/vAUqLTvZTyI8/b3VPEDm1btX1J28vPGNPNTXVj0OlH88rrA6uqlcgbwDbsc6+sPPO4HWLz3CQko8vBAePWwGAD0rFiY8o8givQjmEr23Xa+8wgQqPLhaMj2hDL28zagnvMwq4rsUihA9DJp5vSoZIz1YspC8U/ykOyWk1D08sSy8QSF5PfqFLz0r9xU9EBLFPLzNe7wh6+s681aAvHZtVb2FzTg8FQbRvMKAajyPdDO9K9iFPSGtyzyLu0q9Y9VLuqu2NLs+qzK+9M9DvTMEuLsEa0q8y2t/PPrDTzx74qO9zqinvNqKRb3I9Ti9vwqkvLCqQL2Kvkc8qLwuPF5g/TyGCNy866aOuLQlCT1SwQE98JoavfqFr7yAmI+8r6rAPbIohrzIcXk6BSotPDuVmTwjKBQ8cTupvKg7bDxVN0i9QUULvOzkLjzLLd88iEWEvMIBrTzm0RK9b7rmvDu0qTy88Q28IS6OPRFNaD2VZUK9owlAvWJfBTrlct28Un5fPdzFaDxklC69TMhzvCah1zzw27c7hghcvKpZBD1MilO9UOYLvGPYyDzlb2A9nZRxOvqCsrx8XmQ8BG5HvMI/TT0DFJS4gtC1vC3SC72L/Oe8JmM3PI53sLzH+DW9EpAKPRXIsLxJFwq9ADahO/0+GDxJUq08bSITvfv+8rzSG/E80zwGvkmQzbs2npA7czUvPGiOtLy8Tj68w8APvJJuubtg3sI5BKxnPTKDdT7F+zI909rTuZMtnLzI8ju74jo3O+Sz+jz/t9s8S08wOyKn0bw3+8C8Y1mLPPZNiTzwGdi71pY5O72MXj3/9fs6iWQUPf0fiD3zdRC9DL4LPcj1OL2u7lo8IapOPStUxjvuoBS9BgsdvKzx1zx2q/U6Kf2POiDuaDuxaSM83cJrPPoB8LymPmm8kHQzPEEh+TtGlsc8+yIFPShdvbtQQL+8bEedvI+1UD3+utg7AXTBPPBXeDxinaW8p78rve3hMTwhrcs7DtehvCFvKzy1nky8XeQ8veG2dzx27hc8ZJQuvcf1uDuWJ6I8qDhvPTsw6jxWuAo8qlmEPBKThzqkyKK89o6mvF2pmTuFC9m8xroVPYYIXD13Z9s8gbcfPTCJb7sE8oY9bAYAPY93MLujR+A8fB3HPLmVVTrIlQu64fwWvDryyTnLa/+8JmM3vI24TTvlcl08WJMAPPYK5zz2Cme7HXgiO0g2Gr1FXiG81tTZvFuNBjwhUJs73CqYvKUAyToyB7W8S41Qu6/rXTppyVe9HvHluncpOzz2Cme70IMdPfRyk7zheFe9p/3LvK2zNzxYMU48H3IovQZoTTxAapW8wj/NPIt9Krt4zAo9cLdpPPZsmTy+SMS8nbiDPd0FjrwA8/47+MlJPCoZoztaKNc85NeMvFT8pDwsUUm8acbaPObwoj0TDEs8Ik0evaWmlb0Ty608xjlTPV/hP7zLrqE9LJJmPdeQP7xoi7c8QCR2vc2oJ73WOYm8mhsuvfpHj7rcCAu97xzVOpsYsbwR0Sc7IS6OPE3FdrnSnzA9N70gPQMRF72u7tq84tqJOA7XobxTwYG8MO4eveaygrz0EGG7Cl9WPAMwp7uoOO870oAgPSGqTjvMcIE9czIyPZghqDxojrS8FAlOPMIEKjyBdgK9uZJYPYXKu7x3Kbs6IK1LvfnGTD1xGZw8EdEnvObwortB49g8awR7PAZozTy41nK8ATYhvOTXjLzRn7C8HXUlPWbPUTy88Y28MaoEPoEU0DvCAa28oayPPdsqmDsrlWM9gNksvKSmFTzQpSq94XvUu/AZWDzBxok8ShGQPLfZb7t8XuS8asZaudyESz1JFA087CLPPKTIorype5G8mlxLvSeb3bznrwW9PSpwvTryybry1T096eqovNHd0Lwnnlo9jXqtvFnwMDyrMvW82RGCPCJNHj3NJ+U8WJMAPedsY7ztoxG8lGi/uhASxTtGOZc8vU4+vdIbcTzBRce8r609PQhiUz3y1b07RD8RPObzn7yCkhU9ImkxvGaRMT30z8O8B6btPMc21rw0gPi7RVukPK0veDyrdRc724rFu9Hd0LzcJxu8Dhg/PNM8Brv0z0M9P+lSu62zN70ErGe8jxcDvKFKXTwrVEY8iWQUO/mFr73LrqG8WZCDvIu7Sjxsw106Gzj9OxLRpzr4yck7kqzZvEbX5LzCBCo8RzkXvWnJ17ukyKI8qniUvLWezLsCr+S8LI/pvMPiHDt+3Ck99oupu4C6nDoOGL+7muCKu5+yibykxSW9QaI7PW8flrxtJRC9Nnr+PG4ik7pyNa87NMOaO08IGT2V5H+8JiKaPAF0wbxBZJu8WfAwvaj6TrzOage98XsKvCVjtzulAEm9YlyIPHjJDbxd57k8VLsHvdaTvLuBEdM8/xkOPOds4zsVBlE9vM37vJ4SN7vbTCW8WPOtvBfFs7z+Ppi8hc04PU3sBbwmode8jFsdPdkRAjzvWnW91zOPO5xWUb2z4ua87GDvvOrLmLyq91E9TIrTPI93sDg9j5+82g6FPVU3yLyGag690oCgvVR4ZT0BdMG8bESgPFP8JLwdOgK9GWIJvCUGB7zHmAg9IuhuO7j6hLyV5P+8+UePvOUxQDuPdzA7eCY+vAembTuL/Oc89ZGjvJ7UFjxOCxa7WPOtO3sjwbynvyu9t10vu3xb5zyjigK9BO+JO5obLr1g3kK8QCR2Pag7bDtvuua8uZJYvdyHyDskpNS7+GmcO4IR0zsDM6S6GADXOVnRIL0h62u9Np4QPaf9yzwnXT27pMgiPM7mRz2kqZK8A69kPEg2Gj3/OB49S08wvXbul7y41vK9XWP6utxJqLx27hc80hj0vMGDZ7zM7ME7gdMyPIeGIb2Q8PO8luYEvTyxrLzUPAY85y5DvPDbN7wFKq083cJrugQtqrzT2lO8zSRoPImDJDsqmGA8RN3euxcDVLxIFwq8P+nSO7mVVTxZrxM8tWAsvNstlToPuJE8VbuHtz9OArzkNL26w33tu4QLWTzEvZI8n453vRZE8bxlNAE9YhnmuwRuRzz6JYI5bQMDPOvImzySDgw9lKlcvdY5ibwIJ7C8+cbMPKj9S70pWkA9Z8xUPO+glLyWJKW8APN+PJHt9rwJJDM8eSa+PIKVkjpJUi28+yUCPap4lLxlNAG8xpsFvdc2jDuHBV+9KhmjPC6M7DuYApi8Qx58vdVYGT2JgyQ8LvEbOa+qwDzfflG5WZCDPK+tvbz5iKw8IFCbvPUKZzyfjve7TukIvRaHk7zbyOW6YIESOmOXK72+huQ83+OAPBLOqryvrb28OrcmvXXSBLwgMQu92opFvTg2ZDwEa8q8pYSIvHdn2zwCdMG7xnfzvFPgkTxrBHs5EpCKvHyhBj0lY7c7RZxBPZckpTsrFiY8ArLhPE5JtjzzdRC9KBwgveQ3ujzW1Nm8Jd/3PAwbPL2HhqE86ShJvLPi5rw0wxq9gRHTvK5vnbs8rq+8uZVVvMuPEb3CgGo8+QTtuiZgujy0Yyk7i7tKvCtXQ7x6YeE7JwANPaUDRjw2fwC9Jx+dvXM1Lz00Qti8tGAsveH8lrzshIG7XYcMPJJuOb100gQ7SsvwvC4QLD1Ky/A8pj7pu2BiArxV+ac7qPpOO69NEL3heFc9euWgvNvIZT1d5Dy8Dd0bPIFP87zJlQs98VT7PPMTXr13alg7ZFYOvERhHr1S/yE85dQPO6SpkjoDbkc7AzCnupRoPzpFHQQ9f7qcPMiYiDo1fXs8vQ2hvL1LwTx4zAq9esaQPWkH+LzpKEk9K/eVPApfVj17I8E85rICPUc5lz3ay2K9gdOyuzSkijz+HAs8K1TGu5keq7pKMCC8U+ARvVJ7YjyfErc8QSH5u+YxQDzMjJQ8vMp+PSv3Fb0jKBQ9yW78vJ7Ulrxz1QG97h/SvOP5GbzdJB69G/ffO3RwUjx7I0G9OPjDvPAZ2DrCgOo75tSPup+LeryCEVM7zKskueslTD0o2X29MK2BPa9vnT1Vdeg8cHlJvFntM70NGzy89ZEjvVDjDj3I8ju9hAtZvM2oJzwOlH+8+cZMvUYaBz1oLoc8bX/DO8j1OL3TPAY9IW8rPUWcQT174iM9rlANPUUdhLyVJyK8Z09mvGC8KD1GRUG96nQ3vKaljzzr02K8hYQQPGjzaT1Ugkw8JQ0ePVyiH71K7HM7f5Wguz9WhzytOAM9UAniOlVUBL1K1U+9x5iQOwcGcryXrSa9c4nCOxbQEj0LaDi8oHFHPM9ZAj1Hjci8UsekvP78+DzrvD480kXXvDLUo7voFQy8206Gunlh2Dxql+07gyX5u1azL73GOS+9gmrRPItzgDwQ+MY7vF7+O8WsT7z2gN+7QcwMvbXi5LxmOEK9QxSUPExiL70CduO7Bh0CvcfGDj0PVEO8glMtPW1s1LsQD6G94iYcOwryfL3Qzwe9/CotvF8YpT1utNs69AqQvMAz5TuPSLE8VIKCu3xNGTu2b0S8xvRWvTBe6DwqhlI9XOfBvHbrCL0avB29IMIxPJd/cjvmQ4q8WFczu3ZeqTwqQXo8o3T2PPLZLDwqhtI7UjrFuWqXbTyfEpw8OTkZPZkMiLtpUoG9+LHCvHupFTxB4/q7WeQSvYwu8ju4t4G8qjUevRzWJjzLbcE80Lh3PLf8ozqrq6O8RlxlPDWpirzc2688NmQyvLly8zytZss8dxkHOxtJx7w0BYc8qpFkvDOPy7u6Fve7I648vNPpWjuNuwe9dwItvL94vTyTwZs8o6Iqu9YaPrxhjnQ9NnuMvOImZj2TwZu87UkevMZQiTxMBjO8wdeePBOIC7zGxg48duuIvWjznzlgYCy9I668POWf0LyuIXM8EimqPD1TbL3CH3A8BL6gPE3Y/jwLrRC9HZFOPTXudr3eUf88nMqUu64KhTsTn3m8HjVSPdQx4jxuEA49O92cuyDZVTwxAiI8gmpRPTWpCj2uCgW9z0IovckOFj3OniS8KyoMvff2mrthjvQ8qdY8vXYwdTzywgg9fKnfvCDCMb2m0408+j6ivGs7cbwRs268pEauOaRdiDwgwrE9MtSjPGXZFj3zfTA72GLFvJ8SHDsc7YC8zxT0OsDAxLw8gSA9qzXouuii/7zuG6C8uYmDPAwjYLtatl69qXrAPBSI1TxgYCw8ddFJPIkrQzzBwEQ8moKNu769Fb3+cjS8sQ3+O48xDT0u/zy6FhU1PLt1jryxO7K8daMBvTN4p7uEsli90i4zvKdJXb03HxC92zcsO6L+JrzCTSQ9EW4CvWv2hL0WohQ7GwTvvDxTbLy4W087F3SWu95Rf7zQ/YU9u9GKveaILDtZ+zY96OdXPdC4d7wYXby8yJgQPTKmbztg00y8pqWPPV/TAj36+Um8NDNPPXZ1TT22b8S85s2EPMTDc7vTjd48gcYDPbBSjLwl9kM9aPPpvCFPEb0SEoa8ohXLOjXXUj0c7Uq8fR+bvKo1njzjyp89yrIZO7A7Mrzjyh+8dKMBvIWbtDtVPfQ8T2XeO5eWAj3+5VQ9RkVBPeOcIb2TwRu9SF+AvM0RRTzH9NY82GJFPNGKr7mOpC07XOdBPcWsT72jRq48fmeiPCF9WTt8krs9LRZhvHi9ij2LLnI8B9ipPG1VMLyqkWQ8gg7VvHoFXL23E0i9P4TPOx7Zizuvl648OGfhvAwjlj0mmsc8xKyFvff2mjtMYq+7b503vu+oSb06Cxs8/rcMPJI0PLv3scK5205QvUJwEL02knq8brRbvdONXrzG9Fa9YGAsvfLCiLx98eY8YY50vFRrqLugiKE810shPQcG8ryInpm8c0QgvfLw0D3sYMK8Nh/aOzlQvTxziUI84SbmO+4boLzPWcy8uYmDvW+0kbxhd9C7EUDOPMg8lDykXVI8gg7VPEAoU73P5qs89fP/OzZ7jD1NwRA9hMn8vE3YfryeQOS8RaE9vZF5lD1g08w8Qod+vO6RJbohfdk7n+RnO+pdE7zylIo8hj84vQJ24zv7nQM9/vx4PSFmNbwTiAu9yK/+O98jt7xKvis86bmPvPB6Ab3+5dS8xaxPvc3MbDunSRM5jFwmvd/e3jyVZR+8k5NnvPBMTTqLc0o7O90cPQh8Lb2XxEq9gmpRO9nYAL7kEnE8VJnwPKcyOTwjxeC7prz9vFSCgjpl2Ra9TB1XvCvlfTw114g+B5NRPQrbDj00HCu8NDPPO0ns87vLhBs9lSDHPIwXBLyxJI685s0EvadJkzsvupo8+RDuuhXQEjyOXws92e+kvPjIHD02ZLI9hZu0vIhCZzwFYm69TmWUO37xHD0VLA+9+hBuvXZeqbzdfzM8/uWKvCDZVbyeKcC8ElfyvAZLyjzPFPS8Lv88vJPvmTxkTDe89a6TPPWukzx1uiW8SRqovBq8Z7u/eD093X+zPO9MzTvPWcw8myaRvBbQXL3SRQ09tCe9uiIKubwlsWs8PvdvvBAPIb1/IoA8IU8RO+CCGL1qgEm8Igo5PKs1aD1DFBQ9qXrAPLvRijwTiAs9CdvYvB56Kryx9tk8v2EZvea29Dx06G09Lv88PRzWJj37hqk6HjVSPcTxpzy0tBw8MAIiPVSCTD3oon87NmSyPD+b87ypv5g8zrVIvRkY5Lt8TWM8r5euPM36oLwgfY88QeN6PGIy+Doy60e9KOKEPGaUvrwtcpO7r64IvLLIETwGS4C8CTdVveCwlrugcUe8JGmavCaaxzvYSyE71TGYvDACIj1jv427Q0ISvcYLe7wjxRY8G2DrOwQDQ70NDLw8r66IvCsqDLvH3bK7TAazPLOa3bk5lRW7PeDLvN5oDz0H7828SI1IO7+P4Tz2gN87ukSrPFUmBr2B3fE7Ff4QPDOPSzwdkU49jC5yuyOuPL3aqky93JbXPHKgHD2AIkq89DiOPeCwFj0oEIO6V26NPD7ggb16Bdy8TpOSvPNmjLx4vYq8tBAZvV/TAj1GLh28iriiOvaA3zsbBG88LXITPJYJozzbIIi9gAsmvH0fmzxMHde8oHFHvKaOtbwsoBG9SRqoOzcINrwZGJq7gcZNPRh04DwqhlI8FHExPUJw2jz0OFg9ammlu9PpWrv0T/w7fdpCvW1sVD07rx47zxT0OkhIcL0hfVk8ddFJPAhliTxbWmI7GBgaPGzfdDyc+JI8qb+YPArbDj3zIbS8QnDavHREaj1XytO8ltvuvJtr/T33JOO7IiGTvMVndz3/iVi99DiOPAY0pjwZAUA8EA/rvBtg67vCZMg8EimqPFUPrDyuIfM7Zk8cvVtDvjupekA8wdfoumjcxTxnOEI6CvJ8vKnWvLx/fka8JQ2evOWf0LyRpxK7jzGNPCzOjzong6O880/8PBPNLbrHr348XkZtu2OoszyZx/k8nPgSPd/e3jy3Kmy8eHj8u/LZLDs0BQe9W0M+vN4Mk73SXPs8Taq2u+1JHj3PWUw9hLJYvJbbbry2hug8gyX5uzyv6LtT3kg9mAzSu9tOUD1gd4Y8xiKLPFUmBj1x/OI7JQ2eO7mJgzzvv2089g0/vEG1Mry/j2G83mgPPeOzxbsZpcO89lKXO/KU1LyvUtY8aPPpPIVW3DwGNCa9l62mvGEEsLtQCWI8q6sjvJqZMTwFkCK9hPewuzisObwE7B68JFLAvGyaCLtMBjM8FqIUPNvyU7xYV7O8rMLHOmO/V7zvv208kKfcPJkjdrwOx2M8bLGsPM8UdDzb8lO6YHcGvYHd8TzeOpG8urr6vEIU3jwIIDG70i4zO0DMVrx77jc9ceW+vMk83rslDZ68/4nYO+NXybwCdmO8BjQmvQ89H712MPW7z/0FPM9w8LtEuJe85s0EvMGpIL0Mx5k7yCW6PEt5UzqReRS8I668PIGB9bs2TY48bvmzOzhn4bwwR8S8yuDhvPEHdTwkaZq8IMIxvdqTqDytZsu882aMvcYL+7lkTLe8MEfEvOj+e7zK4OG8ZEw3PWM1Ezxc50E85fuCvExirz0zYYO8aPMfvRQs2b2giGs9rgqFvJg6Bj0UiNU76bmPvIYolLz3yOa8KxOyPPN9sDwdkc68BZAivaoexLsH2Kk8GRjkvA/hIrz13Ns7jrtRPZjeCb2vl6487gTGPFhuV7xmfZq7i3MAvdtO0Lsvo8A7txPIvOXkqDwWFbW89oAVvQrbWD0zYQM8VrOvvB/Zi71Zn7o66wGXvAWnRrwrKta8lHzDOpetprz74qW9TB1XvQJfv7pzch49E/t1PFSCTDsf2Qs9oHFHvPE1qTqswse8VuH3PMzM7LzbN6y8p0kTvnBYlTychby8kjS8u6o16Lyzmt07uuguO1QmBjreaA+9T066vMGpIL2FhBC9peoxPcDAxLy1WKC8nIW8PCf5cjtjev86x92yPHbrCLwgTxE8wmRIPExiL70kOxy9TcGQvBmlwzyrHsQ64YJiusY5r7u3t8u875ElPEJZNrukXYi83H8zPW1VMDyb4Tg82B1tPFCtZb2fEpy89lKXPDw8SDzvv208DMcZvCeDo7yZ9S09rNnru3REar2JQue8++IlvObNBD3rGDu9yK/+O6Faozv3JBm9z0IovWRMNz2LLvK8rWbLvKLngrwXRpg850MKve9MTT3IahK94ibmvBPk0bxaWuI84N5eval6QD36PqI8WogWvH0fG702TQ49/UFRPEt5Uzyswkc8bIP4uw2ZGzw1qQo7ZfA6vI6NCb3p0LM8gyV5uhq857wUiFW8SF8AvLwZEjzN+iC9VSbQPA8P6zt3GdE7gcYDvdPpEL0f2Ys65s2EvDLrR72tOAM9n83DvN8MEzpgYCw8FSyPPINTrbvo/vs7oVqjOtIXD7z9QVE8/CqtPMivfj2v3AY8PrKDPHcCLTzfIzc7eKYwvXfUeL3wY3E8F7m4u5DsNDw2knq89E/8uyNpZLx9Nj+9pQHWvD0lJDy6LQc7zp4kvJIdmDwrQfq8p+3gPIYolLxc58E88tksPJYJIzyYUSq9i3PKO6aljzzl+4I8WlrivPQhtL2+jxc9z1mCvBe5OL2ambG8xazPvK1Ppzo2H1q8X7woPE3vDr3rL189hPewPJkMCD2vl667ukQrPT6ygzoPa2e8aYBJPWPWe7tYQA88Ri6dvJAa/bt6BRK9c4lCPZ5A5DyzPpe9/SqtO2+dt7qiFYG8GzKjOn6V6jwJN1U7PFPsuzcfkLxqUgE9Jz4BPZsmEbwdTPa8f2ciPUh2JL2BxgM9BmLuvK/chj1kev+7VVSEPZfESj1JMcw8Km+uOqoHoDq9MDY92k6GvV2LRbyS2D+8SKTsOpbESjwH7007tD7hvP+gfLxRfx09xAjMPDo5GbsjxWC8xWf3uc36ID1MHVe9bst/PNyW17zdf7O72e8kvZI0PL0ALhK8dnVNvCc+gbu8o9a5UX8dvXBY37vkQKW6+vnJu61PpznMVh27M4/LutkGSTkIk4c9EUBOvWZPHD2VNyE9+j6iO6NGrjyCDlW8ZGORumEb1LyIQp08ysm9vNG49zoJCQ08YXdQvKKLBr0gfQ89daOBPBgYGjwZAUC91tUbPS7oGD22hug8W/6bPMY5Lz1YV7M838c6O/l0OLwvYss8S/0bvRFvUbtWBc67fnwEvEWPuzuqRH49+6C6uyP75Dztrni9AiWcPKXArbsBD5s72LQVPavPWbk3/NK8APkZvX++Ubv18Iy8vEVsvRL6LLsbNVs83Jeau3IVnjxZMdA8oLGBvKNoBL2ojdY8XOitPB3Akbyn1i68Zq63vNYpuryOURU78tqwvJCTvTtXeii8vVvtvMFxJDydEKW6CUpuPNlrvTtnI5K8zU2KvO6YrbzZDOS8V3oovRPkBjxrexa9Z66SvJ/dzbpYG089Kd7EuxD6drwVx9W6mbigvZpvSLxWZKe93E7nvDW6T7wgd5Q9NrqFu0NjubzHyYM7DHYmPaJ+qrxC7l48iIRbOqOUK739zDw9xbMnPC6rIzw4ElS9//g+vcXJqDs5KNU7xmrPvBloDTw0us88xZ2BvJGpvjw2LwU7vAOfvNNy3DuGtzI9Bwihu/Ic/jpcFHo6OyiLvdUTOb3jpiG6MgOoPCQR5rzM7lW8huP+PFQ4Jb0nskK85f5vPGG1jDuw+5E7JBFmu0PCEj1nZV+9fZLPPMFxJL0lJ+c5OFuHPAsBzDyhxwK9yU35PKMf0byrz1m8M0X1PLPeOztbXVK8O7OwvK1Ej7pCN5I87MuEvOvhTzxq8BU9vRmgPWu947wyL3Q8/LY7vELuXrx88Sg9d4MjvM8w2Tyt+9s8GwmPO+LSbb2g3c07B6lHvZsQ7zylH4e8fwcFOxHkKzxYG0+924EZPWyRFz1gy1c8qNYJvE9rRj3w8Pu8V04BPd1k6LyjlKs7CjQjvCeyQj2hPAI8TBOdvCr0Rb30e4243+9DO1TZSz0UUvs7mVlHvdG7NLzN2Io82PbivB+jYLq09Dy8ofPOPI1ROryEi7C7DS3OPCLPYrwBsGa8NRmEuTnJezyfaPO7gxbWvBRSezu6eMM8aDmTPeaJyzuVAcM8gB2GvAEPG708yTE7SDAYvL/mSL2i3YO7fWYDPbkD6by2ID+9VgXOvBG4BD2AqIa87eGFvUalPD0+9bM8AQ+bOwsBzLtmrrc8mKIfvG3pZTwFHmy79Rw0PIpukDzf2Z08qNaJPGJWszyxEZO82oE+vbwDH712mW48iZpcvfA51Ls3/NK8rlqQvEHY3TxGj5a7KlMfPYPqibyh8069ezoBPDf8Ur3hvOy7h0IOPTedebzsbKu7L8EkPWwyvr19M3Y80aWOPC/t8DwEZ8S8g6F7PNwMGj3kvKK7zWOwuwCw5jxtp5g8laLpuwHGZz0CO0I9aHvgO1AMbTw30Aa9rUQPPB0fkDzDPs285f7vPHxQAr0kEea8W/74OnZtortgbP48woelvOIxx7yjH9E8UfahPRFvUTz8V+K7fh2rvCaGG7xNKZ68aga8PNTntjyJ4488MRnzPC2VIj1OVUW9bxVovRqUtDtx/5y8HcARO4FfrrzHIXc8Kd5EvMOdJjyHQg69qo0MPT71MzrbOGa7embNPQHG57t+qNA8bTKZPOuC9jyJ+bU8DHYmvJPVwLtq8BW9DxcDvRDOKjyPHuO8uWJCPc1Nir0IHqI9pxh8PHJXa71K5xq8w8nyuKBSKL51V6G8LZUiulVOJrwp3sQ8KT0ePGu9Y72rz9m8zmMLPKjWCb247ee8T2tGvazlWryxsrm8BGfEPCKjlrwtIMi7CnZwPOyY9zzSMA+9MNelvCcRnLy2f5g94pCgO2sGFzyMmpI8XYlUPGCfCzwpf2u6J5ycvFd6qLzXPzu7CdXJu8ZqzzxqBrw7W9KsO4njD734SDa9mORsPNT9NzwOAYI9VmQnPTWkBL2+0Ee8YJ8Lve7Eeb1+qFA9l4weu4Whsbwu1288NRkEvei1zTqSv7+86f4Au0JNuLwxGXM6hCzXPP/4Pj2n1q66rhHdvBYmijs0jgO9Oj5WuxyqNbwNuPO8xZ0BvM1jsLwBsGa8DWAAOwp28LxYkCk98tqwu/xX4rz0BjM8zu6LPNprmDxCTTi9z9F/O58QgDzk6O69jVE6u41RujzsgnY8/La7O18UsLurLrM8fweFvNlrPbw+9TO7zMKJPs2lfT07s7A7B6nHvDVxdzzzZYw8J7JCPffp3DxsMj48iyU4vPxX4jp9B6o7/SsWPKXArbuhx4K8/syXPI99vLy5YsI8HwK6PaE8grxPyh88qQIxvVTZSzyDdS89bNNkvdeeFL2fPKe7lNUbPfJPi7woJ507j2e7OxPkBr2MO7k8AQ8bvcqWh7z309s8uO3nvHwHdLxQ4CA9R1xkvFKtSbzotc25JvuaPTuzsDxX2QE9X1b9PHmvJb0PQ0+9WO8CvdlVlzzChyW9p9auPAV9RbxhtQy9edtxvNkMZLuKsN283AyaOwEPm7zDyfI8IY2VPK0ujjzNBFe8caBDPUsTwrztDdI6bNNkPdSeXr0MovI8v0UiPVVOJj3QpTM9U05wOxVofD01uk88DxeDPEAhNj1gbP48i8bevFzoLTwR5Ku8Op0vvNuXP71rHL28ewd0O1i8dTzqnwK9dOLGPLt4njzhep88Pd+yvAV9xTshGJa8ig+3NT1UDbxTTnC8DS3Oufm9EL1Xeqi7pmHUO5YXxDvjpqE8WO8CPU/KnzwVx1U9Sv3AO0i7GL0NuPO8nsdMOsKHJTu5A2m9ieOPPI8e4ztp8Dq7fPGoPO2CLD1e6Ii8Ve/MPOz3UL2QfZc8P98NvevhTzy1q2Q87mwGPTPXADyRqT69UCJuu35mAzymYVQ8Zq43PZYXxDuqWv+8Z2XfvMbfKT32Bo49iViPvOX+bz1avCs9XSp7uxbd1jv7oLq8d6/vvIsluLxtSL+8tPQ8vOIxR7z7ihQ8B6nHOeOmobyqGDI8RY+7PJsQbzwQLQQ9nCZwvYGLeryxERO9fvGDvBKF0rzk6G69b9OavDMZqbxq8BW8XkD8OidT6TzSuw89mORsPIIAVT0ZfrM8gEktPZ4mprzvrq672oE+vAKaG73ye1c9gxbWu85jC7ujwHe9APmZPOG8bLxQIu67tzbAPPp0kzv1vdo7JoYbPLGyubrDnaY8g3WvvPhIkbynd9U8FzwLvOhzgLvmFPE9NdDQuytpILwRQ4U9cIrCvArrSj3U57a88E/VPPxXYr1E2BO9GpS0PEDCXDsy14A6JxEcPKJSA70v7XA8r3ARPa5akLylS9M7FLFUu9nKFrzICyy7r4a3uxPkBr2Voum8DHamPO4j0zyQfZc8lOvBvKsuszywhjc87vcGPBfzV7uI4zQ9RHk6PW5IGj2G+X88zu4LvSqVbDwmnME7zI98u3s6AbxaG4W9VmSnPOKQoLjGC/Y8Sec/PQcIIbzsQIS8Q2O5PNs45rsbS1y8R1xkPTqHCb2NUTo9MRlzvEaPFryIzQ49Huw4PVy8Bj1lOV096VZ0ud/vQ71Gj5a8vtBHvICohj3nKvK61ogTvfqKOb203ha89b1aOx3WNzwyYgE7fB11vetWKr2Pfby8Op2vOxZ+fTu3lZm8sieUu2U5XbyPHuO8p8CIvIWLC72qjQw8M+0BPcIoTDz+g2S7fh0rPCsKx7zLrIi87zlUOztU1zyifqq8+b0QvOgUJ7wVhQg85ugkPAepR70W3dY8cCtpvOAFxbwm+5o8UYFHvJCTPTuv5RC9dg5JPYQsV7zhvGw8KMhDu/UGjrpGpby8sRGTvEhy5bx88ai8PGrYO4yakrxakAS7Pwu1uy/BpLupo1e9W13SPLGyObxk4Q48EC0EvNfg4TxZMdC8WgUEu2Hh2DyRqT68/SsWvaHHAr0GNG09FcfVvAp2cLwnERw83+9DvNuBGb3DnSY8rUQPvV+JirwgGDu9WRtPvCjIQz2yaWE6A/JpPC/BpLztgqw9ssi6OomEW70kEWa9qXeLPSACFb2o1ok8HTURPFKtybwe7Li7RTBiOv22ljzxZVY7vRmgvCecHL04cS29jx5jvCAYuzzZa707YGx+PDIDKD3l/u+89ZGOPBIm+Tzz8LE8XOgtvKSqLL2iqna8olIDPU/KH7zlXUm8vKRFvTn8CL2vzw89E5tTu4SLsLwOoii903LcPI99vLvEPk287pitvDiz+js2W6y8K6ttvQ1gAL3Eh4A7fduCPOG87LzdZGi8j2eWPNPntjohjZW7L+1wPMTfcz2Fiwu9vtDHvGrwFb7G3yk7zhpYO+NHSDwY3Qy9+0Hhu3okgLxCrBG7xFTOvHH/nLwJNKO735Dqu52xyzwFHuy7rEQ0O30HqjywhhK7ALBmuakCMTxEGmG9IqOWO+vhTzzxxK+8IRgWvbEREzwBJcE8P5bavB+jYDzYVTy8tiC/vLUKvrwmnME6NaQEvRbd1jwhLjw9WBtPPVXvTDyNUTq9ms6hPB133jzGs4I8h0KOPIWhMb34/108xIeAPWsGlzzTiF29oCYBvJhDxrwzpM487iPTvGoGvDypo1e7NlusOw1gAL0UEC49X/4JvdGPDbzsmPe7qaPXu2dl37zQpTM9Ic/ivA3rgLxR9iG9Q2O5PDSOg70oaeo8o2iEPMg3+LzM7lW9dg5JPTPtAT3NYzC8SLsYPeG87DugUig9v+ZIPGmRYbqkqqy8QTc3PDiHLr2CXy69XuiIvIzc37pc6C08KcgevVPDyjw7nYo8MUyAPJUBQ73ikCC9YoJ/vFy8hryl7Hm98K4uPRdSsbxAIba8R7s9O/uguruYQ0a9V6b0PLTeljxqBjw7AG4ZPKQJBj00W3Y9fB31POXSozydJnA8xbMnPDhxLb209Dy9pqqHPNIwD71AIbY7v3FuvGMN2ztavKu8ElkGvWh74LzDnaa8EM6qvPj/XbxavKu7mVnHO/enjzwj+2S8e9snPfqKOTyjwPc7DqIoveboJDyjH9E8RGOUvO5sBr2MJZO9Y1YOPfUcNLy6Geq8YGz+vNOI3btmDZG6tfQXvU9rRjzpiYG9WGSCPZrOIT1Pa8Y8sbI5PBD69jwRWVA8jfLgvLCGEj1jDds8Qk04PZM0mrxTTnC7jfLgvBQQLj2dscs8Wuh3vdlrPTxb0iy8A1HDvAIlQbziMce7HKoQPMKHpbzpVnQ8PLOLOMbfKT0mhkA8xt8pvYB1ebvBnfA7lIxoPSacwbx68XI9mbigO+cq8jwtlaI9woclPRDOqrpMKUM98K4uPXX4R73lc0o8umIdulgbzzuG+f88pcCtvDdFBjxO9mu8CTSjPGZP3jyDt3w8//i+PObSo7vHVAQ8YsuNvURjFD2haCm9bv/mO4O3fL3QGo68GAnZvNaIE71J5z+8fh0rPBYmCr03h3i8kJM9vAtgpbsnU+m5esUmvH4dKz1Iu5i7RGOUPVV6cr1p8Do9TeBqPZCTPTwDUcM74XqfvHX4xzzWymC88SMJPXZtorzOYwu9r+UQPbERE7ykCQa9rEQ0Pc4aWDy2weU8CUpuvMpj+jxbXVI9DS3Ouu851DyOCGI9gEktu7T0PDwaDBm8gkczPXl4gb0d9bK7qAFXvL3vSjtzNaC8OqsjPY34STwczWq8c0kEvfdbLDwt8+G8LDzHOotBLzxGmPA8uYGVOt1cVryQ4eM8CWGGvBBbAr3ejlW8cheFPEgGHLwOfJ+7z8IlPY6v5LxDhIK8uxDoPP+HJzy1SGu8IDHpu434STzZS3Q8rBxwvMl1jbscwzM8KNhIvTqro7xNurQ8SSQ3PAk5PjxjgGC8iefnvBXT7jyu8Zu8jHMuvRImAb0vTSk9YL+OvVJa6bsB7CU84iRTPWPTfLy63mi8x8gpOwANQ70KQ3W6OTA/vZ32eDxv5QW9suRsPW4Q2judKPi8yzZfPA1U17pZSi699wgQPNe8obyTyn29WwFJPTcfXT1tMXe8s4cZvEZFVL1ECR48Tro0O5gNX7vlA7a8kkViPIoZ57x3PFU8TQ1RPAQeJTyfeIi8SgMaPE4/0DqJ5+e7oIz2u8oOjbzlDe28+079vB2iFj1434G8bWP2OfQBZbwCxF29SHdTvKI5Wjz7BY48tcPPO7i2FjzO7Xk8bgYjvWnrCT3msBm9zLt6PefiGLzV8SI9CMgGvTnW9zy/FxM9ffoaPS+qfDy4J866x5aqvH+77DxxQtm8JpwSPRMmgTzeOzm87YJNPQA/wjzbZoO84RqcPGAc4jojva+8PSMGPUQdgrx80tI8DpADPL+m5TtbkBG9z5rdPLbrF73PwqU82AKFvH1/Nrs/2iA804P3vFKCMT2fUEA8e003O50o+LzDhcg7Wc9JvXqWnDwz46a8cULZPHnpODwrj+M86xEWPNOrPzxjIw29C/DYPJqS+rvejtW8M+OmPChTLb3DCuQ6+b8qPZTKfTwEZAg9WwFJvMbB/jzn7M87KdhIvOfsTz049Ii9JfllPHUAHztSUDK7TmcYOvNKyjrc6548+yOpPGusWz2/nK48QaWfO5mwC7wv0sS8X42PPB7/aTwD9ly9dOKDvDj+vzwtbsa8lPJFvY34STu8ODC8B4zavJq6Qr1/xZk8jIcSvEQJHjyaxHm8qxK5PPi/Krxv5QU9OHkkvcfIKTx4ZB28KsuPO21jdj03pHi8xWQrvJapYL2Qjsc8/bJ7vJ6jXL2f/aM8ciE8vFHLlrw/S1g8B4xavANxQT3iqW48GTftvAydvDypuHG8lZ8pPDDSRD3Kp4y8rBxwPIjdMDwDe3i9c7CEO3aFOryI5+c62GmFPBOh7zvmsBk93P+CudtmAzvVD748cGohuzBX4DuJD7A8dq2CPAp/oTxtY3Y8b4s+vV+ND7ww+gy7uLYWvah8uzzg6Jy8l34MvdH+W70zXou8Ws/JPLUWbLtwOKK83radvBAzOj27i0w6h7Xouwcbo7xk2qe8ZC1EvJs/3rtDXLo8LGQPvAk5Pjz/NAs95QO2OwcbI72MhxK7zz0Ku6P6obz3W6y8e8gbvTSQijxwaiG9hI0WvGibeT1bfK27/19fu6LmvT03zEC8bTF3PBcFbjwvTSk9gkezPDvdojxpw0G8Li8OvQeCI70SPfE8PlWFvPyA/Dzzz2W9L6p8PUGlH70des68mj9evEgGnDxlX0O+tT40vFHLlryfUMA7AnFBPNViWjtgof28J84RvZbljLt682882qW7vLsGMb0Qrp68ksBGPP0t4DxMkuy8rvGbOptnpjw7diI7mxSKvJmSermaNae94iRTPYnn5zxhTmE9Nx/dO+IkUzyvihs8p/cfOkJSA70QwgK9b5+iu3ffAbzn7E89OTA/PTnW9zl/47Q7o5MhvOrLsjz7BQ478ObLPGlwpTsW+7Y8Bge/vM9HwbyRHRC9acNBPSDUFTxcwpC7cNGhvM1yizu46JW8luUMvf2oRD11Zx+9HEjPu5fRKD2nVHM9L6p8PZYkRb1+kxo82AIFvaPmPbx7oNO8cyvzOy+qfDv/hyc9uU8WPcLY5LuNfWW9Lnh9PHOwBL1k2qe8XDPIPIxzLry39U66/S3gu4nn57ukGL28zePCvczZiz20kVA8qm8CPflsDjwhBpW7F6iavPfgRzx7oNO8TJyZvCKflD478QY9UlppPMHOrbzXvCE99HzJuz9zID3aIKA8cULZPJK2D73rUE48DadzPE26tDz8+2A8/PvgO+JMGz3DCuS8yHWNPLORUD3K+qi8GgwZPUj87rwqj2M8PhnZOzq1Wr1qHYm8lBqOPI34yTyI3TC9eXgBPYgPML0JYYY8w7fHPHOwhL1Ro049698WvCO9L7y/FxO9MQTEu6XZBD0tL448/lWovBTJNz3Dj/+8/YB8vAvw2DxhTmG7bKzbuw3PO707tVq5KgrIO+BtODzTg/e852c0PNzhcb1naXq8rlicuyY1kjwEZAg9ksBGPAb9Bz049Ig8X+piu/e4fzpHbRw8krYPvYR5sj2gqoe97i+xPFgi5jzkVlI997j/PDEExLvy2RK7XhKrPIR5sruCmk89ImPoPBO/gDwP2XI8Mw57vPm/Kr0NXgS92fhXPM27+jzttEw7HgmXPBhBmjz5REY8eGSdu3BMhjxSULK61DDbvJ2tCTyjkyG8lLMNvfQBZTxqety8ZwwnvKARiLveygE93sDUPDHc+zsry4+8RtQcPafP17y51DG9lqlgO/bWEL0inxQ9FU5TvQprPTyowh687BGWPBk37TxA+Ds8eem4vBJlOTznP2w8E5c4vBRYAL073aI8HzuWPC5hDTy+78q7Y9N8vEDQczwzXou62YegvF0zSD35Esc8llbEvJK2D71C1545/ajEPV24Y7wLItg8frG1PMCmZb2gjHa6L02pvJETY7zkfhq9ELjVvBXT7jocwzM93P+CPIhizDyQXEi9DtlyOrve6DxgoX08Q9cePWlIXb0TEp06cEyGvRImAb24tha9swy1vLpZTbz3Wyy9EFuCvE7sM7zpmbM9v6blPBTJNz2mcgQ93sqBPfcIkLt1e4M7IKzNvGp6XL3mDW28CvBYPKQYPT3eMYK8iGJMvReA0rxVyBS9LRuqvCKLsDwiEMw83P+CO336Gj3Y7iA8kISQvJsUCj1G6AC9j9csPT/Q87zYS3Q9PhnZPQda2zu+70q8ZVUMPTEExLzwDpQ8stq1vCAxaT1oFt68cyE8vZ9kJLzYS/Q84XfvOcfzfbwzNkO9fGGbvCacEj2+dOa5rgWAPJ9QwDxYGK+8O7XauxnkUDtDXDq9gDZRvM/CJb00u946qa46PbpZTbzliFE8EK6evPz7YLuSOyu9YUSqPERm8TwphSw9BtU/PGi5ir3l2+27eRGBu9YPPjsOVNc8UaNOvdS1drxD64I87HiWPNImpDzDRpA4s4eZOjfMQDwQ9AE50XlAvKP6oTwHGyO8vEyUPJq6Qjz+2sO84rMbPakzVj3YaQU9vmovO8fzfbr/Agy9g1sXvZmIQzx90tK77Qdpuz9zIL0mnBK7uOiVvBaAUj24emq85g3tO6RrWb16G7i8vn4TvVnFkryVnym96h7PvFKCMbwHjNo8SJ+bvDZy+bw3R6W8FdNuPL1qrzzqRhc8GeRQPFcYL7y1Fmy9zF4nPUAghDwmnJI8rJfUO3MhPL2A47Q8sV/RPJgXDD1i8Q282GmFPUyItTuYDV+7090+PRzXFzxuGgc9EnkdvWqECT27BrG8DLGgvC54fTvLLCg8qm8CPW+zhjoGB7+8FFiAPMLYZLnLQIy8WveRvNBvibwV0268ROFVvdQwWz3c1zq6fGGbPGeRQr2UbSo9QPg7vZsUCrz0fMk8K8Hiu0/26rxEjjm9Ko9jPTaaQbvjVtI8/tpDPHM1IL3+aQy9RGZxO8MK5LxFT4E8yg6Nvc6kCr3VYto8lkwNvRYPGz0NXoS8j9esPK5sAL0jOBS9VIzovOR+mj0nK+W8TIi1POUDNrwLIti8/HZFPE01mbxxx3S8NRWmvI/XLL35HP68JnTKvOe60Dx3Mp487aoVvNjG2LwyLAw8C5OFvBKNgbxnIIs8WBivPFzCELrR/lu9QVIDvANxQburCIK9gGjQu60c8LxIGoC87P0xPXatgjxRMpe8vyFKvBlp7Dy+aq84/gIMO0dtnLzhlYA8PlWFvJ7LpL3HQ468s4eZu86QprsHjFq9+snhvIIVtDqroQG9JfllvEAMIL1ZSq48syCZvPfq/rzW0AW+0czcPIWDabzGbuI6kI5HvYWNlrw/2iC90FH4vCmFLLtviz69K7cruwSjQDyWJMU8iGJMvD0jhjw6RCM9jrkRvf03DbxRo067uOiVPEZFVLsfJzI7x0OOuzq/B7woU6084tE2PONWUrxpm3k8L9LEvJ3LpLwOfB893OueOs1o3rwzDvs8MzbDPBJlOT2+nC48wCFKvTj+PzzBzi09UoIxvItzrjyFg+m8dhQDPbnUMT35Ekc9P8a8vAatd7xvs4a9s4eZO7D70rwp4v884+WavOwH6Txviz69x5YqPAA/Qr3iqW69qYbyPFQHTT3jVtK8w49/Pa0c8LzP1ok8hY0WvbpZTT1FwDi9JGqTPMOFSD17L5y8tD60vID3GDzwQBO810G9POvfFj041nc972Gwu2VVjLpwvT28NPcKvVSM6DwPKQO9Wc9JvUCHBD3KV/w8ly58Oa2/nLyGqzG86qNqua5YnDw5MD+9ulnNvFlKrry9aq88E29wvT9LWDz5RMa8Vr5nPDT3irynz9e7fiwavIarMTzwGEs8ow6GPPm/Kr02zMA8DafzPLFfUTwL8Ng8tT60u3DRoTwKQ3U7NO3dvCQDk7yaNSe9jSrJPN3hcbzNaN477i8xvXDRoTt9f7a8MolfvQkR9rvB4pG6bCfAvOyCTTvMNt88EK6euqI52rwxBMQ7Si7uu4195b18V2489AFlvMhNRby/FxM9JyvlvASjwDzIyCm9IoswvV5lR72AXpk8tvVOvLnUMb2i3Aa710E9vfFAEz3KLKg8U9VNPLVwMzzQbwk9E78AvAjIBr3eE/E8g5pPugQepTvReUC8jO6SPPfgx7s49Ig9ylf8PENwHr1jqKi89KQRvHUAH70ADUM8T3HPOo6v5DtcwpC8p89XvOfimDxGmHA9kTsrvH1/Nry8ODA8dwpWPRG41TmbxPk89tYQPcIALTs3UVw8l9tfPZBmfz1f6uI7xWSrPG6forw+7gS9WvcRvGC/jjw/cyC9Akl5vPSkkbty+fM6NRWmuw8L8jyCKZg8Ac4KPa9Obz1WOcy7q6EBPJAJLL2aNSc7gDZROyCsTTzBAC29jHOuu4hizDtX8Ga8ksBGvItL5jyzh5m8yn/EuxQcVDxY8OY8v7CSPLxMFLsrtys9hf7NPBZ2Gz0O2XK9PkEhPfQprTyu8Zu8hHmyvJI7q7ybP968O90iPEWiHb2GvxW9KeJ/u3FC2bzQUXg8q2XVuxQc1DwNSiA9L9LEPLZI67zG6UY8jrkRPUrb0bxCPp89g0ezO2ZpejoysSe8gnSZvCbKVj3P1X69yHjAPFINFroKT2m8+KCqvDGigT171CY8YQmFPH6/8LwEZB88hCUnvJfSIzx9ipE82qeKPJnHJ7m5ONu75+0OOzUPmbzao++8oKzSPE8Z1Ds8bNe8aaB/vCJj3jx35UG9qIDiuzeCTz2s7fk8q/czvHRyC7zJ8NM71rNIPKQYqLyoA3K7FZ+nPD1rFb108f+7jAX1OwSolTx8zoc8ujI8OxAzUrzzL/g80ksOvcptRL1vicW8Ugg5PcY+hL2Pdie8oqFWvLPWPz2BuA+9WeYCPH++LjwE7Au9B16AOX+/cL18zgc9OfrivFCRZz1c3Ei84IL7vN+RkruoB408EmsKvQedmTuHWAK9yDOIvU8YEj3MYkg9PWuVO2qfPbxldhy9kiySvFGQJbvVuec6Dru+vFP+/rsqPMu7VMOAPKEoATxGvVc852bkvEJQQDt8TLq8B9yyvKt5ATvIMwi97VBsvAxIiLyGohc90FEtvW5Pibu7cBM8nrLxvIJ0mbufp/U8oCnDPMc+hLwiYpy8hhorPFX437zyOTI9MSA0vULSjTxHtzg8LyZTPMWDPL2HG+08kundO3EAlzxyOZE8lN5hOvI69LwBNqE8XlRcvDyvCz2+IuM7TxnUu6WRfT0E7As9vakNvJcWGjsqv1o8W1/YvHhd1TyNQgq9PenHPBEyED0OOfE78rdkvW+EaLzl7lC98bzBPLDhu7wJVMa6dmhRPKYO7ry7tAk9N8WDPHRyizysdCS9fMrsPMCadr1Ew3Y8lGHxOefp8zyqQIe8h9sRPfsNQrzcFWQ8e1EXvYyGgLzggnu8jXsEvEQLCD1ktve8l9KjuvjeAT2kGWo8PqQPuv9/NjzTBxg9XdfrvAhZIzsg5Ss97o2BvYiXm7vwRK48w0+fuzWMCb3TB5g8iJI+PJrHJz1RUYw95XHgO78hIT1DzTC83BpBO+sbDTyZRVo870XwvJ/vhrx71KY8RAuIO5ZakLoDMII8Z6v7OqWVGL1rEnS9OnG0u/I01btpZQE9etVovATsizwF3fS8ltcAPUun37whphI8XhQBvPxLmTx24OQ8f0E+vLdDV7zVuWe9xsETPHL2XLxZrYi9ETKQPFhvsbwWF7u8B50ZvOCMNbxvxxw9GgfiuryqT71eFAE9k2WMu41Cijxju1Q9gDsfvS2znDy5uqi8X8xvvc4dkDtQkWc7cvu5OzeCT7xwgyY8ka8hPSnENzwmUYE8OT2XPDaHLLzPUm885bSUPOP5zDz1bA096CaJPNLJwLv9ByM8Kr4YuSz3Er3Eids8Tt8XvWyUwbzJ8NO86d73u5FwiDwfbtq80UfzuymFHjxrF1E9Ee6ZPCBpfTr1q6a8DYECvXrZA71B0o07gDsfPSHqCDyzFJc7EHYGPZkLHryKD6+8g62TvCnEN7zo6DE8Rj8lvUk0qbwk1dI7f7/wu0g1a7wd+yM98rdkvMnw0zr+AsY93pLUvOL/az36E2G6/3+2PDIb1zzNXCk9Qs5yPH++rrzjfFy8Ug0WPat5Ab18yuw8Js8zvdPEYz2BuA+9xAbMvHvPyTvVPHc6FCI3vicNC72grFK7P97LPOV2vbpqn727NojuvMptxDpf0Iq8YsHzvH+/cL28qk+9UoqGPHL2XDzNXes85e7QvJLp3Tt8zgc8ZvOMPJBxSrz4oKq79yM6vW3SmD2E5o0687YiPXJ4qrwx4Rq8kqmCOqnDFrvB1wu9tgkbvQvH/DtGvVe8mscnPY75Nj1t0pi86ePUOs1cKb09J5+70UzQO58vYj2MhoA8PWd6POEESb3NYQa9njQ/vfG8QT05fLA81rilvIoKUjzvRfC7AP2mvF/LLb0dvAo9uMBHvSXUkDzZqEw9dHKLPQMwgj1gjJS92qNvPEFW37yNgaO8ujcZvcf7zzuVW1I8Mxb6PP2Ksjy+ImO7MKNDvSPbcbwFZeG8hxttvCIjAz2X0qM8L6PDO8QLqbzSSw48fUfdvELTz72mDu48q3kBPGFInjwhaDu8/Yoyu+EEybyfsS88ka8hvUa4+jtYMJg+qIBiPROlRrwMBJK86GUiO1d1ULyqQIc9B9yyPKSWWjxrF1G8whHIvMzkFbiQcUo8BGq+Ounj1LsdedY8NY1LvZ+n9TxWei09FKQEvazyVj3I9nK9A+1NPDOXhTyS6d28fEy6vIdeoTqzWA09+B7dvNOECD2YUFa9nDreOqFnmjykE0u90FEtPK/mmLtktvc6XVm5O/elhzzZKho9ig+vu2ocrruim7c8PyGAPP8BBLu6N5k8OT2XvIiSvjs/XH689ClZPJjNxry3xaQ8ImPeu4SoNrzsVUm90UxQvTxnervRR/M7rO35PMRJgDz0sUU9KMkUu0oq7zrGft88AL4NvS4s8ryPN449urVLvd+REj0xXgs9LqliPcSJ2zyiIyS77FQHO8AbAj1XdVC8edpFPUZA5zzSyUC8q3kBPYMwI73LZyW9kiwSvUY/pbzP1f485e7QO2sX0TtO35c8DrbhuvVsDb3nZuQ7UovIO23SGL2Dqfg7FKDpPAH4ybxaooy7zOQVvYE2QrwNQ6s8kHFKPbi6qLuzFBc8z9mZvBUcGD0H19W8mE8UvXL7ubsNwBu9hSUnPeXuUL1igZg88ESuu6eKnDxBVZ08ZbU1O1vi57wiY9489KsmuGFInjw5+mK9NoesO1Y7FDyWWpC7cniqvJNgr7tCS2O8h9sRPZGvITtRkCU9xsGTPEFW37xb4SW9g65VvE0fcz2llRi9vSdAPaWR/TwAdvy83wmmu5nI6bynCE86bwY2vb+eEb2z1j+7GgagPETDdjzTBxg9F1USvZy8q7nIeMA8xsETPGBJYD1jPmS9AvPsujIbV70ZDL+8R7yVvKiAYr069EO8VjsUuyq/2ryEaR09bgxVPR7wpzx1ba48zV1rPBQdWj30L3g8LqnivEsprbw5PRe9fcmqvOxUBz1BVR08BeJRvNW9grzuSs27PWsVvQoPDrjcndA85XFgPb6kMD0KD4484gMHPA1DqztnKGw8ubvqvOipmDwddHm87FXJPFGQpT23hou75fOtuqCsUj03gk+8BuGPu5CvITzQUm89Yz0ivYXmjb2YzUa9PScfPYWefDwZDD+80wcYvY7+E7wphZ48xAFvPPE+j7v5m00800axu+R3f7z6la45iJebvMvqNLzVvQK9xgAtO4D8hTzMYQY8iRSMPGW1tbxXdA48478QvQRqvjzEiJk8WWpUPdjrgDsSq2W9A+1NvHarhbuzWI08+pWuPPUpWb1ktve6HvCnOsqrGz3B1ws93wmmPAxICDxf0Iq7UsmfPEsq77sIGgo8u3CTvD6kDz2x3N67OnYRPR7wJz3i/2s91EASPehlIj0NQ6s7QRaEvE2hQLxRyR88FZ8nPJhQ1rmR7rq8I9vxOyZRAb24OFs9uThbOkDdiTy00WK9l1WzvP6AeLylkf28z9Q8vazy1rzo6DE7AvPsPFd1ULzJ8NO8XtYpPKQZajoiXb88/QhlvOlbaLzQ1Lw85DyBvdeyBjwd8ek8hSUnPQxICLprmuC7iY3hPGequTyy25w8OIGNvFxaez3bY5Q8vakNPKSW2jzEAW88Jk3mPLVNkbxqIQs9pw0svSy0XrxSioY8MxU4OgnS+Dtktve8XNdrvJWehrtYb7G77c1cPSLgzrxltbW8F1WSPDYFX70vaYc9pBNLvMRJADzQUS296t01PVll97xSioY7CVMEPcvlV7zSycC8UVEMvWuaYD3M5JW8/ciJO/mVLjxa50S9yHhAveR3/zz1qya9ztrbPA3BXb2tb0e9j7qdPQZfQr3cWBg9y+q0vOGBOT2BNkK9FppKvUc5Br2O+bY97U+qvGtahTjztiK9n3KWvHCDpjzP1X68sF/uulCVgryEqLa869jYvNxYmLs2iO48WiWcvJ4uoLzVuWe9NYhuPJPom7wbg5C5aR3wu8f6DT36la48YcAxvfibzbotKzC8TxR3vdS+RLx52kW8f3+Vu/2F1TwaBqA7jndpvPyPj7yurR49d2IyveN83LxppBq9MZ2kPD7eS7ygq5C9duDkvC0xTzwWlW28cvu5vCJdv7zoqZg8Yz5kvSlBqDwF5667/YqyPGrdlLyBNsK83433vXflQT18TXy8k2ZOvIMm6bw0kqi8jUKKvA45cbyqfyC9hCZpvUVAZ7r0scU7TGcEPTl8sDx06+C7TZxjPJRgL72/4oc84/nMO04esTztzVw87VDsuxOlRr2MguW8AHqXPEe8FTzboq08XduGPJqIjryiI6S8iwkQPbl7jzwRrwC9w8yPPIqHQrtUgEw9d98iPAjWk71ujqI5f0E+PaOceTxa50Q8MaIBvBeUqzxSCDk95Hf/PIwF9byx3F6800CSvdRAEj3Y64C8WmS1PEbCtDxIsts8DEgIvbwsnTx8TDq9nrJxvS10Az3N37g8q/czvYkQ8TzLZyW9eKCJO1tf2LyKTQY9rPJWvfAFlTzhh1g9Th6xvF3bBr3c4IS8+9MFvNQ7tTtHvBU9JNqvPPUoFzw1D5k8j/k2vCdMpLwC8io9WmQ1vbBf7rwbf3U9MV6LPFzcyDw2h6y8tsZmu5u9bTxW+N+6sOJ9vUsprbyeNL+8DcHdPFDUG72bACI90Y+EOx5zN7ySLJK8+lYVvD3oBbxvhGg7+9OFPBePTjzI9bC8UVGMvKEk5jz9ByM8uD04PZjNRruA/IU8xInbu/I5Mr36E+G7mEt5vHdisjwe9sY82iW9u6t6Q73mcJ684Iw1PHhdVb069MO8Wa2IOnVtrrw7cbS86ePUPPcjurtGwjS7LXSDPJQhFrvFg7y99Kxou7NOU7xvx5y8uThbPDGigb3ao+88uL+FvFGLSL1DzbC8cjmRPC4rMDtGgxu9CdG2PDWMibxslEE9Zy3JOnL7uTzUQVQ8GgagPFd0DrzZqMy8ltPlPJ62DDwtMI28qAeNvOO/EDxo6JA7aSJNPRGwwjxsFo+9OnE0vOlgxbziAwe9hiBKu4G4D7zLaGe8LbMcvOhlIr2d+gI8uP4ePQB72bqLjB88+pbwOyo37jy00WI7yXPjPLwnQDufsS88iZK+PDl8MD0nTKQ9N4LPuowEMz0OOfE7lZ6GvG4MVbzM5Ve2WG8xvUa917xZ5oK7w8wPvar9Urt4XdU82K5rPJnI6Tw78wE9VvcdPBEtMzxa58S8JlLDO9DOnbtFRIK7axdRvYnQFb1ezO87fckqvHfgZL1UgEw9Rr1XPCIjg7wTpcY6nDrePH5GGzx9R9283tWIPDWIbjw95Oo8E6XGvNLJwDy4wMc8jILlvDMWejz4HZu82Sb/vI92JzyaRdq8Z6o5vYoPr7zna0G8gbgPPR10+TtW9x090c9fPeYxBTzI9vK8ZbBYPELSjTyx3F68C4ehPa5qajwuLHI8X8utvHPDuryq92k9uN1Nvd76jzym68A6ZSONPPN+Wjmc7KU9WDr9O3Au0TzdLkW9GxPcucgSZbtgCI88MoGbPAuWCTxG9Au9Vi7UvHm2rDw6PSy8p+vAvHK05TzhbJ68sLamO1iPiLxGBWY87FczvZojh7w7cWE9+R9tPXt/S71uVl27iEUAPcwt4zuf+E684Druu60SaDwIvpW90Ve2vI4Gwjv5DpM8asQfvBsisTxp+NS8kb4GPfZWzrzpcGq9InsIvWTggjziWJi9L6knvA+OLL03ZTg9l0sTvYUqgjyDpvI83NxlvZazfbxFS5y9G5wcPWTdVrwaFog9z9EhvKbc67yB3dO7nSDbO0CbNL3Os/c7z9GhvO+VjL1LqSQ9JWeCPYu3DjuUcx+93dzlu5KYf7wr9A47kyHAu0tSFD0e+qQ8bSIovJ9yOjuL60O8wy5IOxMg6rwgYAq74MMuPLjdzTqvMJK8uZUSvLaLbjwK7Rm8Bff7O5EBEb1LY+48NEo6uizgCL0mMCG5B3sLPRltmLv+jMq8hwT7O6FKLj1jSO28V7RoPfCm5rxHjiY8jfoYPJiOnTykVte8dc/jPHWMWTuM68M8S+wuPEsvObwAE9+8tAXavNmcB726+Es9rmRHPIZKMT0tIxM9IIA5PbxtBrszbZU8OajCPLaL7rzYfl08xQY8vTLnAD0ZFoi65upVPAneRL0otjW8pCIivaOcjTzlhxy9vyKfvDRKujzJRBW9fdGqPJa2qTxBqgk9U5nqvO7dRz0XxCi925lbPMZsITyTVfU8RUscvEV/0TzvUoK85WRBPeCAJL380oC73i7FvG7LFzyLdIS5lNkEvD4VoLycDwE9ERTBPGkqBbsjvpI8nJrGPOoF1LxIFLs7hLXHPOQBiL0+FSA57t3HO3r5NjwiFaO8/IAhO68wEjz10Dk9F8SoPZ3spTwTIOo8eurhvBlKvbySmP+7dhLuPELZjbw4Ii68y3OZO2kHKrxObRK84WyeO/HpcDx+9IW8a40+vVtEobvd67o7X3B5PBgqDr3E5oy6hgenvEym+DwCdJO8DNkTuxlZEr2G8yA9CL6VvJNVdbzF9+a7JmTWvKhx1TtfxYS88ix7vfeZ2DyxcHC8CzAkvTGmezsMc667I8/sPCi2tTs0bZW9Vj0pPY737LrSZgs86zeEPYHsqLx/i3Q8ageqvLOiIL35+gw8IdIYPTM75Tv5Yne8Bff7u561RD3I3q88nj6FO3mn1zwGOIG8wh9zPD++jzyxcPA8091KO0lmmjv0sIq8caOLvHLDujstmtK8J3MrPeA67rvA3Gi8F8QovXotbDuaehc9fo6gvAhYML3jz9c7O4A2PbaawzvG0gY9HKhFvDv39byiWYO8X/m5O6AHJD18SxY8+bcCPXSMWT0A36m8ZFfCvFajDrwTmlU7PI+LPKUioryuVfK80Ve2PAAT37z3ZSO7z9EhPSIVI7w+jN+7Hy7aPYU73Lx6cyI9hgT7PH6L9DzrFCm6qKMFPan36buuZMe8mTcNvWQUuDw+jN87KBybPB2oRb2bZpE98enwvAAiNL0r0TM8p+vAOxXsNL6GBye9lrN9vJLetbzM6lg8f5rJvLCnUTwcyyA6BUyHvDE+kbwLp2O9V4Azvbhj4jt3IUO86Dy1PBJXy7ywHIy8xxURPJ/4TjwSzIW8S2PuvMCIBL2oo4U9g3K9uzGm+zyfgQ+8ZmPrvA7FDTydY+U7QBL0vKtJybhfPMQ8U8uau/0VizxS36A8X/m5PH8jCrwLMKS96LN0PMOjAryrSUk9bVbdPD/P6TtRE1a9NEq6vGj4VL2OgC09mnoXPOObIrvKZMQ7BUyHvD/Pabw2RQm9TcSiPFg6fb2zSxA9ACI0PWfsqz0ZfnI9u4GMvfVH+TzQi2u9k+2KPNtlJrxcZFC8sLYmvIawljsWtdO7osHtu6+n0bxFPEe8lrN9vAWPkbwtmtI88ztQPGUPhzynt4u9bd8dPJWn1LyuZMe9b+vGPEuVHjxHi3o8wGWpu3XPYzygfuO7Fab+vFQxgDsuqae6MT6RPtwfcD0EtPE8CAEgvWf7AD1xo4u8c4+FPU8WAjxLIGQ8eWRNvCi2tbyCY+i8FrVTPD/PaTy00aQ7xSmXPIZ+ZrwQjqw8xn17PcjeL71y5hU9FwczvYmICjyvc5w89t+OvN5i+ryqKRo83aiwu2wE/rwRSHY995nYvHw8wbyZFLI8+A6TvV9w+TxocsA7S/sDPFxV+zw0B7A7Ai7dPENzKLx0jwU8KcUKPXAffLxZe4K8BxWmu63P3bxrjT68bAR+u2MUODz4ZaO8ntifPOqOlLyQjFa8MS+8vDTB+bz/3im9b+vGOxEUwTwpPMq6N5ltPK7eMjs3Zbg8MGPxPPH4xbvRvRu9ODGDPZ4+hb0JEvo7JpYGPWXdVj0tI5M8a8Fzum5lsjzpCIA9/ozKut76jz0+jN88Y1dCu1kVHT0k3kG9x8/avMXDsbwPSyK8pw4cPB63Gj1hwli84Qa5u3G3EbwpcH+8FKZ+O2hyQDxFPMe8/NKAPNc7Uzv6LkK3Qe2TPH4FYL3e+o8780qlO/R+2rtBVX4848/Xu7C2Jrz2E8Q8T0o3Oxa107xhwti7ODEDvamAKj2x2YG9GVkSPcQ9Hbxn6X87ONx3PGQjDTsDHQO9YkhtPE8HLTsDLl09evk2vY3mEjwSZqC6SBQ7PENzKLt/Iwo7InuIPO8vJz0+ewU8SEhwPQhYMD3zSiW9I5s3vckhOjuJVlo97t1HvfYTxDxn6X887FezO5vdULto+FS957YgO8rthDts0Ei88JWMvC2aUjx66uE7ACI0vPEbobyVp9Q8U2U1u17qZLyHwXA9rlVyvYoipbw23yO9FrXTvCvRs7x56mG9P5s0u2DFBLzbmdu8IhWjPC1XSD0gTIQ8MioLPf8SX7uGjTs9DjzNPBcHM72aIwe9/RULvTtgh7x0jNk83KiwPOVVbLypKRq9aQcqPPuAIbqqOnQ7yBLlPMswDz0D+qc721bRPBf43TxJI5C6UyKrvPacBL1KDwo9+eu3vHrq4TxK3dk9XGTQPIZ+5rvS3Uo9hkoxvL4E9TvBDpk8SJpPPXchQ73TqRW9H2AKvVjDPT0VL7+7bSIovMSAJ723I4S8wrcIPI6PAj0hjw69qKOFO4/SjLvmMAy98YEGOthKqLsFPTK7ERRBvaKNuLz4qK28pBNNPF7q5DxuZbK8ageqPKZ0Ab35cUw5DfnCPLnYHD2FO1w8BaOXvcBlKbtK7C47li1puvTQuTyUcx+9V8M9vKsVlLx6cyI9dlX4PG7ccTyQScw5ULAcPGGOo7t6tiw7LIv9PGRXwryuZEc8px92vFuqBj04Iq48KcUKPTdlODycmsY8AredvPkuwrqlVte7Z+l/vHotbLybzvs8PknVvLTRpDx1FRq9qcO0PDnrTLs0B7A8+Os3ve8gUjzIjNC8edkHvRsiMb22Zo68YY6jup6VFTw0Srq83A6WvEsgZDzFKRe8rZuoPPHp8LvFw7G80s71OkDePr2S3jU8lafUPMVsIT26PgI8+GUjvIZKsTxISHA9M22VO3C3Eb3RIwE9TioIPAVMh7xEHJg8RBwYvFf3cjxbWCc8b6g8PE1yQ7xR0Mu8L6knPFSovzxzOvq79ARvvHKAsLz6PRc8MfsGPJzsJT3lZEG8tr0evErd2bsg5h69