You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5 lines
1.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

数学家用抽象的方法对事物进行研究,去掉感性的东西诸如轻重、软硬、冷热,剩下的只有数量和关系,而各种规定都是针对数量和关系的规定。有时研究位置之间的关系,有时研究可通约性,还研究各种比例等等。…… 数学家把共同原理用于个别情况,…… 等量减等量余量相等,这便是一条对所有量都适用的共同原理。对于数学研究而言,线、角,或者其他的量(的定义),不是作为存在而是作为关系。
事实正是如此,数学抽象至少要把握两条:一条是去掉现实世界中事物的那些感性的东西,只保留事物的数量特征或者图形特征、以及数量或者图形之间的关系,并且创造符号、建立概念来表达这些特征和关系,比如,创造自然数的符号、并且建立等于、大于这样的概念来表示自然数之间的关系;再比如,抽象出点、线、面、角这样的图形、并且建立属于、之间这样的概念来表示图形之间的关系;另一条是数学的使命不是研究那些抽象出来的概念本身,而是研究概念之间的关系,并且建立运算法则和数学命题来表述这种关系。这样,在本质上,数学只有两种形式上的抽象:一种是数量与数量关系的抽象,一种是图形与图形关系的抽象。
那么抽象了的东西是如何存在的呢显然抽象了的东西不可能是具体的存在。比如数字3在这个世界上并不存在一个抽象了的3而只存在具体的三匹马、或者具体的三头牛。因此抽象了的符号和概念不是具体的存在其存在性体现于每一个具体。