You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

578 lines
35 KiB

<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d11" for="edge" attr.name="created_at" attr.type="long" />
<key id="d10" for="edge" attr.name="file_path" attr.type="string" />
<key id="d9" for="edge" attr.name="source_id" attr.type="string" />
<key id="d8" for="edge" attr.name="keywords" attr.type="string" />
<key id="d7" for="edge" attr.name="description" attr.type="string" />
<key id="d6" for="edge" attr.name="weight" attr.type="double" />
<key id="d5" for="node" attr.name="created_at" attr.type="long" />
<key id="d4" for="node" attr.name="file_path" attr.type="string" />
<key id="d3" for="node" attr.name="source_id" attr.type="string" />
<key id="d2" for="node" attr.name="description" attr.type="string" />
<key id="d1" for="node" attr.name="entity_type" attr.type="string" />
<key id="d0" for="node" attr.name="entity_id" attr.type="string" />
<graph edgedefault="undirected">
<node id="氧化铁">
<data key="d0">氧化铁</data>
<data key="d1">category</data>
<data key="d2">Oxide compound commonly used in chemical reactions, specifically with acids like nitric acid.</data>
<data key="d3">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877344</data>
</node>
<node id="硝酸">
<data key="d0">硝酸</data>
<data key="d1">category</data>
<data key="d2">Strong mineral acid often involved in chemical reactions with metals and metal oxides.</data>
<data key="d3">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877344</data>
</node>
<node id="氢气">
<data key="d0">氢气</data>
<data key="d1">category</data>
<data key="d2">Light flammable gas that reacts with oxygen to produce water during combustion.</data>
<data key="d3">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877344</data>
</node>
<node id="氧气">
<data key="d0">氧气</data>
<data key="d1">category</data>
<data key="d2">Chemical element essential for combustion processes and widely present in the atmosphere.</data>
<data key="d3">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877344</data>
</node>
<node id="化学反应方程式">
<data key="d0">化学反应方程式</data>
<data key="d1">category</data>
<data key="d2">Symbolic representation of chemical reactions showing reactants and products.</data>
<data key="d3">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877344</data>
</node>
<node id="Iron Oxide and Nitric Acid Reaction (equation)">
<data key="d0">Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d1">equation</data>
<data key="d2">This equation describes the reaction between iron(II) oxide and concentrated nitric acid under heat, producing iron(III) nitrate, hydrogen gas, and nitrogen dioxide. It illustrates redox stoichiometry, where Fe²⁺ is oxidized and nitrate is reduced. Relevant in inorganic chemistry and industrial processes.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877358</data>
</node>
<node id="FeO">
<data key="d0">FeO</data>
<data key="d1">chemical_compound</data>
<data key="d2">Iron(II) oxide (FeO) is a reactant in the chemical reaction, acting as a reducing agent by undergoing oxidation from Fe²⁺ to Fe³⁺.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="HNO3">
<data key="d0">HNO3</data>
<data key="d1">chemical_compound</data>
<data key="d2">Nitric acid (HNO₃) serves as a strong acid and oxidizing agent in the reaction, participating in redox processes where nitrate is reduced to nitrogen dioxide.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Fe(NO3)3">
<data key="d0">Fe(NO3)3</data>
<data key="d1">chemical_compound</data>
<data key="d2">Iron(III) nitrate (Fe(NO₃)₃) is a product formed when FeO reacts with HNO₃, indicating the oxidation of iron from Fe²⁺ to Fe³⁺.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="H2">
<data key="d0">H2</data>
<data key="d1">chemical_compound</data>
<data key="d2">Hydrogen gas (H₂) is one of the gaseous products formed during the reaction, suggesting reduction or proton reduction processes occurring alongside redox reactions.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="NO2">
<data key="d0">NO2</data>
<data key="d1">chemical_compound</data>
<data key="d2">Nitrogen dioxide (NO₂) is a reddish-brown gas produced in the reaction, indicating that nitrate from HNO₃ has been reduced during the redox process.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Chemical Reaction">
<data key="d0">Chemical Reaction</data>
<data key="d1">event</data>
