You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 line
34 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{"embedding_dim": 1024, "data": [{"__id__": "chunk-a92c992eb95f6e5fe155e1ff3dbce047", "__created_at__": 1751849462, "content": "氢气与氧气反应化学方程式", "full_doc_id": "doc-a92c992eb95f6e5fe155e1ff3dbce047", "file_path": "氢气与氧气反应化学方程式.docx"}, {"__id__": "chunk-3e43e1f14ec3bfe2ea1ec990e4a7a3dd", "__created_at__": 1751849594, "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: ```json\n{\n \"detailed_description\": \"The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents the balanced chemical reaction for the combustion of hydrogen gas (H₂) with oxygen gas (O₂) to form water (H₂O). Mathematically, it is a stoichiometric equation where the coefficients (2, 1, and 2) indicate the molar ratios of the reactants and products. The equation adheres to the law of conservation of mass, ensuring that the number of atoms for each element is equal on both sides. \n\n- **Variables and Definitions**: \n - \\( H _ { 2 } \\): Diatomic hydrogen molecule (reactant).\n - \\( O _ { 2 } \\): Diatomic oxygen molecule (reactant).\n - \\( H _ { 2 } O \\): Water molecule (product).\n\n- **Mathematical Operations**: \n - The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. \n - The '+' denotes the combination of reactants, and the '=' signifies the transformation into products.\n\n- **Application Domain**: \n - This equation is fundamental in chemistry, particularly in stoichiometry, thermodynamics, and reaction kinetics. It describes a highly exothermic reaction, making it relevant in energy studies (e.g., hydrogen fuel cells).\n\n- **Physical/Theoretical Significance**: \n - The reaction is a classic example of a synthesis (combination) reaction. \n - It releases significant energy (ΔH < 0), illustrating the concept of enthalpy change in thermodynamics.\n\n- **Relationship to Other Concepts**: \n - Connects to Avogadro's law (mole ratios), Hess's law (enthalpy), and reaction rate theory. \n - Often used to introduce balancing equations in chemistry education.\n\n- **Practical Applications**: \n - Hydrogen fuel technology (clean energy). \n - Rocket propulsion (e.g., space shuttle main engines). \n - Industrial water production.\n\n- **Broader Context**: \n - The equation is central to discussions about sustainable energy and chemical bonding. It exemplifies how mathematical representation underpins chemical phenomena.\",\n \"entity_info\": {\n \"entity_name\": \"Hydrogen-Oxygen Combustion Equation\",\n \"entity_type\": \"equation\",\n \"summary\": \"This balanced chemical equation represents the combustion of hydrogen and oxygen to form water, adhering to mass conservation. It is foundational in chemistry, with applications in energy production and education.\"\n }\n}\n```", "full_doc_id": "chunk-3e43e1f14ec3bfe2ea1ec990e4a7a3dd", "file_path": "氢气与氧气反应化学方程式.docx"}, {"__id__": "chunk-f931182732fe87eaa439fb34fe3e6445", "__created_at__": 1751850756, "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: The given equation, $ 2 H_2 + O_2 \\rightarrow 2 H_2O $, represents a balanced stoichiometric chemical reaction describing the synthesis of water from molecular hydrogen ($ H_2 $) and molecular oxygen ($ O_2 $). Mathematically, this equation demonstrates conservation of mass and atomic balance, where the number of atoms for each element is equal on both sides of the reaction arrow. The coefficients (2 for $ H_2 $, 1 for $ O_2 $, and 2 for $ H_2O $) indicate the molar ratios in which the reactants combine to form the products. This involves linear integer relationships, aligning with systems of equations used in stoichiometry. In the context of chemical thermodynamics and reaction kinetics, this equation quantifies the proportions required for complete combustion or electrochemical reactions involving hydrogen and oxygen. It relates to broader mathematical concepts such as proportionality, conservation laws, and matrix-based methods for solving reaction networks. Practically, it underpins calculations in fuel cell technology, rocket propulsion, and environmental chemistry, particularly in modeling clean energy processes like hydrogen combustion.", "full_doc_id": "chunk-f931182732fe87eaa439fb34fe3e6445", "file_path": "氢气与氧气反应化学方程式.docx"}, {"__id__": "chunk-b4e4cd7fa61e43376573d164e2730e41", "__created_at__": 