You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
2.5 KiB
96 lines
2.5 KiB
import os
|
|
import asyncio
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.utils import EmbeddingFunc
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
from Config.Config import EMBED_DIM, EMBED_MAX_TOKEN_SIZE, NEO4J_URI, NEO4J_USERNAME, NEO4J_PASSWORD
|
|
from Util.LightRagUtil import llm_model_func, embedding_func
|
|
|
|
# WorkingDir
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
print(f"WorkingDir: {WORKING_DIR}")
|
|
|
|
# redis
|
|
os.environ["REDIS_URI"] = "redis://localhost:6379"
|
|
|
|
# neo4j
|
|
BATCH_SIZE_NODES = 500
|
|
BATCH_SIZE_EDGES = 100
|
|
os.environ["NEO4J_URI"] = NEO4J_URI
|
|
os.environ["NEO4J_USERNAME"] = NEO4J_USERNAME
|
|
os.environ["NEO4J_PASSWORD"] = NEO4J_PASSWORD
|
|
|
|
# milvus
|
|
os.environ["MILVUS_URI"] = "http://localhost:19530"
|
|
os.environ["MILVUS_USER"] = "root"
|
|
os.environ["MILVUS_PASSWORD"] = "Milvus"
|
|
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=llm_model_func,
|
|
llm_model_max_token_size=32768,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=EMBED_DIM,
|
|
max_token_size=EMBED_MAX_TOKEN_SIZE,
|
|
func=embedding_func
|
|
),
|
|
chunk_token_size=512,
|
|
chunk_overlap_token_size=256,
|
|
kv_storage="RedisKVStorage",
|
|
graph_storage="Neo4JStorage",
|
|
vector_storage="MilvusVectorDBStorage",
|
|
doc_status_storage="RedisKVStorage",
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
def main():
|
|
# Initialize RAG instance
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Perform naive search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
# Perform local search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
# Perform global search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
|
)
|
|
)
|
|
|
|
# Perform hybrid search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|