qYCqPWUPBzwaAoI8ID2vvC6pJz08jwu9O+YbvGSLd7ydDwG8PnsFvYGpHr3M6tg86LP0vI6ALTwOCJg8lDCVvM6zd73NPLg7pqg2vfM70Dyu7Qe992UjvbV6lD0lZ4K9uXK3PDouV7yGjTs9D44svQkSer22V7m8nrXEPXsIDL3XxJM8iEUAvZpIZ7ygxJm7db6JuaWIB7wcMYa7MS+8u1VgBL3cqLC8ogR4PGk7X72qfX68O3Fhvce+AD0Mcy68a40+u2wEfjwhgLk8P96+u10wG70bnBw8SZpPPCHDQ73biIE81unzvEwvObtY0hI9MXLGu1/FBL2nH3a869GePPlxzLwwcsa8oH7jvGoHqjw+WKq8cnFbvQmqD71sBP67QTAevasGPzzImyW9ZN3WPAyCA727O1Y8CL4VPOVVbDzNop27li3pvHtw9r0RSPa79I2vvBFIdjuB7Ci8BcPGvD5Yqrxbm7G8Y3odvQGoSL2gbQm81oGJPC1XSD1f+bk8xn17vP8BBT0Wckm9YPk5PKQTTTxgCI887ItoPA+OLLundIG83CKcPGF/zjwjz+w86sLJvPbfDj2DLzO9Iff4vJ/p+TxncsA86gXUvPCm5juClZg8BwZRPVYuVDyOtGK9uGPiO7MFWj08jws8PKMRPG/rxrxHNxY9HDGGPIwuTjp23ri8Ax0DvZpIZ70236M86o6UvCxXyDnTqZU8aTvfO+yL6LwHSds8Go1HvU5tEr3NcG09+/fgO7qmbL1UMQA9D3/XvJa2qbwdZTu8tlc5PKr3ab3oPDU9Oz0sPd3ruruoo4W8tyDYvJvdUDvZnAe72EqoPOxIXjwCLt08JGcCPWi1yjuKqDm9V+YYPXGjC73BmV68DbY4PbipmLmq5g+7V/dyvLIIBj1k4IK8m857u4GpHr0V+wm9t6mYvDVZj7yrjFO9Fab+PAswpLyepu+8kEnMvKg9oLvoopq70ZrAPNh+Xbzpfz88TfhXvCpLnzxGjqY7Q5aDO60S6Dy2Zo68OuvMPDLEJbyN5hK9D0uiPKEHpDkO+UI8a8FzPIMvs7vdUSC9joCtvOhfkDubZpG8xn17vHP3b7x3IUO8ULAcvS2LfTxgCI+8hTtcPBOpqjwEgLw7HMugvfz34DrM+a28joCtvM4IAzxTZTW9W8/mPE5+bLw6Lle93/oPvIuoOTydLzC8PlgqvVajjjwQFME5jgbCPKp9/jzx6XA9sV+Wuwrtmbzt3Uc8E5rVvMYGvDxtnJO88zvQuyk8yrpaWCc9YY6jvPeZWD2JVto8TxaCvTK1ULyFbQy91S8qvS2a0jxfLW87nSDbvB50kLqgxBm9ho27PLZXuTyZNw27i+vDu2kqBTzCYv08R3ogPLxtBj0560w9Ct7EPPkf7TwtV0g9BIC8PasVFLzumj09V7ToO2TggryxPLs7LOAIO6KNuLxockC88KZmPHMGxbm4Ugi9UiIrPa1YHjsQ9JE8XZaAPK0SaDzPwky8D7GHvClw/7ugfuO7BjgBOw48Tb2lmWG8NLCfvGIF47wajUe9ey3sPK0SaLzoPLW8HGU7u59yujxogRU9mAXdvGTd1juFO9w8+8OrPH70hbzsSF499t+OPOEGubxfcHm8OCIuvMlV77yfgY+8LAXpvE874rysvgO9aTvfO+HSgz1hjiO8QnMoPRoTXD0tV0g8MucAvRoT3DzmMAw9GUq9u2WpoT1ELXI7Q/m8PApk2bqsjiC7+SobPQQmaL2B4re7Urk3vCuKZrwHQTI7QlxUPcQICryx1oo8NeWNvADMJzzGja68iyxeOUp5WjvSoic9xxLTvLi1b7xhQh09spDcvN7kwLxTWIi8u3g1O418VTybicE8OXT7PFOECr1go8y8WH2bPHhADT2d/A+8mOlSvFKW4Dyl9r48Rh+avGf1/7wCHJ88jiRRvRhY57xGHxo8yVkfO83NCz1cSYw77Kt+vdR3Qzzb7M28LciHvQ0OQb2VvDI9p0Y2vQxmxbysoHa8WrNmPcXlsryheae6mOlSvAFRTL3e25U7eB02vUzJ0Tz0DjO9+IIfPcw35rm7b4q8ecUxPOHcMzwh6Du9XnasPIEFD72sw029rWIePd4HGD0eJXY86FG+vCZl07y8ILG8r/DtPAjpLTvSBPW7XfGHPFiGxrx9d3Y8kMOhPEqTBrzqmAq8dHQcOz0CFLhCXNQ7kucWO0nrirz5M0a9EePcvJOPEj1U5te8Urm3PFQABDxjvha9RTFwu2u4xTwT/qY7TXFNPI8B+rv99gs9QaICvd08RTsD8Jy8bzXdPAmjfzpLDwA9xD03vcjdJT1HbxE9XcUFPSTgLjwFzuM6MVd1u42WgbwqBcK8p5UPPaGu1DfN3+E8j+8jPQXxujxmk7K8VAmvPPZeKju/0vW8oa5UPZxUlLwHHls9Cw2jvNpEUjsf5x29MXrMPPcY/LyP76M8Gz4EvcuP6jv0DjM7uIBCvZu+bj3sztU7furEPKIz+byOR6g85I74vPkqGz3NzQu9M8EYPX7hGTwXsGs8mW53PARJPz39sF29k7sUPPNdDLxowNK8h+RzPOnWYrxVa/w79AWIPcK4Ejy7bwo9y7LBvCukEj3vo3G8qcvat6aeOj3ENIy9LDLiPJownzxcA947DrY8u57QDTyWmds8nrbhPDafXz3j5nw8kvlsuvwI4rsh6Du8jll+PMw3ZjwzlZa9SfS1vIevxjxHm5O8EnkCvf9Ggzx9H3I8A8SavFipHb1+6kQ8Qdevu61I8jyo7rG8Y5IUPDdhB7vZtoI8Xc6wvGmLpTww0tC77Kv+PH+SwDyoEYm8T7gZu8ZqV72uE0U8B0GyvAmRKb2brBg9BfE6vMjdpbwLvkm7a9ucvKyg9jw5l1I8au1yvaPb9Dzs8Sw7SEw6PPcYfD3kLKu7khMZPPwijjxLRK29oXknPNvsTbsOtrw8KJLzu9+DET2TuxQ9ci1QPG7Tj7wyIkg9fsftOMK4kjx78tE8LnCDPP2wXTpX3so5y7JBvfwrubwcwyi8BEk/vbSrpjuZbne8COACvdpnKb0cEoK8eyf/PC3aXbwJo/+8xDSMvJwxvTwSVqu7I23guyEd6bzPUjC784kOvEG02DztmSg9pfa+us3NizzjCdQ80/Keu4/MTL2YtCW9ifaSvBV6IDuM7gW9KtAUvBIzVDx+6kS99jvTuggMhT3KP3O8wHpxO0eB5z12zT68FWD0OwoWzjvvvR09ND2SPBbTQjz0DrO8xdwHvD9k4bxdzjA9RVTHOzmXUjzXbza9OMx/PcaNLr2brBi9jkcovHs4ADp1JUO+jwH6vMQ9N7zihK+7CbSAPKdGtroEfmy7jNRZvLwgMTxpXyM82+zNvFWxKr0gQEC860kxO+5BJD1S3A695gHHOwRAlDsW00I8tjBLvFHu5Lscw6i98EttPSt4ED0nDU89/AjiuzliJTwDocM7w3LkO/kzRr1VsSq8W365PBtqhrvGhIM8pp66PJ9e3boYRhE9sGM8veA0uDxruEW7xBpgPWa2iTw0cr86AvlHvZE/G73m3u+8oCCFPbz9WTxi88M8PI/Fu9KipzwQKYs8xbAFvXGfAD2fXl29+tKWPLJbrzyxAo092iF7PdFceb15vIY8agcfvQ7r6TtUAAS9DQ5BPJxUFDtonXs9gF2TPJazB7zWpGO96C5nPIMphL2M1Fm8COmtvH1CyTx9H3I7ip4OvY4k0burG9K8KLXKvbYnoD19OZ687hUiPQxmRTxIF4287+mfvGFCnbsYchO8ePpevKeVjz5mk7I76fCOu23lZb1YhkY9mJFOO+120TxsPWo8aYslPeqhtbx8mk252b+tPEG02Lvm3m+6D60RPOwUhD2DZ1y8CW5SPHvyUT0nBKS8lwyqOoKtCr2vhhM8HvBIuuYBR72a4cW8uIDCO0AmiTzXZgu9Vy0kPX7hGb3Dlbs8YW4fPcfve70C+Uc9itzmu0ebkzz/RoM86fk5PM9SMD3GhAM8ZzuuO5i0pTxwADC9LDLiO6X2PjxTWIg8spBcvG97C72sw827qj4pPFE0kzozlZa8MxkdvBIzVL232Ma8Dra8vKGLfTxujeE8aJ37usEQlzwEJmg8I4eMPBMQ/buGKqI8TMlRveKELz0gj5m9TKZ6PETPojzZtoI8/coJPYf+H7vPUjC8rgoaPWLQ7LyQdEg9ygEbPa02HDshHek79a0DvQo5Jb0/ZGG932nlO2mLpTz90zQ8oCAFvIf+nzwnDc+8PQIUPJ8psDsikLc4R4HnulE0kzzfaeW7srOzvJoEnbzrSTG9QC80uyxVubtFVMc6NzWFu1wmtbvmAUc6rMPNPMoKRrsGkIu8exUpvMOVO72yszM9p0Y2vWaKhzzUVOy8rLoiPIqnuTzUmpq8syYCvM0COblpaE47r7IVPLKzM7wsTA491uoRPC9Egbz32iM7clAnvQoWTjyZXKE74dyzvC2lMD3zQ+A8SdHevEHXL73Gate8cPeEPQL5x7wEfuy71JqaO2c7Lrzp8I67d1JjvWw96ryo7jG9jPewvGEocby864M8LEyOvFfVnzwpOu+8RXeeu+KELz2AXZM8AvlHPffAd70fmMQ8v9J1vZ94ibzYFzK9uQXnvPuDvby+cCi7P36NuyuKZjr8Io49oa5UPaAGWT2jyR48btMPPW9YNLz/I6w72PTau+TUJr1YfRu7khMZPdyUSTzewWm8jZaBvUAmCbwhN5W8/lhZvME8GTyUYxA9v/VMOtPyHj1mtok7LdrdvNDX1Dz/GgG9zfmNPaUr7LzGjS49jNTZPaeVjzz7g728nrZhPa02HDvUmpo84+Z8u/32Cz32Xiq9i3KMvfaBAbpYfRs9IpA3PIk067xz1Uu9pp66uc6qtDx4HbY7Z16FuxJ5gjwIxla89l6qvB+YRDwESb+8Snnau4S307zT8h68FLj4PB4/ojv7YGa8wu2/uxSDy7wXnhW9R28RO26wuDwrimY9Bx5bPH+SQL1zzKA7P34Nu/a2LrxR7uQ7CMZWvUJ2gLxa+RQ8BECUvMjdJT3/e7A7qZatu1KwDDw5uik7RKxLPPiLyjyxC7i8ZzuuPJoW87zRf1A9rMPNPFc2Tz2+Kvo8DUNuu1YtpLne25W8fL0kvcaNrjwy//A7ioTiPPZeqrtlDg4882Y3vP8A1Tx6ZIK84yOAPE1xTb2r5iS8ZzuuvLqt4rwsIAy96n7eu4/voznKLR09fL0kvWa2ib0ucAO9hgdLPLMDqzxHbxE92ZzWPHnFsbw6CqG8nSiSPHaq5zwEfmw96HSVPOHcM7128JU7A6FDPWf1fzyXDCq8ly+BPXbNvjyHr0a7n0yHPNC0/TokA4Y61G4YvFlRGT31rYO8u28KuzyGmjuxCzg92ZzWPOfMmbwD8By8ds0+PPwruToT2088swOrvOTUJr0Jkam7C/N2ve1T+jwPk+U8HBICPUv+frw/hzg9LpyFvbMDK703R1s8SEMPvVhj77yNlgG9+ItKPaD0Ar0tyIc8hZR8PMFFRL3qfl695NSmPJDDobzie4Q8h+RzvVe787wtpTA9ZEM7vVBpwDyTbLu8N2oyPOSO+LwMZkW95t5vvEJc1D0PgQ+9+TNGPHFifTvksc+86C7nOqRxmjuV8d+7oa5UvAXxurxRETy9dSXDvEPheDyS55a8gb/guq02nLv2O1O7wspovJO7lLxM7Kg8LypVOhhGEbz3wHe9GsKKvCiS87t7FSm9+RBvO1t+ObyRa528Zes2PMxavbtTWIi7GnMxvOVZyzwl1wO8BH7suqzDTTuBBY88n17dvL2lVb35M0a7iTRru/iLSjzPHQO90PEAvZiRzjqAF+W8xDQMPSNbirzsFAQ93TMavfLhEr1A+ga+VwGiPG9PCbySE5m8ntANvSfYobwAzCe9t9jGvC3a3bzlUCC9KTpvPFfeSjzp+Tk9ZnBbuxHj3DxJ9DU9iHoZvZ0oErtwADA7bD1qPOepwrve5MC6F3s+u9bHurxITLo81282PPWtg7yFgqa7bFeWvPNmN73tmSg9IQsTPO4ezbwOtjw9znUHPCt4ED204NM8FLh4vYtyDD2g9AI93uRAvG7TjzzrQAa6+TPGO75wKD0qXUY9HaBRvME8Gb1paE69GpYIPARAFL3aIfs8ksQ/PEgXDT3odBW9QC+0PFHu5LysoHa9LnCDPPuDvTyqUH+9EDthPezO1bzdGW65JAMGvaaeOj0Rri+9WH2bPLWITz0EbJa8oa7UvE4ZSbyXLwG80kqjPBJWqzzKARs9rWvJu04Qnjt2qmc8TOwoveJ7BD3aZ6m8pUUYvUbZ6zywQGU89OvbOzL/8LuRax28Zes2vPlWHTxxywK9HBKCvO1T+rwvKlW7zy9ZvbiAwjzGjS68yWLKPPlWnbsSeQK8+RDvO13FhTx1Amw82b8tPIn/vbyr5iQ90PEAPWOSFDx5oto8FKaivPcGpjxCOX28K3gQvWCaIbwUg0u9O8RyPC8qVTziYdi6iFdCvSZlU7uFgqa8TvZxvHd1urvhuVy6xBrgumc7LjzszlU8IHXtO7VleLwYRhE8Ai51PNPPx73NArk8W1tiu6/w7bxZURm8d5gRvWaKBz1Kkwa9mjAfvSiSc72K3OY8mYijvDjM/7yYxvu6U2GzvDliJT0jWwo94yOAPJjp0ryxC7g858yZuzgSLr1jeOg8VbGqvLV/JDzXb7Y7ifYSPbwXhrzGalc9p3vjPNpnKb3348680qInPMliSr2ZOco8tKsmOp6kCzyDKYS8cairvJk5Srxf2Hk99A6zO1Nhs7worB+798D3PNVCFjiK3OY89A4zPdm/LTvh3LM7ekpWPddvNj2cVBS9tX8kPZcMqrttKxS9RKxLu0VUxzuaFnO9u28KvRVgdLxlDo48K4pmvGxgwTxVjtM8iIzvPF3OMD0ogJ073V8cO7BAZbwbUFq8nfwPuwDe/TqAMRG9RseVvDa5C7yV3wm9N0fbvMjdpTyHr8a8S0QtOzQ9EjxM7Kg7bo3hO5cMqrwZAOM6UTQTPRSmIj0nBCS9/faLPbqt4jyYtKW8Mv9wvLe1b7uHr8a7MJ0jPE1OdrvAevG8FU6eOe3xLDwqBcI8xeUyuyfqdzxyUCc9/coJPcQ9tzuoI188dUgaPV4wfrw7xHI9zx2DPGFun7tOGUm7KelvO76NEz0LoTC964dEvFf6brwsWNc7JEcPPfBORT2tbDo65zQBPLuqbr3B5Sw8BCWnvO6ZPDx7N0s9/EsuPbaGfrxVotW8CEkXPIIQRLzRNdm8t/q7PPBORT2ODa27gLgqPEjKDD0K51G9VEXmvKES4jx9MnU8w+DWO7x7m7wXQSo86IMePFKnK7wy+YC8DAccPD2/Ub3DmjW9qEjKPDF8xzsqXa265As7vNVC+7xTBBu8NlqWvB2mZb1S7Uy9HmBEPOFkhL2+MCS9vNiKux8jHz22CI681F6fPNhrwTxc74u92gl8PEMDjL36OTa9mD4/vD15MD1aI7U8rQ9LvAETLzsxwug6x28IvWjVJjxnBPq7wqiHveHi9DywfjI9P3RaPKHMQL0Wh0u9mlA3PHR1oDyAuKq8pDuoPPqWJbxt4si8hNMePU6Du7sB/OC8QEWHOdYTqDy3QF287SV/O9VnGzyjJFq9eCVTvTa3BbxcNS08ORgbvY37NDxzpPO8IhB3vfo5NjwxNqY8Z4YJPITFzDt9SUM9LMwUPYV/K7091p88YK0QvfcnPj3IBMc8WQznPMUJHb1QlTM8igCLPEjKjDxM5YA8wqgHvN3soLyCyiK8grNUOy7HPj3tJX87aoqvPKZ8cz1EUik9ToM7ved6ojyqxYO8QSljvOEHlTwNP2u8xfJOPa1suryDJxK8hx1mvf9dJjuvZ2S8pN64u1AhdruBHpY8su0ZO21Whr1xTFo9S7fkPC7Hvjxc2L25OPjQPO48Tb3JJBE9bwsPvYXcGrsIeOq7uBqGPQ2c2jt78Sk9gm2zuyOEtDyHNLS7CudRPL6NEz0X5Dq8fgMiublS1TwIG3u7tquePJrzxztsKOo886beO9Zwl7uQCFc947wdvVcoi7zi+cK7XtPnO9a2uLxDAwy7vNgKPbK/fTz4hK09MpyRPJpQNzxhtgy81F4fOrlS1bweYMS88JTmvFVqhrvEXRA9Rk3TvIBbO72Mh/e7/QWNPJ7IGjv+jHm9BCUnvNQBsLtZaVY84j/kumoW8jwbCCu8VXMCPD/oF72eJQo7WQxnPBmC9TxPRhY9G6s7vG/dcrxhQs+8923fu1RF5jwquhy9pDsoPP6M+btTYQq9roOIvJOOjLy5UtU8LFhXPAVm8ryMWKQ8A8g3vfAIJD2EC249IhD3Oy8krrwKimI9OFXAvRfkurrnHTM8D2ixPJVy6LuvjIQ7MGX5PGrnHjribYC8kR+lPAgbezzn1xE9bT+4PBmZQzx5PKE8AZ/xu3vxKb14JdO8WJ3/OzoKSb0eGiM9EnqpuZUsRzoI7Ce9f0RtvPtZAD31/ne7eGv0vNjIMDyMnkU9JSJvPNvaqDueJQq9vB4svA9RY7zmKwU9CaYGPDqt2TxmfQ09Vf/EO4D+y7ujx2q934rbu7WiojpjsbY89Bocve0l/7zvXJc8D/TzvCeR1rz8Sy49RqpCPJrceTwWzew93/UcPMP3JDzK//C6AfzgPMOatbsDa0g85PTsO5rzR73+Dgm9pjZSuz15sDwIG3s8wZ8LvRdBqj0Seqm8iXV/vf6M+buwIUO85GgqvqOPm7y1oqI7rVXsvEp/FT2Vcmg7UNvUvICh3LtyHQe8aoqvPCvDGLyqQ3S9NYnpvN3soLwBtj89IhB3vE+jBbw/uvs707KSO6G18rwE3wW7beJIvfO9rD3P9A08n9EWPCc0Z7s2Q8g8C/4fPcBx77vWWUm9fJQ6vG35Fr2Tjoy6Hr0zPcGfizwsnvg5dBixPG+un70B/OC8o4+bvG8LDz0gW+472A5SvHbNObwgW+68CDLJvOapdT2ZXgk8eGv0vF2bGDuyM7u8qOtavB4D1bx5PCE95GgqvYfAdjz/XSa85FHcPN1JkDxrLUC8apiBPMHlLL3zvSw8eqIMvUkC3LlrRA688uz/PFqApDxc74s8r2dkvSI1lzz6liW9QU6DvGgyljs/iyi8d+SHPE9GFr2hN4I8jvbeu152+L36lqU8csAXvBmC9TwcZRq9qI7rvLweLLyMnkU82GtBvfyRTz3CqIc+AbY/uuO8HTkjhDS9IsrVPO6wCj0VRgA9A8i3PERSqTu1XAG93+fKPNE1WT1axsW7faayPNgO0rs1rgk9V/ruvMU4cDwu1ZA9+IQtvQ/087tOgzu9sCHDujpQ6jweYES9YmKZvNQBMDx9prI83EAUvchK6DyykKq7COynO3ReUj1Po4W97jxNO9qLi7ttnCc7R8GQvD7fGz3Re3o7uL2WvI4NrbxARYc8wCvOvF7TZzzgW4g7tC5lOVDbVL0xNqa8x6fXvJyoULvR77c5lkOVvOmMmrzwN3c62A5SPDL5gLw1rok8RN7rO1id/7soBZQ8vhnWOeMZDbx7IP08ifeOPNjWgrw1rgk9COwnvecdszwsErY8D65Su85IgT2T1K27N2OSPCAsGz12zbk8Lg1gPa1sOroxH1g8xZVfu/NgPb1x72q9f2mNvOiDnrzK0B08SyuiPDSljbzrlRY929qoPJBzGDzPOi+7idJuvFKnqzw4m2E8ooYfu9kloLw4+FA8S7fkvIJW5bwUjKE8XjDXuwgbezyMnsU7VEXmvFCVMz1X+u48BtqvvLvPjrwstca877mGO1X/RL0llqw89IAHOxnfZLzL2Rk9bMv6O32msrzrcHY8RN7rvFqApLsgzyu9XNg9PTHwhDzmqXW8AVnQu18BBL0jhLQ8UwSbvMgbFb0IG3s982C9POEHFb0/6Be900dRPHZwSj356pi8qQIpPZbmJTxe6jW8qV8YO+yekr2a3Pm8Wt0TvUSBfLxJX0u65PRsuwhJl7uExUy8gP5LvMmBgDzf0Pw8EMWgPLCVAD04Dx+9OD5yu3mZkL1g5V+7sUENvZO9X7zdeGO8BiDRvFE4RLxC+g+9qQIpPdD9iTyfdCc9mJsuPbRThT3K/3A89RXGu9uUBzxX+u682yDKvMzLRz3cnYM8U2GKO9Vnm7wB/OA8xfJOvGi+2LtlCdA8kNAHPCLK1btEgXw9VaJVO+RoKr1ZaVY8aBtIvBS7dD3/ALe8cLcbPWCI8D0I1dk7EsDKvLkMtDxJAly8XwGEPLTRdTyqQ3Q9shxtvUZNU73ybg+8FOkQPf4OiTz6UIQ8/DTgvMrQnTviEJE8StMIPMpzLrtnBPq87aeOvMDO3rwX+4g7lRX5vPAIJL0xNqa8Rk3TPB2m5TuQZca8UDjEPN2PMbualtg6M3fxvHPJE7pZadY8m2cFPcWsrbz1FUa9ahbyum2cpzuQZca80Xv6uusq1byJ9447xU8+PDHwhLuySok9MXzHO+9clzqW5iU8UtZ+vN0bdDz7WQA9F+S6vHPJEz2YPj+94KGpPGgbSD0E3wU9iS9ePOSuS7zusAo9BjcfvVKnKzoUdVO5ToO7PHva2zyojmu9zMvHOmH8rbvwlGY8yha/u/9dpjxWuaO9ySQRvWVmv7xe0+e7lRX5OtXECr3T6mE75qn1Om3iyLxUDZe8WoCkvI5TzjzPl548zYWmPJ1irzw4VUC9FBjkvE0mTLxywJc8QkCxOredzLvMy0e9PXmwvKm8Bz1Jdhk8wIi9vBmwET1C40G7xQmdvArn0T0mWQc8ICybO+d6Ir1ldJE7KyCIvOxBI7w15lg8xaytPGVmv7pCnSC8oSkwvXvxqbvusAq8fbSEvRI0iLz/sRm8hx3mu/fKTr3IBMc8b93yuVLtzDsWh8u7HUn2PAPIN70FZnI7wkuYuvX+97sG2i+9XDUtvWWs4Dyo69q8923fPFzYvTznHTO9DZzavEtadTy3EQq9G/Hcuu2Cbr1nBHq8OgpJvFrdk7vNhSY9HtSBvFweXz1lT/G7DhAYPNafar1o1aY9HcuFvEjKDLvMKLc8csCXvFzYvbzWWcm7HmBEvMOxgzvHb4i6Fs1svMi+Jb2XJ/E8ILhdvKbZYryi4447tUUzPQotc7zwlGa8ifcOPApSkzzO6xG7lRV5vPA397z4Pow6aoqvvEaTdLxivwi9aDIWvd14Yzwb8Vy8IM8rPJibLr2hzMA7YIjwu/CrtLyJdX88R8EQvD+LqLz6UIS9DT/rvI5TTrycBUA7WQxnvHEUC709v9E8PAXzvIsJBzyojuu8k44MPZPULb0x2Ta9nsgavmNUxzo8KhM8wz3GuqsUIb2Y4c+7k44MvBPgFL0nNOe7sUGNu6HMwDxmwy47gvn1O15Hpbyopbk8jFgkPcKDZzyH7pK8BCUnPVzB77zYseI8bVaGO8Arzros+2e8cyaDPPnqGD2VLMe8OlDqu46Zb7sUGGS8JZasPK1V7Lwzjr+8uWkjPUZN0zzNP4U931IMPAH8YL3mzhU9mgqWO0tadTvjGQ2852PUugxkCzx4JVM9O8QnPUSvmLxsTQq9r2dkvShigzzmK4W8/7oVPTPrrjz/XSY91WebvH9pDTwX5Dq9/ox5vO7f3TxGTdM8vl/3vNt9OT1M5YC8txGKu3nfsbwcwgk9pDsovUta9Tvypt48SXYZvFKnK7sSeik9xfJOPYwSA7wibeY8kcI1Pfc1ED2fLgY7UThEPIeRI71HHgA9ACEBvTBl+bwz6668RN7rPOBbCL3+jPm8GYJ1vK34fLyOsL08hTkKO3vxKb1CnSC9z/SNu3pFnb3FrC281s0GvJMxnTw6Ckm8JVCLPEuIkbrpdcy8ZXSRPM7rEbt97NM7+vMUPZDQBz3OSAE7w+BWPQedijvusIq7RN5rvGK/CLyHHWa8ACGBvfcQ8DwuMoA7Kl0tPBHOHDzYVPO80e+3vE6Du7z1Fca6k9StvN+K27yeo/o8e6sIPZleCbuEMI48pN44PG3iSDxjDqa9LG+luSV/XjxK3AQ8A1T6vCByPL1HZCE96dI7vVLtTL1sTQq9QNHJPIfXxLy+MKS88Aiku5jhT71j91c9rQ9LPKFv0bumTSC9M0iePCeRVjvAzl68/kbYPUHMc7y7TX88mD4/vZwFQD09v1G8FUaAPa/EUzyihh+9pN44PNON8jwg/v68r8RTvPQjmLww5wg8OnWKvMrQHTwj4SM7/NdwPTL5gDvd7CA8fgOiOz0zjzsvgR08ziNhPHRe0jx2tus7oTeCuylGXz3pdUw9faayu7TR9TngRDo9pjZSvWpzYbwX5Do8docYvabwMDoeYMS8GfayPI4NrbzneiI9MTYmPb7qgjwu1RA94vnCOxzCCTxb5o+9lYm2PDib4bxkyAQ8Mdm2vDN3cTyvxFM8paETvYfukjuPxws8ziNhvMhhNrwYBIW7/10musWsLTxxBrk6kHMYPTMx0Lqj7Ao9LLVGvftZgD0zjj89kdmDOqZNoDxjDia6CBt7O1zYvbtjVMc8RAwIvWbDLr1CnSA7LrDwvHFMWrzf0Pw8zusRPUYVBD2EaF27GfYyPJ/RFj3RNVk882C9O8JLGD1TYQo96XVMPBpm4zuxnA89j6UevbGcjzzYpmS7bTdzvI12Oz3f7A89WZrqO0X94TwmkWi9vyMpO8Gs7ruBHoU8Rf46PTS+HzvpdZg7uWlOvPv56Twv1rq8LHj0vNBi6zpEdJw8MDMovOXSQrxeEA88jKNsu8KXm7yaz0o8wYAWPB/zjDyn+k+8cDmlvGoNirzhR0s8PF1Uu5bpF7p0TeK82zHcvIGm8Tw9i148c/HNvMZnojzHwza8g3qZPLBXgLzv/O68fxt6vROxAjzfp4C9o0InvBCXcrxv9BU9rj8iug4OrTz7nq48cx9Yvdh6DDxwOaW9C7E/vW4J6TrBgBY9wDsHvGj00rujQqc8Iqs1PWI6+LwAh5M7I6u1O//gdb3SkU49xQsOPbSCQrxBF6+8GQwBvb0h97qftta7+8w4vGMNRzy0Ji47B8ozu6pvGz07vYm8LdVhvNhjB73y/iA9hQS4vNQbbTx+G3q613mzvdFjRL0jBvG7ihnOvBtnPL19fAg8egiWvMM3Zr1bhRc8Yt+8PC2n1zw3SD48ldISPQuxvzycLLi8CCXvPOhdOr3T7WI9nrV9PBlmYzw0vp+8nrV9O/u2jDy2bJY80b7/PH7tb7ypV728ufcNvUJEYDwZCk89pZ47PHPEHD3/VzA9nVlpPcM35rzGZ6I8O9SOu4J5wLz2QGg8vvUevXfYWT2rD2Y8tCeHuRQjQ70Bnhg7tBCCvVMqGbzevNO8ZA6gPH6qEj1SKGe9fpMNPeJ11TuOYA87hgWRvA5p6DwXCfa8HJVGPbCbNr0blO07Mo+8vE7L+TxBAQM9WW05PeW8lrzN13M8ztklvCJ9qzszYgs9BvdkvVLOBL3ouc460ZFOvLuXWLvC2vi8BslaPDxeLTxUhPs7xAo1PRA9EL3r6Qq9hKgjO9OqBbv7y188GguovCMG8Txylbk8NeypPc9iazz4KxU9X4LPvLEk/LuSGZG8Nhq0uZvQo7zJHnI8J2Q3PCM0+7zl0kK9zaubvMxmDD0mY167HsUCvfC5ET2Zz8o83nidPOxD7bwjlQk9/SmmvLEk/Dypsvi8rBC/PGCEgTzQNpO8rOK0PPa3ojq/fuS8+5+HvBVSprx/Sl06b/SVvfC5ET3ZA9K7/1gJPAfikTx+qpK8LDUXPWCDqDu+3hm9NRlbO2EMbr3/hTo5ms9KPNZK0LzhRnI7S7gVPSAhl703SD677nLQPAQ/vDzyLKu7NnXvvEWiJj1Pnsg77nLQvMM35jvLTdW7LXqmPO+LBz3vdII8zwbXuxqU7Tywmza91O3iOm03czxn83m8U4VUPTwZHr1G0Yk7rLUDvQBwDrsCENk85P/zu0vlRr0Em1A8CRCcPbGFCj0+ueg85I6MvN/rtrwAtMS8FCNDPCxLwzyky+w83ByJPCF8UrpTKcC8g3oZvbBuBbylcYq7K3nNPDnTtbzAOwe8Jjatu27Gi7de4gS9R+gOPUWiJry+ItC5dnvsPRkMATy1gek8zwZXPNdLKbzcu3q8K6b+PFv317q1r/O85gEmvXF/DTzC3Cq8u4KFPBPfjLxYEMw9sZyPOi3V4bwBENk7lxeivM8HML5MQdu8+p3VvGWX5TrsRMY7YIOoO6ChA732QOi8E/U4veUuVzv9Kaa88Sp5vZqimTp8ZKq8dTiPPCOVibys4Vs7MDLPPGyAoztNFCq9OHchOpS5W73k/3M9csJquwCHkzwZCs88wa3HPO1zqTzN2My8SFpPvWP3Gr2TXqA7GzoLOoYyQj1iyZA8vfWePHZ77LwCPmO9LEvDO5cXIrx2IYo9J5HoPJz+Lb2WAB086Ywdvc6rm7sVUU09HvHaPJDTKL2YRay8xmZJvMkgJLyRXO67vfTFPKu0Kr0XmI46wDuHPP5BhD1+7ki8rA/mvFa0Nz0t1eG8bzklu7tqJ7zrFry71BttvGyYgTsMm5M8Dzw3PMLcKr37ni49DvgAvT0woztfJxQ7ByVvvC/XkzxNFCq9PBmevDDuGLu0EAK+V7UQPUWiJrvAO4c8NkflvP6Furx7kVs8cVGDPIYFEbxOy/k8tT6MPsKuoDwf3Ae8FoCwvHti+LyGSqA8bzhMPZnOcTwexKk8PAIZuxGCH7xzrRc9cZU5vCQHyjw76xO943YuPe1xd7waZ7w85gGmPS3V4bz6nwe8bjdzve1Fn7yLGic9nkSWvTxeLb1mxki8tt39PPhvS7yysxQ9+G9LvB7xWrwnTgs9yMO2vFz4sLlpUcA8TRQqvYnVl7y5O8Q8xPQIvPa3ory6lv+8r5s2umfHobtK5cY8Dzy3usQLDrz9VX68jTKFvC7ADrynzZ67TkK0vDZ1b7u43y+7uSUYvCPY5jvcjsm88VlcPKHlOTwq7648HcPQuu5yULzO2aW8UfpcPdh5s7vNq5u8trElPO+Lh7znL7A8wq4gPGbF7zyR1IE9X4JPPDou8Tv0iZg8SnOGPMF/PT3U7eI7r8jnPGfHobuWRFO9QkRgvQcmSL32QOi8iacNPNZMgjyjQic8jqRFPaJBTjw7vQm8IAoSvYXXhjyV6D6873QCPfueLrzLTVW85aWROxqU7bzFIhO8Kx4SOkMvDTwkB8q5djgPPd/sjzqt4w096eb/vMAkAr0nTou8DmnousQik7yCY5S9uTvEPGjHoTpFK2y8Pow3PZSMqjzE3YO8PkgBPZn8e7r5WR89JPEdvUoSeDxp9Ss9lRZJvIYywrwrpv68vMa7PLHJQLzLe9+8ohNEPSFPIT0CENm8HsQpvUEW1jsyNIE9ySCkvE9aEj3toNo8Dg6tO5nPyjyxnI+93o+ivF+Cz7xj4JW9TiyIPOT/czzKICQ9ZDyqvIXXBr1Fz9e7vPPsPErlxjxyfw09WD5WvZTnZbvhddW8SBaZuxIi6ryMGwC9LpKEvGCxsrx8v2W9LXomvWVrDT1R+tw88PxuPUf/Ez34/Qo9/7LrPH6TDb1HWs+8YbBZvTcyEr0H4pE82zFcPBCYyzxayHS9Dzw3vD+6QbwRxfw6h0ogPKhXvTv2QGi8uDrrO5ECDDustYM8wGkRvM19EbxZbTk9DyYLvQSb0DwDEgs+Ftvruzbtgrzpi8Q7UijnuuN2rjwRmSQ9Qy8NPd6Por2lcQq99hM3PWEM7jysPfA8K3nNPCKrtbwexKm8ibzgOpu5njyd/4a8gUu2vMyUlrxT/A69k4wqu7QQAr0aONm85S1+u56JpTrwuRG578+9vOUuV7u1VZG75KQ4PFIoZ73YeTM846NfPX7t7zxCcmq8bdy3vOAY6DoaOgu3zjThvDPq9zoaZmO9hkqgPMnEDz2iFJ08C1aEPcHa+DuWRNO8fx0svCsHjTyHYEy8XVPsPHeqz7yXL4A8P3YLvUrlxjxKoRA9UylAPcnblLxnxyE8ag2KPAMRMr2MR1i8ohSdu7QmrjwqHOA8V7WQvHxkKjwok5q8mc7xPGpQ5zigEus860NtvSKqXL1t3Le8ixonu4B45zrT7WK9b/SVOfvLX7yrtCq6WptDvTvUjrsRxfw74QMVPauGoLwM4CI80b5/vaRDADrkAM07ZDyqPDQZWz1MQVs7cpYSPFa0tzw9XdQ8xsLdOu1zKbxpIzY95aWROQfKs7zgdHw9AxEyPDwCGTw+uei8hDFpPTUEiLwYCXa8kQEzOxjdHTwn7Xy9LHj0vFOE+7zEC4677ACQPGU9A73Nq5s83o8ivCOsjrtDc0O9ZDtRPEbRCbz4bnK8wFEzvJ+JJT0q8Ie9AZ6YO5W6tLZThdQ7V+LBvHLDQ73143o7FVFNvKTL7DwdxYI8qPyBvMryGb1ggyg8C97wvMkecrurtCq9cDmlvPlCGj14q6i7d32ePGl+8btDRhI9IU8hvZdyXbs2dW+9OKWrPeAYaLylnrs7e2NRPMLcKr3Bf728mv1UvC8ERTxHFhm88dCWu5qhwLwifgS9+Z1Vu7Sv87tDXRe92r+bOlg+1jyr4du8yPFAPIGmcTy+IlA9c8ScO19UxbxLuBW8MDOoPFfiwbydWsK8HJXGvOFHS732El49y3y4vGyuLTyUujS9MNcTPO/8bjy33ta8rcyIO2kiXTzoMAm8tT4MvY+lHrx/7yG85dJCvFWz3rz7+Wm9AIeTPL2wD70j2b88MDOovFYPcz3tRR+949FpvOl1GL6uERi8laSIPPvLX7zSZB29AhGyuo+OGbv0iRi9rD1wvCodOTz7ni68PkiBPBaAMD0FnCm8LHlNvA0M+zw8GR67FX9XvGCDKD36nVW8MGDZPP5XsDrKTdU8kQGzvMjxQDzZvxs9YIMovSdkNz0As2u7dE3ivBpm4zx/HNO7cWevPAuxPz09MCM96F26PLqXWDydFoy9oOTgPKChgzvlLf46xjkYPPOH5jtSKcC7mUYFPQa0hz0GtAe9P40QvfDPPb0fTki76Yyduwj4vTyGX/O6IX2rPI/TqLxtmIE8T1qSvFz2/rxc99e7SFuou4Ac07wgCpI8qCoMvTJLBrzhRnK8DIQOPRPIh7y6ac48nVrCPNKRzryPpR68dqpPPXPwdD2BSza8bgubPOOj3zzO2Ew97ETGu7BuhTuMGwC93AWEPIxIMb1p9Su9tt39PIUEOD3/4HU8yK0KveUuVztylTm59bZJPExB27vscfe8ZsbIvGyAIzzV2A+9XfiwvJdy3TtG0LA81El3u9gC+Tvy/iA881q1u+EDlTzRvn87JAdKu18nlDwUI0M9v37kPMnEDz0wMfY6GN0dPB97+bx5rAG9IAoSPKXMRbuHjtY88P3HvDoA5zvQNbq80+67vGQ70bwe8Vo6XPfXu/fPgLy7mDG8iGElPXuRWzwblUa8EGuaPL30xTpYbOA8vzuHvdxgP7wgTsg79uTTPMtOLrxam0O9LdXhPCrZAr3BrG69w/QIvfO1cLxiDce8mXQPvfcS3jx+wD69QRcvPaX5djy4yYO8rOHbu6hBETzT7rs8jXa7vPqIgj2x98q8MmGyPMMJ3LwalG08+svfvOcvMD3N2Mw8JjYtvdEfDjz9Vtc8Src8vJS5W7z95JY7FmqEO8LbUbwBnhi8KweNPBPIBz3cMrU7pbaZvH/voTwNDVS8QBbWPGkjNjwM30k90AiJu3k07jw2GrQ9tt5WPaw9cLteEA88LdXhPB7yM70T9bi8rOMNvNrWoLzpi0Q8pp8UvcPcKjo5d6G8NL1GPTjSXDpkDiA8nBYMPCaRaLxuCkI8J8BLvUN0HDzHw7a7ihnOO+Uu17xT/I683Y5JvKu1A7yeiaW81e+UPErkbbwAcI68R1pPvIaN/TvdvFM8fXwIvRGYSz24aPU8iRh1PQj5lr1d+DA9J7/yPAWcqbtnmZe8fx2svENdl7sB4k68+nAkPTxeLb1rUhm96IrrO2BVHjsd8rO8diGKPQGeGD2h5bk7hTFpvHuR27gDETI9jneUOyU1VDy6l9g8OwHAPJldCrrZAWA8Fy+gPMOxX70pqV084hCLvMtoXLsUVAg8f/pGPbcl7TwA6+M8Nf00vfrQwbzL+CW8VnRoPF67Lj3fbY48PUqduXYX8zw94Ig8CMiVO4GXIb3X9M474KtLunanvDytYqy6KuH4O9e8M71Sk668cMU1O8EJDj25Jjq8GNdxvddYwTvS5nC72fWbvCZkMTqi1rm8pRvmvD7szLxn4uE8pEEbPQiWnLqB+xM9j/gJu4RAwDzdcuO7aQ+GvDzr/7wIXgG7W+a4vQLmDr39QcW5DNtIPXwl0TxUYgK8mvPlO6JyR73oVoS8pA8ivfRSrTvqxwe80HAYPUyxJ7yEpLK7x/dYvN/XojyBlyG6qlUbvOWBDjtJQCS9CzkZPexvWT1pqxM7ALPIvJCUFzzirJi7rm7wu4hNUbzKjpE7pKsvOr80mLyUEd88lT6DvKKq4rt8+Xm8kdh2PSNXoLsRhbS8THmMOrA3Ir1k1dA6t+3RvHjagrw+tDG9EpH4u2P7hTvZi4e9y2hcvEejST1adgI9TLGnO3Om7zzDTe08qvEovf3dUj2q8ai8VnToPKGeHj3oKi09sQtLvJjnoTxEztO8V6GMuy+3uzynHDM7CDIqvC7jkry2UcQ7WhKQPCkN0LtGARq8ztnfPBoElj2cLM68ZDnDPK3GHr0mAD+8+gjdPJ8537wJBlM9x08HOwudC7yW5lS9HUnCu1h1tbzHHY48UMp8Of3dUrxaHtQ8an88vdDUCrsxho88AHstPKE0irzXvDM93XLjvAJc5zuBz7y7/d3SPJWoF7wmAD87LkcFvFehjD3cmJg8VGICvHxd7Dy1RQC9YZAkPLz7L7307rq86TbxPIQ6nrtRvwW9myCKPGQBqDzfbQ49VhD2O1mBeTxsHBe9UluTujOY9TphkCS88UWcPMNN7bpVBDI9FQL8PA+wvj3JL3Q8JgC/PH7Cq7z06Bg5GjwxvNqdbbwncHW8MoyxO5AwpTxSy8m7L1NJvfX6/roOeKM8CCwIvKd6g73CpRu9lT6DPGrjLj0vGy69MvCjPHQ3Bj3FTrq73AItvPF3FbzWGoS7vPsvO5kfvTskY2Q7gZchOh4d67yMk8o7zc0bPeDjZr2xC8s8s6IDvdF2uryZHz28Pa4Pvek28TsffAi8fIlDvcvMTjv3Xz69F8stOwnONz0mAL88GDtkvE9aRj33X769MoyxPPkukj3OocQ8A8DZvOgqLTyq8Sg9KQ1QvKSljbyfndE85bMHPS7jkjwgHjg9JJt/PIqAFzsj8608MsTMvKKqYr3YyPe7O7NkvObxRD0oAYy5Hrl4uk5OAr0mAL+8DtwVPV8r5byWdp68YFiJPIFfBj00xZm70HCYOJm7yryNv6G8VQSyvPqYpjzi5LM5JpxMO0DtGbuRoNs8Zal5O0CDBb2kcxQ9OqcgvDLwIzyEnhC91rYRvJU+Az0F8585UpOuvB2tND24tgO9OXp8uuJIpj3xGcU7I/OtvGeqRjxDkJY8pKsvu9qd7Ty0fE68EU0ZvX9q/bw1YSc85ingvPJR4Dx0N4a98eGpPeDjZjqKhjm9Xo/XPMLdNrtGay6+7tSYu4uSfbyhOqy7HuXPPPHhKbxhwp27QV3QvMwEar2Nv6G8r289vQmiYL3yiXs8ioCXO/NMC7s+tDG9DkCIO6SljTyXguI8jVsvvbR8zrvgf3S90uZwPU1Z+Twjj7u83ar+Opm7SrrxRRw92b2AvAzbSL1Ga66839civchbS7tnRlQ9H+YcPVUEMjyT2cM71/ROvezTyzzm8UQ8THmMPZStbD28kRu9h3movOLeEb10oRq8TYVQPIcVtju9z9i8IB64vDAncjyBz7w6DD87va5u8Dvl5QC9z3VtPPS2Hz0P6Fk9gZehPNboirzgq8u8PRgkvTo9jLzGIuO8DtwVPffDsLw4plM7uYQKO7R8zjyZu0q9w+l6u0P6qrxhZM27GjwxPBusZ7wbEFo8hAglvVit0LtRWxM92gHgvaUb5rsAe607+0D4O7ZRxDsoM4W7ysAKu96qfjyNIxS9h92aPEP0iD4U9je6jmdzvHz5ebz1XvE8Vf4PPEP0CD1J1o88cwpiPKRBG70IXgG8Od7uOath3zt+wqs8YZAkPGzqHT3II7C61LvmPFFbkz0PhGe9JmQxPcqOEbs3mg89jfEaPZgZG70gGBa99V7xuewL5zwmnMy8CaLgOLyXvbzYyHc8zxF7PSb6nLwsqiq7lBFfPTfMiDsbdEy7rf45PdAGBD33JyM8GANJvEHBwjxmCJe8mvNlu0QyRrxEztO7DhSxvH8yYjxbSiu71iAmPcLdNjxjyQw7PlC/vLyXvbx2Q8q7UvegvBsQ2jxb5jg8okbwPBEboDuwMQC7AkoBuwT49DxEztO8NFuFvKq5jTwsDh29dt9Xuy9TyTyiRnA8AhgIPMrACr3aZVI8RKJ8PBo2j7zIIzA9TVn5OwudC70K2ns7EbGLvLtZgL0DXGe9wNzpPCMryTonOFo92ZGpO0+GnTwmLBa82YsHvENenbx42oI7iOnevNBwmDxjyYw8F8ULvMFtAD2tYiy91Vf0vJ6RjTxPHAm9vJGbvFL3oDsCSoE8UvegPBg75LtJQKS8s6glPRcvIL2XHvA8ArSVvHDFtTzzfgS7LuOSu/F9Nz0yjLE7ldoQvT6IWj1EzlO8zqFEPPpsT70Loy09IIIqPJPZwzzoVgS9F8stvezTyzy7J4e8RgEavN9zMD2kpY08/hXuvDJgWr1/av28wHh3PS9TybzOoUQ80D6fPKv97DsWyy08oTosvbOoJTxGMxO9y8xOvXXTkzvgq0u7uvpiPFoeVL2ToSi9AhiIPB4daz1sgAk9kmmNPL9mEb0La5K8SrBavdPhG70RhTS9VQSyvHnsaLy+CMG8KdU0vaqHlLylf9g6c27UPMIVUj0YA0k9Z6pGPeKsmDwFwSa9ddOTvM3/lL34z3S9R3fyOoqAFzw62Zk8NWGnvRKR+LxhZE28rfgXvaodAD1eH6E7k9nDO0xHEzzPEfs82gHgPLnunjx4Ep68MYYPPUpM6Lz/EBk9QIMFPmq317t77bW8EiFCPcEJDjwM28i6yS90PbFDZj3zGpK9+ghdvUCJp7yKTh49NTXQPP3dUjy2Ewe9eRhAvME7BzwUWqo8la45PKGeHrttKFu7Er1PvTsXV7tg9Ja84ONmvU8cibynFpE8G3RMvFG/Bb1g9BY8hGwXve5ETzy2UcS87kTPu8frFD2/NJg8tyXtvLNEM7142oK7O0Ouu1h1Nb2zPhE9+gjdu/1BRbzIvz09yIeiPAheAT3KjpG7kdj2vKE6LDyCo+W8l+chPC8brrwdEae8rtJiPEnWj7y8M0u76ZpjPW3EaLr7QHi7quuGvKeyHrz6NDS8WkorvHOmb7wCSgE9K0CWPNwCrbyg1Wy8kpsGvf90Cz1wNew8oZ4ePSbIo704CsY75bmpvGGQJDwdScK83qp+vXDFNTwvGy49MVSWvNeQXL09rg885bkpu2Q5wzxJch07D0zMvO1qBL1b5ji9sz4RPTGGj7xPWsY8RM7TvPNSLTqiRvA7POv/PAAXu7kCgpy8068iPU8iq7x77bW8SaSWPcv4pTufndE8T/ZTPClxwjzf16K8CDKqvC5HBbyckEC5yZPmu/DbB7wC5g69LOLFPGwcFzte88m880wLO1LLSTyKTh6747hcvAaVTz38NQE9+WCLPJbmVLojiZk9thMHvSxGOLwvGy66WUnePCTH1rwttu68Q/oqPTgKRryFsHa7qIzpPB0RJ73UH1m9LEY4PNa2Eb0aPDE8RGrhvA4UMb1zCuI8MmDavPdfPrzNMQ48W0orPSMrSb0sflM8abdXvXh2kD0FVxK8CaLgPLcl7Ty2Ewe9SXIdvahUTrsG+UE7SUAkPVitUL3pNnG8SUAkvVXMFrsffAg8Xlc8vAnOt7yIIXo8bLICvO6oQTzFTjo82YuHPHvttbsDJEy8eYh2vBqgozwq4fi81hqEPFUEsjsVAny9eFDbPC1SfDuTPba8Mowxvb8CH7uMk0o7RmUMvTuzZDyiDlW8Vtjaux+uAb1G2+S8h3koOvn8GL157Gg7Om8FvSrh+Lr5LpI8KXHCPJ8BxDv6mKY8rm5wvJtSA72bIAq+wkGpPDZt6zwDXOe8dnvlvFuunTzg42a9YPSWvLsnh7xXoQy8eRjAPPoIXTu0fE49OApGvDCLZLtzNjk9Q/oqvHjaAr11Cy89c6ZvO+B/9Dwkx1a8TYVQPY2/obzl5QC7vPsvPXsZjTyHsUM9NZnCu+8YeL06CxM9nMjbvJe6fbvWIKY9Bc1qPcv4JT3luSk8c9JGvUCDhbwCSgE933OwvNSDy7sOeKO8HdkLu0wVGj2zcIo8pA8ivQlqxbxmCBe92Mh3u+OAwbzy7W09ieSJPIGXIT0sftO8ioAXPfttnL3+Fe68zmmpPAujrTyngKW8DngjPOn+1bwFuwS9GmgIvMOx3zxVmh29b/GMPDqnID2z4MC8RAZvvC5HBT2HFTY9xerHvNGu1Tu24Q09AyRMvOsxnDv7pOq6zqHEvB1JwjyqmXq8rVyKvQmiYDwVLtM8dntlPJN10bwSIcI7aH7vvI1brzmQMCW8mVfYvIjpXrvFTrq8qCj3vPEZxTzBbQC7x4EAPDf+gTyWEiy7ni2bPKeynjwyKL87RaL8u1lJ3rzoJAs99O46PeMcTzyuNtU8ni2bO5rzZTwxhg+8ujL+vFpKKzxVoL+8gZehPDsXV7zQPp88pUe9O3jgpLzWthG9G0h1vbbhjbwsRri8irIQvUxHkz073zs8RGphvAt31rvLaFw7NTXQPCC6Rb11N4Y71iCmOpm7Sj39eWC8h+levbxfojzHTwe9W+AWvRmaAbx4UFs88on7OzvfO72uNtU8O0MuvWzqnT1Q9tM7DK/xOloSEDxb5ji8jfe8PAW7BL3DTe08N8yIvCbIozmrYV+8jL8hPIQIJb0ufyA9ebTNPOzTS71jl5O8u1kAvDqnILz1XvG87AvnO6cWkTzTryK8BSUZvLYZqTzDsV89SXg/PIjp3rwjj7u5zj3SOzjSKj2KspA7vF+iPa3+Obz2vY48kDAlPQLmDjxz0sa8oTqsPKPifTwtGmG8BVeSvJBoQDwjiRm95U8VvaSlDbz/EJm74kIEvYSksjw73zs6wHh3O0x5DD2F3E08jJPKPBjXcb0JBlM8KQ3QvBHppjzZvYC8GjyxvDTFGTpknbW891++u3vnk7pk1dC8aUchvWNlGrtoGv08p4ClPB2nEr0bENq7CMiVPCLtCz3iep+81EswPeMcTz0VAny8gqNlO6eApbyl40q80UrjvALmjrzfCRy94H90PFh1tTsq4Xg7AYdxOzLETD1VaCQ8qCj3PJh9jb0BI3+7YWRNPcJ5xLwsflM9MsRMPN3W1TyBX4a6OXpPPAiFNz3+S/68kIP9O87DprwIRhw8gg2UPNiPnz3/o7U8nvigPKbZorzlfuY6RgBpPKj3F7zu4bE8bpZIvMG7w7wLk3y74TEGPPsTpzwewkC9aZ2MPL0rtbsUdH66kYP9PO6iFjzlfua87SDNvPbXPDxyk5e8RetfPAfZW73WN2i8chHOvCd5sDyB+Ao85esmvVo4Gb3pEgi9waa6PH/FDD2aOm28jLRTPF9PSry+9QU8/gzjvPbsRb30OxG9MG+7PAShhL0no8K8u7kbvJBudD23U588d88BPRMbgbyQsaK9kLGiPI0hlL1PTqu8I9SYvCYheT3cCqW8WC8tPFyAoLwj/qo8kBrQumdqDrwHWyW8lUExvWgbQz2MDIs9NP9JvE3cEb0pQ4G8D8qNO1XSnDxP4eq8XxCvOe54BLyyrge7+yiwPFgFmzz1K+E7FMw1u70Bo7t+gl657V9ovOXrpjxaIxC9U4qVO7mGHbzS+328CmQRvelmrLuIeOm8ZWEivZhkfzwNAL27WG7IvHuztDwrCT89GcVxO/v+Hb2IeOk8e8i9u+KOFj03ueo8lVa6PFyVqbz+TxE9PYwnPOlRozvoulA8lWtDvdqDgruZPgC9uYYdvE7M4TxfT0q3Ut45PHuzND0hpvM813qWvCty7LmRxiu9vJRiPMkzmDwiKD29giIdPdqYi7xPos+8JiF5vXLSMjwYloa7bOrsO4f6srzxXLc70mi+PAhwLr12IyY8RoIyPXY4Lz33rSq97FqPPJbtjL2LxAM8oRYWvas/nzzf7te7WC8tPf86CLx7X5A9nUzFPPbXvLxuAwk88vOJvCQcoDw7Gg69IhO0vNfjQzv/Ogi9PXcevXF6+zyVqt48+qbmvNdM8TuNdTg8MK5WvY1LJr3S0es8P4CKvHksEr3cx3Y8A0nNPG1sNj3SvOI9/uLQPEonyjwmzdQ7AzTEu6+6pDz6u288/BwTPB6YLrvfA+E8exxivMWf9rvnyoC7CmQRu3aMU7xaIxC9qz8fPK5Iizyo9xc9J445vTsaDj1aI5A9JfINvWQzfbqVVrq85X5mO1y/Ozkj/io8iE5XO3+scLtXRDa9DH7zvLmGnTxLfwG9LxuXuTwK3rw0gRO9926PvXBgGb2/9YU9xZ92vB4vgb1M3BG8u4+JvJFE4jyhFpY8XGsXvOTBFDy04QU9JfKNvR6DJTyEKwk9BB87PDmPWDowMKA7cXp7PVMy3jyzic662sIdPSP+qjwMaWo69FAaPaABDT1phHC8e91GvV6JjDwDSU29DeuzPAwVRrzG9y09QEbIPNci37ydi2C8IpHqvHHnOz2nGD69itkMO3ueKz2vTWQ9vwqPvEp77jsZxXG8giKdvHah3Lw8OIM8ZfRhOlJH5zwvw988NBTTO1vpTbzJxle9SuiuOlN1DD1+bVW79cKzu89vAr0Cgw88TmO0PNteSb1TtCc8W9REPC/Y6DsaHak9wbtDPQwVRjyCPP+8GMAYPTCERLxh0ZO7Xp4VvaEb77zKHg+8+9QLu3PbHjzCkTG8HDsevWMZmz0pbZM8M9W3vVJH5zmEaiS9SuguvrQ1Krrw6p28wQ/ovEaCsjtj74i77jXWvCzKI70HB4G9ykihvMU2ybyQsSK9i59KuxrJhLx73UY9qhH6vCO/j7zGuBI9PoCKPVW9E73Nex+9StOlvMSanT03nwi8wpExu5rmyDxPt9g7Oy8XPRnF8bzSvGK9/uLQvPt81Ly/Hxi8K4d1Pf4h7DzGS9I78tptPCfiXb16RvQ895ghO1JxeT1pnYw9gxLtOxTMtbx2jFO9WxPgu52gaT24RwI8960qPfbsRT2VQTE9tLNgvMDQTL1TYIM7tIlOvV8QLzxpiAM9ZN9YPafZojtWkwG8Qhw2PHIRzrxdiQw9CmQRvW2WyLt7yD28xuIkOJrmSD3pUaM8JiF5vQ3BIbtb6U272KQoO19PyjyqVCi9cjvgPPmhjb3gRo+89cIzO6qozL2HjXI8nvigPNYdhjwVtyy8YDrBux4vATvyhsm8UnH5vPKGyTwvAns+6ScRPfKGSTxg0RO9VL2TPH2SDjxxUOk8dnfKPOBGD7tnag69ltgDvTCZTbwcEQw9+9D4u6evEDtPt9g89pihOq5yHT2MDIs9T04rvSeOOT0G6Qu90aIAPbgu5jxPeL286LpQvUn9t7sEHzs8mAsCvVxBBb3CkbG8CnkaPEYZBT1U0py9vFXHvDsFhTyiMHi8f6xwvJO6Dj1yens75VRUvBwmlbxM3BE8rnKdPCzKo7z0UJo8JwzwOu72Or1Pos88DIIGPG6rUbwvbzs8CIW3u2idDLyEFgC9poFrvKaB67wCnXE85JNvPHHnO7wDCrI8M1NuO1sT4Dzoz1m7mpIkvb0Bo7s7Go640ymjvWV2Kz1k9GE902g+PbmwLz173Ua9bRR/PZpTCT1KPNM6uNrBPLukEjx2jNO8drZlPKpUKL2R8L28GbBovGXKzzyEqT88zkFdPc8s1Lz+NvW7fX2FPI1gr7x6iSK802g+PMWfdruW2IO7I/6qvDyhMDv+ZBq8dnfKvGzVY7xGgrK77Yl6vWgGOryR2zQ88cVkPMb3LT3pkL67sPk/PLmGHTwdQHe8Wg6HPNY36LwEiGg8TszhvOYJHDyi8Vw9UnH5PBqGVr0rcmw8dWLBvKOdOD0ayYS95X7mPGT0YTweg6W8oAENvL8KD71yaQU9mAsCvRDP5jsl8g09Kx5IPL0rNb3grzy91jfoPHTbHj28lOK7ie6VPWUe9DwpQwE7r8+tvHSxjL1s+hw8kFnrvEdMgzsU9sc6ZWEivcWK7bt6B1m8NOrAvCdPHjzR4Rs995ghPf5L/jymbGK9mtG/vKOdOL28woe8g77IvB6DJbwv2Oi7osfKvP86CDtRLYU5SqmTOwsqzzxfedw711AEPcldKj2W7Yw8PXcevWAQrzwNwSG94UYPvadXWTwHr0k8yh6PPFWTgb04UD28aAY6unU4rzyYZP888nFAPBHogjyw5LY8e3QZPfq77zzgcCE8mrw2vVNc8DxYBZu8GvOWu4vEAz6kZ4m8aPGwvDNsij1JUdy8d+SKPNvcfz29QD494MTFvGQe9Luddte8elv9PId46bvvqwI80bcJvVNgAz2h8dw8YCU4vO63nzxAxH68zHufu3f5E705OzS7mfvRuyv0Nb1bE+C8DQA9PQ/KjTsD4B87zDyEPSdkJ71lN5A8J/fmO94TkTy8lGK7YOacPELyo7uEqb+8ybFOPDJOlTvNe5+98jKluxHP5rztSt87Oi+XPDnSBjsrCT89SjzTuzn8mLwstZq8xo6APJrmyDztNVY9ZTcQvOCFqjyhG++8vx8YPLc+ljw9obA8z2tvPECv9TsYq4888d4AvJGD/bztSt+78vOJPKevkDudi2C8zVENvXHnu7yr52c6CDGTPP/32Tvijha938RFvF/7pTk9d547gxJtvM7tODrysNu80j4svDSrJbu/9QW9hJS2vCMTNDyUv2e6EKVUvNqYizsqnH68YBAvvWUJazzVHQY8vVVHutPmdLz5jAQ9R3aVPF+49zxJEsE8pHwSvZO6jrw0Kdy8PbY5vPsTpzxxvam88cVkPP0ck7ohZ1g8bWw2vE85ojsUNeM6K4d1PO108bu/Co+8D7WEve54hLwZ3g296RIIvZBZazyNSya8hEASPJVWurvueAS6BHNfPKNJlDwrSNq69lkGPThlxrsFEx484NlOvLM1qjtulki8+YwEvSd5sDxN3JE82sKdvM1mFjw9jCe9wnwovfIypbwP9J+8frADvMmcRby8vnS7+nzUumDmnLwnEIO7q1SouhQgWj3yXDe91mF6uBXhvr24R4I9unqAvCpIWj1HdpU8elv9vIT947t/xYw8z+04O0Cv9Tx1y+68boG/uvnLHzwEy5Y8bNAKO1wTYLy5hp07vH9ZPawABD0qM9E7N7nqPD0f57x/sAM7SXtuO7c+FrkIMZM8XEEFvU85Ij3ijhY85cEUvQgD7jwz1bc8rkgLvYeNcr2jcyY8ZHarvB7XyTrtdPG8xZ92vJFyh7wpQ4G9SuguvTNTbjwDSc08Hi+BOxlxTbuQnJk8tPYOu50NKjxO4Wq9QZrsvLuPibz3mCG8cWkFvuNkhDz98oA8diMmvMZg27lJZuU6xeIkvRW3LLvX48O8zXufvLThhbvpZiy8WyhpOmmyFb1cQYW86WasPPIyJb1uGJK8kYN9Peilx7zbXsk8nbmFu03xGjz70Hi8MBuXO4QWAD3PVmY8Gh0pvJbtDDzfA2G8z+04PfXCM7rPLNS80ykjPRlcRDxJUVw9EZDLPFkOB70mDHC7r6WbPIIiHT1W7H48BB+7vKR8kju87Jk8rXIdPBW3LL3grzy9sOQ2vR0B3DwNgoa8vWrQPE76hj2rk0O79ivhvD3gyzxlizS9MK5WvM9BXbtuGBI912H6vEonyjwemC69I6oGvYeN8rs99dQ8XEGFvUTmBj3fLXM8QMT+O5pP9rx2Tbg8YHncPGmdDD2jnbg8lIBMPBwmFT09H+c8YI5lux0B3Lzcc9I8lFY6vW6BP73lfma8VoPRPN4omrr66RS8cibXPAuTfDy0SrO7YOacPCQcoLww7XG8OXpPOzMpXL3ijhY9kLEivaOIr7vgWxi7U2CDvC9vOzxxvak8cSbXOwTgn7z11zy7CK9JPXK9KT3Jxtc8DYKGPRodqTsDNMQ6diMmvMpIIb2Evkg5z2+CvDBFqTx78s87zixUvCpI2jz3g5g8+lJCvE3xmrzmCRy8kS/ZvCa4y7vlrIs80+qHOjx3Hrx/WEw8qeIOPQyXjzxs/3W9p+4rO60zgjyIJMU8dTivvMozmL2IkQU9wPpevGW1Rr135Ao9exxivPFHLrxTHdW7GzsePFjwEb00FNM8ue9Ku8jWh7tE+w+9bOWTvIsI+DsLP1i83+5XPR3CwLyezg48wpExvftny7q5XIu8EHvCPFs9cjw5es+8VsJsvB3CwLwH2du8V63jO9xz0rxl39g74TGGuxASlTzBu8M8Tw8QPT9rATwR6AK97qKWO6LcU7w0Kdw8fpdnvSszUT3nyoC7yfDpPNxJQD0ZxfE8aIiDvBBRMDxds549MEWpvDQU07uw+b+75RW5vHFlcrxohHC6geOBvCMTNL0n92Y9CK9JPaaW9LobJpW7nnbXOpLPlzv6fFS9iOWpO+xfaL3tC8S7mry2vJFyB72N9wG9DNYqPL3XEDz1Flg8UgjMvPIyJb0E9Si9V5jaPEonyjzFNsm8/zoIvbQLGL03ueo7ns6OvbuPCT17XxA9bpZIvA3BIT2Dfy08kUTivA70H700lhw7kcYrOvetKjysAAS8AoOPu+VUVLxyqCA9N8maPFOfnjs5Jiu9iKL7PEUqez0iZ9g7ie4VPWjHHj2jssE8dWLBu+6Anbzy0xQ9NhW4vIIbhLyTNNy7Z85FO+vYGzwIB6A9XnLyOGWSDT2Dw4W8J2N5PLt6ADzM3XO7RrkTPW7dCTuuut68BDp8vEC+mju6HJo8hRAVvXFVejumYX+8qyDAPAe6kLxo0bk8BKPRvLh0GL1ZQam752P2O8msKjyxdiu9BfBgPOAsxbz1XNw73ylRPL65rLxJCZe8Z9+cvAXz1LvJvQE9LyiivIljjDwGPXC7tRO+OrWn9Lyst+q8cQvfvLf3dzxtNYi97oCdvAXw4LxyDlM93SZdvOxsUj09TOm7XCVjvcMMpLxY9Jm9EjPivALq+DqIY4w9wqBaO24F97wbI2w8CAcgPft5g7yQUKI8LyiivHdhSr2flhc9cL5PPVdMGLur1iS9XJGsu0NpkLsIYhI9aD0DvA8tejtGqDw9PGujPAiK/zzPXQg8+KxfvDJ4Jbz3Jgw9thYyPMEJsLzNSb08hqc/vftorLp8xRi8zN1zu75N47yH9E48OflxvK1wQ70nY/k7Td9tPAEMp7pEOX+8k373PF7euzzjQwS9MnilPOeFJDw2gQE9pDOqPLJ5Hz0+bhe9IsbmPN3cQbwqiw88DEnAPKAtwry5+uu7CgoUvdfQ8byyLwQ943zIO/TWCLs6sko9cXeoPFufD7y