1751854867, "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: The given equation, $ 2 H_2 + O_2 \\rightarrow 2 H_2O $, represents a stoichiometric relationship describing the chemical reaction between hydrogen gas ($H_2$) and oxygen gas ($O_2$) to form water ($H_2O$). Mathematically, it is a balanced linear combination of molecular quantities, where coefficients (2 for $H_2$, 1 for $O_2$, and 2 for $H_2O$) ensure conservation of mass and atoms across both sides of the equation. Each term represents a molecule or compound involved in the reaction, with the numerical coefficients denoting molar ratios. This equation reflects the law of conservation of mass, which states that the total number of atoms of each element must remain constant before and after the reaction. The operations used include scalar multiplication and addition, reflecting the principles of linear algebra applied to chemical equations. In theoretical chemistry, this equation serves as a foundational example of stoichiometry and is essential for calculating reactant amounts, yields, and energy changes in combustion and electrochemical processes. It also connects to thermodynamics through enthalpy calculations and to reaction kinetics by defining the molar proportions needed for the reaction to proceed optimally. Practically, this equation models the synthesis of water from its elemental components, which is crucial in fuel cell technology, rocket propulsion, and industrial chemical synthesis.", "full_doc_id": "chunk-b4e4cd7fa61e43376573d164e2730e41", "file_path": "氢气与氧气反应化学方程式.docx"}, {"__id__": "chunk-e80e2698c1728e9ea5b4f84f9f5d4786", "__created_at__": 1751855319, "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: The equation $ 2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O $ represents a balanced stoichiometric reaction in chemical thermodynamics, specifically the synthesis of water from molecular hydrogen and oxygen. Mathematically, it encodes conservation of mass through integer coefficients ensuring atomic balance: two molecules of diatomic hydrogen ($H_2$) react with one molecule of diatomic oxygen ($O_2$) to produce two molecules of water ($H_2O$). The equality symbol denotes chemical equilibrium in the context of reaction stoichiometry. This equation is foundational in physical chemistry for analyzing enthalpy changes (via Hesss Law), reaction kinetics, and redox processes. It also plays a role in electrochemistry, particularly in fuel cell systems where this reaction is harnessed to generate electrical energy. The coefficients are derived from solving a system of linear Diophantine equations that enforce conservation of atoms across the reaction.", "full_doc_id": "chunk-e80e2698c1728e9ea5b4f84f9f5d4786", "file_path": "氢气与氧气反应化学方程式.docx"}], "matrix": "xuSVO4crmzyNfNq80woWvXs0SDzPS+S8BLIoPC14d7wTIus8oW0PvVSTGrwi7Ie8V4uFPR7+qDth/F87XfXivPZmB72tjgk8m8f7vMc9arzTPsm8O4BTvMgz3rtLbxE7fzE5u1gCfrwhNFM8FQTHvI1owjveNRy7UM9ivG/Lgju34b+9PGKvvW7VjjzsVha95j6QPCoVl7wLwKK9opw8vHJEcrsI6FK9wMcJPESVSrx2N1c8ywGivNUWGbwI3sa8EsSQu3gty7zzX4q7IFJ3vLTkTj3cJBM7MTKjPDWX+jwykH29Pn3EvEK9+r0tbmu93F3MuqaADz2kaoC9bQ5IPY1owrtoJW891gyNPBER4jzGLGG8QHM4vQfyXrwqJKk7qKq2O+RhujslApe8Pk4XvGG5Gj3bcWS9Q3o1PBwItTzRXG08yxU6PCw/PjxRjB07gB0hvTqedzz3YQG894GcuLEC87zUND29e2P1u+6b0jspBI68lD2DvJWb3TuDJB68/9JbvWPKozwT8727XMY1vLCkmDyHKxs8WJCLPMwBIr3+5nM8bQ5IvdUWGbwvFw67C+9PPWgl7zo/h1A8oWgJPLXQNjy/FFs8GQvEvN81HL1BVRS9u94wvO6b0jwsEJG73RoHPffEYTzLROc8whvYvFj4cTxnClq9T6pBPShCTTpQoLW8CaCHvOI8Gb0Kyi697bl2vTIjETzur2o8o3mSuyj6AbrqO4E91gwNPbPuWr3qQIc8BKOWvIh/6Ty9wIy8oWgJPTmed73wU4c8xBHMvOo7gbt6BZu74ZP2O77vubzXRcY8v+UtPLDdUb38rTo9SG0avaFtDz08bLs7Lzyvu9oTiry/5a28U52mOtpCt7yinLw7hFNLvZOK1DwUIms8M3xlvAS8tLycs2M7FRjfPNs4K70rGh29LiGavH0WJLuFbmA9imvRPMA5/DvLFbq7YMOmvB7+KLvrW5w62DGuva2OiTx6SOA8EQdWPP7c57y/26G7PlgjPc8SKzwUDtO8zfIPO7q0CT0+h9A80PmMvLkG4TvRI7Q7O3ZHvOI8GTw6R5q8U+r3OoAOjzxMZQU7Oluyu2bbLD2/Hmc7RKlivQOIgbrU+wM7osFdu9M+SbwGlIS87mwlu2XvRL2Yc606HiNKPBCuAb0NCuW84GRJvZWl6bvN7Yk8DyX6O2/wozxo9sE9UJapvTwzAjw1clk97ptSPAjeRjweLda8opKwO+259jyFPzO7gkJCPTYggrxxH9E8Bp4QPXHcizwcHM28hm7gOeFavTwi7Ac8agfLPOdoN70gPl89TdJxPZuENjy10La7fzE5urUJ8Dzpsvm8cyZOvXf0ET2egac9NiACvA2nhDwT8z28gy6qvAHa2LuEFYw8EOxAPRkLRLzXOzo9BZkKvX4CjLzxwHO7EskWPamgKjzooXA8Q6livBAbbjxgw6Y8gy4qO8kp0rzQN0w8dgiqvNA3TDxW8XQ9vvnFPB7ghD1TpzI8AIYKPdqFfL2GZNS8tryevdYMjb1OhaC8qsXLvClx+jvBAMO7Gc0EvHHhkT3XAgE9pZktvcnhhjwvWtO8PDMCvumyeb3mckO8kmUzPeheqzvIBDG8ZhTmPBjmIr3lTaK6hBqSuwTr4bzLWH+9UJYpvRjSCr1AXyA9TKNEPIUQBjwykP07gQmJPcv3Fb3gZEm92RgQvYhQvD3C7Co84kalvD2R3Ds3Oxc8qeNvPPlyCr2RNoa9SKZTvbnDm73F86c68cDzPP/SW7wyKJc7j1Squ62dmzyooKo600hVPORhOj0TugQ9UbE+PO6v6jzA0RU8ZbEFPVuXCD1zOuY7We7lO/NahLyUr3U8b8uCvLSmDzxAouW8gx8YvbvUpDymyNq8OG/KPKa+zryqxUs9HEt6vIWCeDvjN5M8JDvQPE+qQT2417O85qv8O5uENrsHw7E8kHnLvIua/jvQQVg97UwKPUJQjrxyOma8TnYOPUCY2bwV0JO8q30APR8Psr3zXwq9wMcJPFSOlLwIrxk8t6gGvQWoHD2VpWm80wCKO4xNLTzycyI+PkSLvXjvCzi0nIO8Uc9iPQP/ebxqG+M6p3aDPMsLLr2++cW8E/1JvXMBLb2MfFo99YSruy88rzxzRPI8vvlFvFWJDjxKaos9DcefvHMBrbugcpW8E7oEvSokKbwmJzi9S7fcvORhurzcJJM9WNNQPF+eBb0vPC+8657hPAzlQzzIR/a8U6eyvDYgAj2IUDy80VztvGP5UD31eh+80SM0vX47Rb0C5GS9pZmtuyZg8TzpjVi8WMnEvCPnAb33zu08yfCYvMbklbyuzEg8f1ZavKFoibzLROc8LlrTulfd3Lxm5bg7r+ddvP6jrjyxDH+8N0opvDksBT0Av8M79bPYvAbXyTz4iyi98phDvHYIKrxt1Q49gy4qPIQaEj15Dye9t+tLPYxXOT0mMcQ8tRP8O1G7yjyVdry8RGadPCokKb0ykH08Npf6umS7Ebyzq5U8gCetPEhjDjyx+OY6cSndvD+2fTybx/u88Ye6PMc9ajxMyOW8DB59vJ2VPz2JMhg8ZR7yurjXM72MfFo8Xq2XuzZUNTy3spI54GTJvOFQMT1Qlik9bg5IupB5yztgwya8GveruwjoUr1M0nE8Cg10PK77dbxkKP48E78KPXXjiLojKsc8Gc2EO5NRmz2gdxu8Z8eUvDw4CDqv+/W7ydwAPYSC+Lx1HMK8IvsZvJhEgLwR4jQ913TzvMn6pLxIY467CPLePO6bUrwi9pM8/txnPdpCtzxIkjs8ZwpavetRkL05lOs8dN4Cu7Scg7qUPQM8RKnivIZu4DuGNae8zTBPvRgVUD3gJgq8SYgvPOtlqLr/j5a962+0O/eLKLwY5qK8IA8yPF6jCz3I8Bg8atidOw8l+jw9kdy7KfqBu/HAczxt3xo7/MFSPYktkj2jiCQ9wADDvKKcPD0Kyi678nMivaTc8jz4xGG7bOmmPRfwLrzbe3C8m7Pju0icxzzkKAE9IT7fu6eFFbw6it88ODGLPHXjiD2TURu9gGDmvGvzsjwmJ7i8txBtvCU70D26tAm97YC9vOOkfz1t35q8S7fcPO259jzYMa48RJVKvBUERz0+WKM8/MHSPJViJLyJPKS8ZtusvIcrmzzWBwe97YrJvDg2kTyIWsg6ahvjvD5YI7z7nLE8czrmO1TW37w1aE09cjpmPShM2TsXKeg6nZU/PdmF/Ly8yhg8ywEiOXAfUb0Dkg08WJALvJlpIb2LKIw7qs/XPHI6ZjyZaSG95KT/u0e6azyKYUU9UJapPWv9Prs4NpE8osHdPKe0wrzycyK5zERnPAvvTzvGDr09txp5PDkshTyv+/W7TMhlPP7cZzxqG+M8peb+uioVlzx7+w49Oluyuxcf3DxYyUS8Nl5BvHMmzrztRwS90S1AvKOIJL2kaoC8jioDPaqHDLyaotq8Z8eUveqo7TyikrA8SVmCPHkPJ70/tn28adidvGT50Dq0E3y9oaZIvOtvtDydlT88o36YvJRHDztOhaC8KAkUvQsDaDxJiK88XLypPBjSirzPEqs8dhK2PDhvSj1eows8hysbvPytOr1X3Vy9jDkVvEl+Iz1MZQW8KiSpvAbXyTwP9sy88X0uPE52Dj0Kyi68paM5uwT17bxPcYi7fRYkvffO7btN0vG8L1DHvCpT1rsnHSy9wfa2u16ji7yv5128b/CjvNIPnDyiy+k8AIaKPD5YI7tOexQ7O0IUvX8xOTwuUEe9Gfcru1GHl7rjpP867qVevGYK2rsEvDS8dgiqvbOrFb2yAnM8NS8UvWoR17qRb7+7ix4AvJCNY7zjdVK6o3kSvFGCET3ojVi9lK/1Oquxs72BBAM9llgYvZu9bz1qEVc71gyNvEBfoLxe69Y8v9uhu7fryzx06I48WfjxvIEEgzq02kK9b8sCPUJ6Nb3zx/A8kTuMPX8xOT1pJe87qsVLOrb/47srBgW8ZPnQPFXx9Dt8T908P2ksvCb4Cj2NQyE8osvpvBPzPTxViY48XuvWO0CYWb36pr08IvENPIEJCb0cEsG8Op73u67x6TmbVYm9q7EzvZ+LMzuTWyc981oEPN41nDwIrxk8vSjzPATh1Tys1lS98FiNu/fObbyFP7M7wMcJvvHAc7vJ+qS8ns74uoMkHrzTBRA982QQvSQWrzvzX4q7PDOCvO1HhLy0oYm9v8wPOvOYQ70uK6a8f2ryPDN8ZbwZFdC74CEEPfzBUr3D4h68B8OxvEut0LtzJs68+8veO8nwmLw8pfS872IZveJGpbzdgu07g2dju5RCibtv8KM82zirPa6Jgz3slFU9NHLZurr81Lte1z48U6eyuwaeED2uriQ8lXa8u5ZTkrsT6TE9cU7+vPl3EL1BVRS9ucObvJlpoTvwkca78Yc6vGKlgj0gDzI8HBLBPK+kmLq24T+86280O94wlrwnHaw8SJxHveSacztXiwW9zhw3vdMACr3A9ra8eOoFvTs9Dj2x+OY8jUOhO//3/Lz4zm09iBeDPIxNLTwAq6s7MWHQvEJLCD1xC7m8Ros+O+ZDFjytzEi6T6pBPdxx5LzcZ1i8Cg10PLjNJzy417O84Vo9uwC1NzwqLrU8vvlFvb4oc71RfYu8UbvKO90ah701aM08WNNQPdlgWzy/Ck8713Tzu9xdzLzZhfy8S7dcPDIjEbydn0u8BLIoPRjmIj0+WCO8maJaPeArkLxAczi8QrPuura8Hr3lV6486YNMva77dbx2CCo7dVX7vF+eBT11HEI8OSwFveue4bvvYhk9QLb9vCpxejuFPzM7ceYXPXwqvDzlhtu80VztPNo4qzzmq/w7fzG5POpvNDxckoI82RiQvBzUgbyhpkg9MpB9vfyIGb2JLRI7yxU6PDhvSry4zSc88X2uuttx5LmPl2+7ze2Ju775RbzD04y7tuE/vNQ0PTylma07kHlLPa6JA72wpBg92DGuudM+Sb1KiC+9T6rBvG3QiLo6Uaa8tNrCuu6bUrxHnMc7YfJTvFGHF7wqLjU9octpPBrtnzyIHIm7IBk+PRcz9LwvDYI78FMHPYcrm7ygcpU8Gc2EPECYWT2UTJW7F+aiulbxdD2Ce/s8VYkOvPPH8LzLTvM9UYydO4segLz+oy49TYUgPOMyjbwsEBG7t7KSPD9pLLwlRVw9VJ0mPa7x6TtRgpG8txr5u06FoD1mFGa9NZf6PBnXkL0hBSY8e/YIvOl5QL1uGFQ8wNGVvFHP4rzAAMM8BtdJvBgV0LwWxge9qcXLOXJEcjwgPl89U+BrPNFS4byhpkg9whvYvPV6Hzz8wdI8aPbBvDNXRDzJ+iQ9gQSDvGG0FL0R2Kg8EeK0O1STGjxdsh29j6H7vMQ27bzum9I8E/M9POer/Lca7Z88EyJrPe+RxrwhNFM8npW/PLb/Yz33iyg8dRxCPExTWjyZCy49OUwLvciuijt3roy8RcR6vWGwgDu6MDw9K1bIPEiTO7vEL8K8G3MOu3dKFjurYnW8Jv/7u+jE9jw4nIO7pUJHPP+pKLyqAma6bTcSvbT8D70E8tI81r0nu7EZ0TrlBFg76gusOwTyUryWvxy7yO/gvL4jkjwcsH28vBjXvanaab2+h4i78NvhuzOVL70TcKE7f95RvRa4SzxXJQg88nIPvYdVTLw4nIO9jYQcPVZhAr0vnvK8x/4CvSOP1bzxNhW8uNCsPBqvCL1tUGw97nvSu4A5BTuJtVu6rPmivR5Hq7xb0ai90u7mvBkY27t172I8l9MavZGkyjsR6BW7eA4cPe4bQz2gSpU8/YpvvOeM47of97K7vXOKPbXAFb0PoeA7W9GovNIlhTzctVm8055uOzvF9LvBHys9VcrUugfabbzGP9k7uYA0PLu4x71WYQI91Q2gPCiWqbxD3N88XQk8vZhbJr2fK9y8yNaGu/xi87yqrZG8+xEGvIA+4bydo1C8o4IovfP6GrwPoWC7n66LPExTWjus+SK9Ugo2vSIHyrrT6Yo7oJoNOmIkDj0Eyta77JO3PISVLbxMU1o8OUwLPcPPMr0OQdG7yv93vFc5Br0Zr4g89KoiPG77l7z+6v48+yUEPaCL67wM4cE7TOoHvY1N/rqzTIg8rCGfvHMHyDy4qDC7VaLYOkXTnL0bN5S6ReeavFK6vTz4QkU9BPJSPDLlpzw1pUa9Hb8fPVZ1AL12x2Y7tbHzvLQBbD0G6Y+9t6iwPCiWKb0H2u27OegUPXS3T7ocDxg9MO5qPblYOL0aw4a7U+K5PCumwDxnqLK8ibVbvRqbCr1cWTS8bV+OvH+OWTsBksO7ex4zOxYwQDze6JC8HLB9PQeFmTtPO/W7cEcpPQkhI7zenXS9AxpPvCsuzLyt0SY8RCOVPW7TGz2qmRM8VaLYvPGz5bzEL0K93+QpvCkeNb0fz7Y8/MENPdktTrzYHTe9MXGau93F8Dz72uc7/HGVvAkhozuU14E81m2vPDrF9Lx7HjM9XQm8u4ZFtTzSPt87sfFUu96YmDxKG8c8y6//Ow90CL0mJ3g73BXpvIGtkrzTwQ67KEaxvC6O2zqDTvi6pmrDPCduLbzHZ1W9YgFuPYs4C7zKDhq9UPoevXMvxLxN1om88APeO4ndVzv7KmA9EAFwPfe6Ob2CnvC6+lJcOsxuKT25CMA8bQB0uQhdnbxw97A8imCHvC5hgzze6BC95tzbO+1DPz0q9rg853OJuXgOHLvpnPq7EqybvNu12TzJhg69cwdIPU7CCz03Bda7tEwIvRhoU7xgyVo9y76hO+dzCbxdMbg8ZtCuPYZFtbueU9i7rdEmvHbWiDvRPl+8sEHNu2vrgLy6kMs8RBTzPN3oEDw/HEG90jmDvWPok7xVotg84OQpPYqIA7zJd+y8UaqmPPhqQbwScKG8VwLoPJnjsbwU+Cw9GqBmPWRwnzyewok9++kJvcXfyTuiWiy9k1TSvOjnFr0aw4a9T14VvUvLzjmh6/o5yiIYPXUmAb0Z/4A96jMoPbLJ2LzpdH46MuWnvJerHr6zKWi92H3GPEpDwzrLbik873vSOshKFLwJgTK9Hm8nPHeGkDo0Rbe8i8AWvcQHRr0jP128B4r1PLJ54LypEQg6LyWJPAIazz348sy8EIgGvWxzDLxgoV49yjYWvZUjk7rcYAU9BU0GvMlKFD3cYAW9s2CGvFna67zo7PK8HZcjO8gX3Tz+IZ07Q18PPTE1oLtgod68+zkCPScn+Lo6PWk9+ipgPPGuCb3cjd08qTmEuxnrAr3PLsg8m5O5PLQQjrusEv08D5yEO2yvBr0v1ZC8YiQOPAyRyby3+Ki5tjn/OwcCaj2Xq568vcMCukK04zyX7HQ8Oj3pPLBBTTyUwwO8bIeKvTX1PjxheeI8gYUWPODkqbxsc4w9OI3hPNlVSrzwA148xH+6vLNR5Dy5gLS8ApJDvfv9Bz0GJYq9+umJPOpbpDuVPO27RcR6PbLJWDvdOIm7uKgwO5bs9LyB1Q48A8pWPlvRqDxI47M73HQDvTnoFD0QTAy91pUrukUU8zsm5iG9apDNvAVNhr2M1BS6aOBFPQn5pjz8rQ+95mTnPPRaqrvxA948F7hLPXU/27v+IZ071A0gvaH6nDxyV8C7OhXtvLBpSb14vqM8I4/VPG+w+7wISZ+8yNaGvN0QjbwDGs88qpmTveJEObyXqx66tAFsvbUB7LxgdAY9sLnBvGyHCr3VDSC8z37AO2XQLjw6Pek7KR61PKLD/jzjzES9REsRvWRIozyl4je9aOBFPd38jryc88i8OHSHPL83EL1uAHS8RDcTPdPVDDxDX487nlNYPIdVTDwHAuq7VwJovHJ/PLv4akE8JBKFvLQkDL19VsY8a8OEPJq7NT12/gQ9y69/vZsbRT2CXRo9fVbGO/tS3LzbtVk9qVLePG+we7pxzzS93IiBvB5vpzsCQku9YZwCvLkwvDzibLU7otIgPXdyEj3sk7c7Hh+vvLkwvLlPSpc8KR61u13hvzx2EgM9xFc+O9IRh7zL5p071m0vvCiWqbz1CjK8GqDmu/PDfLwwwZI9dhIDPEWcfjs43Vk7VsrUPPmiVLv0qqK9OJwDPTvAmDsOGdU8FrjLPNI+37tZOnu8h83APN3tbDoO8Vg90+mKvLNghjyNXKA873vSvI1coDwbcw693qwWPYzt7rwFOQg8UKomOwsxurxF5xq9UaqmvP/RpD2NxXI8jZ12O/+pKD3mtN889uK1vJZk6Tv4Gkm93BXpvO1Dv7xDhwu9vyjuvJfnGD3cdIO7oF4TvYyddr0ovqW8qXraOwhxG7vTFmM9RBRzvav5ojqe2+O8IFfCO2Mp6jtRgqq8WP0LvED0RLrPLsi8WiEhvRA4Dj0q9ri7hOUlPLZwnT1EIxU9QtxfPIvUlLzPLkg9SLu3u9wV6bwaoGY8CdGqvNLuZjzpqxy91E52PD5suTtRqqY8lMMDPW9HKbwc55s88bNlPcvmHTz6elg9YKFeO+bDgbzmw4E9MMbuvEi7N7x/3tE9RCOVvMr6m7wA4rs9rKkqvSdurTz6elg8i8CWPH6OWToSmB29zEYtPdKtED2hY2+8ZdAuvOJsNb1Jaz88WTp7u5/bY7olwgw9nwPgPBD8E73YHTe9EFHoO/Mil7xGqyC9q4UVPRbgRzx26gY95rRfvWjgRT0zlS+9UBP5vNLuZrze7ey83EwHPf6BLDyAPuE8y74hvU3b5TuMrJg7ZtAuvZU3Ebz4asG8yv/3O/nKUD0arwi7aLhJPMAAcrsBCji8ncvMOdyNXT3Vlau833CcPf7q/jxXYQK8tNnvvPoRhjowwRI9iyQNPDV9Srx9Bs47gGEBPU1yE7y+hwi8KfY4PfsC5DzG/oK6yZqMOoHpDL1wR6m8osN+vFoSfzy/N5C6bJsIvWvwXL3cPWU8qCpivFVCyTmrsm28DGlNvQAytLx4XhQ7lTxtvSY2Gr3n+xS8tDgKPY7kqzmWFPG8N93ZurXoEb3wEgA9Mg0kPd+EGj33ujm9CDr9vBqHDD22Of86lV+NPDRFt7xngLa7apBNO5Qs1jthUWY9Ugo2vJrjMb05JI+8fX7CPDX1vruvMTY9UPqeu5ZLj7yoetq8wUenvKw1nbxYrRO8CPkmOeSkSL2zdIQ7tdlvvNf1Or3UTna9WiGhuq+RxTyDDaI8VELJPIMm/LoMucW8WOkNvJ4mgLyc80g9mIMivPAr2ruM7W48S6PSvH+OWTw09b48CqkuvWeANr08NKY8cae4PH4uSr0+lDW9mIMivVEysjxngLa8vBjXvLNRZL0aoGY9E9AwvHBHKb25WLi83cVwPXZyEryh+hw9snlgPREBcLzLliW8O6waPas6+bt7HrM8D5wEPBrXhLxjAW68ZGF9vO+jzjvx2+G8VlJgPB2/Hz2ugS47MTUgvLcgpTzoPOs6d16UvHxWRrwQTAw9t/goPGPAF72cG8U8rzE2vDlgiTzBHys9r5FFO4Alh7yVhwm9q4UVPZYPlbxWdYC8f95RvOPMRDsfz7Y83BVpvYs4C71N/oU7+PJMum+XIb2+I5I8QVRUPDCFGD10t888ij1nvRPQsDy++5W8DOHBPE879b01zcI833V4O1D6HjwM4cE610UzPXeGEL2q/Qm9ntvjvHgimrz4QsU834Sau6jKUjzbtVm9O4SeO7Sslzw/HEG9D6HgvDNFN7vLr/+78daFvOabhTxUQkm8bHjovDDBkjwFUuK8pUJHvTuEnruHVcy8vchePLMp6Dtuvx08VwLou2jgRTwSmJ07BXpePfD+AT0J0aq6em4rvcL3Lrqkkj89Ky7MPOy7s7xPShe8PFwiPQfa7Tz6EQa9TQNivYZFNb33Gkm8s4iCPEjjMz3+IR09BiUKPFbK1Lx4Dhw9ERASu8xuqbyYg6K8DOHBOweFGTyRHD88xQfGvNPGar3XHbc7cVfAPNnNPrzcFWk8cac4O/GaC7254EO8rCGfPBLAGT0kEgW8vPBaPZBEO7ytga48p/LOO/pNgDz8cRW9vXjmvM32NLysNR288oaNPDalxjriRLk6btMbvYJ2dDzN9rQ8a6DkPJ+uC72+m4a88QNevRJh/7txpzi9LjkHPNrd1TpLo9I8k3zOPGIkjrtaEn866jMovIA5BTsR/JO7u5BLO/9ZMD1zL0Q9Ky5MvERzjT0MCT48QgRcu36OWb3DzzK9qorxPFD6Hr2+S448BXUCvMlyED3suzM9gCUHPbOcgL2CnvC7tkghvFbyULyAOYU8ZdCuPCZ3cD1m+Ko7ADK0PHgimrymQsc8+cpQvYRtMbzqWyQ92M2+PKZCx7q2OX+9MO7qPKQKNL2zUWQ85w8TOzZ9Sr2JLdC8Lk2FPOgUbzz00p68LyWJOaQyMD0PxAC9cPewvA/JXLz3Gsm7zs44vbcgpT0t3tM64hy9PCt+xLyAPuE8UTKyvOaMYzyXxHg8x/4CvSumwLx1JgG8pbo7vfGzZT3T1Qy9TeoHPMW3zTvz6/i6lxRxPV5pSzz0gia8T+v8vN+EGjxFnH67kfTCPGb4qjxu+xc9s4gCPOGUMT09DCo9ef/5PDWlRrw/zMi7CSEjPS/u6jvyNpW5Kc48PTxcojvMbqm7yK4KvKnBDz216JE8L57yPE3b5Tw0Hbs8Z4C2vHUXXzwCQks9y//3vC4W5zw+lDW9BKLavL3DArxsr4a92PU6vADiu7x41/28i+gSO2x4aLzyi+m82PU6u0FU1Dz9XZc8duoGu9dFMz2wuUG8v9h1PRHolb0sBtA8Nc1CPVRCybzK/3e8+PLMPBNwobvDp7a6kEQ7PXxWRjwHivU7Kva4vC1mXzwc+5m8OIiFvC22V7wGEQw91f79PMvmHT2r+aI8btMbvcaP0TwkF+E8EbH3PGvwXLxKs4Y7egtBPbMePr1U5k68t/5rvEJrsLxJrmG8kUxmPfeDzzzzdOy7lp8GvYIkYrz7jRM8EA7RuxQDjbxPBiE992kovInvjTw/lUC8De+KvOlbS7wdYOW8wCybPCmyebz08Rw8bop3unvHibpfkai7P2aRPKl4ibxxNtc4YTjjvH7Rx723cVi9brmsO6/lyrtAIlS9nZ4AvcTyIb2EPg89rssju5KVwrwDeIW8BZKsvd/fpjw3fJ+8/EnWvB16Er28N1+83HyjvIKXTjoQm+S8ubo0PY9cT7wgyA08VOZOvDqGXb3M8Zu6imeZvdGiGr2Zvsy8Dh46PLU9Cr3/gkm77pS+vPsvLz1kKPo8vPMnPaofxLzTNE28gyRiuMfiOD0riOm7Uva3O/uNk7x6C8E8gU5yvBxGvruGQ667Y8obPesxuzjU2w08Sjt1PJ2eALzNfq+9MFMVPa9YNzuovMC7yBYNPYIKO71/Xlu90UQ2vPXxnLo5PYe9CeXGvATW47uUPP28QoXXvIAapLw6+Um8wLkuO5ikJTuojRE8vskXvVSd8rx8bsQ7ggq7Oxm0C7pdjAk9L9uJu2E44zwFY/e8NqavPCuiFj2Qdva8h4yKO6rwlLx5wuS8pT+WPEsR5TuhSlo7WB/CPIX60Tz18Ry9XgSVvA2rTb1wqUO7NXcAPT+VwLxeGR08J8LiO44Tc7x8bsS9AcwlvNIaJrvUweA8PM85PSnhLj34EOM8MvpPvVWNDz05sO28NermPKusV7wwxoE96wKMvY4Tczx2uCa9eOz0vDgJszwBzCU8rxQAPWCrTz1GMbe8np76u90JNz3bd/66gKe3uubeoL2+Vqs7ZkdGvLMePrxjKIC7lK/pO7ctoTtVSdK7SxFlvKoFnT2r2wy8wQKLvLkYGT0uwdy8OCNavWy0jbxnYe27jhNzPNOnuT1M59Q8TkpYugMvqbyM36S85jyFvf6sWTqw//G8WGP5PMdAHT3R0Um8CeVGvSu3nrssXlk8sIyLu1KyALz0IEw8HEY+OzugCj3NmNa8HjbVPB421bsKcto8e7KBO/pZPzwEvDw8UJO0PFsphrtbKQa9zMLmO7MevrxA2fe8U8wnuoIKu7yId/w7dSuTvM4l6ju3VzE8vif2vEAiVD0FH8A7HEY+vVzlyLyC24u88zC1u6zGhDzna7Q8Sa5hPZ4rlD1TPxS9mKQlPIBjgLtkoAs9KW5CvOOlLTwPUg68FNRXunCpw7y9gLs51z4RvXDyn7slGyg9eGSGPFBk/7smqDu8B1OUvFYvK7zwhFU8uQMRvSLiND2QdvY8TjCxvIAFnLy7Hbi8h3eCPSsVA7yT+EW617F3PLKRqj3dlkq8OvlJPFlonrxFdW479GSJvEiUOjyAYwC8OsqaPLab6DwBKoo8AD8SvdFENr08XM28avMlPTO2mDyAGiS7ZORCvPeDzzx6C8G8DmcWvKFK2jz18Ry9B8b6POFcUT2lKg68inwhPTV3AL0RVy08UGR/vVKyAL2v5Uq9w2WOve9qrrwrt567e8cJPMuoPz0p+1W8y2SIPWxWKT3rAgy9xlUlvMaZ3Lugox++0US2vY/POzydnoC8fhV/PO/3QTwID1c8Nnd6vFQVhLvfbLq8FWFrvJfONb38YwO9bFapO9zA2jyC24u8UlQcu/1j/Tt2Rbo9l+jcvMHTVb1murK7UJM0Pdums7ysaKC70niKPIMk4jsE1mM9ubq0vM/hsrwSoAm9QCLUvKvbDDsfDEU5JNLLOy6nNT3aprM7EnHUvNV9KT2E4Ko7CeVGPetLYjwiKxG9OJbGPFTmTryJ7w29rimIupB29jxJyA68UCBIPNl3hDzDqcW8Qmuwu0dL3jt9FQW9hLF1PCaou7uuyyM9A42NvIoJNTxuF5E8wzZZPApy2jxHS948UWmkOzhSj70fUII80BUHvOhBJDzgtRa9u2aUPUx06DxIIU68h4wKug444btbKQY9tT0KvbyAO702d/o86YqAvXQmbjx84bA89NdvPL9wUj1d/+87gOtuvGE44zs27wu9WJKuPCFvSD7zdOw7htBBOTBTFb16C0E9uP7rvMlFPDtKswY8E7owvSnhrrwnwmK9v58HPISx9TwTGJU8Xu8Mu0OfBD2sxgS9cVD+PBJxVD0riOk7jLDvOuZRDb0DjY08QfhDvPpZv7zWJOS82aGUPHg10TxiDlO8jWy4vO1QB70Si4G8eGSGPBzTUb1qgDk79q3fPPkqkLy5urS872quPD2lKb2TazK8O0KmvHBlDLySIta6itqFPNkU+zr/aCI9dhYLvVFpJLwpsvk7GnDOvD+VQD3mUY28SrMGvUYxtzxIUAO9zE+AvNOnOT0NkSa7PengPCV5jDyHXdU7KT+Tuy40ybxNo507TUpYPHa4prw1dwC9KiqLuu6uZTzJRTw9omQHPbzzp73+xgY9zMcLPXxuRDxACK06UWmkPedrtDy25MS7GIA3vc3HC7yuoRM8lGsyvR1gZbxPBqE8dCbuvGOBPz2UPP08XOVIuK/lyry9PIS872quPCFVIbw6ht08hhT5PIZDLrxwHLC817F3vDXqZjueKxS9eOx0vMzxG7zeUpO8O0KmPZpljTwwCjm7HEY+vPgQYzyEPg+75QixvWIO0zw2wFY82aEUPSwVfTyyYnW51z6ROxMtHT3Ropo71uAsPZikpbxaU5Y8yxusPNex97yKlsg80LcivcdAHT1w7fq8dfxdvFa8vjwYmt68fhX/vER1bry/4z49K4jpO+6UPjtYH8I8XgQVPLsdOL09pam7eGSGvfg/GL2Vhdm8ajwCvfWtX7w9GBY9cPIfPN2WSr0R5EC9mO0Bvdx8I7uOE/O5fUQ0Pft4i73B01U8eHkOvb+fh7tK9708vxcTPEye+LsbF488btPTuz6/UL0p4S49c5laPBfzozzrpKc99ZM4PalJ1DzH4ji9KJhSPa31s7uheY+8Z5CiPGy0jbtdLiU8upAkvc/hMj349rs5vDdfPHPIDz1agsU8aVGKPCjHhz1eSMw7BLw8PUKFVzyoopm8lltJPfbcFL0bivW7+ebSPeFc0by2KAK97QerPYqWSL184TA6XS6lPKw5azx9+1e7iOrovD9RCT1ZOek8fregvLKRqrwkjpS9BmgcPGJSkLxuFxG88ITVPC4FmjyDUxe9dFUjveFCKjyAYwC9tGcavTGxcz0GrNM7R9jxPLYogr3Bua48UxDfvAlYM72qBR28GVYnvZ2EUz0OHjq7P2YRPZJmk7xbyyE7wzZZO4zKHL272YA7tPQtvAMAdDyUPH09U8ynO90JtzsacE47sgSXvGyfhby+mmI9sC6nvPCzij1yf7M8LI0OOl/vjLzk2Xu85dl7Or9wUjw5sG28frcgPGMoAD2lEGE7kzwDO4zKHD0uwVw8w2WOO3yy+zuaZQ29Pr/QvGYYFzzTp7k8ONr9u/MwNb2IBJa9pYPNPJIIr7zjv1Q77pQ+vIMkYr2tD9u7sC6nvCXxl73nazS9ipZIvA+BPT0hb0g7XIyJvZ6eejv4Pxi9JF9fPQsuozwkAQE9c5navHRAG728N988Tr3EuzxczTz6ohu84+4Ju7cofLtv7fq6zlSfPbCMC7yId/y8IJlYvBhWJzzXKQm8sC4nPYAapLv4P5i7aWaSvHp+rbxEpCO8Cy6jvP/1tbuoLy29N03qO9bgLL3wQB69WTlpvaOt3brNC8M8wmDpPBFXrTxDnwQ8eMLku5HuBzxJruG8HRwuPbsdOLzOJWq8JjXPPNozx7zmr2u6FXsYPbJi9bzvai69I7ikPIojXDzNmFa9WNsKvTpsNr3PbsY7dhYLvZZBIrz0ZIm92BSBPQ/FdLvE8iG9D4G9vJT4RT29gLu692koPe0HKz0HgsO8GCdyvO7dmjwbj5o6c5naPN/5zTzyo6G8HwzFvBfE7josRDI8fhX/vBr94bucaiw9mHVwO30Vhbx3X2E8KT+Tu4X60bwteIa84aCOPHIMxzxHB6e8TJ74OlMqjLulg805bJ8FPTx2dDxmGBe8zrIDvbFITj0JWDO82aGUu7G7Orzhi4a8+D8YPIqWSL0+v9C8ZkfGOhNHxLupSdS8icBYOm5GQDwtNEk9CCkEPd4jXr2qkrA8WWgevJNrsrvGswm+YWcYPYBjADxSVBw7DLu2O+oXFD0cRj69sP9xvON2+LyUr+m8LevsPKEwM7wTLZ080dFJvYbQwTzZXVc8J34rvWAePL1mR0a8f42QPM/hMryt9bM8ZCj6u79w0rztB6s7m5Q8va+2G70H9a+8TAECvaoFHTwanwM8uUdIO0ghTjvvyBK8pMeKvLctIT3VTnQ8BsYAO/eyBLziMkG82IdnPeC1ljx+FX+8LF5Zu9mhFD0G2wg9v58HveFCKr3FDEm9zPGbu8ZVpTyl9jk9VwWbPHbSTTyCxgO9gDTLPDTQP7qKZxm8Zov9vIcZnjuSCK87JF9fPK9Yt7yNQqi9YvSrPB8MxTyzHr68Fjdbu+WVxLsQDtG8mY+dvJMiVj2iIEo9kb9Su5uu4zzcfCO8LESyOwEqCruL3yQ8QmuwvBUdNLu6Ye87zz+XvEAILT3Aivm7nlrDO+WVRL1stI27GSdyu5KVQj2HGR69NqYvvA+BPb2peIm7ajwCva0pCDw0XVO7bFapPLvZgDxY8BK8j1xPPGZHxrzP4TI8YJGoPGvJlTwq+9U8CCmEPd9surw7oIo9DLs2PDbvizwl7HK9ftFHvTxczTySZhO9ubo0PElqqrtuivc8rssjPckBBT1nYW29kTK/vGWLA7whVSG8HmUKPRgn8jyOE3M99E8BPBUdtDwBnXC8QAitPA+BPb1gkai8e7IBPYJ9pzyqkrA8LRoivenOtzz+2w69KeGuPJNrMjyvthu9pGmmvJMiVjylsgI6EnFUO2Rx1jsFY/c8hhT5vKCOF7xIIc68yLioO7yAO71cWLU9m65jPHRvSjxjgb87lGuyutM0TbwDeAU8CeXGPNXGBb2AGiS9p1m9u5B2drwhJmw91Qq9u9HRSTvCj548ZS2fvJWF2TwYVqc7Pu6FvCiYUryiBiM8ggq7O02jHT3F3Zk8HEY+PcnSzzx8PxU9wdPVPFPMJ7l0Ju67kpVCPIuwbz0f8p084aAOvY/POz19FX86ct2XvDr5SbxEzrM8lN4ePd4j3jycaiw9igm1PPsA+jrc2oc8Lqc1PTxcTb0upzU9wCwbvffHDLxtLJk8FAONvXkLwTtjVy+9Y5vmvCuI6bsOHjq8/GMDvacVBjtqxHA8U8wnPInvjTuykSo97pS+vH0qDT2VhVm9S1pBPS00ST2r2wy9tDjlO6THCj1stA28KMcHu1HcED2xuzo8JNLLPDOH47udEWc8BfCQu6qSsLyunG68UPEYPTd8nzx2ifE8FXsYPcp5kLxnqkk8BmgcPYqWyDx47HQ88QWSvAFXSj3/ox69GJCZuzmQnLxFgPi8qAe8vP1qUT2PLrA8i6VEOpqT77zVaJy8YFUiPGy64Ttyucm8luBDPQr2brwhbG08eAhQvCjO4rsy9nK8c98nvaQsgTyVaJa8vhqtOzsuKLtRGYq8icqJu/V7Djy79E68aRqlO32PCrxky5694Vh4ve1WSDzhG0k8OOJrvRN8kbyItxq94n7WPFC7dzsWV8y8kwe6vBmQmb0ipbo82/KgvDJBFr2RVA69f6d0vIMd8bwECva78X/wvNMtHj1HVAc8MBmHPLIvTLySRGm9AURbvETzqr2pBQu9GjDWvIKjEjz09ey8TJLPu+5Ul7yLktU8un7SPAvfHT0lRXe8g/Owu3UtFTzZLIY9Jd6HvAimUDwDp2i80lfePGrylbzc3QA8csy4vP/N3jzXMOg7bZChPG0w3jx9txm840GnvfcsCT1yuUk8p4+OOiYGFz199Mi8gWgUvSKSS7ykLrK74HuMvWGlwLzcf268mAaiux6PAb0JaaG8QFdQvLRCO7wOkkm8+qS2Or99Or3guLu8bR1vO0BqvzxU9EQ8sQluPOEbybtbVro84i64vMJWxDzUzdo8jcsivVKRN7h/BYe8qaf4vBN8kTzwj5U8A2q5u2RYbDwrlP086/M6vWBVorxjewC9rOBFPAUwVD1UyoS8Scw0PNV7C7wCGpu7Y7ivvZe2A7x+Gqe66ZCtPMxYdj0euUE9gbrjPMCQKb3CGRU9YEKzvMbMwDwLHM28tEI7Pe3xib1hpUA81ZArvchCvbxBGqE8Is/6O1xBGj3mogM9LbrbvKV+ULyk8QI9bH0yO5zMvLoF4LW93Bxhuz2RtTscVrS8R/b0uaWRvzs9j4Q6SRzTusHgR7yM4nM9Jy4mvInymLzrBio93AWQvIkvyLw7a9e87wl0vM/hYTzVaJw9rywCPY9BHzyr4MW84mvnvJExer3Aewm7MID2vJC7/Txkyx4907prvMG2h73wzMS7VgUDOxjNyLt4yyC8AOHNO96S3btfygU9z1QUvG8GHj0aMNY7Sy9CPKXObjxu4L+7JxkGPHVCNTwr8o88JhkGvV9sczu5QaO8bqMQvVd9MDv8GjO9jt6RPKLLpLyQfk48wt6WOR728LwzCWI97mm3OwSjhr1mfsq8GM1IvM3xBjuwfKA8rTDkPK9WQj05kJw9z85yvSKlujxPLio84mvnPDTMsrv0aB88GAr4u9sJ8rocQ8W8W1Y6vEdUB70IVrI79bg9PYlCtzze4nu7DZLJvI3LorzDBia8wM3YPHQvRrwfWf48kwe6PGZ+yrwjpTq8xWcCvZRXWD3/zV47WoD6uvEcY7v+QJE9k0TpuxvzpjxTpCa8HJPjOy/gubu+V1w8GjDWu7PynDzPkcM8UFhqPDy79by5kUG98MzEvHFpKz1tzdA8tZJZvDwZiLy+BQ09pc5uvA+luLwrBzA872cGvQAx7Dw+pCQ99bi9uYO2AT3lpLS87VZIPEsFgr0okTO9zkElvaUsgb0g8g69QS0QPAlUAbwWlHs9ZBu9vANVmT1nzug8bwYevbEJ7rvop368yPIeviDfn716Li48cvZ4vHdokzxsfTK5X9+lO66TcbwXGh28Ei4kOzsuKLvtVki9pUGhvLEJ7juvabE8GzBWvEAHsrzDpmI75wfCPd7i+7wv4Dm9Q+A7vOaigz06yxq8N1UePNGigTxwQRw6SPZ0PaC4tbzdBZC6VVfSvM+ksrwb86Y7j0GfPPXLrLut8zQ9QWq/OtFE77xfL0Q9svKcO/W4PT25VJI8L8sZvdOn/DzmypK7R2knva1D07uczLw8KJGzvLkZlDw1yoE8ufGEvMBomrzkj5Q8/1MAvdfeGDwZkJm6kEEfPT7hU7sfzLA5N5LNPKvgxTyWaBY9d3sCPU64LTrjGZi9HUGUPL99ujx1QjU8lc3UvMpAjD0ky5g8RQYavBYHLjxej4e8SY8FPfDMxLyQkT295kTxPIO2gb0d9nC7hAagPErKAzyeQjk9935YPMbMQLyG9nq7WAr+vPFCwTyOG0E+Gc3IOmBVIjwHQ0O9xsxAPTAwWLzlpLQ6LQp6PCjO4ryeL8q8C98dvdcwaDwe9vA82meEPEtVILx2VSQ9CEESvaWRPz194Vk9VLeVPIziczzTfTy8lx1zPHt+zDtvBh68crnJvILgwTzXVkY8rbYFvHjLIL2BuuO8zWtlvLBUETwdGYW9zBtHPKXhXTyQkb28m2kvvViQnzxvk+u8ZhmMvPCPlbxeHNW7/WrRO8EwZjoFHeU6