You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

151 lines
5.6 KiB

import asyncio
from contextlib import asynccontextmanager
from logging.handlers import RotatingFileHandler
import jieba # 导入 jieba 分词库
import uvicorn
from fastapi import FastAPI, Request
from openai import OpenAI
from sse_starlette.sse import EventSourceResponse
from starlette.staticfiles import StaticFiles
from gensim.models import KeyedVectors
from Config import Config
from Milvus.Config.MulvusConfig import *
from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from Milvus.Utils.MilvusConnectionPool import *
from Milvus.Utils.MilvusConnectionPool import MilvusConnectionPool
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5)
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 1. 加载预训练的 Word2Vec 模型
model_path = MS_MODEL_PATH # 替换为你的 Word2Vec 模型路径
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MS_MODEL_LIMIT)
print(f"模型加载成功,词向量维度: {model.vector_size}")
@asynccontextmanager
async def lifespan(app: FastAPI):
# 初始化Milvus连接池
app.state.milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
# 初始化集合管理器
app.state.collection_manager = MilvusCollectionManager(MS_COLLECTION_NAME)
app.state.collection_manager.load_collection()
# 初始化DeepSeek客户端
app.state.deepseek_client = OpenAI(
api_key=Config.DEEPSEEK_API_KEY,
base_url=Config.DEEPSEEK_URL
)
yield
# 关闭Milvus连接池
app.state.milvus_pool.close()
app = FastAPI(lifespan=lifespan)
# 将文本转换为嵌入向量
def text_to_embedding(text):
words = jieba.lcut(text) # 使用 jieba 分词
print(f"文本: {text}, 分词结果: {words}")
embeddings = [model[word] for word in words if word in model]
print(f"有效词向量数量: {len(embeddings)}")
if embeddings:
avg_embedding = sum(embeddings) / len(embeddings)
print(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
return avg_embedding
else:
print("未找到有效词,返回零向量")
return [0.0] * model.vector_size
async def generate_stream(client, milvus_pool, collection_manager, query):
"""生成SSE流"""
# 从连接池获取连接
connection = milvus_pool.get_connection()
try:
# 1. 将查询文本转换为向量
current_embedding = text_to_embedding(query)
# 2. 搜索相关数据
search_params = {
"metric_type": "L2", # 使用 L2 距离度量方式
"params": {"nprobe": MS_NPROBE} # 设置 IVF_FLAT 的 nprobe 参数
}
# 7. 将文本转换为嵌入向量
results = collection_manager.search(current_embedding, search_params, limit=10) # 返回 2 条结果
# 3. 处理搜索结果
print("最相关的历史对话:")
context=""
if results:
for hits in results:
for hit in hits:
try:
# 查询非向量字段
record = collection_manager.query_by_id(hit.id)
print(f"ID: {hit.id}")
print(f"会话 ID: {record['person_id']}")
print(f"用户问题: {record['user_input']}")
context=context+record['user_input']
print(f"大模型回复: {record['model_response']}")
print(f"时间: {record['timestamp']}")
print(f"距离: {hit.distance}")
print("-" * 40) # 分隔线
except Exception as e:
print(f"查询失败: {e}")
else:
print("未找到相关历史对话,请检查查询参数或数据。")
prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告:
要求:
1. 分章节组织内容
2. 包含关键数据和事实
3. 语言简洁专业
相关信息:
{context}"""
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "你是一个专业的文档整理助手"},
{"role": "user", "content": prompt}
],
temperature=0.3,
stream=True
)
for chunk in response:
if chunk.choices[0].delta.content:
yield {"data": chunk.choices[0].delta.content}
await asyncio.sleep(0.01)
except Exception as e:
yield {"data": f"生成报告时出错: {str(e)}"}
finally:
# 释放连接
milvus_pool.release_connection(connection)
"""
http://10.10.21.22:8000/api/rag?query=小学数学中有哪些模型
"""
@app.get("/api/rag")
async def rag_stream(query: str, request: Request):
"""RAG+DeepSeek流式接口"""
return EventSourceResponse(
generate_stream(
request.app.state.deepseek_client,
request.app.state.milvus_pool,
request.app.state.collection_manager,
query
)
)
app.mount("/static", StaticFiles(directory="Static"), name="static")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)