0EEo6IOKsvHEtjbxhmog8xz3tvGoeST3R5s+71jlHvDllu72Am+88wRqHvDArFj13YUq8NqnuOx1w+zy7R3u9n/EJPRjT6DwPLfo8gej+vJiKRz1PmEa9yPbFPG4I6zuTfvc8XCVjPEEZDT2h46Y877xVPUIcgbtEOf+8I0MHu+njijxS6Mk8pZGQvDy1vrw0EkQ9zpbMvI9QIr0P4948miHyPA3g6rwmzM48SGEVvFiI0LzbI2m9yL0BPA5MtLys2Ri9NxisPO+8VTzZPy89qWfnPY3e8Dx3cqE80/qavPMPTb3pHE87rtwMvVaF3Dyf4LK8PQJOPWPI3bulNp68+a/TvOvVJzxIvIe58lZ0vWtrWDzEo068r3O3PGvXIbwnhac8W0SdPI2U1bymYX+7100SvJiHUzvvvNU7JxneOyTJWrlOAZy7EVKcvNmJSr2Ac4I8IzIwvedj9juGE4m8xhIMvW4nJb2yLwS9ZBJ5PenSs7wOApm9+HObO0VbLTrgLMU87yifPFkf+7oTVRC8LblkPXn7aL06/GU8BVwqPTgpAz0VOcq8f3COu4n3Qj02Ykc88gzZOyrVKj3K2v86CgqUvLtKbz0tb8k8yayqO/cmDL3aQqO8tqpovLBUfTwqaeG8YPKGPTNZ67r7sse8kZ2xvOvVp7z+Aks9W/qBvO+DEbpM3Pk7jwOTPSyOA7ziL7k87DMOvKE+Gb3GXKe8cL7PPGTqi7y/F5M8zd3zPIz9qjx3Fy+9Mw9QvQdfnrx8aiY7Sa6kPNqdFb2Yh1O87W/GvBYAhjzO4Ge9stQRPUPsbzwMScA82UKjPZAu9Dxx0ho9mfaQPOMQ/zy6sNC6azKUPNCZwLwmzE69hl2kvDMPULwwv0w839+1PG8I67y8AFQ9h/TOPMTtab0QTyi7Rqi8vPYVNb76eQM9O7U+PCDirLuG8do7x1+buyrmAb1qL6C8GIlNvQSmRb0dcHu7cVX6vJmbnjuGO3a7pcpUPV4o17ynORK8/gU/PGQ0pz1vCOu8aNE5vbV/Bzx3cqE9brvbvBrWXDzJYg89mD04PL0igjwXhtm8kC70vNc8O7tk6gu8hvHau7UkFT0PLfo8HaMAPAQ6fDuZQKy9m56SPJnUYruZHn498tMUPcEJsLx6eIm80C33vGXL0bxExII90zPfPGvXITu6ZjU8NiaPOljS6zvg4qm8jVuRPGvXIb0tNoW6Q+xvPVyRLD0Hqbk8xrcZvY+XyTxr1yG9GozBPAhAZL00XN+8He2bvH8VnLuj6Q48klMWPCaTir1UoaI8m407OW4I6zvKCpE81jnHvAisLT3dJl29Rbafue+DkTsHFQO+K2zVPFIyZTyr1qQ8SYx2vD+7prwFEg+8BvPUvALCC73HXxs9Ea2OPsByhT3iL7m7NFxfvLf397s7HpS8engJPaXsAj3dJl27wVPLvNqMvrwxDFy8NKb6O24I67onz8I5jd5wu2Hko7z1fgo9hl0kPUz+J71Vgug8UjJlvcByBT1mYvw8o8fgu9FSGb2q5Ie80DDrPIVrB71eKFe8Ua+FvL65rLxYPjU9HUiOvW3aFbwSn6s77GzSO9qdlbwhQJO5Lgb0u7QhobxSVBO8abJ/PDV+DTza1tm7d6vlPCfPwrzmFue8nt2+vPis37vc2U29tX+HPBsj7LxMtIy87iWrvN2SprwxwsC8Q6JUOz0CTrvRnDS8IXlXPFhPjDx2JRI9f8uAu35O4Ls7tT48WdXfPNSinL2Voxk9bt0JPcMMJD0nGd48PbiyvD+7pj1qihI9F/KiPGSPmTpVpBY9arVzPGsylDy4rdy8SULbu5ohcrwxDFw8mVEDPASmRT02Yke8g2gTPFpBqTmkM6q8+KzfvK6Bmjz+yYa8P7umvGuNBj2mzUg8jJHhO5/gMr1g8ga9NhU4PYMNIb2fdGm6Rl6huzl2Erx3q2U94PMAvBP6nbz01og85BNzO/j5brzyLoe9xabCOukfQ7tS+SA8TEjDPCY4GD15HRc8UjJlPB0m4LxJ+D89kZ2xvBKfqzxM/qc8Fe8uvALCizxM/ie9dhS7PEn4v7x9yAw7zpbMPAuQZ7tpsn+9G4+1vRqMQT1I9Us9x/NRu6Tpjj1qHkk9K2xVvLhjQTt9yIy948bjuyofxryflhe9myRmvEJmHL0mgjM8tX+HvFvYU7sdkqk8atStPJ0n2jx0W2I9TQGcvckHnbwhm4W8qDwGvXxqJrzBCTC9+/zivGq1c7wJQ1i8fGqmvI1bET0gmBG8j5dJu6IwtjzUgG49ZYG2O1RXh7ztueE8UayRurXJIr0qiw89S0VPvNc8u7zu24+9PEn1PKrkB7y/UFe8wZ3mPDmv1jv8xhI9+PluPQ3g6jxeSgU9+/xiPHcXL73sjoA9Mw/QumHC9bkoZu09LygiPACd6bwsM5E9UawRveAsxTsN4Oo8Mw9QPb65LL3NtQa86OCWvBGcNz1OXA48mD24OmfORbzaQqM8JOsIPDt5hrvyVvQ8ZcvRux3tG70Cwgu9kjHovHQinryqMRe9vbY4uxEw7jyKRFI86rN5vBtFmjy5sFC8GoxBPEmuJLqQBoc8RFstPF8rSzzRUhk8hKRLvW6727z1EsG6XytLvQIMp7yuBPq8m/mEPCu2cDuyV/E8BKNRPS68WLx/ywA7mtfWu/B1Ljx9bRo8bwhrPeY4lbwj6BQ9u3oAvSaCszzr1Sc9y5BkOyu28LzjEH+80316PBuPNbwCZxm8Aup4vKXK1DxnOo+6TEjDvFTrPb0Ft5y877xVu3B0NDzT+ho8ARoKvcm9Ab3hw++73ZKmPF3snryhPpk7/m6UvJXttDd3Ycq8FYPlu0WlSL3BU0s84+iRPHTHK7xVgui8cw5TvGUVbbxnG9U7VaSWPEURkjyJrae7HZKpPBvZULxRrwU9Dky0PDgpA73MVyA9KmnhvLcWsrxcb349/5l1vK00CzzsuWG8stQRPfYVNTsBCbM8IZsFuyMyMDzugB08LNgevXHBQ70PmcO8QhyBO0MOnrzpiBi91jlHu3JYbjwBCTO98sK9PA5MtDxr1yE86mlevK663jxAvpo87iUrPNmJSjzrMJo8XeyeuZaEX7yOAxM8F/KiO1LoyTuTfnc8ssM6vW1uTL1IvAe6HZIpvbwAVDyrIEC7ojC2vG24Zzwq5oG8B6m5PJiKx7sk64g9zf8hvZPqwLyc2kq9eh0XPXkaI7wxDNw8mE6POwepObx6sU073nPsO6WREDuCGwQ9sFR9u6UUcLzDZxY8e0j4PF4oV7pLDIu8B6k5vYr6tjysbc+8OXYSPFhPDDxWhdy7AQynOspD1Tm+A8i8zf+hu85MMbxIq7C86dKzvH4ERb0WTZU9c8S3OwiK/7x50Ae9FqWTO3lkvryE7ma8FgCGvIljDLxcJWO8+GJEvbaqaL0wv0w8g1c8PGtr2LtUVwe8qDwGPd1ICzwpPgC74D0cvRuPNb3uJau8BFk2vSu28L3Gt5k8q7T2OWoeSTxbRJ28fUtsPIxHRrxaIm+8aOKQvDl2Er10W2K7DpbPPPtorLxz1Q69QJxsvIIbBD0tb8m7Aur4vBGctzwbI2w5sg3WPDSmejxz1Y68vrmsvDhzHjxqaOQ8xabCPGUVbbxtghe8gej+vDcYrDwWAIa89l/QvBjT6DzyDNk7vgNIPbLDujxMWRq9u/3fvLuzRD0BU8481koePCc7jLxWO8E8P7smPS02BTwaIHi943xIvSDzA73ohaQ8DVqXvMcVAD1RUR89QcEOPKwjtDuxLBA99hU1vceKfLx7tME8xA8YPa7cjLwIrC09JH8/vSnjDb00EkS8mVEDPJbOer0IrC0974ORPJuNO7zsjoC9dygGPRRYBD34rF88TwQQPddNEjv2X9A8zwIWPdN9ejxnhCq9ghuEPPisX72fd129XijXvDes4jua19Y6y5BkvI/kWDyWS5u7ux8OPLAKYrzXPLu8Vs/3vFiI0DtFbIS9brtbPM21hrzHuo08AlbCO7n6a7p0pf28loRfvK4mqLyoGli8jJHhPCMysDwbjzU9eRoju2LFaT1ExIK73NlNvEgJF7wajEG99NaIPDl2ErwTVRC8loRfvPJW9LukylQ8txayvE63AL2IY4y9rLdquyaCs7tOlVK8ojC2vMxXID0HupC7sQpiPc3/ITxwhYs8T5hGvZAudDw8xhU8fQHRPNeoBL1VOE29WE8MPW67W7yBCi29ivq2PBr4irxWz/e8NFxfvHj49DsjQwe9LSUuPXkaIzyQUCK8s9cFvDZfU7uCG4S7Q6JUux7fuDyelhe8C/ywPJnUYrzXPDu8Z98cPK9zNz2/mnI8Df8kvbLUkTnccHi8jP0qvSeFJzyWS5u8/09avNTsN7wOTLQ6aNG5PGkvIDzhw2+87jYCvSaTCjumF+Q8jZRVO8msqr3EWbM8FTnKundhSj0/uyY9hWsHPcv8rbuV7TQ805+oPaeUBLtZi8Q6BFm2OfC/yTuEWrA6a2tYu5bwKL3cjzK9pZEQPcG/FD1uBXe8DpbPPIvb/LsFXCo8M3uZvG8I6zy9IoK9XnVmPPcmDL08IYi8gej+u+bMy7yV7TQ8VKEiPIyR4bw9uLK8klaKO7tpqTx2JZI8100SvO8Gcbzr1ae8urDQPB6VHb2ekyM9engJPdpCo7uWSxs9LyiiO3odl7yK+ra82Yw+PHHSmrxosv+6xFmzO83/ITw+bhe90+nDPGWBtryG8do8M9aLvKIwNj0qaeE8yQedOzbLnDyLZoA8bdoVPcKg2rwMCd+8bogkPdvBBrwJqxO9jWsJPMZPRzvmtFS6cGOKPUoI2jxyfwQ8T0DOu9Kv6TzcSxI8raTWvG6B/jwQ26Q8iCuyvNjCQzq/qn48WYscPZ38+bwdjCG8uF02vMV7Bzw7hNq8h1DMPNkvGLyXQaC8OW+GvIsiErxUL8u8zX4bvSNrWDya6GK8/s1Wuq02xbw7sJq8anQNvads4ryZFCM8sS2lPNMcvrz1XLE85o+6vJ+OaLyCYc+8KX6yvCfI5rzg6nE8lbBuvThLqTivoxm9776OPWorFr1qK5a89oCOvHnMTL3rYYC8O6l0vTGm4Lx5FUS8xXuHPUsHHb3UZbW8/oTfO4jiOj3iV8a8plcOPQca4rufac68LCX1PBtDKj1l7Hu54lfGvL/z9by4pi28UgvuPF7oKrsRiso7av9VPU+JxTz7b4s8Ta7fOyjPDLk7zdG7woQnPVhKiDuXZjo7C1LWPDTJAL32N5e8jj6MvBQM87ugjSu95/3LvBBB07yjOxS9gLqMuyoQITwgoLg8OJSgPJEK6TyoR8g8lfllvfhMazzvLCC6Me/XO8jR7zteehk8RavLvKEfGj1w7lK7NifMO6CVDjwXLxO8ky0JvB9XQb2tEui8eczMuwZGIjxgBKU8dUqkPFHC9jwoPR69V28iPT9eA739hN+8iZgGPaGNq7xAc1c9QAXGvCZFAbvNwOy9jK1aPZQtCb35J1E9+5SlvMAX0zxUwbk8OxZJvcR0YTxoDxw9GmjEPCha1bwXVC09J8hmvboLHz1ooYq7tq4QPCWPNbvm2W49pnyoPPC2Kz2HUMw806/putXSCTqhHxo94qC9PCCgOL2F8oC8p2xiPFN4Qr2ceZQ8YNjkO+wQpjx2k5u8bZCHPP86Kz1hKAK95ZedvDjdFzxzS+G84g5PvT2otzzuohS6tznZPHMC6j0hVgQ8Rj06PCNOIbxQrSK9go2PPEeqDr1fDAg9wTuwvMIWFj1e6Kq8c7lyvIgrsrwvba88Nbr3u3k6Xr2an+u711yVOjzxLjzXMNW8hGASPDTJAD1PiUW8Cy55PN1DL7vEvVg8lbcUPeSQ9zy4FD885ZcdO4jFA71h2OS86363PHO5crzfofo7DAnfvJwwHbyQ5c68eV47vX7nCT3Jj568bP4YvTzxLjwLfpY7rn+8PGJFuTw2ld279BT3PCJHez3IGme9Zus+vCDpLz2gssU8HNWYu7imLbzUriw9IQ2NPFUujru7KFY9NgPvuwPhMLz1XDE9/TvoPIeZw7wygUa87TQDvcka57p8TvU86Tb9vFzwDT1AMYY8diWKvMZPx7wx0qC8ldTLPPlwSLwYeIq8iXQpPbk4nD2XZjq7nkVxPIlPD7xZ+S29IDKnuM7kyTyPwfE57BCmPB/xEj02A2891K4svcOZe732gA481fcjOehFBj3mj7q7FcP7vEUgA7yxAeU83bFAvTuwmjwHGmI83ETsPIXygD3Lqxg8xXsHPRC2irxNHHE8l0GgO0SOlDxL4z+9RNBlvahzCL3NLn45y4e7PDuE2jxTVOW8FqWHPYjFAz2bVTe9ntdfva3J8LxPiUW+O7CaPLIICz2appG7HPoyPE7Tebu3glC9vN9evSy347zwtiu8A3uCvCAyJ72mfCg7CIc2PCZFgTtCBIm8+5SlOx9XwTyGLG89rdAWvbimrby75gS9y6uYPaRYS73rfjc8Bz4/PTNcLD3Fvdg8/YRfvQLpk7xjjjA7DMcNvfpLrrtNHHE8DAlfPLoE+TtKmkg6ngMgvRsfTT3WDPi7uROCPa2kVj3HlwG9wBfTvK02xbyXQSC8BLwWPaUOlzx0ufK8gfugvH9xlTzknwC9AuJtvD3MFD3B8ji96n90O0RNADzgfGA941YJPeIyLL1WsXM81GU1vVdofDzNNSS9Ytenu7NJH7wt20C5SGGXPJZmOrwvJLi8aiuWPLMAqLxUnB88E4kNvB98W7sbQyo9QLxOvdxLEr0f8RI9DccNvgpinDxyNg08l4qXPIWpCb0KPQK9O4sAvezHLruC1oa8oJWOPAwQhT7EdGE9Q02AvNP44Lz0ysI8gkQYPALi7TtvGhO8QE69u3mo77w6O+O8YI/tO/U41DzbROw7jK3au5rvCD0Mxw29KezDPJdBoD0QQdO8UYiIPB58W72yCIs8cwLqPB58W7zbuSO9LLdjvEb0Qjz1ONS8B6xQvPUTurz8qXk7AVD/PM7AbL07i4C8S76lPMQrajxIduu7wNUBPEOHbjvnIam88CS9vNOKzzwEcx89jIhAu+s1QDyw7JA8WmaCvPoCNzyNGq+8ntffvGGWk7tATj29KH/vvHdfeLxJv+K8yE6Ku1hvIryXQSC736H6PP1CDj3YeUw7KX6yOs+bUryIdKk7g89gPHUBLT1O03m9M1ysO+B84DytpFY9wTswPB+DAb3AjIo9hwfVPJp60TzI0W88vXAQPU+JxTtReX87l9OOvFkeSLzrNcA7gmFPPAUqqLsj2ek89IHLur3eoTwQJJw8mnpRu7F2HL0vJLg8mhSjvMXhNTxeDUU7+5QlPLcUPzspfrK8DOTEvLdlGTya6GK9Ci75O2ihirvfjKa8l4oXPYwbbLw7sJq9U+bTPDqpdLpGzyi8gfR6vUKXtDuaDEC8Ev8BvM8IJz1LBx09GbkevVTBObzViRK8NkxmPa3JcLwDmLk71K6sPJEK6btB4Cs8gobpvAg+vzyp4Rm9kwksO5FaBj1hlhM7fMuPvZtVN73J2BU9A09CPfVcsbyc56U9KhAhPSHEFbyotdk8T2SrvGp0jbyNrJ08hPM9vRfCvrwBK+W8XZ+zPHVvvrwzE7W7vFQWPTfe1Dyi6/Y8XPANPV0NRb0pNTu96TZ9vPaADr2Q5U68+5Qlva02xbwgoDi6HEMqPMGpQTyhjas8rdCWPAOYOTzw28U8wIwKPXxOdbw53Ze8Bz4/PWgPnLx13U+9mujiPKiRfLuan2u8CWKcvQchiDzCqIQ8eV67O9OKzzzD4vI7XwwIPUp1Lj03nAM9N7k6PU3igjqhsQi9sm65PSazErwefFu8BxriPRpoRDtnWVC80q9pPVsdC73Khzu7wfI4u31yUj353tm8gmHPuwQqqLzp/A49WGe/OzYD7zswy/q8TWVou7yVqjxGq0s8T4lFPKfa8zoLLvm8W6DwOTo7Y7yuESu8e8uPvBUTmbvw20U8cnB7PMSZ+7xJfRE9SOuivBmNXjzejCa8p2xiPevsyLs3nIM8wM7bPHRSB70Zsvi8iSuyOuta2rzySBq9pXwovaDWojyH4/e84qA9PV/oKj27TfC8qNrzu061hbz9Fk68+Exru4vSdD19DKQ7av9VPS2SSb2CYU88VrHzPFV3hTsaaEQ8ce2VvGEoArkOmhC8/s1WvIwb7Ds33tQ8fgRBvMJfDb113U+9Jf3GvJ9pTjx4Zp47n94FPSnHqbxrvQS9mu+IPMIWFryX+Ki8xKAhurEB5bwIY9m6JJeYu5DIl7z2gA6859ixPKhziDuf3oU7whYWvPRd7rwaSw29thwivYdQzLw/XoO8zT2Hu/fJBT1ZHsi862EAPXGknjwutia9JSEkPRweEL0tBwG9GY1ePfT2Aj3JrNU89ThUu0C8Tj3J9cy8dri1PIzRN7wf6uy7/UIOve8sIL3Uriy998mFOexZnbuRf6C8S74lvPvdHDqhaJE7YZaTvc0u/juNP0k90kFYPZgchryHUMw8/fmWvOEOzzuXHcM8DXYzvehFhry4pi28LramPCijzLpvN8q8RNDlPDfBHb1KLDe92sEGPd36N72Xipe8kHh6vXuCGL05b4Y81xOeuza69zxUUyi8jj6MPUY9urwLUla79BT3vGz+mDxLUBS9FqUHPZX55bwM5MS8pleOvBXDe7zlIua7qeEZPSO0z7wmRQG9vzztvBBm7TxYSgg9u+YEvLG/E70DdFw8UYiIvJWL1DyCjY87/jvou0bPKDsZjV68TeKCu5DBcTxqdA29ZzQ2OjuE2ryeTBe9OmejPOIyLLz5UxG8LnUSvfpLLj1e6Cq8bLUhvaZXDrz+O+i7lma6vAK907xZsDa9Bz4/uxAknDw2uve8u7rEvK5/PD0H0Wo8XsOQPLvfXrw9qDe8uwR5vJVuHbzCXw2+yazVPLF2nDtmzoc8kgksvfBtNLsw2oO7ScaIu62k1rwx0iC9mp/rO7cUvzyZXRo8/an5vKR9ZTxE9f88LnUSvNgLu7y4OJw8Fp7hPHW4NTyNGq88U6QCvf7xM7tI66I8J8jmPJ7XXzu9cJA8bhNtvPrdnLyAAwQ9Ci75u3NL4byNrB09vJWqO0uaSD2RwLQ8WbA2vZro4rxr2rs8NIAJPUUZ3Tvhxde8plcOvN+h+jy2FXy8iOI6vT3MlLycMB29U1sLPe9JV7vySBo9Gh/NPMrQsroQ2yS9m8PIPD3MFL2WQl08t8tHPGAEJTzioD28LgeBPRFlML3Uto+9vLpEvK0ZDjt5Xju9d24BPanhGbwD4TC93bFAvY/BcT3PLUE928GGPOJXxjwtJXU8Bj/8PJGcVzpLUBQ99DhUvd9njDweoXW9pTMxvVNbizv7lKW8mehiO+JXRrwcHhA9pTOxvHTAGD1PtQW9sZPTvOa01LwVVWq8rzUIvQ7jhzy/saS8mehiO4yt2rwFTgU8vJUqO/SmZby839467aKUvLu6xDxmWdA8WmaCPTW6dzsX5hs9q4+CO+MyrLzSbZi8cKyBvS7bwDutEmg8/oRfO7IIi7wWCza89O/cO5tVt7vGc6S7zTWkvLWnajyDGFi8VeWWvGrinrzb+/Q8UD8RPFhKCD2ZVvS7U1uLvFpmgr0OCKI8J3/vuocs7zmzAKi8rRLovHTAGD0fxVK90FEevRGKSryceRS7/l/FvGu2XrxxWye7iZiGu3nMzDzcAhs9LZJJvLanajtFIAM9lkJdPE0c8btmEFk8BSoovGpt5zvPdri7QDEGu0XXC73vSdc8DAlfPBL3Hr1YSoi8V2h8vHVvPr1vN0o9WLA2u+3rCzxNZeg7KYaVOy9IFT1v0Zs8iXSpvM8IJ71Kda4873WXPNcw1TyVbh29RGJUPQtS1jyI4jo9tLcwPUBzVz2appG8Ikf7PJYdwz15Xju9WR5IPA0tvDwqoo+8kS7GPJ4DoLuk6jm9iXQpvZVJgz0G0eo8LADbvNmdqTwWwr64ECQcPFQvy7vBYEo8wKnBvIkGmDw/nxe923gPvBpE57zvLCC81+ddvJyeLjv5ub+7OxbJvGeixzxOicU4+rm/OrtUlroyXWm83WjJPKkiLj363Ry9PPEuPLiBEz2476S8LLfjPAS8lrz9O+i8/zqrvOE6jzyMZGO8sS2lvCNOITwh6S+8R6oOvURiVDzAjAo5Z6LHPCnPjLuHfAw9MdIgPQiHNjxO03k8OvJrPJrviLxBKaO8guQHvVz6FD03fcy8H3GtvL5LkjycJo68TibGPIDvaD3WutY8Kmg1PWiigbyYP0I8yP7fPHSLNr31n248jWCSOg5d8ryTOYu8iYPLuiKnlDz5I5W8Qdd5PFKnerziu2M8qQ9DvLRUijxPSKM8aYopvDBjC7xjuzW8dIu2vEVRG73i/5087FlLvLRz9brWeY68EVKRvH0VlLurZwe9wu6jPA00Aj1F1p26MegNPYmbo7w7m1s8C/6avHafQLydqxC9NPyXuyT85rxpUPQ7dZW7vCcQ8Twk/Ga9xUN2vGYyZTuuexG94Vi+PHn3BL1v3p+8VFhfvAe+Lj1GOUO9WWEIvTvfFT0x6A09wLi8vO9t1TlfGCS8Q4jevMQahjxI6ic90Yi9u6de3rxeDp+8UNequ2sB2Tym+7g8qyPNuB+JBT1VIRw9fNFZPRjx1DyW0pc7idzrvCGdjzzb4uo5SAwFPWXnFz1GnGi9pfEzPJB+obsjj7y8VLF/vc1qLjrnJzI7BBudvKXxMzx6AQo9cRSHO1rmijteT+c83ZPPPLRzdb0vWYY9brI9vPt4ZzxmMuU7n3vgPE4+nrxQ1yo9Kmi1vNvi6rraHKA8qCcbu1Vi5DuTFy69mWukvGC/gzxtsr268otkvMfqVTybHAk914OTvO288Dznile8meahvMAbYjyFfZS7ZWwaPSnB1byDDXi8jqvfvZ5xWz3Imzq9fykePe4KsDyzSoW8FpyCuzyl4LzEOfE8721VPJ4wEz0VFwC9E2YbPcQahr3WVzE9SmFXuykk+zuzBsu8KPuKPVqK+Dz27a28MeiNO9zs7zwdwMg67mNQPUw0mTyTF668Ae86vVon0zxtC169mJhivEK4jjzZjZg8kg0pvdSmzDz//A09O5tbvXSLNr3up4o8+QE4vNocIL0M5kK8/egDvBjx1DyXjt09hA14uawt0jsthkS57mNQvVh27jyNPjW9HgSDPMwcb70RGFw9vwfYPIYCFzx+pJu8NcxnPR9xLbxrOw69HV2jPIJHrTzl2fI7YrGwvMaRtTwW08U7hoeZu6kxILx921681eqGPBqiuTzvLI278YFfPP8z0Tsaojm8cY8EveU1BTz96IO8aDzqOjHoDb0RGFy89M8ePEsqFL069Ps8P2DKvFH5h73cSII7hsjhOh7ASLxp7U48mlNMPMc4FT2FWzc97QArva3UsTvaHCA93lwMPRbTxTq1GlW8JLsePTzpmjut1LG7q+IEPYoqq7wmrUu8+L19O4LkBz0OXXK8HmcovLg45Lys7Ak93VIHPbtMbr04h1E9POmaPJ86GL1TsX+8jj41vBV6JTzdMCq8bxXjvJv6Kz3B5B49vWB4vDkusTxNHEG5OIdRvVSSFLwqaDU8dpU7vEQvvjyJQgM9hX0UPTDeCL1ip6s51lcxvKBEnbteT2c9qGhjvKPdKbyLNDC99FQhPCj7Cr0qDxU8JLEZvGs7Dj3ZzmA9cj33OWIKUT1Cftm8bKg4PYoqKzpMdWE8ctrRvNa6Vr2CA/M7n3FbvIPujLs4Rgk9tRrVOxk1jz13AmY9mvCmvZXn/by+S5K8P2BKvvuyHL01acI8pRORPHt8B7s7m1s8gw14vTc8BL3QJRi9UNcqvSCTijpvvEK9DEnou6kPQztZYYg8SAyFOQSgn7w2t4E7IywXPYdvwbyiNsq7DAigvPDafz2TOQu9/3cLOTIR/jw+uWo8VPW5PHmzSr3/lva7AKF7u5S+Db2hLEW7hwwcPIaHmTwEZuo7X5OhvHY8m7sHF088zWCpu0x1YT0snpw9n3Fbu1IDjbxQiWu8ud/DvGjjST1XsKO73M0EO34fGb3Vb4m8hoeZvPapc7yrwCc9o6P0vBlUejxy2tE8Qdf5uy3paTyr4oS81bBRvQHvOr0EG508RC++vKuG8ryB+e28rfaOvA+hLDzNjIs7sI8bvW2oODyLTIg75LCCPH6Cvjsvmk481GWEPO4KML3/2jC94rvjPLstA77HOJW8j+8ZPNL15zzQoJW8rMqsvOW6B72xVea8ltIXvS83qTzluoc++BmQPbUaVbv146i8ozZKPd3XiTufvxo9L5pOPJ3K+zu+SxK9wi/svI0+tTpELz48ZShgvNXqhrzV6ga8mhIEvdPgATscU549h5EevCkkezwaojm9NF89ujYQIjyGZby88DYSvcaRtbvZjRg99kZOPNGIPTzV6oa85Y4lPIE9KD1lKGC8DOZCPIaHGbxv3p+8wNoZO+tPxrzPG5O8kSWBvd1SB72eMBM97JOAPIxWjTwYji87S6WRvA00AjofDog86qhmvNZXMb1SRFU8fAuPvKaYE7s/HwK9ajGJvJUhMzww/fO8vkuSuyzfZD3hCn88H8rNOyKFtzxYNaY7F4Qqvejt/DwUcCA8ud9DvQ/6TD17vU899oqIPJq2cTwNNIK8rJB3Pc50Mz2IecY89w8LPNb0Cz2SDSk8+m7iPDZzx7y6Qmm8GV7/ux5nqLx594S7EasxPa+FlrxI6ic9blmdOxFSEb1WbGm73+GOPCwZmjskux48QM30vM1gqTyAlsi8OIfRvBmYtLxZYQg7tHN1vZeO3Tzd9vQ8xk17vVzYtz3+bQY9e2QvvStyOjuJQoM854BSvMbqVb2D5Ac87sZ1PHgC5rtvvMI83ZNPPbxWc7wfca07rXGMOl1FYj1e7MG8/9owPEHXeTuU3Xi8dCiRPJMXLrzTnEc8rfYOvdWw0TwEoB89tBDQPA8EUr36Cz29aaKBPWNYkD3W9Au9sh4jPT65aj2qO6U75GzIPPoLPb1e4jy8Z3afPLDywLxAByq8fDR/uwJS4Lxndh+8FRcAvTBBLj2F+JG8xzgVPZv6Kz3CzEa9AQcTvTZzx7sV9SK97bzwvJlJx7xCuA69Id5Xu+5j0DwFzIG7BXBvu2Cdpjx9eLk8Tn9mvBQs5jyfv5o8dZU7uc2Miz2+an28F+dPvdgIFjtJFoq80zkivZrwpr0FDco8LpBJPICuIL3+0Ku83IlKvBmYND3dMKo8xYewPCSZQT38Nx88fymevHa3mD1oRu+7c+RWvNScxz0wYws860VBOQrcvTyP7xm91KZMPXfBHTvGLhA9MGOLvDrVkLyGh5m8yq/EPEAHKru7LQM9vqQyvbbBNDyZScc8UHSFPO7GdbzuxvW8R2UlvEY5w7y495u60S+du9RlBL39YwE9bag4PA9nd7tWph695LACvIYCl7wXpoc7s2nwuzub27rWV7E8TDQZu23KFT2YP8K8KRr2vGXnFzrEn4g84LHeOnLa0bwMSWi5JxDxvMoSaj2I0uY8YacrPN2TT7tSRNW6knDOu7nfQ73BwsE9IBiNvLIeIz1DJbm8peeuvOgxNzys7Ik8WifTvJg/QrqHkR69kSWBPMfqVbyJ3Ou7cY8EPf3oAzw1aUK9brK9vOCxXrxYV4M8dO7bu9PgAT0vms47lUOQuzXM5zww3oi71EOnO2xk/rq1Xg+9UNeqO6Oj9LxaJ1O96uIbOuYdLTziehu91RP3PJ4YO7yzQAA8s60qvaviBL2EtFe8oY9qu0ogD7y0VAo9Qa4JvZv6Kz1UFxe6kWZJvZXn/bvsWcu8KRp2vV/2xjy+S5I8U05aPGTTDbwVF4A9y1YkvbNKhTzXYTa8hfgRO92Tz7vXgxO98ig/vCvVX7wpwdW7AIIQvZwEsTykhIm6uDjkPFnErb10i7a6aVB0PWGdJj1ITc07vDeIOshCGrsW3co7zjB5PPi9/bz0+4A85TUFvDnqdjzzVKG8Qhu0vCGdDzzjxei8+xXCvBU26zxV/768Y7s1Om+8Qr0wQa683ZPPvKSECTy/Ed08dK0TvaNATz1LCLe8xYcwvWA6gbvBJWc9+aiXvGAAzDww3gi8UfkHvU9qgLwPBFK8FTZrOz8fAj2LjVC8+SMVvXcCZro/w+88h5GePFGTcDyPteQ8KPuKPEr+MbxoRu+7RZJjPEWSYzw7m1s8VFjfvGA6gbyYP0I8IZ0PvWUoYLxV/768D6Gsu6sjzTx07lu7/cYmvOyTAL3NYKk8iUIDvXpaqjoJb5M8HV2jvOmeYbw2laS86Z7hvPs3n7tjFFY78BS1vPdQ07zVsFE948VoPehJDz3gCv88b96fvBFSEb0v1AO8aScEvqSECT237ZY805xHO17swbzFfSs8IBgNvDFLszxdBBq92c5gvd+n2bwewMg8FkBwPbckWrz8QSS7CjVePPB32ju+pLK8U+s0O3aVO7wYjq88hBf9PCmADb1gOoG8GqI5PT2lYDr5Abg88DYSPMHCwby/B1i97gqwPNnO4Dtxbae7QXRUPJN607xqlC49gJbIPLuQqLurZ4e8XeK8PFg1Jjw6OLY6a8AQvfRUIbwU6508qnxtPCcQ8bzt9iW8bxXjvFvwDz3eAPq7bGR+PKLTJD2a8Ka7LpBJvW7UGj27kCi90vXnPFsx2LzqZx686Tu8vJC/aT0P+ky9wSVnvOU1hbyzaXA83lwMvTa3AbwM5kI6z9fYvEJ+Wb2cZ1Y91bDRPMj+XzwPwwk9TiZGu6hoYzu7kCi8i0yIPM4w+bzaHCA9