lh3zPNzyIL25LjS8Dc94u3UFBr3DBiY9h/b6vMS50bzZLIY880AQvWpX1LweuUE95ldgu5pprzzFfKI78MxEu4FolLwjaIu8MWklvD6kJDwmG7e84Li7vHL2eDxsQAM8R/b0PPSlzjyWzdS9sd8tPaK2BD1XQIE7BvMkvBAbtT0PuKc8YJJRvGN7AL1cpti8B4DyuxX0Pr0QWGS7KTHwPI9r37z4GRo95I8UPW5DTbtp9Ma8IC++OwOn6DzoGIC8xglwO6+5zzxOuC28JPXYvCFs7bsIQZI8/QUTvQbLFbsyaaW7z1SUvAEHrD0nLqY8kxopPPv0VLwHBhS62nwkvEPLm73b8qA80y0ePC/gOT0WB648hmktOke5xbzq87o8e35MO+IuOD2bVA+9SRzTPMCQqTzPkcO8A2o5PGm3l7zxBRI9N1UevQlpobzZabU8rTDkvJZAB7304v28aldUPfDMRDwTfkI8qAc8PTDeCDupBQu9A2q5u2nKhr3LCFi9SRzTvNYw6LxBBYG8v326PHm2gLvx8qK94iwHvTN8FL1QG7u7x98vPP5AET3/o569EFhkPPq3Jb2vGZO8Z87oPMdsfTuXe4W7LBqfPJcdc7zPVBS9D6U4PTK5wzwP9VY6NvKQPetD2TwryoA8/6MevUCn7jz/zV66qmrJu8pomzwxQZa8Q+A7O89UFL1wQRw9TC2Ru/ZraTzmyhI9GsuXPH30yDze4ns9QpCdO8gvTj2ja+E8orYEvGtqwzwUpCC9kwe6vG3N0D1jRf28erv7vC/guT0gLz69jAjSO9uPEzxtzVA7BR1lOwoJ3rx3aBM9fY8KPXRCNbm9B768ii2XvYqSVbshf9y89mvpO4RDzzwipbo8HnwSvWu6Yb32CFw8nbccvW3NUL2BfTQ9T0V7PMS5UT1sQIO9DUKrPEgJZLxkWOy8v3uJvJqT77y/QAs9/kARPC0K+jyC87C88kLBOsSmYjodaSO91GgcvLuPELtFQ8k8b5NrPYFAhTwTu3E7+beluyYbt7wxBpg5wwYmPRd9KrzN8YY9RqbWPOnNXDvGzMA77fEJu1mjjjwp9MA83+L7u9pnBDx/8hc9bTDeO/UIXLuGVA09w5NzPJaQpTsi4um6LX0svTZCL7wDark7txtFPGRr27qo8hu9ncqLvbgbxTxwk2u71zDoutcGKL3X8zi9+wfEupgw4rxKf2C99KVOvQvyjLyhCFQ9BJCXOhmjiL0LGhw89GgfvbhrYz1UMfQ89mvpPGQbvbzeVS69qx31PNC3ITzJLZ0828xCvOcaMTwTpCA8FbePO/CPlT3YpmS8PqQkvegYgLwrygA8SHyWvFWncD0aHWc7FY+AvORUlrzEfCK9D7inu6yjlrwKub+7wvM2vYLzMDxLQjG9z+HhvC+jir16u/u7T8ucPPnOdjwg8o48Is96PFiQn7wkkBo8cBkNvfsHxDwtkBu8hxzZu95Vrjw9jwS8mnweO/RoHzxQBhu94i44vTK5QzxVGqM8JcsYvX8aJ73QtyG9Qs3MO9JX3rwryoC72KZkvbGPjz0oVIS8GjBWvW/ejrxptxc9BjBUu9C3IT2tBqQ84QhavOaig7zQt6E8EAjGu4VWPjxpGiU8NmxvvNVoHL0+9EK8h7lLPGhE5bwEaIi8ni9KPaakrrxcQRq8osukPM8shbwYutm8Ni/AvKqQpzyC4ME89Li9vNp8JDyybPs6k/IZu+B7DD22yyY8m3yevPF/8LwYajs9HUGUvCC3ELy43pU7kVSOvIAtFjy/zVi9XEGavG3N0LvLCNi7z87yvH23mbvkVJY8MqZUPdhD1zzK4nm97VbIPHouLrsHQ0O85qIDvqf0zDy8RG08fbeZO4Iw4Dsvowo9/FdivWW7ebt8zuq8lkAHvb0aLT3CMOa7QPIRPPJ/cL199Mg8uuHfPBW3D72OG0G9ILeQvH1EZzkmG7e8/FfiPNbgybyHj4u8FM5gu4BqRb2RMfq8RMubvMv16Ly6LAM8Us7mOyYGFzpU9EQ8FbePvEZWODu0VSo9tsumPBxBFLzHL868k0Tpu04ITD3mGrE8mfGBvDYvQLxopCg936VMPNp8JL2H3ym9QAcyvRgtDLyioxU9c8w4PT2PhDwofkQ8JLgpvfHyIj3YpmQ7osukvI8uMLyJL0g8Ed6FPLGPjzzTak28qpCnvbQFjDzPLAU8Nd8hvUtVILwZkBk7lWiWvEOjDLziG0k9rgYkPS19LDvjQac86AURvNwFkDxbk+k7oGgXPdwcYbwFo4Y4KwcwuwIam7z6RPM8+/RUOwq5vzqn9Ey9qRqrOxN+wjuWQAc9wwamvEIKfLziLji9CWkhPPYI3LwDfSg8n39ou6XhXTxrasM8HxxPuxHeBTzZLIa851fgO6QsgTwBRFs8ei4uPULNTD1KQjG8nvKaPSBZfjybuc08CvZuvQr2br2qfbg8Rd4KvVxpqTxUV9K74iwHPYLgQT0+4dM8QbpdvSnh0bs6WOi6/pCvuxmjCD1mGQw9x2x9PaTxAjuKLRc9k8oKvdlptTxgQjO95kTxvDPMsjz+QBE9nLecPFe6X712QAQ9V30wvTK5wzxGplY8Q2gOvaePjjtgf2I8N5LNO/EcY7yDgP47R0EYPR0ZBb3ZLAa9jhvBvP0tIrkyQRa9BvOkPVWn8Dyvuc88ohtDu4hs9zqbuc27i2gVO+C4uzx/V1a9vLcfvViQH7zepcy8WlY6PcxYdrxJHNM6Uc5mPCT12Duoygw9gwagO1ymWLzLuLm8j0EfPARoiLwefBI9X/KUPIcJaj1tkKE8GGo7PWTLHj2Pfs46jhtBvBN+QjwKCV49wjDmu+5pN73rBio9CXyQO5d7BbzXk3W8MID2PHBBHD3e4vs83PIgPT4x8jzg9Wo8txtFPFKRNz199Ei9ny0ZPUMd67wrlP28wwYmPH23mb2l4V28CWkhvWN7gLztaTc83d2AvPYI3LxWut86QpCdPPDfszvOa2W7nMw8PagFi7wEfSg9MpNlvcqjGT1hklE917YJvHVABDw8zuQ8BR1lu9EHQDu5GRQ9s39qPEZWuDxZBpy8I2iLPFxBmrzC8QW8tZLZOzsbOT1N4u08u2cBPaMuMj0iQq28N6W8PL4FDT0UkTE9i2iVPBUIProyzjY9CJBJvUFNeDujxeq7kvQ8vV25vbslA1w9quWfPLrgPbzSDw+9ARZhvBzVjDu7tk282XzGuinRJD2ShRG8pmo9uzVR4LlpMiy8r7q1vME4/by4mwI9CD1jvK5gArt/p7I8vpkOvNrW+bsp0aQ83EoPvB2CJju1SZa8w93PvVXlIb3UVMo7MyhqPGA8Z72sFeO8xi88vf28JzwRcRY7K6e0vNdTULv2laW9cYKkPH0kibyPotC8jkgdvZXChbwNNCK89ZUlOpKFkbyzE2897cGJPJXzQjx2qiC8n51uvao/07zk9bS9ydtbvddMA7wvz7A8qpI5vUgax7uhQsG78asXPackCD2YRS89Z2PpvOcdsbzXIhO82HxGPfVz/LyMUGQ80SSHvGS3yTzjos688RpDPN1R3LvLBNI8851sPIk1mTwjLUw8koURvO/Vh73HWDI9sQyiPF4Tcbydx948Tr4fvYWlPr2x6vi8H7LpO+aFj72qI468G1mwuzZ61rxz6Yi8nZahvByzY7wIkMm7oULBu0nH4LuA0Ci9MiGdvJFHozs9hZM8dIGqO/hBxTyS9Dw7+8TuPK3kpbynJIg8apkQPdgNG71hZV07kqHWvPPUDb0o5pw8bpiWPJDLxrsnEA09FmLxPMqqnrzRVUS8wzA2veFyi7thSRg9aMMAvRnWhjxocJo7OvU4PH4Pkb00pEa8507uuzr1uDxjO209bN5LPZR35jzzbC+98cfcPIj3Kr2adXK7FmLxvPGrlz2wNpK9Cur8O8XVCL05UGa8WmAEPUDzxDxcdAI9fn48PWA857ygxuS7UuYbPegk/juzE+87zamkvSSpqLwgEoG8kXjgvC0OGTwVwwK8SZaju/O/lbxOazm8N0mZPZvxTjvHie+73TWXPETBjbwzKGq9i/awvDyaC72XmJU8tjSePc8QCT0oqK47tDzlvE+Ur7zKiHW9/A+OO384B71MlSk9bFqoPDf2srzNh/u8VLyrOWaN2TtJlqO7Q3buuxJcnrwAvK071iraPFXlIb1jO+081Q6VO/DAjzxFG8G7ztKauxwGSjy6rwA9smbVu6UlAr3kHqu7tWXbvPmb+Lybnmg8zfyKvJeYFTpNEYa8YF6Qu/hBRTy1uEG93ydsPfWVpTwLiAK9R8ATvS9ghbyruy+85HGRPKxMhDxIba08xFmsPVs2FL3j9bQ7iSAhvL/CBD3+I4y8YTznO5Il+rtaIhY8tQuovNkpYDwxUtq8Pk5yvAkMJj39acE8cwXOOnzZaTnxGsM7HwXQu4v2sDzUAeS8gqY4PTbNvDtaYIS89ZWlvL1j57xCyVQ9IL8auyT8Drwze9A8jh+nPXfTlrpaS4w86CR+vJV3ZryklK079kI/PItJF7tG1Qs8ZjrzPG202zzm9Dq9o8Vqvb3fw7xI/gE9FDIuPYFMhTl+r3m8K6e0O7+1U7zJv5a7JrB1PDkfqbxaujc9gvkePTx44rtpjF89q7svvZWgXDuiaze9UWo/vWoIPL1N05e94cy+vPdrtTw1UeC66YQVPW6Dnry3O2s9gqY4Pfr7j7yz4jG76hw3vN4gH76/MbC910yDPNDZ57w/rok8jcxAO1e7MbuG//G823vMOipNgbu/MbC7gX1CvZRGKb0NEvm6BBXnPHNYtLzuTPq7vlsgPLDjqz09rwO9jXlavY3MwLze/nU9cJccvexFrbq+WyA9V7uxOw7hOz2/wgS9HLPju3MFzrxs3ku9WeQnPMQGRjwMXpI8or4dPU6cdruvurW80eYYPS0q3jum+5E9tQuoPOnzQL2jEYQ8GdaGO+JIm7wyIZ08PfS+PD5wm7wxpUA80a93ukSf5LyCN428CJBJOzZeEb13BFQ8VPqZO67r8jzxGsO8omu3PGiFkjyHe846yuiMPFnkpzw+Jfy7jkidvepvHTy+CLo8HAbKO+51cLyArn89+JQrPTB8SrwF5Ck84kibvMEHQD1SF1m8FHAcvavs7DwATYK9xJeaPPEawzx0gSq6GItnPd8n7LtdX4q8RnV0O1hoy7zuTHo8LX1EPmzeSztwBki8Cer8vDLONj3Nh/u8J/uUOwuPT7v9aUG96fPAvK5ggr1Lvxm7JKkoPbgKrjzBWia8lq0NPcGYlLzhcgs9WT5bPeuYkzu0PGU81AHkvGSGjDymaj28K1TOvHolA70zX4s8qA8QPRRwnLzZ+CK9RMENvdIrVLjudfA7R/FQvaRBxzzc1X88ziWBvTbNPL1Glx08OHIPvS75oLybnmi8cOoCO2aNWbvqrYs7eVbAO/7lHT3vRDO9GK0QPEFN+LkH4y+9LQ4ZPalpw7zRqKq8DuG7PCH9CL2eQ7u8Iy3MPF4TcbvqHLc8CDYWPP76FTwSmgw8/iMMveOizrx90SI8XOMtvKGVp7x7EIs7RkS3PBAzKD0rVM48hiGbvRaZEj0BFuE8quWfPF1fCrzF1Yg9tuG3PGcJtrr2vhu9XhPxuz2vAzyBTAW9SBpHu7ddlDyBDpe8hUuLPQXr9jxH6gO85E/ovJYcubs39jI7RW6nu9DZ5zxMxuY83iCfvBcxtLx9JAm8QJmRPHgtyrxUacW8S78ZvMbcVbysu689i/awOzAp5DuwdIC8HwXQPLwyqrpkt8m92jaRPJYcuTz7kzE9Jn+4PE6+nztETP67V+zuPHL+gDz9vKc9g1PSvKMYUTtETH481AHku0htrTyw46u8SxlNPZFHI73DMLY6fFXGPItJF72d6Qe9rBVjvAXrdj2GdIE8+CUAu1oNHj3L05Q8yoh1vNau/btJdHq9zL4cvUUbwbzTp7C8ARZhvAIjEj0DuzM8PMtIvTf2Mr1V5aG8hdZ7u/nuXru3XRQ9TMZmveV43jyGUli93NX/u/6SN7pK8Na8d7FtvMLWgjwH4y+8mW4lvWsxMj3LBNI8FMOCPEOYlz0x+CY9Q0UxPAtzCr2h71o9Rpedu3oD2rz3GE88kx2zvH9UTLs3hwe9TJUpPZL0vDu6XJo8ziUBPezyRjuJUV47Do5VPevCAzz75pc9IC7GO8eJb7yV80I9iiAhveb0Or3ZKeA9XOMtvSH9CL0ZmJg9zgNYvaK+Hbtug5481CMNPLULKLu5hgq9qLwpPW4wuDzlJfi7xJcavRlhd719JIk8Nf75vPGrFztx6oI8rSKUPNciE72ayFi9VpK7Oz+uibzznWy9WT5bPW4wuDt90SI9Z5qKvbu2TT1VFl+83iAfvYL5HjsB5SO9LyIXPZZvnzu6Efs8yoh1vDtPbDsHdIQ7VpI7vXWI97ugc346JId/PNdMgz3od2S81dAmO3UuRDzg9q66dxGFvMux6zzBB8C87NaBPfmb+DwoOYO7nMCRvPXTE7z0xmI8KOacPLPisbzJv5Y8zfwKPTN70Ls6SB88Do5VPRmYmDyhlSc8N6PMuzJ0A72wNpK8GjA6PHbojjy9rgY8FMMCvZwaRb3fetI8Xbm9uk3GZjsW14C8/Jp+vb610ztZ5Ke8PsOBvQXkKb1wWS68YwowPXssUDz8D469s+IxO4yjSrwYwog9SemJPMyArjx7EAu9fn48vDQ1mzxYwv47TRGGPBkHxLvKiPU6G1kwvKgPkLveIJ89O3EVvNIPD71wBsi7sHQAPAWRQ7vkT2g9N0mZuwDt6rrZSwm9WT7bvJ+d7ryx6vi8iEqRPGVxFL2Nedo6d4CwvH7Y77xpWyK9/WnBOjNfizwHZ1M8HLPjPAviNTxaure765gTO4+i0LyV88I8MVLau8SsErye8NQ7B3QEvEsZTbmSTnA8YTxnvFk+W73m9Do8Fjl7PG0HQr2w4yu95oUPvTx44jw0iIG85vQ6vLB0gL10smc95MtEvHLc17wn+5S8284yPTom9jvKqh49d4CwPIFMhbwjgDK8FzG0PGZcnLyivp08if53PH0kCbuhQsG84KPIu1W8Kzyhlae8FzG0us9/ND2VwoU8m0Q1vOiZDTwu+aC7kvS8vHqHfbwi6BA9FzG0PFtn0bxiNKC4muqBuv8/UTueQzs9T+eVPLFfiLw9Jfy8HwVQPSC/GryXydK88MAPO2mMX7zhcgs8PUclvZtEtbwdgiY7cYIku8ux67yF+CQ70tEgPE6cdj37k7E83s04vWVxlDw+Jfy78/BSuTmbBb4xUto8HwXQO3WI9zvcSg+87W4jPQm5P70+Jfy7fivWvCJXvLwLPOk8XhPxu+FyCzz87WS9Tmu5PFBByTyNHye9mW4lvS19xLt26A47rDeMvKGVpzzRJAc6MaXAuygCYjv+kje9FN/HvO1uI7yadfK8OvW4PHaqoDt1v5g6KSQLPC19xLtdX4q7IIEsPcpXuDyEzy48hM8uvciBqLvncBc9gvmePAiQybzgo8i7i0kXPRwGSjxmjdm8OcxCvUv9B72yShC8gX3CPBaZEj2VhJc8HLNjOz2FE71WP9U823tMvGvChrxJliO9aIWSu/f8iTwWhJq5azEyOxkHxL0L4jU6wN7JPM4D2LxUvKu7tbjBO3PpCL0eifO8StQRPYDQKD3ieVi8EY3bPD5wG7yMUGQ8VbwrPFk+W7w+wwG9rmCCvALs8Dup7Wa8vXCYPBOFlDz+kjc7C+I1vXUuxDta63Q78Z5mPYAB5rytIhS8OHIPvaAZSzvmhQ+9fg+RO7Y0Hrx2BNQ8EXGWPFq6t7zUIw08Jn84vOpN9Dt6JYM8J/sUO/NsrzwiBFY9Ms62vIp6VD0mfzg8M0qTPGLhOb2ovCm9koURPcqqnrzYDRs8WZFBvBuKbT0fBVA9U5O1PII3jb0e3Nk5ovwLvHL+gLwi6BA9yIGoPLc7az0dgqY8Kk0BPYj3qrxttNs8f1RMvSfZa7yEDR09PJoLPagPELsMuEW91AHkPOdObr1cdII8BxRtPBaZEr0rOIm7nXR4PD7DgTqC1/W8Fjl7PFnkJz3LBFK9ceqCvD30vrwt0Cq8Rpcdvff8iT2jEYQ8Z5oKPQo1HLwH4y+8MfimvBIJuLpP55U8Zo3ZvKPnE73Lseu7dxGFvMDeST0uNw+8/z9RPKxoyTx3sW28arXVPNPY7bqSTvC75vS6vPWVJTxwius6bDj/PBGvhDvFYHk9rj5ZPHW/GD3qb508pb0jOzyi0rtKQ707is06PXmppjskh/+7xFksPaSUrbvky8S75U9ovAXrdjxgXhA9/jgEPUWsFT3iSJs87shWvJJOcLsvAG49mJ9ivcPBCj3v1Qe9DWXfuztxFTy+mY69pvuRO0u/Gb3Cgxy9vrXTu4j3qrsRjdu8vlugvOCjSDwGIpg8pvsRPK8U6TwVOfu6Ilc8PYVLi7009yw9jXlaPVdMBr2zNZg76JkNPTqGDbwx+Ca8GK0QPeTLxDyMUGQ8FmJxu1Tt6DnJ/YS8OkgfvLngvbsqTQE9lq2NPLK5Oz0dL0A9m0S1vL5bID1HwBM9MtZ9PIuHhTw="}