You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

129 lines
4.6 KiB

import os
import logging
from logging.handlers import RotatingFileHandler
import jieba
from gensim.models import KeyedVectors
from Config.Config import ES_CONFIG, MS_MODEL_PATH, MS_MODEL_LIMIT
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# 确保日志目录存在
os.makedirs('Logs', exist_ok=True)
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5)
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 1. 加载预训练的 Word2Vec 模型
model = KeyedVectors.load_word2vec_format(MS_MODEL_PATH, binary=False, limit=MS_MODEL_LIMIT)
logger.info(f"模型加载成功,词向量维度: {model.vector_size}")
def init_es_pool():
# 初始化Elasticsearch连接池
es_pool = ElasticsearchConnectionPool(
hosts=ES_CONFIG["hosts"],
basic_auth=ES_CONFIG["basic_auth"],
verify_certs=ES_CONFIG["verify_certs"],
max_connections=50
)
logger.info("Elasticsearch连接池初始化完成")
return es_pool
# 将文本转换为嵌入向量
def text_to_embedding(text):
words = jieba.lcut(text) # 使用 jieba 分词
print(f"文本: {text}, 分词结果: {words}")
try:
embeddings = [model[word] for word in words if word in model]
logger.info(f"有效词向量数量: {len(embeddings)}")
if embeddings:
avg_embedding = sum(embeddings) / len(embeddings)
logger.info(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
return avg_embedding
else:
logger.warning("未找到有效词,返回零向量")
return [0.0] * model.vector_size
except Exception as e:
logger.error(f"向量转换失败: {str(e)}")
return [0.0] * model.vector_size
def main():
# 初始化ES连接池
es_pool = init_es_pool()
# 测试查询
query = "小学数学中有哪些模型"
print(f"\n=== 开始执行查询 ===")
print(f"原始查询文本: {query}")
# 执行混合搜索
es_conn = es_pool.get_connection()
try:
# 向量搜索
print("\n=== 向量搜索阶段 ===")
print("1. 文本分词和向量化处理中...")
query_embedding = text_to_embedding(query)
print(f"2. 生成的查询向量维度: {len(query_embedding)}")
print(f"3. 前5维向量值: {query_embedding[:5]}")
print("4. 正在执行Elasticsearch向量搜索...")
vector_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
},
"size": 5
}
)
print(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}")
# 文本精确搜索
print("\n=== 文本精确搜索阶段 ===")
print("1. 正在执行Elasticsearch文本精确搜索...")
text_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"match": {
"user_input": query
}
},
"size": 5
}
)
print(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}")
# 打印详细结果
print("\n=== 最终搜索结果 ===")
print(f" 向量搜索结果: {len(vector_results['hits']['hits'])}")
for i, hit in enumerate(vector_results['hits']['hits'], 1):
print(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}")
print(f" 内容: {hit['_source']['user_input']}")
print("\n文本精确搜索结果:")
for i, hit in enumerate(text_results['hits']['hits']):
print(f" {i+1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}")
finally:
es_pool.release_connection(es_conn)
# 关闭连接池
es_pool.close()
if __name__ == "__main__":
main()