//wNvVKIj7xBrgk8Px+CvGO7tbwewEi8ky8GPFsx2LxYNaY61/6QvT5WxbzS9ee8sl9rvGf7Ib0TycA8s0oFveTPbbyVITO8rXEMPG6yvbweZyi8Ws6yOxYhBb0GDcq7Bnr0PJbSFz35ZN27KYANPRm6kTw+uWq8/SnMvBYhhb13wZ279DxJvPKLZDz7FUK8+b19PDbW7DxBES+9nQ42O2AATLuRJYE8QXTUvFfSAL2qXYK8T2qAPdocIDuk5647LzcpPHDGR7waBd+8hBd9PHafQDzoSQ+9B76uvNRDJ70qDxU8sPJAvMbq1bwPBFI88ig/PBiOr7x80Vm8yq/EPHyQkTpLCDc9KQUQPWueszyNodo6E8lAPFfSALsIZQ6854pXPRqiObyCR608r0HcO+7G9boukMm8xUN2PYyXVTx4Ama8KooSvd9EtLw2twG9iZujPPdQ0zytyiw8KstaOl/2RrwA5TU89qlzPHRH/LrG6lW9REcWu/3oA7qmmBM9rkFcvWbPPzx6vU87WcQtPeriGz2zrao83InKu+ldmT1isbA9dp9AvSEiEj22JFo9mNycvMezEjyiNsq8fdtevJQhM71hyYg9Ft1KPSaty7wlxSM9nrWVPArcPTyfcVu8y1Ykva/oO70XhKo8NYsfvUdlJb3fRDS80zkivfbtLb3/2rA8THVhuiCTirxk3ZK8lCGzO33bXjyLx4W8Li0kvakPw7q5fB49cW0nve7G9TyeGDs7gFUAvcu5yTyzxYK8pIQJvaQJDL14yyI9zMPOu4H5bbxsRZO7ebPKvCpoNbzNYCk7cMZHPEIbNDs44HG8FXolPYh5Rj0qDxU9sl9rPC4tJDxtqDi84E45veCS7DonY6s7wNQHu8TqkzuKjSa8cIKMOzkQmTwtnUc99oaTvJYP4zxwrR48Q7yAvGueFD0vJBm8gTfjPOOnkbuJcf+8FOHPvN/DmTw8+xI8F8xJvTGBP7sEUIk8uH5EvIBF57xzZgQ7Z4iIvD6DyztnLMm7/YeZPM2zarzNq4G8qwOKuzdXM73rRVY9XHlfu8E4sLxYlWe8FdpNvYgN1ztyphw9dZn/u7lwwDw1ZTe9pQrtPLT9Dbw5Oyu9tSggvemEh7rkoA+9XBW3u8QqLL1LIS89MYE/vDMBj7vrqJe87Mynvf3Ar7yQ1ca9sUQovTfsiLxuiY49EJkvvWQ6zbvfNcY7WxW3PJ0IALyK/9I7Z4iIvE3hFr1ExOk804JcPenhrbw3Fxu9qIM6vQ81B7yGRYY9A5AhuwP7yzzYAiw8gHaUPFBpzzqARWc8vcZkvIQi3byN6kw9ilsSPBY2jbxE7hQ9AZ4lvUW25bzXbVa7cOa0vHKfGr1EWb+7v+KLvJLAQLzSid485QS4PC6WxTzJAKA8tozIOjNsOT3dQ0q6ScsKPdlfUjwGUXA82rSPPCIbCz0gjTe9h7CwPL+x3rwDX/Q8UfeiO2i6HLxtZmW7VzhBvRc+dr1g+a48PvV3u5grCjwUU/w8mSSIPa31hbtRzfc8D6czvAWCnbucCAA9mY8yvWOz+zwEUAm9+mqLPKkYkL2Ffpw8AHMTvGHrqjsuj0O8Ik2fPJHOxDvLXUa9hxTZO9EzOj1gXde6hUwIvYE+ZT2cD4K9qnW2PF4AMTyjGHG7NNBhO3ZYgD3POjw9QmfDPOiEh7zCxgO8/SRYvEHZbzxrnhQ8kc7EPJUW5byo9Wa8M9fju4iirLxxUd87Wo5lPF/OnL2qEY48tJPKPLQ2JLw/g0u9Ur4MPTTQYTwG5sU777chPON2ZLuWD+M8mxaEPSN/szwnx1M8DhngvBfMSb31lJc8wpzYvBCZr7vqRda8ortKPYpjezyniry82PupvKO0SD0CCVC7dlgAvY1GDDpg8qw8oMLMPITFtjwRYJk8JNxZO0bgkLw+g8s7zUhAvDz0kDuSK2u8foSYvBjMybs8JqU7YGTZOg4ZYL0Lw7s79vE9vOK1FTxE9Ra9GkwZvb3GZLw/g0u9B3SZPYeprryK+FC9wqPaPBREkbxW1Ji8AXR6Pf2HGT2CPuU7hFOKPbX+dL2YljQ8rsRYPaStRj2tYDC9I+rdujNzOzxDZ8M65pKLvNtKTD2Im6q7j9xIO2Fd1zyaga48CjVovFojO72vxFg7+Ny3O2DAmDyYXR67d7UmPTit1zyIcJi8sUQovU2ogLzvtyE9KU4lvE8FJ73VEDA9BoKdPUuTWzspFY87Siixu+ZoYLzsPtS8DzwJPaBXojy3fkQ9gdM6PbAZFj0i8V+92sP6vFPwILxTsIi6yfkdPUbnErtE7pS7MIjBOxopcDtA2Ii9v0a0PGsJPzztovw7J8fTPTdJrzwaKXA9hFMKPD+DSz3lmQ29P+fzO2BkWb0/EZ+9oC33vFgqPTxVse+7KrLNu3Hfsjw43oQ94xk+PDufU71oHkU8AHt8usMqLL4LLua86O8xvLgTmjs99JA6GcXHPBREEb0nVSe9bHTpvPh4D72FG1s8nA+CvYI+5bw89JA7zFZEPQJejbvH3fY7io2mPAo1aD0+GCG9gj7lvHTRrrymmMA9/YcZvO4w0Lw89JA9lqS4PCX/AjyB0zq9uv6TvA4ZYLzkEry8dyDROz/firkqR6M8nUl/vLFEqDwFSYe9h6muPIS+tLygJY49mk8aPS8kGb100a6893+Ru+4w0Lzqrxk9f+G+PHinorwnKpW5pBHvPAc7A7iVQBC9JNxZPDwtJ717/ca6Jf+CPAbmRT1gjgS9SpPbvNtRzrs9/Pm8mh0GPa8gmLzuvqO86YQHO7v3ET0+H6O87aL8O3bDKr3iIEA9RFk/vLI9Jr3wsJ874SfCvMhyzDxtkBC9SS+zvC/67TxP4v29g2EOPbWMyDv53De8kc7EvO03UrzxFMi8ysAHvfxVhTxrCT88SNKMPvVbgT3I1vQ6IfFfvMgOpDwW2k28s6hQPIBMabl4hHm8hreyvMzB7rzAqlw8bomOPCX/ArxdB7O8vrhgu5akOL13taY8kDiIPVS4cbz5cY08AXOTvdDIj7tVqm087ZORvF9k2bxqF0M8cHsKPVVNR7yKjSa9njMSvaQ7Grz+HdY8sLbUvML4F7yhJQ68oxFvvD/u9bwm+AC6ZN0mO2sJP7z6QOC7uQUWPctWxDxR9yK6Da61OyGGtTySJOm8XQczPJodhrwZvsW8PZHPvAtYkbyRMm28GyJuPEZLO7yYAd+8Wb8SOkuMWbzZ7aU8tKHOPM9BPjzMwW66B9jBPOqol7uIBtU8ahfDPLShTr0qQCE8GDf0PL6/4jz3fxE9UfcivKO0SD3H5Hg8VLjxvKeRvjx1ihQ9iXF/vP4dVjzmaGC9xhUmvMfVDb2PR/M6lUAQO25m5Tz+gf6866EVPWiQ8TtDvIC8ApcjvVRGRTwcsEE79GNqPAT7yzsbIm48zasBPQ+gsbxW1Bi7yc/yPF0HM70dor08sQsSPAMCzrwpTqU9/FyHvFVGxbyxRCi9eHyQunTKrLwk1Ve9DLW3PNOCXDt+SwI8AmwRPAT0STywvdY81LMJPel9BTxDwwI9rfyHvJIkaTyM8U48mk+avPlH4jwh+OG8iTCAPF9k2bzKwAc99GpsPQhD7Lz/HVa9SD23vFeUAD2qEY48iv9SvR2pvz2IBlU8j0dzO7ITezs8JqW9RkQ5vWUzy7t1w6q8pfsBvHinIjxYxhQ9Jyv8vD2Rz7zdn4k7vGI8uvs53jyQMQY9egtLvYTFtrzuMFC9utvqvEk2tbyUsry8xeORvBq+Rbwx7Ok8i1SQvE3hFjwwiME7SvYcvGpzAry0BXc9RkS5PI9H87zni4k8JNzZOxBuHb05Oys9uQwYvLkFFr2eQn29oh/zPABzE7rD+Be9aXqEu7UooDwPEt48262NPQffwzw8JiU9e5mevP25rbyjF4o9a3trvJkkCL1Lk9s91RcyvNMltrsDkCE9e5IcvGWWDD2EUwo7toXGPJadtjrZX9K7pAIEPGJW1TsnVac8jPFOPO03Ur0Ae/w84byXPMzBbjyoJhS8kGMavcvyG7xKLzO8utOBu3inIjwBbBG9HBvsO85IQD3RnuQ8FH2nvAClJzy8Wzo8eLWmuuIZvrwv+m07U1TJu/pqizrUs4m7dyBRvBU9j7zDnNi6YPIsvR8wkTx3fJC8qB+SPCAijTwNQws9owkGPcIxrjyIoiy9+XENPKJQoDwavkW85As6Pf+rqTzRl+I88IUNOmeIiLiWD+M8B0ruvOQLurwuKxu9zMFuuwKeJbzHDqQ7cOa0PP6AlzyIBtW8bG1nPI1/orwzAY+7gjfjO2csyTxkQc87Si8zvaDJTr0l/wI9KRwRPasKDL1yPFm82e0lvU9307z2XGi6XZwIvYBvkjylCu28E+/TPHRfgry62+q8VpuCu0O8gL0LUQ+8Hak/Pfbquzty2LA5uHdCOt48yDo+GCE9HQ3ouWD5Lr3U5R09bvQ4vaDCTL0at8M8JyMTvNaeA71E9ZY8GkwZPT/nc7xUVMk8zMHuuy0I8rwWdqW7kxwAvRq+RbySXJi8JyMTvNGeZLyIcJg8E0uTvGiQcTyEU4q9LQjyvII+5TzxhnQ9OK1XPCqryzzbtXY8pgNrvClHo7slcS+9z6zouxq3Q7y5DJi7HT6VPD71d7zADR68UmLNvF/Hmr0QLoU8oMLMvO3FpbxhXde8KrJNPCZjKz0CniU7FXYlPcfcj7wDV4s9l502vXuSHL29xmS9L4hBPdntpbzhgwE9JTiZPNGX4rxh6yq9c2YEuuuhlTq3Gpw83TxIPA+gMb0CZQ+8Gb5Fu/WUF7z3TuS7ScsKvOQLOj3WEDC8a56UO89BPjz/eRU7XQezvK0uHL3ohIc8h3CYOvAiTLyn/Og89GrsvE/TEr2Wqzo94JnuPBoahbwtnUe9cFjhPPb4vzxzZoS7qCYUPDlCLb08A/y6SsQIvdOCXL3cSkw8GWGfPEB1x7woK3y81aUFPbJEKDxUuPE8NvMKvOQLOjy8W7q8XQ61vAc7A76kEW+71aUFvUZLuzrhg4G8AW14PDz0EL2eZaY60KXmu/NiA70YN/S8qwMKvbtpPrwh8V+891Xmu8gOpDzcQ8q7wKpcvejorzxGr2M7mVacu908SLwYL4u8WMYUvannYjyJcf86qe7kO2Wedbn6aou7e5IcvcLGA7yXnTa81OWdvFTiHD3aUU48BfRJPfpqCz11mX86kc7Eu0LL6zz0W4E8ScsKPFJizbz5R+I7WiM7PZqIMLoAF9S8r+eBveQLurwClyM9xoBQvAZCBT22jEg9ZsigvGXPorzxFMg8a54UvBkhBzxis/u7a3TpOVO/87vxf3I92GZUvYqNJr3qqBe9QNgIu9jRfr2s2V48eKciPFeja7yjGPG875T4PARYcjyWD2M8wAYcuxVFeLySwEA8YbIUvNhm1Dy28HC88RtKOmTWpLwHdBm9cOa0vBVMejxj5Ki8/McxvWTWJDpkQU+8HgZmPFsVt7zZ9Ce99oYTvSPc2bxSYk29juPKO+QLuryLXHm5yc/yPNrD+jx3i/u8PoPLOwnKPbrPQb47lRblPBRTfDyiSR49wpzYvOaSCz0+g0s8EG6dOuiEB71x3zK9orvKPM9Bvrsi6l080x40PHeDEjwF7Uc9yHJMvCRxr7yFfhy9wf+Zu6zS3LvTkGC87pv6vEHRBj1+Wm082cr8PBfTSzxdnIi8nkL9vA4ZYDzC+Jc8wyqsvIS+tLwwFpW9vr9iPcfddrw0AY+8zrNqOTjeBL0m+IA8mI+yPMBGtDsGQgW95As6PCIbCz1ect26hCnfubgTGjxYxhQ9bmblu3WKlD1Tvoy8kc5EPdIsuLybFgS9+1yHuz719zx8YW+885uZvNEsOLo6AhW8J1UnvSbH0zwZU5u8vcZkPB8wETw2UDG8KbnPPA2utTwPpzO8eIR5vA2uNT0lMZe81aWFPFY/Q727Yjw94oRoPNvfIT3koA89RO4UPcKV1rub7Ng81aWFPW/tNrwj49u7yA4kPFeUAD3tMFC8nHqsPFojuzxQBae8H5u7PZE57zxGSzu8/oCXvAXtxzuCMOE815eBvLIT+zw2V7O82+YjPLT2i7zAPzK9ARDSugNmdrzaw/q8Fz52PLITe7wjP5u8GWEfvCm5zzw5Qq07NxcbPNR7Wjs1JR+9STY1PQu8Ob3APzI9MOxpPSUGhTqQapw8IfjhOtHBjbxxUd+7f1PrPP0rWrvtxSU8Al4NvZcyDLx0yiy9BubFOxKLqztmj4q8PC2nuiodeDyC0zo70onePAc7gzxjs3s9gdq8O5zeVLwl5X47eWWpPJHck7yzzTO7gKRsPNNWED1fy2A77kTZPFN+/Ls1qpg8KiDxu4uShrvZ0pY8kR0ou6xrEj1xdhU9XIFTvFR+/Lx3ENI8iy6UPENqir32RzC8HrVWu3cfbTxeOp071cmdPD+O4rw3Dou89sUHPEHjuTqvQhK9r4MmvXW7+jxZDka9U+24PMohwLyLLhQ73oCWvHBTN72Mkoa6VkbhPPmch7wdwKA8m5MMvay7wTuQubW8Ka1jvRLmSb1sGEU8XIFTvUEGmDxVpgK90VFoPTyZrLxfSbi7dazfvIA2h72Wy6e8eti2vYyhIb3Y4bG8CNCGPerrML0b7XG82kUkvBLmST0/8tS8HPKZPMleg7xkhCq9WSz8POh4Iz3h93S7YrH7vNb7Fr1QJVS7slomPBS9Sbwb3lY8Pgy6PAKVlDzJvc07UJjhOx83/7yx9jO9ATEiPULJ1Lz99a88/XfYO87pJL0XRBq8VueWPC7KHztiIDi9IoxWvKu7QbuFwai8pSv4O7akMz2yGZI8NuusPCZFoDwBMaI8uAgmvbxwaT2M05q8n314PN+yjzsrArs8KRygvGKxezxdA/w6ONHHO+7CsDy2Maa8ctVfueHoWb0pHKC8S13vO3tperyxeNw8s0uLPGbZgT21Yx+9QdQePR1R5LyImCi8h1eUPLCmBL3juwg9OVPwvHTah7yFQ9G9TT85PVyBU7zhZrE8elpfvDjg4jx6Wt888ZkwvWNDFjyMc3k8fgQOPM74v7yfX0I9/uplvQ+Rcjx7+5Q4NaqYPDOWVTxgrSo9DBoUPext2TyGJRu73hHau/IbWTwiLQw9iy6UPL3j9rx6afq8s4wfO+mWWbyRLEO6TaOrvDOWVbrlv9m8bMiVPDMy4zx48hu9XmduvJAdKD1ZfQI8OxcEO/XFh7y0Xve6YqLgPMohwD3VLZA8tM2zPDhPn7wFbBS9tfARPF/5iLy8Yc47dDlSvBWfEz3iV5a8EubJvCfbC725CCY8VdPTO/XjPb13H+28QmXiuvYGnDxw70Q8I24gPLDnGLxIBMe8XJUWvEzvibz3R7C6xCORPErqYbwcf4w8FrL/Oy3o1byBdxu9uZlpPG2L0rvoaYg80rVavCVj1jrvNb68GJTJvGbZgT3Q3tq73Z5MvXTpIjwba8m8Q7q5u2fd0jzh9/Q8AfANPUNqij1Q+IK9hVLsu+eldD3UKGg7TbLGvMRzQDxwA4g8NWmEPA2cvLyg0k89F0QaPM/t9TynYhk9YLzFPAgCALyhQYw77xeIPPGKFb1ES/08WKpTvMoSJT2OyFC80ULNvCAZybxNMJ68RwRHPTG/Vbwxv9W8BCuAPWwJqj2C2427a7RSPCcru7uY/SC9XccPvGXonDy5mem7O1iYPMJ+Cj3yjmY9jKEhvcMAM72sPeo83BykPKDSzzzZY1o8CbahvDPTmDvmFLG7rrD3vKRZID2EThu44WaxPBtryT1YGZA8w7CDPeoJZ7xJd1Q9wBqYvMFMkbvhZrG8alWIvfKO5rzY4TG7TdD8PDBb4zopnsi83NuPPVCn/DwgKGS9CGFKu94/grrN+D++zKgQvccsiruoAvg7cBKjPI7XazuIuwa9S13vvJGua73oeKO8cNEOva2di73Aq9u85D2xOyqyCz31Zea8PZ19PCepkjxMTlQ9QthvvH+k7Lx1ncS8wJzAPSdJ8btcgVM88wF0PVxyODr+GI48NDcLvaw96rzqfHS8QVZHvWC8RbyX/SA8cFO3PNd9vzsIYUq7rD1qvQsprzzy7oe8NDeLPTnCLD2vdAu8CxoUvIm7hryoIYW8TcHhPCqPrTzbuDG9S8wrvfylALzensw7nJddvCbWYzudCuu8AzXzOzy34jyW+Pg8XOVFPDBMSDrMlE08UYnGvL1DGDp/pGw720l1Oz9/x7xqQUU8Q7q5vPIbWbudeSe9mbFCPauspjza1ue7W3K4PDQFkrwQlho9oNJPve3RS71S7bg722gCvkavbzy/KTM74VeWOxiUSbxvXgG9BJnlvEtdb7xNska8fdKUO4tgjT7vt2Y9UJjhuPxzB72F0EM7SIZvu5OQNT159uy7W3K4vJZYGr2JKey8TjTvPOElHT0preM7+GoOO+7CsDzPTRe9bny3PPZWyz20fYS8Uad8PHy+Ub3YcnU87jU+PM5rzbt/pOy8r3SLPLsM9zyKbyi8aFBgvMX1aLzRwCS8qHG0PB7E8bzRM7K8Y0OWPCsCu7zHSkC79ZOOvHxfB7z7tBu8I1+FvCx1yDxliPs8+c6APD8vGDynMCA8ZWrFvGjOtzyGJRu8bBhFvPsEy7vY4bG88u6HvGKx+7sXRJq8+g+VvPH9orxgbBa9RpG5PLorhDtfWNM8pSt4PGS2ozxcgdO6vzjOO7AU6jzVm3W9GukgPPuRvTzUCjI9wg/OPKfvC73YkQI9DbryPMwH2zyAhjY80MCkPA268rxFHiy7ECMNvV3Hj7xw4Km8eti2vAtHZTwMGhQ9S8yrvNEzsjwVri48io3evDQFkrzAq9s8BgxzODUJYzxZDsa8PwFwPN0rPzw9nf28q6ymuw/xk7wbXK69fxOpPCP/YzrcK7+8aF97PZk+NbujRV29p4BPvEvMKzxTYEa8n1/CvP7q5TzYY1o7sfazO76nCj3JzOg8VsS4vD2d/TxmasU7WZs4PTcOi7wkY1Y72WPaPHrYtjx8vtE8PJmsvH4EjjwnK7s7QmoKPD0b1TyciEK8hNBDvcujaL0NnDw9n+w0PViqU71cgdM9VFErPTyKkTp02oc7BgxzvRYSobwYlEm8vkfpvAfuvLzhJR282dKWPGwnYL3VGc28x1nbPKJU+LluLAg9dn8OPeGEZ73vFwi9lXbQvN8Cv7zGh4O8ri5Pu9DPv7vAnEC8t7NOvHyvtrvSUeg7IBnJPBx/jDy70Iq8vWFOPUrq4Tz5nAe93wK/vF5YU7wt6FW9FK4uPcsSpbzTl6S72kWkvbGmhLtHBMc7mM/4vMyokDwzN4s8a7TSPE6yRj1H9Ss9u9+lPJVYGjqascK8JKCZPWbZAb0266y7Wiz8PZwGmrwexPG8pEoFPVKdCb3Qz787eroAPLR9BD0Ofoa8ytGQvODzIzw6RFU8TO8JPe3Ry7u4Jly9CbahvFGJxjwpnkg84POjvNf/57wlVLu8+C3LuxcDBrrmoSM8iImNvFD4grwQglc8XmduO6fvC71JaDk9pSv4vHNIbTwfKOS8QtjvPEBhkTtK+Xw8/11zPOPKI726ezM79lZLO4suFL0b7fG5zAfbvK2dCzsDpK88+Lq9PBJZVz0nK7s5VVErvPy0mzxkBlO7c8ZEvD7ugz3JrjI8hD+APZyIwjvDgtu7okXdPDyZrDvh6Fm7xzulvMyFMrurrKa8WyIJvLRP3DtEnAM9kdwTvLHnmLzY4bG8hcEovf7q5TzHO6U8Ka3jPJ0Ka70SaHK95S6WPOn6Sz31Zea8yxKlvE2jK701qpi8vWFOPLgmXL1C2G+7zvg/PFRRKz2diMI8xCORPBiUybzMlE29WYydvIB3mzwQglc70LGJvLZUhLuLbyg6BBc9PauspjwtdUi9B3DlPFxyOL2yacG8M9MYO1mMHTsb3lY8S13vu6y7QT3X8My8NQljPFLPArwXRBo8d4PfvLIZEr2kixm9gEUiu6v4BLxZLPy84fd0PK0uz7wVMNe7uu5AvZ2chTtdx4+7cdXfPKFBjLtJaLk7MExIvIMcIruuodw6aL+cu1PtuLwfKOS8Fb1Ju8i9zTxZHWG7TyVUPLg6H72vFGq9j2mGOyItjLyyaUG8MrA6vdLynbzerec8kLm1upEsQzx1nUS88Qw+PcOR9rzDADO9+5E9vVKdCT1+kQC9KiDxPDX6xzwk4S29OOBivJUXhjyo89w78bwOPf3mlLxufDe9sLUfvUaRubx8S0S7L2r+vDV4H723Jtw81S2QvBFVhjzg86M8N+99OnyvtjzvFwi9nTgTO8nMaDwY+Lu8AsLlPHlWDr07xv28Q2qKPHmXIjvus5W8wwAzvRtcrjwPZKE6JOGtvP9d87siLQy94XXMvI43Db1pUOC8RQ+RvGe/nDzcqZa8Svl8vDQ3Cz20T1w82VQ/PHl0xLzg86M7QlZHvPNhlbx90hS+Z91SPH+k7Lu7cOk7aH4Ivdhy9TwbXK68RKsevLJpwbzmYA+9YCsCvQGzyrzwKnQ8mjPrvPerIr3moSM9YwKCvAGzyrzDALM811+JPIiYqDy7/du5txdBvPoesLyx9jM9Po5iPJrUIL2UhWs81RnNuxyxhb3a1uc770kBvO9YnLwNnDw9OECEu2bZgT0266w8cNEOu3I1gbpb/yo9S13vPAbfoTnpaQi9elpfO0QtxzylK/g8S4sXvYkp7LzaNgm9XZUWPcg7pbvLEqU8MhQtPT6O4jpc5cW8lXbQPM9NF70Vn5M7dQwBvFD4gjp5dES8jXP5PLorBL2su0G9GRbyvD5wrDu9xUC948qjPFoORrvyG1m8gXcbvb7UWz1WtR09DwCvPN1OHT2kWSA9oNJPPLxSM7qlDUI96vrLvAlSLz3lznS9zlwyvf/Mr7vq67A7MEzIO2pBRb2rORk9IMkZvYWyDT09G9W8ufkKvRmoDL2IGlG8dgE3vdu4MbvmsL67OE+fPNPEdbxV01M8BBc9vDrGfTyiRV28JGNWvPoeMDyqV089eCQVPWe/HDylDUI9T8YJO4vitbohfbs6Rg8RvTQYfrtb/yo7rxTqu/ylgDs26yw7DgAvPXVNlbx/ldG8tNxOvahxNDzej7G8TyVUuutt2TqiJ6c82zraPBNZVzzF9eg7gKRsPOwOj72rORk7n1/CO2C8RbxEnAO8KwI7u0407zwEmeW8iwBsvCfHSLxo7G27GBbyO52IQruli5m87A6Pu66h3DzbaAI96HijPDSHOrsPc7w76HgjPUSrHjyCbFE9im8ovUDFA7zxipU70rXaOyP/Yzs4wqw87cIwPL3jdr2K/Jq8C6cGvCxmLb1zKjc8pQ1CvPirojtU4m67o+aSvMRzQD0T2/888o7mvEeROTtxcW08HPIZPEQ84jszN4u7UAeePVZ0iTyYPjU937KPPSEKLj0yI0i8+Lq9PPZHsD0k0hK9wn6KvHDgqTxZm7i740xMu/YGHDy5is48guqovL/onj2YTdA8/4sbvIVDUby+R2k8AsJlPFxyOL3OXDI80UJNvHBTtzz/zC+8Z93SvEBhkbpnTI+8FSE8vbKH9zuOVcO85sSBvC+7BLu+R+k88v2iO856aDyGJZs777dmu5miJz0ovP68132/PP4Yjj3Xfb+8pLjqPBBkobwj8Mi7TzTvu4+qGjxakO66vzhOPP/Mr7xb8A+9VrWdvIpvqDsPD0o6z38QvNGxibvs4OY8JNISPcX16Lt+oBs9wDhOPTZ88Ltdxw+7p34uvJMFDD0aBPi8bvucu8YUaLyHkBg9SlfsPHpaGT04y8O8WioePB/Qibxc66k79pNKPDtK6jtewiw9RQFDu++K97uQlMe81nlGPTjLw7uF3W69PlBMvHtV9Tvtj5u89GTrPDnLQzxDgpy8/8Nnu3CmsTye9rS7NchSO8vKgr0d+Ya8NPFPvHl+8jzNmfC72Mx+vHpwkLxT32W9mRzBOmUbxzzLcia8Mx2+PAYlF72p/VQ8wFUPvZm2Ar2AA/u8dZacOuCFir0UcQ2839XRvIJeSD0xwvA5qlUxvFPfZbxTY7C9Xj5iu9v73b0gClq95DOQvG77nD02jgK8TfQevOFU+LuHtPE8avW6u9z7XTwUcQ29TrUqvfttvrsdizM9Zx64vEMqQL3vtmW98bnWO5ezkTzElUG8MRrNPD0TizwN1g09CCDzPE4xYLxVZqG8XC2PvGLbFD3kr0W7Z8bbPDNJLLm0tC29jI5lvKUjYTxZZO67+5ksvVq8yjuzhU68RS0xvaJ4TDygzbc7RpsEPebepLt9rVG8PwAFPeTbs7zc14Q8Rm8WOxaC4Dx9rVE8QVO9PAR6Ar0UcY08ri+lPJ5kCDzoibk8dfxavFeNa7vQICy9FoJgvNR2VTx1woq6GjBmPFxn37l+WGY9SkkKvTG0Dj2HDM68oPmlPM9wczsUhwS9g+KSPHLNe7zW0aK7ftywvU61KrvAP5i8rX/sPM2Ljry7tWu6OkrqPFPfZb03R3k8p9aKOrKxPD2FYTm9Siv+PN2YkL2Naow8wWsGvPHlxDn2AR48NfTAPKdSwDtvo0A95wJ+PC0GiTu3+YM88KiDPKkpwzzEPWW95EkHvR1fRT0497E76AVvvO86sLz5BI88RVkfvbs5tjtaFCc9H2K2vC+/f7wqGQ89xD1lvNpQSbrOoYW8HeOPOzZiFD3x5cQ9KeqvPOIwHz2ipLq8oDsLvYzmwbuAh0W7686PvGygT7wtxCM9L5umu8+c4bw9Ie27bCSaPNvPbzxYf4m91HZVPAR6AjyQAps8dfzauzoefDtWtmi75lpavA+XmbzH2pe8st2qPC0GCTxOMeC8BPY3PLYH5jt2KEm9yevqvNt/qDz/cyC9R4DpPGDp9ryQ7CO9X8IsvCnqL70YSwE9XDtxu+uMKr3LGkq7V43rvPHlxLv26yY7gLOzPD4kXjz/RzI9KeqvvYXPjDxR3HQ9vbhcPSnqL70EIqY7ri+lvLne6Dtx6Ja8bs8uPXXYATzmsja5nvY0PVFgPz2nJlK9eoaHO6JMXjxePmK8FgarPL9+DL1nYJ08LBTrvCa7UDxjcDK9Z5rtO+gxXT2nfi68enAQvVw78Tz4lrs9H44kPGOyl7w4IyC8sEiNvA1Sw7tPDQc9JrvQPAahTDyU6vA85EkHPcLqLL1zUUa974r3O3VUtzxuzy49SDAiPBF8frqk9/K78WH6O1e52bz0FCQ79JBZPImLdLtHrNc9QfvgPMu0iz1nSia8g/gJPdJlgrtOiby6cf6NvHmqYL1V4ta8u+FZPJkcQbyOOfo7MJsmvfZnXD3dpvI7l8mIvZAYEjzJsZq7AR81vihYA71/hNS7RtVUPAhMYTxOXU48wpJQvdvBDb0HSXA7x9oXvQahTL3qDYS9rlsTvWh2lLyOOfo8T+GYvHp+8rrQTBo9PNElPXPrB723tx68ZsNqvfM4fT2KqYC7OTkXPNb1ezzoiTk8oDuLPHXCirzfffW8y54UvfvFmr3Cvj47Y96FPCiS0zzYzP48oigFvHnWTr0wmyY9YOn2usQ9ZT0jPKo8e1X1vC8X3LzL7lu89LxHPPkEjz1zvxk8ggZsva4Dt7x9rdE8SNjFu7KxPL2H4F88avW6vA/91ztakFw9eoaHPW7PrrvSc+S86bWnPAQiprwf3us8ibdivDaOArzUSuc6OjwIvShCDDxRYD88Zpd8vRpc1DzEGQw8H2K2u/iWOzvfqeO7flhmPfkahr2VsKC8MUY7PBKwAb747hc8Me7ePPkaBrwZ3S26jkGPuxFYJTuwgt08d/9Lupp0HTwSsIE+dcIKPbtlpLuqwwS9whYbvAQiJrzbq5Y8lUJNvHUoSbxHVPu8/cB2vWr1OjyVQs08KmlWux/ea7yg+SU93VYrvWEHgzwiZac9uzm2uoCzszo2YpS9aIwLPGHxiztqcXC8CEzhvJlIr7o4y8M8EdTaO8JCCb2ZHEE70kf2vMmxGj3/w+e7oqS6u9zXBD3Q9D28PvhvvCNSIT2rfHs8Os40vHXCirzbz+88e1V1PFO7DD39wPY7tgdmvGdKprzyUxg95K/FupMbg7sYCZy8yetqvAbNOrTbfyi7oDsLPNp8t7xoogI6jFSVvAbNOrt12AE9KDr3O4d6oTwNfjG7DPrmvJIT7rvxYfo8xO0dvbo2RTw/vh899LxHPSrtoDuTGwO9CExhPVU6szxpcXC764wqPQahzDzuNz+8GDWKPKWnK72QGBK70veuvGzMPbzQIKw8PiTeO5BEAL0/1BY9kAIbPCyYtbwEysm8cKYxPEpfgbyFNcs8U9EDvb9j8bvEaVM8jumyvAHH2Lw4y8M8tTBjvd1Wq7ymznU6Hs0YPH3ZPz2MjmW8MYigvbS0Lbz7may7NXD2O+SDV7zkK/s8otAovF4S9DnZ1JM8YZmvPNuVH72pKcM7y3KmO4WNJz2A3yG8GC31u/a/uDvH8A48y+7bPEHP8rzNSSm8gPWYPOaGyDxw9ng9HV9Fu3dXKL0YNQq8CCDzPOQzkD3EadO8nI2FPbUMCj1zqaK8i7rTuyovhr0cB+m87QtRvK3XSL2X7eG7CCgIvabOdTzJv/w7nsrGO469RDxszD08WhQnPd8tLj1DKkC9HDNXvA+BorvIv/y8mRzBvHeZDb2gocm8c78ZvBgfE7yyHxC9UeSJusfEIDwvF1y7YOl2PBFYpT0lY3Q8R1T7vEzep7s80aW8iWcbvbDaOT2xBig8XhqJPEesV727DUi8np5YvO27CTqSE+47FkgQO5WwILuTGwM9st2qPF5q0DzoMd27+hVivP