You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

72 lines
2.2 KiB

import asyncio
import logging
import os
from lightrag import LightRAG
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import EmbeddingFunc
from Config.Config import EMBED_DIM, EMBED_MAX_TOKEN_SIZE, LLM_MODEL_NAME
from Util.LightRagUtil import embedding_func, llm_model_func
# 在程序开始时添加以下配置
logging.basicConfig(
level=logging.INFO, # 设置日志级别为INFO
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# 或者如果你想更详细地控制日志输出
logger = logging.getLogger('lightrag')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
WORKING_DIR = f"./dickens-pg"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
# AGE
os.environ["AGE_GRAPH_NAME"] = "dickens"
os.environ["POSTGRES_HOST"] = "10.10.14.208"
os.environ["POSTGRES_PORT"] = "5432"
os.environ["POSTGRES_USER"] = "postgres"
os.environ["POSTGRES_PASSWORD"] = "postgres"
os.environ["POSTGRES_DATABASE"] = "rag"
async def initialize_pg_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
llm_model_name=LLM_MODEL_NAME,
llm_model_max_async=4,
llm_model_max_token_size=32768,
enable_llm_cache_for_entity_extract=True,
embedding_func=EmbeddingFunc(
embedding_dim=EMBED_DIM,
max_token_size=EMBED_MAX_TOKEN_SIZE,
func=embedding_func
),
kv_storage="PGKVStorage",
doc_status_storage="PGDocStatusStorage",
graph_storage="PGGraphStorage",
vector_storage="PGVectorStorage",
auto_manage_storages_states=False,
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def main():
try:
rag = await initialize_pg_rag()
with open(f"../Txt/sushi.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
finally:
if rag:
await rag.finalize_storages()
if __name__ == "__main__":
asyncio.run(main())