157 lines
5.8 KiB
Python
157 lines
5.8 KiB
Python
import hashlib # 导入哈希库
|
||
import time
|
||
import warnings
|
||
|
||
from elasticsearch import Elasticsearch
|
||
from langchain_core.documents import Document
|
||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||
from langchain_openai import OpenAIEmbeddings
|
||
from pydantic import SecretStr
|
||
|
||
from Config import Config
|
||
|
||
# 抑制HTTPS相关警告
|
||
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
||
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
||
|
||
|
||
def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list:
|
||
"""
|
||
将文本切割成块
|
||
|
||
参数:
|
||
text: 要切割的文本
|
||
chunk_size: 每个块的大小
|
||
chunk_overlap: 块之间的重叠大小
|
||
|
||
返回:
|
||
list: 文本块列表
|
||
"""
|
||
# 创建文档对象
|
||
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
|
||
|
||
# 切割文档
|
||
text_splitter = RecursiveCharacterTextSplitter(
|
||
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
|
||
)
|
||
all_splits = text_splitter.split_documents(docs)
|
||
print(f"切割后的文档块数量:{len(all_splits)}")
|
||
|
||
return [split.page_content for split in all_splits]
|
||
|
||
|
||
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
||
"""
|
||
将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重
|
||
|
||
参数:
|
||
long_text: 要插入的长文本
|
||
tags: 可选的标签列表
|
||
|
||
返回:
|
||
bool: 插入是否成功
|
||
"""
|
||
try:
|
||
# 1. 初始化Elasticsearch连接
|
||
es = Elasticsearch(
|
||
hosts=Config.ES_CONFIG['hosts'],
|
||
basic_auth=Config.ES_CONFIG['basic_auth'],
|
||
verify_certs=False
|
||
)
|
||
|
||
# 2. 检查索引是否存在,不存在则创建
|
||
index_name = Config.ES_CONFIG['index_name']
|
||
if not es.indices.exists(index=index_name):
|
||
# 定义mapping结构
|
||
mapping = {
|
||
"mappings": {
|
||
"properties": {
|
||
"embedding": {
|
||
"type": "dense_vector",
|
||
"dims": 1024, # 根据实际embedding维度调整
|
||
"index": True,
|
||
"similarity": "l2_norm"
|
||
},
|
||
"user_input": {"type": "text"},
|
||
"tags": {
|
||
"type": "object",
|
||
"properties": {
|
||
"tags": {"type": "keyword"},
|
||
"full_content": {"type": "text"}
|
||
}
|
||
},
|
||
"timestamp": {"type": "date"}
|
||
}
|
||
}
|
||
}
|
||
es.indices.create(index=index_name, body=mapping)
|
||
print(f"索引 '{index_name}' 创建成功")
|
||
|
||
# 3. 切割文本
|
||
text_chunks = split_text_into_chunks(long_text)
|
||
|
||
# 4. 准备标签
|
||
if tags is None:
|
||
tags = ["general_text"]
|
||
|
||
# 5. 获取当前时间
|
||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||
|
||
# 6. 创建嵌入模型
|
||
embeddings = OpenAIEmbeddings(
|
||
model=Config.EMBED_MODEL_NAME,
|
||
base_url=Config.EMBED_BASE_URL,
|
||
api_key=SecretStr(Config.EMBED_API_KEY)
|
||
)
|
||
|
||
# 7. 为每个文本块生成向量并插入
|
||
for i, chunk in enumerate(text_chunks):
|
||
# 生成文本块的哈希值作为文档ID
|
||
doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest()
|
||
|
||
# 检查文档是否已存在
|
||
if es.exists(index=index_name, id=doc_id):
|
||
print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}")
|
||
continue
|
||
|
||
# 生成文本块的嵌入向量
|
||
embedding = embeddings.embed_documents([chunk])[0]
|
||
|
||
# 准备文档数据
|
||
doc = {
|
||
'tags': {"tags": tags, "full_content": long_text},
|
||
'user_input': chunk,
|
||
'timestamp': timestamp,
|
||
'embedding': embedding
|
||
}
|
||
|
||
# 插入数据到Elasticsearch
|
||
es.index(index=index_name, id=doc_id, document=doc)
|
||
print(f"文档块 {i+1} 插入成功: {doc_id}")
|
||
|
||
return True
|
||
except Exception as e:
|
||
print(f"插入数据失败: {e}")
|
||
return False
|
||
|
||
|
||
def main():
|
||
# 示例1:插入单个长文本
|
||
long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。
|
||
|
||
混凝土的历史可以追溯到古罗马时期,当时人们使用火山灰、石灰和碎石混合制成类似混凝土的材料。现代混凝土技术始于19世纪,随着波特兰水泥的发明而得到快速发展。
|
||
|
||
混凝土的性能取决于其配合比,包括水灰比、砂率等参数。水灰比是影响混凝土强度的关键因素,较小的水灰比通常会产生更高强度的混凝土。
|
||
|
||
为了改善混凝土的性能,常常会添加各种外加剂,如减水剂、早强剂、缓凝剂等。此外,还可以使用纤维增强、聚合物改性等技术来提高混凝土的韧性和耐久性。
|
||
|
||
在施工过程中,混凝土需要适当的养护,以确保其强度正常发展。养护措施包括浇水、覆盖保湿、蒸汽养护等。
|
||
|
||
随着建筑技术的发展,高性能混凝土、自密实混凝土、再生骨料混凝土等新型混凝土不断涌现,为土木工程领域提供了更多的选择。"""
|
||
tags = ["test", "hash_deduplication"]
|
||
insert_long_text_to_es(long_text, tags)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|