3Iiz2/foy8xJVBvNJH9j34lru8zfHMvCENSz2Hpg+90PS9POSD1zwT18s8daT+vEGrGTx6Wpk862C8PKfAkzwRLLc8y3ImvYD1mLyXyQg8XL+7O0rbtrq2B2a8ddgBvXXCCr3mNoG8yUNHPLtlJL1Kg1q8V41rPDOZ8zvdpnK8VDdCPP1EQbzEPWU8JoEAvcDnuzzhmwG8kxuDu9v73Tv7BwC9qa2NPAROFDu5snq8UTTRPExa3bzt0QA9qpcWPYcMTj3yUxg92ydMPD4k3rzE7Z08bPgrPKnR5rvkr0U9gw6Bu1HOEj1Kg9q7OctDPPpB0Dz2k8q7cegWvXwxnDwTq108EVilvFHOErwUL6g8MYggPXdXqLzdmBC9tDDjurfbd7wG+ag8y4idPFNjsLsuv3+9YUFTvdurljwjPCo90jmUvFFgv7w4y8O8MbQOvMlDRzuU6nC9x5gyvB8KWrtR5Ak9Q5iTvPG5VrwaBPi7GFnjvLKxvDx9rdE89uumPP/D57wKe0A9ri+lvFoUJz0aMOY8EQDJvEes1zzmhsi8WlYMve8OQj25svo75iCKOYzmQbyZoIs9Z25/vFGMLbwhDcu8t/mDvFHkCbyO6TK9MXIpvXwFLr1ZZO68y3KmvIc4vDxMhsu8mbYCvUHXB70RqGy8xhToPAp7QD1zvxm7HNt6Pe2z9Lx1gKW7UfoAvOCFirwBHzW8hWE5vcRpUz0GSfA8GEuBue3RAD0Bm+q8yZujvZftYTrr5Aa9GlzUvGohqbxHgGm8I4xxPfjCqbywMhY8p+yBvJmgiz2rLLS8teAbvFWKer0f3ms9ESy3ujqiRj2Jt+I8soXOvFHcdLwWXoe6686PO8I6dDuJD7+8CCDzvChYA70smLU7VZIPvQYPoDwN7IS8dcIKPSaBAL3yU5g8SDCiu5mgi7z7xZq8OTkXvEUBQz1s+Ku71iHqvAZRhTwDntu8+8UavXEUBT1Kr0g8anmFvFUORb2cd448KpVEPLsNSLvZUMm8SFwQvbt7G7z4lju9GDUKvY/pMrz6QdA8CKQ9vT4kXryQPOs8otAovOLYwrm0BPW7P9QWvKdSwLuKqYA629cEvl4EEjwPVbS8MRrNvOvOD73Lwm07GlzUvIIGbLwdzZi8elqZvMfwDjyKqQC9y4idu7liM72cd468Wui4PGh2lLpcO/G8KL7BOyqVRDz93oI8Jo9iPDj3MbxsdOG8mRxBuzXIUjw++G+7Jj+bPAdJcLoNfjG9fkoEPNSiQzpx0h+89Og1PQh4zzywgl096eEVPehdy7zyPaE7LdqaPOrc8TxTYzC7Ib0DvXWWnLvUSmc9g4q2u9P3Lr2gSW29Q9LjvPhqTT1DxIG8lxnQPF7CLD23zZW81ueZvNcTiLueIqO8t4swvFWKeryACxA6iYt0uvhqzTxvo8C8niKjvKt8+7xy+ek8zUkpvQQipjtltQg8P74fvGr1urwmgQA9amOOPHeZDbzWTdg8Os60O3wFLrtfMAA9gjLau3BO1bzc14S8t1/CvGDp9rxVfBi7GN2tPPgS8bwUAzq91KLDPBqIQr1+SoQ8t4uwPMmbI72+ELm8TrUqO7Uigb3Z6oo8LQaJu6uEkDwf3ms6GFlju8eYsrtuz648srE8vJmKFD3c+108LOj8PDomET2U6nA7kJRHPcLqrDwW2jy7yUNHu6B127xBz/I7OPcxPCyYtTuyWeA5/hjTO/9zoDy95Mq8WrxKvVML1DubHzI73f7Ou/1wLzu74dm7l8FzPMnrajwIpL08y8oCPUxaXbzoBW+9zUmpPL5oFT1DpnW75gL+u65FHL0xnhc9Sh2cvTPxz7z9yAu8LRyAvP9Hsjt+LPi7/58OOyrBsrwjuN88eQI9Pdf9EDsvx5S8lfIFPem1JzzkB6K68WF6PWpxcLwjjPE8SjOTOWmdXrxcF5i8HDPXPFpWjLtX5Ue97WOtO6rDBDxPDQe9BPY3POBZnLx1VLc8N0f5OVV8mLwUhwQ99GTrPPKN6Lu0tC29g7YkPbvhWbzc1wQ8AvNGPD/Ulj1Yfwk9d68EPTznHD0dizM95FdpvBSHhLrZqKU9lpopvMQvg7zZqKU8JBA8PMlvNTqQRIA8u3sbPHmq4Lup/VQ96bUnPSG9g7xeBBI8eoaHu1flRz0oQoy9dcIKPdQe+bxYf4m7H7oSvUHPcr2Ah8W5qf1UvFeNa7y7pwk9Os60O7f5g7wNUsM6/+/VO9vBDTx12AG7Xj7ivJdxrLw3TJ09XmrQvB/mAD2JDz89686PPEH7YD18Ba68GC11vLe3nrwUAzo9TC5vvPY7bjrvfJW8TgXyvMJCibwx7l49LJi1OmBtwbxqeYW7AUujOzX0QD02TB27KFiDPNf9kD1Xudk8Kj1oPNkPcLxTUw096x0DvbX227vqPho5fla9u+Khxbo4JCI999CJPKKF6TzEfcy8DGMtO+CsRDqF6IU7OHx1PJR6ArvxKDa8r+uovFY9jzzqofk7iscIvaoMprxNdIq8w1EcOwZjBjtKoCA8uOBdvTdQxbxjMl48/q+ZPCuzVrygZDi8Cm4sPAHy7rxbHBI8vb9gvNysqrwuZhy9ktJIvShxgbtuubQ8a88yvK0MQD2fhU+8UWkYPDlbXr1DtgS98F/lvPTmB7z+pI297RIEPGYGSL1IlYc9dqPQvNysKrwtkj+8eXe6veF1lbwyOpO9SJWHvMQ7kbyoF6U9bPvivEH4srxw+/w7L0WFPGY9d7zKOzg8H+o3vGLlCb2aZJE852owPTwvyLyV3eG8I+pRvT3tjLuhOBW8FSyyu+0dELsIxvI8NUWsPCfqazzPUWo7Pu2ZO/ko6ryE8wQ9W2nZPAd5Hj3YoQQ8bcQzvW0R+7zXrIM8zEZRPF8cLL1QfyO88RIevfBfZbzuVEw8ZvAvPcNGED3W2CY8adqxvAuExDvQ+SO94ONzO2My3rwX9Q88LofAPEerkrsks6K8sL+FPLOphzyib9E5q+CCO5bS4rxdERM5RiT9vBfqA726iJe662rKu67gHDyz60I747ddPdm3HL0Gu9k8pgwMvfJU5recerY847fdvIc1WjyH6BK8voixPNUPVr2UeoI8LVAEvaM4ojzbrB29KN/sPDQ6oDzQMFO9IBZoPBFCsDsucSg9+Py5vKYiJD3wSU294cJcPR83/7yihWk81tgmPIwUXT0NpXW8mZC0PPD8BT0/AzI8QwPMPHuY6zy+chk8GGP7vBlCZL2/nsk6C4REvLbVRLuEYXC8QtcbPEjizjqmF5g83pYfPcO0+7ySCXi8M2bDPFleQLy44N28Ru3NOg1NIjzOO9I8+vG6PfBJTTzKJSA94XUVvCHfOLpKiog7283BusYlhrvPUeo7SOLOPI6xCr3jdaK8h/OevF8cLD2qDKa7VkgbvYbzkTxE4jS7nabmPChxAbz5xQq8FHn5OtPCAbxuBvw7IgtpvDFFkjr+8dQ8tr+sO+koAj0h3zg7M1ArvUjMNr3d2No8rC3XvJ9OILvoPg295cJ2vHK5TrvoM4G9j9IuPSCziLzfzVu96JZgPJGbjLzS45g6p05UPO0onDy4k5Y7CLBaPRR5eb1Rq9M7axx6PSTJujyoLb28uMpFvNqWBT00LxQ8O2Z3vJq8ZD0YLEw7XDKqvI3SIT38pIA9WEgovbO0Ez1Ofxa81wTXvIvSFD221US8oHpQPciT/rwzZkO9Ni+hvFZTpzvS7iQ92ayQvEbtzbxxdwY9Id+4PS+zcDsBxj68cK61vM470jv68bo7uakuPWFedDzclhI8T8zqPFKKPD2getC80Q88vU2rOTr28aA8hh9CPA+E3jtAL+K7XxwsOxYhMzs4Ly681xrvPPTmhzwzUKs847fdPTokLzxZXkA9zQ8iunmN0jz5KGo8VJVVOzI6E72ZkDS9m5tNvaQiFzw6Okc86lSyOwpjIL02h3Q9ignEPApNiL2Qx6884qFFvP/QPb6zAVu9LGYPO3psO7wzZsM76x2DvPvmO70kyTq95FQLvWfEDL2J8yu9qVltvcNGEL0Obka8Id+4O+Dj87uBH5s8qesBPfq6Cz1BRfq8TOJovLUMdLzQ+aM9nm+3u3aj0DporgE9LofAuoFAPzwvW528Zc8LvWbwL73/5tW8cvD9uaVZ0zyT6OA8YxzGO//Qvbmw1Z28AYSDPG65tLvQ+SM9kKaLPU6gurxbEQa9jdKhvPQSODx12n89gSonPVxIQr08L8i87lRMO3F3hrzBUQ+9nrz+PLrVXr1COvs7A48cPdcEVz3+8dQ8y1HQvHN3kzzPGju9Dm7GPKNOurz4ElI8Qu0zO5xZEr3Efcy75kkMvKGQ6LwPhF48TJUhPQSwQDnoPo282tjAucolID3nt3e9F/WPvGyuGzxAzAK+FUJKvEXBHT07A5g8q+CCvLUM9Lpzz2a8JMk6vKwXv7sxW6o8JoeMPjYkFT24iIq7xohlvEkOfzyN80U8FiEzPYnShzt1jTi8YEjcvEMDTL1pEeE8rBc/PXpsOzxumBC7jBTdPGz74rxA1448dY24Pbe0rbzXBFe7ZzJ4vQjG8jxAL2I9xJPkvB6+B71OoDo87JZ6PNyLhjzU46W857f3u+o+Gr0YY3s8ILOIO/66pbzGnv08DHnFu3a5aDvft0M9PteBu+9qZLtzgp+52becPOFqCTxnMvg8sC1xPHGNnrxhES29wnIzPBILAb2DNcC7Fm56vEqVFLxE4rS8OVvevPT8H7xzdxO9oUMhvI/oxrwX9Q89oHpQPWccYDyib1E8PUVgPHuCU7wCuz+7K1sDPZZ6j72wF1k7k4WBPb5yGT1zz2Y9TIoVvQalQT0vRQU98x03PXeCuTyAYdY8vMrfvBAWAD3EMIW8k4UBvD9Q+byebzc8ekCLPBs35TzJD4i8n0OUPJa8SjyrASe8FAACvN6hqzxaPSm9KMnUu8Oe47x4ruk7182nvPBJTb3iocW8ZvCvOhZYYr3GMJI87EmzPBUssjqES1g9CmOgu+8zNb10rk88+x1rvApYlDwoyVS9jrEKPYnSh7rXrAM91Q/WPEDXjjrLGiG9DE0VvOis+LwFhB09YxzGvMNnNLuX6Po8aRHhPM/5ljwAsCa9ZzL4urAt8Trpdck8t6khPRgAnDwKWBS9FACCvAPR1zyJ3ZM9UWkYvfT8nz312wg9ssoePLAt8TsfN/+8UqBUvGI9Xbwj6tG8/pmBu30qDb0j6lE8pGTSO3OCn7wFjyk7PjrhOx4LTzzZwqg8xDAFvRILAb0Exlg7wjuEvFYyg7w1Ray8EzexvEcDZrzXrIO7182nu/vFFz19jew8xohlO10GhzzDnuM8Xj3DPMB9Mr0BhIO8lHoCvKkBGr3moV89FzfLuzpx9jxuo5y9q05uvBB53ztKoCA7ItQ5uW6NhDvLBAk6nUMHPJ1DBz3mSYw8jgnevJGQgLwm1NM9cJidvAOaqDoSCwE+Zc+LvHs1jLwuZpw9drlovFHB6zwMeUU8oZDoPOV1L73crKo8ZvAvu3dsoTyaWQW8oHrQPGkn+bySphi92ayQPBQLjjz28SC8takUPLfrXLxi8BU6dcRnO+8dnbyCVte8MZLZu7+eST3btym6KMlUvHVslDyR3ce8bdpLO0QvfLs0fNs843UiPfJUZrn0See72OM/ve8dnTtxd4Y7YPAIvRnfBD35KGq9/K8MO8qIfzzQ4ws9GGP7PHxLJDxxxE28EhaNO4QUKbyyInK7/rolPXWNuLwd9TY9WEgovb5ymbyihWk97j40PBnfhDw2GQm734CUPHmN0rx/NSa9n7H/vBOEeD2uIlg8ghQcvcI7hLzS7qS8YRGtPPCA/DzxKLY6F+oDvaQil7wi1Dm7lcfJPEnBt7y3npW8WJVvvJebs7t/gm07VV6muu4+NLwmhwy6vanIOJObGTyfsf+7vanIvNnCKL1EL/y8jd2tvLmeojys1QO9FAsOPYnzKzzvamQ91timPM1cab1yo7Y8XServEmrH71WSJs8GCzMu3V3oDyF6IW8hWFwPZa8yrzVt4K8JtTTvE10Cr305ge92qGRvGMcRr3uVMy8LajXu+Fqibxm8C88gx+ovASwQLxAzAK97zM1u5CmizyVprI7OhkjvdQw7TyEYfC8uogXvAl5K7wkybq86SgCvYQUKb2qIr480SXUOnl3urzXrAM9OQOLvRhje7204EM8OC+uvB4hZ7zti3u7i+gsvNyWEj2/Z5o7Qu2zOrTgw7vrgGI9OBkWvRf1j7oCpae9OVtePZa8Sr261V49xjASPGnEGb2N3S28VyeEvIIUnDsaIc08QOIavNrYwLwh9VC9d2yhPCxmDzu8cow8mLHLOzKHWrvLUVC88x23PAiwWjsUeXm7O1Dfu/+Ogr1iU3U8FHl5PCWoo7xK1089BLDAvKNOOr3RzYA8eY3SO0erEryMx5W9j+jGPOe3d7tSoFQ78j7OvPIHH7yZ3fu83cJCvXHEzbyib9G8wojLPHxLJL2bhbW8aPvIPHV3oLtiBi487lTMu32NbDzIJZO8pVnTvHZhFb6Mx5U89OYHPF1e2rl5dzq9XQYHudru2DqlWVO733UIvYfdhrwns7y8uZ6ivELMDz1Rq9O8MGapO/L8Ej38Emw8K50+vIRL2Dy9XIG62cKoOeaLxzxHtp66ywQJvSp8mjy0yis9YuUJvJ2Qzjx4S4q61Q9WvNLupDwAmg48R6AGvPEoNj18Ybw637fDPAl5KzzGJQa99ge5u2Y9dzwqcQ47qQGau7eeFb0MYy28uZ4iPfBJzTzoSRm9kZuMuxYhs7zvHR09o046vHtAGD39xSQ9AfLuvAyw9Ly21cQ8bOXKvKAtCTw+JMk7xJNkvP66pbwvndg8FzfLvJpZBb1jMl6818KbPBQAgr1zd5M8pCIXOrxyjLxp2jG9iUBzPU6gujzXwhu8XlPbPH13VDz6B9M6wojLO/nbIrsbN+W89eYUvFZTJ70bALa8drlovNvNQbonnaQ70uMYvT1FYD3Q+aO8laayu/fmobxSoFS9oTiVvNLYjLwd9Ta9J7O8PDSS87waIU27w0aQvI0q9bqN3a06nm83OfU+aDwQTS+83OPZuxohTT3wX2U9pC0jPKoMJj05Dpc6wr96utW3AjzTGtW8kgn4O34fAbzraso7rwFBOna5aDm3qSE7a88yvY0q9bycWZK6dJg3vF77B70wfME8Uoq8O381Jjzy8QY76XVJPWrwSTwQeV+78AcSvSCziDzU+b07W2nZPNI7bDoJj8O8p/YAPUn4ZrxTtmy9Qu2zvIMfqLzjdSK83KyqvJrSfDz68bq5KZIlPUI6+zyACYM8BmOGvHXE5zwQIYw8sQxavOZUGDyVhQ48TOJoPMNntDwIWAc733UIvTBmqTwkyTo9lYUOvZuFtbz75ju8cY2evHHEzTrzHTe81Pk9u+4HhToznXK87lRMPd91iD2w1R288j5OvX0qDT0lqKO8xjCSPNAwU7wA/W09kBT3O3CuNT17bLs9ttVEPQhjk7pnHGA8xVy1PTgvLr3c+XG7YREtu3+C7ToiC2k86F8xu6YXGL20yiu9jLwJPQ+EXjyGCSq8JnwAuVNembwCpac8ZvAvvYroHzz2B7m8VVMaPKkBGr1rzzK9krywvK7VEDzzM8+8381bPBQAgrwyOpO8ddp/vMQ7kTxgMkQ82ayQvHpWo7wa1AW8naZmPbEMWrsWIbM83qErPQPn77zc+fE8ZPuuu0mrn7yES9i83IuGPOah37uFQNk6oVk5vG6YEL3crKq8BmMGPToZIzwRQjA8zVxpvZhkhDwXN0s9zjvSO1l0WD3DURw9EgsBu+2L+zxuEvO7AjJOPak+Nb15EYE8fyG/vC3IFTuhEo28FmiOPbrlDzof4L08Z4lju/pAzbqe2ri8OjecPJ+4+DwQRG28fvR0vFq99byugZM8rzWMPE/jKr2nMyu8ih3KvM2GlDznsCi602yLPJtnPb3pgAu9Xch/PCXGND18rkO8hULdvDizQLsIgDa8Usx0PL0MhLu6iKi8Tns5vTDNSb0TnoE9KK/+PIqWm7ubLJY8oiv0vJSjBj2Gqs68kD5ovcnV7rxmq6M8xqAdvYvtLLy7/va8/Rs6PSYupryBAgK8slwAvaQ2/r1BDDO8d/WWvSfiHr2J4iK8ynuKPTOujDtSVia3jyWBOyxPRD1cUjG7Io7gO71Yi7ybZz29p6n5PDdLTz39s8i82uQ6vcxI6rz275E8lfqXvJNU/DsEPVg8gqWaPKjWwzuoEes8YABUPHqB+TuPYKi8lq4QPQc6BTxPqIM84jKjvFDBar2wx8S8gP/+O7ogN7umBuG8PwEpvFKRzbvwrDO9yPcuPMKKCT1C6nI9A3j/OipVGrxGTxE8CyPPvND5j7iKHcq8TRNIPI74tjxX1Cs8vKSSvAmAtjyaOnO7hW8nvG1vWjzUwxy7stJOvDQTe7ztSpi8X8UsPJyUBzs7nw09Oya8PA85Yz3TWyu9OZSDPNlSAr0K6Ke8lN6tuTth47xhlY88MjW7O+QCBjzD73e9ntq4POjMEr1P46o8MaMCvUT1fDyZXDM7YOGWvQ93DT2Shxw8H6UWPVXaAb0f4L08OyY8vYCJMD2wAmy8adIXO3ipDzmyXAA9BWqivJeM0DxaWIc8Jca0PIDEVzxsRRM92uS6OsmaR70UfEG9K6wrvN0cjzwNbAO9exwLvFK+lzyeUwq9351nPPZlYD04s8C8RPV8vGwH6TwPwxS8zNKbvK8krLwX77w6ExTQPH6PBj4cqGk8mngdPfdXAzxSVqY6cQ8gvLogN7zXrGa879zQutHGbzxQSxy9uBUtvRPZqLx92w09eqO5vP9IhL05Nxw8ZBZoPG4S8zxrn3e8Y3NPO4aAh7sjzAo8FHxBvDBlWLz3CPk7ZBboO6Ag6rtb6j87sqgHO9HG77xTYbC7pSihO+NODb1yK4o8WyVnvdNbK7wwO5G84uabvB9ZDz31/W68ZX5ZvdzvRDzdHI+8XfXJPFCGQzvp9lk7X8UsvEbFXz0jXsO98ERCPBbvPD37bZc8vvsjvHYD9Lk3hvY8Vw9TPGdOvLzn6089IzH5OzHNybzks/s8CugnPXQ2FL3UZjU9Ojecu9YJTr1LgY8816xmvAOaPz1ho+y8adKXOqyxsLza5Lq6AGJrPZgvabwD1ea8ZqsjPBRBmj1ebhs71s6mu4nwf7zJmke8eqO5OzyOLT1H8qk816zmPKAg6jw7Jrw8PI6tvF4iFL2yqIc8DfOxO2ILXjvyinM82UGiulDBajxEXe47SJVCvDxTBj0anV884jKjPE624D0YHAc9VCYJPcK0UDwHOgU9cbI4PNMgBLzG7CS8IetHvS+HGL2Om088GFeuPJYkX7s8ji29I8yKPXyuwzyrDpi9GXOYPHZrZby0ojG+jyUBvTQFnrsHsFO8x219PJxIgLr5rpS8QnQkvd1XtrzctB29CrtdvY5xiL3ElRO9XbqivLwrwTtNTm+8rRkiPI2QxTvdaBY9IzH5vAWlSbyOm0+9AGJrPV6KBbq/2WO77nTfPE5AkjxJONs73O/Eu5QZ1bxZGt28LXwOvX9cZrojgAM909F5PLwrwTvxrLM59B+vvDwE/LvwRMK7I8yKPSp/YT16o7m8aVnGvIh6Mb1jc8+89f1uPba+Gz2xL7a8kUlyPKVjyDyL/ow7yHAAvX/mFz1WfRq9T/QKPDmUgz0MuIo968a8O4cSwLp+fiY9NNhTvRn6xjynbtK8RPV8u8ePvTz9s0i9glmTutRmNbx3QR69ikoUPbKohzylKCE8rOzXu3h2bzz5Yg09UEucvQNfmLwfWQ87p27SvSXGtLokmeo8OVZZPDvrlLxaDIC8OLPAvBJxN7zlWZe8t9oFPSj+iD6myzk96MwSvGyRGrxvPz08n6obPHOQeDwmPwY96iOkOy6V9bw7Jjy9bpykPEuBDzz/+fm7Usx0PCEm7zx7C6u8fRa1O5ADwT3OGE29FLdou79jFb1CdKQ8eXbvPDdLT72kNn68w1dpO4BOCTydcse7/bPIvNeCn7wX7zy8exwLPVnfNbyvmvq8CBjFPAUeG7y4i3s7KHRXPROegbpCr0u7M2KFvPg1Qzy7w8+82VICPA/+u7pkVBK8avzevPg1Qz2RSfI7+6i+Ow93jTsBjzU8iIsRvSakdLykY0g8XcsCvfdXAzx70IO8kWuyPCl/YTz5nTQ8mv9LvDVARTygXpS8210MvAYNOz1mIXK9USlcPGGjbD2GgAc9nEgAPcYnTL0xzck8YWjFPIJZkzxkVBI9avzeOzW5lry++6M8wtYQvWyRGr0j9lG9eqM5PMGpxjzCiok8GtsJvV5duzzLLwM8liRfO2eJY7z5rhQ9msQkveBiwDtcjdi8aPFUOlVsOrxX1Ku85RvtvI0JFzz/lAu9K+dSPLJcgDt4mK+8ifOCPZX6l7x2a2W8mnidPMhwAL1m5ko8tQojvYnw/zx86eo5TowZPTYhiDtaRyc89B8vvf4bujs47ue820wsPVg8Hb2+njw8erSZPG6cpDy+Nks8QdELvYP8KzsG0pM8P3f3OQewUz3Wzia8l1Epva68Or1BR9o8aoaQPa734bw5Vlk9pgbhPExwr7sD1Wa7L9MfvWeJ4zuShxy9rRmivFNhMLvLpVG9Xl27vKrhzbp3QZ68mv9LPHJ3ET2xL7Y8o1i+PLxmaL0qRLq810//OtrkuryY9MG8GfpGvQOav7yDDYw7OZSDvPB/abx6o7k8exwLPQ4PnDz8EDA8Bg07PRzmEz3oNAS9PTFGvPKKc7xpWUa9wW4fPbUKIz1z34I8XGORvWtk0Dqdckc88sidPOsB5Ltjc0+8Jwzmuu8X+DpZ3zU9+gUmPRaHy7t/5pe8KP6IPbpbXrwMuIq72J4JPnPfArxNTu+86fZZPWIL3rwwzUk9HOaTPAVqIj3/SIS9aLatvJ3rmDy0Z4o8do2lPOrXHDr5nbS8X9YMvZp4nTzkPa07KK/+u8W/2rvEHEK8wAYuvXgO/rv6Fga9HG3CvCGwoLx3QZ48obWlvND5j7xUJok9nEiAvHjT1jxtb9q8RH8uPJgvaT0/ASk8VWy6OX/mF73iMiM8WDydOk57Ob1br5g8rVRJvQ1sgzzn6888OOAKPcf3Lj3F/QQ7mPTBvISfxDxveuQ6Lh8nvG6cJD0oObA6EYIXPaqmprxGiri77v4QPXT4aTwG0hO7rzWMPHhdiDw8jq28K6wrvCNewzvspHw8mVyzO4UYFr20s5G8ZFSSvGM4KDzO3aU8szrAuqkDjr2fQiq8dDaUvDQFHjz1/e66qrcGvasnf7ymblI8GTXuOwrop7vks3u82HzJu3uB+TyMY/s6+kBNvNieCb1u18u8ACdEPMwNwzyITWc8Roq4vFCGQ7od8R08DpZKPSXGtDsEewK9MaOCPFJWJr0/PNC8SJVCPd1Xtroiuyo8GieRvNPReT3KAjm74cqxvEiVQrwlAdy8sUCWvNrkOr3+4BK9ZBZovJWBRjzuObi7THCvPAlT7LufQqq7IMEAvTNwYjwand88Y672O2yRGrs5lIM8H6UWvWruAbzuOTi8Am11u4nw/7yenxG9yPeuPBVdBLyFzI68yj3gPKOT5bwjzIq9w+/3O5sslryhTbS8vc7ZvO7+kLw6vko9aZRtunMaqjzO7oW7AjJOPc06jbxGxV+8Vmy6vVBLnD1fO3u8hQc2PefrzzzozJK8HxvlvP5W4bzbwvo8oYjbPABi6zsBj7W8B3WsvCcMZrtb+5+8stLOPCCDVrwEe4I8keSDuwiANjySsWM8kUnyOgR7ArxQSxy9aZRtO8p7CrzKAjm8z0WXPNsRhbxJOFu94J1nPbR1ZzxBDDO8KdzIvc9FFz0iU7k8fHOcOzcQqLyOcYi8gE4JvVpYh70bQPi8v568u4D/fjyM7ay8JJnqvJeMUDzBbh88S80WPP3u77ttb1o8rSoCvOojJL3NOg2+CYC2PKMdl7oxzUk88KwzvQjrejzB5O28qXncOglT7LzpgIu82xEFPMfK5LzVodw8c98CvXsLK7n/+Xk83LQdvAOrn7xyVdE8TOmAu1NykDvf+k48lmIJO+vGvLybLJY8V5kEPe0M7rxX1Ks7gP/+O6PAL7xV2oE8jctsvJ03oLzQ6C89o1i+PODbET3MSGo5YtA2vaNYvjneNXY8AVSOPLnz7DlavfW8dQN0vOs/Dj03EKg8HbNzvSg5ML3QXv68Qq/LPFsl57yUGdU8uuUPPVxjkbtX1Cu9GfrGPMul0bwHhgy90OgvuyOAg7wLXna8rs0aPb42S7xN2CC9ewurvHiYrzw+Eom97PMGPWIL3jv+G7q8r19TvH6PBj2KWHE80vM5uicMZjsI3R08Or7KuKczKzzlG208lFT8vPFxjDxX1Cu9/NUIveaDXrsOWyM7AGJru41VHr31owo9WyXnu3BKRzvnsCi65kg3vdqpE7y0orG7bMxBvfWjCj2ylye9X8UsuwroJzuhiFu7EGatPPHnWjwYV648N4Z2vNesZrzu/pA9L9MfPfSYAD3a5Do9gE6JvGmUbTlfigW9jvg2vCTGNDxydxG95D0tPF+KhTzQ+Y871P7DPMwNw7wUQRq9n0IqPKbLObyGqs68YADUPDqDozve0Ac8Roo4vDAqsTxu18s8hW+nPM5TdL15EYE7AY+1POsB5Dy0dWc8IA2IvCoi+jyLsoW8yj3gvBbC8rwfG+W7dGBbuzW5lrwSNpA8TKtWvXhdCD1R/xQ8jcvsPNbOprz/g6s87dFGO3CnLjtpWUY9gQKCu3gO/rvFv1q89gh5PA5bI71tb1o94I8KPaOT5bwHday8xwgPvEBHWruzDXa8/XghO9c2GDwzrow8/4OrvH8hvzxIDhQ9/0gEPHyuQ70jXkM9FodLu7SiMT3nJvc6D3eNPUk42zsznSw9DASSPaFNNDwC96a7tiYNPNl8ST0znSy9bpykvIvAYryTseO8ygI5PEDfaDouWk68ktOjvGmU7TwOOWM86DSEvFVsujpCUuQ6pZ5vPFEpXL3FhLM8uBUtveUbbTyQA8G8oCDqvGtk0LxERIc6QUfavAtQGTxWbDq9RH+uvODbEbwePaW7ommePOxpVbxEf668i4W7vE/0ij0WwnK8nlOKPYxjez2v6QS8zlP0O8ul0bys7Nc7XiIUvejMEjyu92G8o5Nlu2AAVDuKlpu6ZiFyvAgYxTt8rsM8DIvAPOiOaL14du+7YWhFPSuKa7wVqQs9VckhPf2zyDzYT/88w25YvLHZUT2ypJw47saKvA1SUru9bMs77oofPKpIZT2LmLs8rfUDPcgNnrzjDi88VBWTvAjY7rswTs07PWnwvAjIG7xW8DC9veShPJkNCbxDlxW9wbgcPGmzybikRti7+zSiPLU8rLsYGAe9G3SrvIAjgTx6uXC7INeFuuxs4LvzFNa83jq0vOF/zzw1wfq5Q3KzvDQiSL32SR69onkTPI7NgzwDZUG8JdLcO1Z/EL3YwFA8hjXhvJr4+bx3Xcy8MvS1vOKW2Lxhgyq8aSsgvc68Nj1LVpS8K+tyvLqv2bsFk9O96BC8vPs0or2/Th+9vxK0vOyDaT3gaMa64X/PvKe3izxth0Q94OAcvCMs9LmVIoW8tK1MvSZ4xTxaPII9IJsavAw7ybxgbCG9cQ+BPG9pGDvH9hS83SOrPBRU3zwO2ns82t6PPLSWwzxgbCE7by2tvPSjNT3m4qm7GBgHPTSDFTwFCyq9T+4jvQAwebsuILu7FJeAvRt0q7uU3+O8PeFGvISP+Dzn+TI9Mwu/PLAzaTyd4YO8sVGoPNYKFb08yr07AtZhu5b9Ij2V32M83ZsBPQnfpLxyckg8D4BkPFjShDysoo88075DvGEL1LvfyRO9mCR/vK+rvzwBNy+79W4APQgEBzvtmnI95DxBveS0Fz1ps8m8TcCRu4E6ijyVbsO8pV3hPENyM7yC2Tw8vSCNvesJGTsabfW8aBSXPBPMNb0Oads8YtYePeXbc73uxgo931E9O0y5Wz37RPW82DgnPV4nhr2REh89bf+avCIV67nFnOo8mIwCPZb9Ijxi1h49L7/tPGOxPD15KBc9Cg03PeeB3Du4CXG80In7vEPTAL0IUMU6rX2tuvdweryKCdw8qamyu4Jh5jwQhxo9KKbXvJ9bVLxbapQ82u5ivP2en7x1p5C8mVlHvFem7Dy99PQ9XQnHOxGu9jy2tIK7P4evO6rAu7teN9m8iNtJvE4TBjxD0wA9Z4W3u3h01bxP/va8cuoePQAgpjzb9Zi9sVGoPJ9b1Dy5mNA8hR5YvAoNNzy8CQS8MMYjvIUeWDydLUK8CmfOO+q2pDwlwgm81QPfPLStTLunA0q9hAdPvWbmBD2Whcy88wSDPBzHH71EiTy8dKDau9CJ+7zt+z89TLlbvNZGgL0QD0Q8q19uvAuFDTwS8Ze7xRTBO20P7jt31SI9nHeGvXq58Dv3cHo9H0imPELMSryri4a8e6kdPQr2rTwX3Bu8p3sgPSsXC7z0ozW8a+FbPeknRT2Au/28N1cQPQGoz7ox1va8U0rIPBi3ubztmvI8G4T+vPqlwrzSNpq6K9ufPLzd6zyMY4a8CNjuvPmOuTyqwDs9HaK9PGSxPLxLotK8PFLnO5t3hrxJKAI9yv/EPNcxcTyKvR09HkFwO+6hKL2MN269Z/0NPAaq3Dxhk/07eOwru5ye4ryHeAI8P/jPOtSgF73qxnc8jlWtO0/+drtl3849fNevPDFlVj05wQ28dr4ZPbonsLuulLY7hZauu6cDyryy8Fq8bTsGPPzTVLvf2eY8+zQivY16jz0KboS53jq0vc9iHz3GK8q8Nsgwvr+aXb1hC1S7YGyhvMwdhDwzg5W8FFRfvbFRKL2sZiS8G7CWvKkx3LxWaIe9I1gMvWIiXbxiIl08mnBQu6FiCjy/ErQ8Gc5CPbiBR701wXq80kbtvIR/pT02QAe9W3pnvHHj6DxDrp48kZrIO9epx7zrVde82ccGvG+eTbszC7+7zltpPPh3sDxwvIw8JYaeuzxS57wtgQg81goVO1embD2+C349TDGyvAskQL1x05W8MmyMvJESnz0XoDA9Cd8kvUSJvDx/HMu8Cg23OjXBerzihgU7q4sGvftwDTxRpF89VvAwPfu8S7yYKzU7sx5tPBCXbbx4ZAI9m3cGvPQrX7wku9O8GVZsvf8YcDxe6xo8KtTpvJIpKD2U3+M8mCu1PNJyhbuxSnI8mQ0JPb1sS70fhJG8mCs1vK8z6b0r63I8G7AWPSCbmjm3HoC8WlOLvMNehbxkfIe8mCR/vHbObD1n/Y0+exo+PcqHbrx1L7q8XL0IvMdC0zx6ufA7/Euru5GaSLk17RK9FXIevSx60jxD04A8mbqUO3h0VTvbfcI8JmG8vCim1zyyaLE9j2w2vFTZp7xd1JG9EMMFPMwdBD11Lzq9jK9EvfFeGjtSHLY8R85XPLfy57yPbLa7z+rIvBEmzTyXs16861VXvGuVnTyXFCy8dJCHvHzAJj1kQJy80cycu/joULwYt7k8e0jQOj3hxjyr10Q80cwcvXzAprwZRpk8C9iBO9AB0jq7Pjm6G3Sru0/+9rzy/cw6o+OQPPBX5LxfZWs8Q9OAu1Vohzyf4/08qakyPDqcKz0Ql+08a1myvDYEnLzm4ik9tUx/vXqiZ7wMrGk9YfuAPdRkLD2pqTK90HkoPYUOBT0QwwU8qBrTPD3hRjxPds26A9ZhPAULKr30K9+8NlBavfOc/7kamY08hH+lPMwt17y6nwY9cePoO0NyMzyQC+m8wbgcPdpmubwPgGS7Zd/OvCvr8jsFCyq8BZPTvPJ1o7wDGQM8HBNevWR8Bzy1PKw8nI4POwkbkD0gX6+8EA/EvJ68IbyDpIe8UucAPBRraL1aY948up8GO7UOmjzcMQQ90cycPCzyqLylTQ48p4vzO1RhUT21TP+8OH5svB5tiDwumBG7/xhwO2pCKb0ku1O8gcIzPB65xjx4dFU9jXoPPC0JMr2moIK8x7opPUkogj2Rmsi8zoeBPaPjED1fPo88UqsVPIwgZb3WGui85cugvBgvkDtT/gm8C4UNvbMe7TrO07871Xu1vImmFD2IY/O7xIXhPHL6cTxLGqm9OQ1MvY6RGLy38me8vgt+vExtHb0E7eq8wlfPvJNAsTwbdKu8qsA7PNepxzwKZ867cwEoOiXp5Ty6JzA9O++fvAG/WDubO5s7UjM/vVwJRz0E9CA8pwNKPH+Uob0++M+777ixO0ZrkLup5R27UI3WvAjIGzx6ouc8NTlRPNwMojxLotK8NCJIvBzsgT0Ms5+8dJCHvFpTCz4kM6o56BC8vNUDXz0sAny7PnCmPbDCSLwoWpk80AFSvacDyjqZ0R08+f9ZPGpCqbvrCZk8PvjPu3QYMb36HZk8b6UDvIsgZbufW9S8LYGIvCS707wtCTK8wCk9vEjVDb3ngVw7DDvJPGgk6rtRlAy9Ab/YPLs+ubxEibw7IF+vvPecEj2/mt08kZpIvIwgZTzihgW9d+V1PHSQBzvI0bK82wXsPB0qZ73vuLE8XSDQPOknRT0eQfA8ME5NuoqBsryuHOA50cycO0KADLzwV+Q8rGYkPNchHj2LmDu9B8FlvEQBkzzgaMY7xIVhOn+UITwGmgk9D4DkvJ0twrtSq5W8Dh0dPbzd67q++yq9pPqZu1Rh0bupGtM64fclPAys6bsIyBu9eT8gvMlwZbuacFA8NNYJPD+HL71EAZM7yEmJvJA3ATwHsRK94ByIvPQr37vhB/k8onkTvHMR+7vvKVK8tSUjvX/QDL3Huqk8VXjaPB9IprzcDKK7fn2YPEjVjTyJ8tI8yoduvTqcqzyEf6W84yW4vNUDXzykNgW8daeQvLs+ubv3SZ49D4BkvHkDtbvihoW8jcZNvNAB0rwIBIe8JLtTvTYEnLy2tIK7d0ZDvNg4Jzujp6W8bPjkvCx6Ur3Sp7q80HkoPa9fAT1oJGq8yv/EPCCbGr2Z4XC8m4fZu+Xbc7zkPMG8R4KZvOZTSjwBv9i8UrvovO37Pz0kQ/28Vgc6vdB5qDuO3Va7N1cQveUHDL09WZ08qBrTPL43FjvmWgA8nI4PvH6Naz08Ume8p3sgvH38kb3cDKI9zrw2vSIFGD0wAg88PFLnvMXIAr1/HEu8SgOgO8uOJLvZi5u7kSLyvLXE1bzktBc6uicwPDOTaDyDpIc7Q/rcPK6UtryKgTI8BkcVPOgQvDsZzkK7ZqoZvYOkBz1Z1P48FOO+vI03bjw5haK8IxyhvD//BT2ZWce6JLvTOQl+V73nNR48oqBvO0JUdLzEhWG8CRuQOnLqnry6r1m9Oqz+vN2US7ttcLs72wXsvHFbv7xg9Mo8fF9Zuw/4ujzYXYm8OpV1PBt0K7yFlq68kmUTvkfO1zvmHpW8FoknPHUvOr283es7uz45uziqhLspveC8j2w2u5D7Fb1vaRi8zKWtuwoyGb0Oadu8qAoAPVEctrjdXxa8eqJnPO3kNrzO0z+8WdR+POo+Tjyd4QO95CW4OyMcoTx2vhm9iI8LPWvRCDu2UzW9qM6UPBLFfzz9h5a8cEQ2PRpdIj2VIgU9bf+aPJCDP70Va+g70r7DPDkNzLva7uI7EdqOvLFRKL0LJEA9WTwCOW+lg71cCce8hdKZORvsgTwci7S7UEEYPAl+Vz2lTQ45FFTfvCMcIT3m8ny8ShNzO0CeOLzmWgC85lNKvBt0qzyvXwG9JmE8uoPwRb34sxs8y553ve6xezzMHYQ80qe6vGrK0ryNPiQ9i5g7PJecVbzHuqk8OPZCvOXLoDwlSrM7UAWtPOxcDb0l6WW8QuPTvOvNLb35BpC8qkjlO1eWmTxiIl29UAUtPQVHFb0uqGS8Aa+FvAJOOL3qtqS80OrIOX8cS70JG5A8/doKPByLtLzZ11m88ZoFPXqi57vtrwE9XAnHPNEIiDt7qR28N985PcbfCz1XHsM8hHhvPQ+AZLwGqtw7wcjvvB9IpryndOo7QbXBvMYrSjxkUO+7SV03PBTjPjzs5La8nvgMvRuEfjyfDxY853EJvfh3MDyd4QO8YJGDPCNYDDxMMTI9hjXhPBYR0Tnq8g+9Ab/YPPdgpzvByG+8Md2sul/dQb1vaRg9N1cQvF6YJr3eOjS89bq+vApuBLyoi3O8gToKvA0GlLx97jg9KxcLPTrYFrtNwJG8QuNTPLkQpzyulDa8a+FbPQzviryvM+k8YiLdPPFemjyy4Ie9Rj/4PMbfizwfhJG8hjVhO1pTC7wm2RK9aFCCOx5tCDzTiY47mzsbPFLnADwSxX88mboUPXWnkDx+BUK9m4fZPKO3eLy1eJc8wt94vMMimj18wKY8iGPzPPdgpz1UFZM97GxgvFTZpzwOWYg9ZHwHvad0ajzydaO8WhegPPjo0Ds9QhS8J0MQPPs0orwAqM88a+Fbui/rhbxXpuy8pV3hOirEljxXHkO92HSSO3upHb0Gqtw8UEEYvTXB+rx47Cu952pTPIatN71U2Sc9pL4uvaiSKb24gce8uz45OtO+QzwHweW74oYFvdTVzLub/y89KxcLvcUUQT3oiJI9vWxLOxK1LD2rOBK8V5YZPO8p0rwDZUE9RIm8vMPmLrzHQtO81zHxvENyM7x0GLE8+zSiO0jl4DuWhUy7kRKfu3OJUT17SNA6L+sFuHoavjwrY0m8dS+6PPdVsTs/9pg8p9VMvImt1rxu8gi8bVYJvGzV4DwyGh09TQqUO0Ydbjxmcou8eHVcOyEl+rdDUpc8FramPKtFyzt1jV07dN1dvNLVPTxKDpW7KM33vAwmKj2F5gC9Cu4qPHut2ztRopK6zAXAui9NdTxGnpY7e61bvPgtsbzdFbq8NvXyvE7V6rw9qpm7PL4Zuhv+pLtf8g29dK6GvNy1ujywjck8TSXrOyQGojtSPpK8Ge4luaJlTrx+eoO8iE1XvTR6nDp2Dga9gWICvTb18rwkDXk8VaXovIRKAbvtxbQ7FFanvUQWFzxi7oy9dMKGvRzde7zQxT49gMYCvTbGm7vOPT882PU7PXwaBLx5HgW8aL6KvEXN7bzW5Tw8Tv1qPb0Fxbu9LUW9V7VnvXHGBzsT1f483LW6vFANajtYjWc7bGqJu9dFPLrJHUE8OeqavNFNPjtAkhg98jWzvHr9W7wn7qA8KPX3vDAKnrxeXeW7ADYuOb61RL3uTTQ8sRVJO1SyEb02HXM8REVuPIX6gLyIJVe8m5VQu1T16Dyhjc68G1V8ORJ1/7rgJTk9eIIFPaTFzTzRJb68d+YFPcYNQryCEoI8Eh6oPHWGhrwl5fi8V7VnvXNVXryGvoA8VEVpvD4eGT3uTbQ8GcalPVKV6bz9Ta88C3aqukjqFbxoFeI8Ux3pvOYdNz0Cvi24E3V/vGqdYb1/7gI8I615vc/tvjwXZqa7zbU/PMA9RD2GqoC92wU7PXWGBj0XZiY7Jx14un5Sgz3hrTi9LRV2POw9tTxK+pQ7p4VMPFrSDz0OXik9T2qTPBRWJ7pURek7fpXaPLxVRT18Nds87O00vTkF8jwVLie94f04vSlOoLxGpe08wZ1DPP+tLr0tFXY8SN1sPF5+Dr2VnVK9TR6UPKUlzTtERW47xK1CvLltxjtJjew80U2+PZxt0Dww4p27CY4rvElKlb27zcU7ZS3jvHkKBb1ixow7qpVLPReOprxvogi97O00vLxVRT2iZU66zj0/vVk9Zzwyap08VIqRvHr9W7xjsow9HWV7utj1uztMnes68YWzPEvt6zwZnqU8VEVpu0f+lTxQGpM7G/4kvUoV7LxYNhA9+bUwvXKKBz3bBTs8RqXtvIsNVrvW5by7aOYKPWc2i7x+PoO9wD3EPO/9M7022hu8p9VMPRpOJbtqdeE8cG1fPbaFR71+egO7GD6mPUaKljyy7Ui7Yu4MvSW9eDzmHbe8LI12vMJNwztZFee7c06HOqR1TT2AngI9QvKXPMhFQb0ZxqW87cU0PG+iCD1bWg+9iCVXPFA16rtfDeU64CU5vIDGgrxiFo08IR6jvNdFPL1GdhY9zQVAPYUOATwnFiE8bvIIvHEdX7wyah29H76jPIPWAT0tIh89YHoNPUr6FDxGxpa9QTXvvIX6gLp9NVs6qDVMulrt5rsmZqG85/W2vC7t9TwSdX+9HK6kvEct7btAVpg8eG6FPaeFTDwuvp48hu3XvD/V7zzOPT87p4VMO+QNuLw1Fhy9WF6QvJk10btDUpe8hHKBPXkeBbsnFqE90v29PONdOL1vjoi8flIDvQHmLb5hRWS8cdqHvMt9wLy0/cc8Zz3iPG1dYL3UNb28hDaBPEvt67wK7qq6xTVCvc5lv7seFXu8/MUvPUvmFL1Giha9gM3ZPKtFyzyoNUy9vrVEvXkyhbvn9TY9X8qNvEc6lrxIrhU9Kv4fPTMN9Dx4ddy8VNoRvHr9W73PFT+9Gcalu4X6ALtVVeg8aZYKPDAenrzCTUO8ggXZOyxyn7xa7WY9gNqCPReV/bvh1Ti8faKDvEvFa7w+dXA8SmXsvAruKrxYZec8c/4GvBgd/Tw2Ahy9nqVPOS099rwxkp08XboOPWQmDD3aLbu7n6VPO6DdzjyD/oG8fx1avKb9zLwSHqi8UC4TvYImgrw4Ehu9dbXdPNOFPb1jpWM9UyoSvRgdfbx61Vs8zFVAPMxVQD3OZT+97BW1vGQmjDteag6+H+16vAA2rjtH/pU8N56bvHiWBb0+Cpm8Df6pvAfeq7xAkpg9gLKCPjTl8zyICgC7I615u1rt5juPzVS7a+IJO1kVZzyG7de7KgX3vHwuBLzAPcQ7kQVUu6Jlzrxplgq8L74ePdZtvLzS/b07r93JPXr927txsoc8PO1wvXid3Lx2cgY8UC4TvF26Dr24vUa8Y6XjPEbGFjwXlX28IUYjvFTaETz7FTA9gk4CvWj6Cjx1jV08DSaqO8xVwLwjhXk9hT3YO3waBLtS5Wm8UDVqPXh13Lunrcw86401PHYihrxlBeO8VhIRvQRurTprJeG8Dw4pPGOyjLr0RTK8I4X5u0Nml7zKpcC8L8X1PHid3LyRfdQ7F5X9O3uSBDw1Ppw8WRVnPQ3WKbwk3qE5iB4APS36Hr3y5bI8cG1fPYJVWT1OzpM8gLICvS9aHj2oNUw95h23u9ElPj1Xtec8QGqYuxR+J7yEjVi9P/3vvFeuEL0GVqy8bNVgO8hFwTyLNda8YL3kPF/eDTx5Jdw8bNVgvUmaFT1Vfeg6I1YiPC36HjwVBqc8izXWu0yWlLztxTS9REVuPS9GHr0+Cpk7LfoePWxqiTuFDgE9ODobOz2qmbyENgG8Uj4SPN0VurzNtT+9932xPC3Snjs7Xho7XzVlPcYNQj28fcU8OE6bO+WVN7rrZbU8dOoGvXJ93jxUxpE82lW7vH6VWrxjpeO8J+4gPC36nrxjpWO7wk1DPcwFQDzrZTW9bsoIvT4eGT1HJpY9980xvBP2pz2G0gA9jL1VPTG6nTwZ9fy810W8vCEeo7wN1qk8dV6GO8stwDm1rcc78g0zvSFNeryD3dg8VwXoujqGGjxURWk9/J0vvXACCL1ArW+7I1aivFRF6bwbVXy933W5vFMCkrwyhfQ8bV1gvGv2ibwLdio97BW1u+YdtzwHBqw9Qi4YPM/tvrzrjbW8W0aPu7pFRr0t0h49e1aEvEZOlrt+joO92906PJBVVDqKXVa4Pk1wPP79rrkE9iy7mYVRPUoVbDt/7gI8Y4oMu+h9trwYbf08Is4iOyyN9rxR3hI+su3IvEXGljtnPWI95h03vGjSij1Jtew5Y4oMPTJWnbw4VfK6Lg6fPKUlzTtbTeY8XP3lPBp9fLxhUo05j83UO09CE7w9nXC8W24POlPukbyLDVa8OrXxvCoFdzuITVe8toXHPHJ2Bz0uDp+75h23vCr+nzxf3g28PcXwPDs9cbyICoA8hhVYun0NWzvhrbg8hT3YvIX6AL1tLgk7FKYnPEiuFTwCli29UlKSPGciC7wqJiA96FW2PK/dybxvld+86S22PMwFwDzSTT48EL4oPRdmJrwi1fk8omVOvR2N+7pO/Wo9eroEPeM1uLtF9W27bVaJPGdeC723DUe6xYXCvG0aiTuU7dK8ShVsvXrV27xuDWC7Xa1lPDn+GrsItqu7C3aqvWa1Yr3lbTc7S+aUO4FOgjthReS8cn3evBTVfrwrtfY73LU6vSNWors56hq8YI6NPEoOFT3sPbU8bt6IvIOagb0x1XS8giYCPFGikruyxUi8UmYSvehVtrtEAhc9g8IBPBC+KL3HlcE8bK3gvF9qDr0E9iw9/62uPLx9xbwx1fS85b03PQKWLbz9Ta88Bi4sO3eqBbtVpei8Re4WvZK1U71nPWK7sI1JPOBNOb2TZdM8iAqAub0Fxbx2coa9L0aeugK+rTzrjbU8jL3VPDR6nDwSdf+8xuXBu21dYLycRdC833W5vHut27xoDgs9Yu4MvXh13LzrZTU94a04uhJGqLw5VXI8uOXGvCcd+DuA9dm82wU7uy7t9Tuqlcu8X/INuwNGrbxJtWw9rwXKvAK+rbw53fG8wyVDPTD99LzJ9cA8zxU/O9jNO73Y9bu8UF1quh89ezxJhpU7Q3oXve5NNL1vvd+8LeaePJ7Nz7xbnWa8tdXHOpF9VD0Wtia91pW8O1RF6boW5f26ap3hOw3+qbxU9eg7Yu6MPEXaljy/ZcQ7fm1avWp14bxg5WQ9gMYCvXmCBbozNXS9tl1HvFMWkrpERe68dkoGPHftXDxavg+9X2oOvThim7xkzWM4/v2uvBFuKL1VpWi9wD1EPbc1xzzZpbs8dAVevGoKCj0IZiu9ev1bu0ZOFr6TjVM8ZdaLvHidXLwGVqy8UY6Su1/KDbwc1qS8IU36vHft3Dl35gW8Qg1vPHACiDwOrqm8hT1YvRgWJjzbBTs72PW7O3klXDtf8g29eEYFPd7Fubt61ds7BPasvNLVPTxwKgg80629u2zVYDxtNWC7KJ4gvX3eAzwVBqc7acXhuUvt6zxfyg29L011PdB1vjxzEge9Xl1lO+51ND31HbI8cCqIPIE6Aju3NUe7SOoVPW0aCTxr9om9SUoVvURF7rx5CgU9R31tvGRiDD0T9ic8+mWwPJLd07x9vdo8tU1IvURt7jxzLV47hDaBPFVVaDxu3gg9m71QvSY+Ib0q6h+9+xWwPGluir1IrpU7buXfPIgl17y9BcU6rX1KPQK+rTx+PoM7a0aKuxzd+7unrUw8T34TPD2WmTzudTS9qQ3MvGLGjLyLDda8O43xuzh98jxVOhG8nqXPvHZyBruJ1da7MaaduoXmADz5jTC9cnYHvfI1MzypDUy9bt6IPVn6jztBhW88RxIWPbc1Rzu+tUS92lW7PGdlYjx1td078dWzvOBNObxlwos8Sj3sPFkV5zyF5oC8fPKDOqnlS71Yjee8PNIZPVhlZ711XoY8Zt3ivBIlfzvmHbe7JC4ivF/ejbyD1oG7bIVgu619SrxeLg67R1Xtu2nF4TxL0pQ66H02PSNWoruHdVe81m08Ol5qDjsgbiM9WF6QvFqqDzqqbcu9YLYNPZxt0LyHMoA70tW9O9aVvDzIbcE8UY6SvE9Wk7xqMoq8S+YUPGQmjDxXtWc7Ex6oO8DtQ7whHqM8YT4NvTG6nT3cjbq8ghKCPTnqmrz1HbI8Ym1kvEEGGD0VNX47PO3wvMDtwzpWBWg7zmU/vUEumDyffc+6Z2ViO2g2i7pvjgg9zbW/uwT2rDxqMgo8uW3GuUXuFj2F5gC9gJ4CPWXqC72NRVU9dAXeOg6uKT2IJVc9zj0/PWmCCjtQDWo9HK4kPaGNzrx9vdo8mNVRvIU92LuFjVi8RAKXu0X1bT0Ffqy8FrYmPSQ1+TzaLTs8BaYsPbCNyThbbg89A24tvSoF97s+Mhm9f+6CO6YlTb0Ohqm8cqVePHHGh7yBfVm9wnXDPN91ubwizqK8V5qQvDHVdDx9DVs8hRXYOzGSnbwbLXw8Q5XuPHBtX70Upic9T61qPTUqnLz4BTE9WQ6QuHJihzps/WC8cqXePJk1UbzUNb28RxIWvam9yzx/AgO9PZ3wPOtltTy6RUY8UA3qvICeAjxT7hE9G6V8PFJmkjxtGgk8pv1MPMeVwbzRgLI844HBPI7WDL0w6+K7Osp1vDNoSzrbX0U8FhSrPeOBQbujpTC75DXuvOkm1Tz2QiI7SlrBPDCoeT2N7bk7qBDFvNIGBb3iMJU7MiViPPGUJL1wE8c8zAn5OwTQsryshMM8BBOcPLadVbxZIVG8r6xuPEuUQLsnFbq8pFndvGQDn7x58tm8ulS9PBFGljyxG5S8Rs8VvcN2ubxLfRM8RPgWPSBwprywdaq7Ts6/Ot4WLTtn2p28I+QkvZWSTb27S9O7A9kcvSReUry2I6i8I4oOPYyzurtfjGU8RimsPMoSY72h5V67h0imvXV+W70KJJq7PgewPUvXKb32eWY8kqQhvLG4Ez14+8M7SGMrPGQ6Y7z/kvi80/F1PPA6Dj3qrCc60UazvNnuAb158lm7EtfwPI9zjLwYkZM8aPHKPCFQjzzs5iY8ofEDvcuYtbnq7xC8yc/5PHxmWDc4WTI8MlqIvGXANbu2ndU8CMoDvEdslTqjKwO9oeXeO1K/pjvq7xC9n6vfOiUSfzyminK84ooru17YuDwv/TY7vULpvAp1Rjz67WS6Xti4O5tjHTyUvgk9zYZhvIbLvTwaRUC9YIP7O/wzCT20IO28Jts6u7ZabL3dmUS87d28PHss2btt4rE8PRAaPcrPeT1BsnK8bYgbPMy7h7xIppS808ObPC1Jiry6lyY9NeWzu4MLbDylnMa9yaEfPGlXBr2rbRY8z+ycu0Vp2jwduT49VjMlvSOqpTvW1Bk9FFTZuxRUWbwwIIk9T44RvXg+LbyjjgO8jqpQvCBwpjw1X2E9VHPTPLYjqDxMi1a8mc+HvEFkAT0Pbxc9wjNQPIi5ab1iyZ+8VbY8PChYI7zcH5e80zRfPbtL07sBGUu9RwkVuzelBT2VRvq6KDgMval2gLumXJi7RimsvCnA/Lpl+jS7de0APfHXDT7KEuM8lZLNPKZQ87yA2la9P3hzu2jxyryh5V69x2egOpw3YT3gBNm813GZvHSHxTmQaqI8PFMDPLKvKb1ElZa8m8YdvJ33MrzsHWu79K4MPZUYID3m3pK8Y33MO2cdB7zEKmY87VfqPPeFi7vsHes87t28O/k5OL395zW9DjUYPdglxrzwiH86nuAFvGdreL3lQRO8w7mivEbPFT2jH148mMPivGQMCb3bi4G8aLoGvcUh/DzRt/a6SKYUPSIb6Txm+rS9GE6qPFL2aj3eFq08OnwEvY9e/bzHDQo8H6dqPAMH97x5uxU9+u1kPNFGszw33Ek8DdsBPewd67tU+SW9+2pNPE+Okby80aU8JCcOvQaEXz2RmPy8xWRlOzGo+bzNQ/i8ApazPKk8AbwbM2y8Mi7MPIq8pD1bnrk6w3Y5PGA1Crt+XW69Q56AvMyPyzyTmzc862k+PNpfxTwRRhY9H3mQvWTANb0Wjlg7Bnt1PDcfMz15u5U862DUPJGYfLz3Igs9wHN+vUYpLDsEuQU8xtOKPMUtIT1jbwk9AeIGPUIBgbzZHNw81mV0vKkzF7xnNDS9WxhnvXk1w7yPaiK6UCsRu+L77jzUYJu7W4eMPfQ/5zz3hYu9cwHzvGcdh7tWMyW+CAFIvbPyEjujYke6a/QFPCPY/zwTEXC9ivPovNkcXLy6PZC82CXGvPMFaL3u3Ty7OnyEvPvk+jwz9we9Xkn8vMQ2Cz3pcig9CIeavHE2Gb2ISCY6fJIUPaNiR72UDPu8JmENPcBzfjyNOQ09WacjuzfFHL3s5ia9PoFdvflcCrtImu87wSUNPTHr4jzsKZC7/ee1vJmMHj1O8RG89cU5PeQ1bjwgcKa7QuzxvCysirwOFQG8WbANPDWiSrviMBU7ivNouz6NgrxpbjO7i/8NvT6NArzG4c28EE8Au56dHD0tSYo9D+nEO9R3SL2Cmig81EAEvc/sHDukhRm8iT+8vNI9ybw61hq7RCbxu0vXKby72o+9B3t1PQteGTyXUp+4HfwnPKOlsLz3cPw8YTWKvW6W3ryyVRM9KsD8vdnugTmia7E8ZDrju6aKcjyr/nC8+TBOPNX0sLxtJZu8NDEHPNifcz7P7Bw9tCDtPEUylrxTfD28Po2CvIwtaDyVGKA6HLk+vE9LqLxfEri82+WXukO1rTzS8fW8LMM3vBRUWT3BM1C93MUAPUS1rT0JfrA7dkeXPIn8Ur1TfL08SNRuOz8qgrsi7Q69XRuivGyoMjy/tme8mYyevCiGfbwmTP68CjtHPbyOvLwQTwC7fqDXPLUskrzmsla8zNI0PfPOIzpRyJC8Z67hvAEZSz1XEw68yUcJu9frxjpkqQi8plDzvO7UUjrdkNq7nxoFvVM51DvZ7gG9KFgjO4mCJbw1a4a8ayJgvBt/Pzvmb+28E6Asu6fWxTwUl0I6ZrfLPGb6NDxQ/1S8qZaXPE9LqLzAiA29kqShPI6qUD08cxo9tuC+POGKK724A5E95rLWPETvrDyYMgg9LUkKPQQTnLzs5ia88Q5SvWc0tLo1zoa8D7IAO5+r3ztHKSw92auYvPez5TxPxdU8vnzoOagQRb2QEIw8piIZPHuyKzxq3/a7UciQPMgbzTzYDhm9Iu0OvYqwfzyozVu9MyXiu8D50LqjYke7L0AgPWqxHD0pTzm93Fbbugt1xjsbwqi7kR5PvfY2/Tt+Xe48fwaTO21c3zy3ZpE9sHUqOtRu3jwYkZO8MPRMPRiRk7zZJcY75+zVPOY4Kbx58tk8P0oZvKyEQzx+Xe67UUI+PEM7gD3rYNS7uktTvcGtfb2e9zI9BoRfPSz6+7zn3pI9ZnTiPMbhzTw9rZk84MpZvdbdg7xqZUm8mIB5vDB6n7z7rba8gwvsPHg+Lb2EReu6uNdUPL45/7v8Hno8DD4CPXSHRb1mPZ68SKYUvSAtvbyC3RG8OZwbvSjJZryN9iO8SRdYvG4FhLwswzc8oKL1PPY2fbsoWCO7ntebPVW2PDzQzAW9Z9odPbyxjruoPIG9cdyCPHOHRTqZSTW9uj2Qvfdw/DzZJUY6wPnQO6zHLD3PDDS7X1WhPFyHDD2fGgU931AsPViwjbzviH+8f5dtPTaZYLwCEOG853sSPkIvW70tNHu83hYtPd28Fr0QnXE9v79RPGX6ND1yFgK9sq8pPTJRnjymIpk8cU1GPOAE2TzBM1C9EWatOw5jcjtCL9s7Xtg4vG+ig7vpJlW9lw82vfHXjbzB8GY8hLQQvdtImDyZung86BiSuwKWM70UHRU9OwT1u4YOJzzIlfo74MrZu2tlybveFq08lISKPAk7x7w6ynW8X8ZkO5VP5LsiqqW85UGTPFArETz2QiI6BoTfPHU78jxaZDq8ghTWvDOrND05DV88PgcwN9rZcj1j93m8hYhUPX2pwbwp1Qs864yQPYw5Dbrmb+28yV42uhRU2Tu9Qmm8Osp1PCLh6TrOT508UznUvBm/7bz6tiC9DTUYvM2PSzw98II8lw+2vClPOb2PXn29QuzxPNADSj3OQ3i81fQwvHrp77y9To46kK0LPJmMnrx79RS9RmDwvFArkTzHZ6A7S32TvAKWs7wrDwu9DD6CuygVOj0F0DK85LtAvfboizzne5K8xtOKPOGKqzwHkIS9zLsHPRiRk7xkOmO9xp5kPUsO7jtmPZ68/2SevEia7zv/pwe9AAIePY3tubwgp+o8WZt+vGa3y7qtASy8qkrEvLHv17xgmAq9tCDtPGlXhrzc3C087CmQvZr9YTxdlc88eD4tPWh3HbvYJUY9OGIcu4MLbDwe3BC8EG+XOqFrMbxHCRW9QThFO3qyK734vwq98DoOvVRz07yqSkS9C3XGOx6w1Lx2R5e7ypg1vRpokru9CyU8qJYXvVD/VDcOFQG9+ragPUDHgbs/eHO8vULpvD948zw0lIe8O3wEPN8Nw7oHvt68OlDIvIu8pLyXUp+8Z65hPe+R6Toj2P+83bwWvcyPyzx1qhe9pmWCPFL2ajwYTio9ylXMvAI8nTw9gd07BwqyO2yfSDvMCfm7PLaDPP8htTxGMhY8VbY8PIAdwLwKBAO9yqEfPaLcdLylIhm9yoEIvUwakzyn1sU81mX0u8gkt7zbgpe7c7MBvXypQbx17QC94MHvvBIRcDtxVrC8BpCEvGa3Sz0ubno9lJu3O9O6sbveYoA8ZH3MvMK5Iry/6w2++5YJPK+sbrxjhja84UfCvJVbiTuFiFS90iacvP0qH72MLWi8z313vNSamjzt3bw8nXHgvLRj1rz1vM88+LNlvNADyrvM2x67wTw6vHYErjy+CyU73U3xvGa3y7zKmLU8k96gO0F7rjwEuQU7d3VxO3U7crxiAOS8X89OO5u9Mzsm0tA5se/XOsE8Oj04WTI8zcnKOijJZjz/pwc9OnyEPKgQRTu6S9O8sBsUvJQM+zzSwxs8EJ1xvVmnI72r0Ja893B8unDQXbwPnfE76uPrPDP3B708tgO97VfqPFXZjrxNSG07Maj5PBsFkrwGTRu8YMbkPL9FpLywOyu9eTXDvDzNMDyrbZa9Ac33PG1cXzwu/ba8gt0RvU0RqT15NUM9OwT1vHATxzzwDtK75f4pvMgktzzGp068SlrBvHCig7rhiqu8yCS3PAjKg7yN7bk8XRuivKpKRL2gERs9btlHvfCI/zyvO6u4DtIXvRvCqLv95zW9otx0va1y7zy0j5K8yCS3vAZ79Tp1UAG8Q7UtvNVABLzGp04862m+O+beEjztV+o8B3v1PACTeDtdwYs9xuq3O2aAB70N8q68AZ8dvTqTsTtPS6g8jHBRuxcLQTw+xMa7vk6OPAoEg7z67WS8Hm3rvCb+jDy7S1M6n6tfPIrz6Lt1fls8884jvHzsqj3Yn3M8q22WvIxwUb0Cf4Y8886ju5/uyLvRgLK8qhOAvZMhCj1qbrO8GL9tvBwz7DzT8XU73B+XPJVPZLx6b0I8/ec1ve0gpjsn0tA8BVYFPWDGZLwhUI+8kxXlPIv/Db1rImA9yx6IOwACHj357eS8vYVSvPsnZDyS0vs8S+ATu07xEb1yCt26raeVPPr5Cb0zaMs8k1jOvAcByDtIbBW8gpoovEaj2Tsd/Ce8YDWKvOwd67vbSJg8yJV6vL8CuzxL1ym9VAIQPUsO7jwNbNw81nqDPYNO1Tw07h08fiYqPcNtzz2e15u7e29CPQyvRbsDjck8lhigu6gQRbye97I8ghRWvNEmnD2KYg49bSWbPPHXDbwoT7m7lJu3Ozo5m73Rt3Y8Zj0evfq2IDxCW5e8PEfevEAhmDzJqgm8CWcDPOuMED0ZAte87xe8vL8CO7zYLjA8Q/iWvK17WTzzBei6NaJKvGluMz3/Coi85jipPOzmJj2iVAS8nXFgPS+DCb0LMl28X4xlOi0GIT2N9qM77OamPHV+27z9WHk8TREpvRTaKz071pq7Zj2euzGo+bstSQo9vXzoPJmMnjxmt0u6upcmPZx6SjxSv6a8"}