<data key="d2">The described chemical reaction involves FeO reacting with HNO₃ under heat to produce Fe(NO₃)₃, H₂, and NO₂, showcasing a redox transformation.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Redox Process">
<data key="d0">Redox Process</data>
<data key="d1">category</data>
<data key="d2">This reaction exemplifies a redox process involving both oxidation (Fe²⁺ to Fe³⁺) and reduction (nitrate to NO₂), fundamental in understanding chemical reactivity.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Stoichiometry">
<data key="d0">Stoichiometry</data>
<data key="d1">category</data>
<data key="d2">Stoichiometry ensures conservation of mass and atoms across the reaction, balancing the molar ratios of reactants and products in the equation.&lt;SEP&gt;Stoichiometry refers to the quantitative relationships between reactants and products in a chemical reaction, as illustrated by the coefficients in the hydrogen combustion equation.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f&lt;SEP&gt;chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Industrial Acid Leaching">
<data key="d0">Industrial Acid Leaching</data>
<data key="d1">category</data>
<data key="d2">This type of reaction may occur in industrial acid leaching, where acids like HNO₃ are used to extract metals through chemical dissolution.</data>
<data key="d3">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Environmental Chemistry">
<data key="d0">Environmental Chemistry</data>
<data key="d1">category</data>
<data key="d2">Environmental Chemistry studies the chemical processes occurring in natural environments, including water formation cycles linked to the hydrogen combustion reaction.&lt;SEP&gt;In environmental chemistry, such reactions can be relevant for understanding acid rain interactions, nitrogen oxide emissions, and redox transformations in natural systems.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f&lt;SEP&gt;chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Hydrogen Combustion Reaction (equation)">
<data key="d0">Hydrogen Combustion Reaction (equation)</data>
<data key="d1">equation</data>
<data key="d2">This equation models the combustion of hydrogen with oxygen to produce water, illustrating stoichiometric balance and conservation of mass. It plays a central role in chemical reaction theory, thermodynamics, and practical energy systems like fuel cells.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877444</data>
</node>
<node id="Hydrogen Combustion Reaction">
<data key="d0">Hydrogen Combustion Reaction</data>
<data key="d1">event</data>
<data key="d2">The Hydrogen Combustion Reaction is a stoichiometric chemical process where hydrogen gas reacts with oxygen to produce water, represented by the balanced equation $ 2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O $. It exemplifies the Law of Conservation of Mass and plays a key role in thermodynamics and reaction kinetics.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Law of Conservation of Mass">
<data key="d0">Law of Conservation of Mass</data>
<data key="d1">category</data>
<data key="d2">The Law of Conservation of Mass states that mass cannot be created or destroyed in a closed system during a chemical reaction, which is demonstrated by the balanced nature of the hydrogen combustion equation.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Thermodynamics">
<data key="d0">Thermodynamics</data>
<data key="d1">category</data>
<data key="d2">Thermodynamics encompasses the study of energy transformations in chemical reactions, such as the exothermic bond formation seen in the hydrogen combustion process.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Fuel Cell Technology">
<data key="d0">Fuel Cell Technology</data>
<data key="d1">organization</data>
<data key="d2">Fuel Cell Technology involves systems that convert chemical energy from fuels like hydrogen into electricity through reactions with oxygen, relying on principles demonstrated by the hydrogen combustion equation.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Rocket Propulsion">
<data key="d0">Rocket Propulsion</data>
<data key="d1">event</data>
<data key="d2">Rocket Propulsion refers to the application of controlled chemical reactions, such as the combustion of liquid hydrogen and oxygen, to generate thrust for spacecraft launch and maneuvering.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Reaction Kinetics">
<data key="d0">Reaction Kinetics</data>
<data key="d1">category</data>
<data key="d2">Reaction Kinetics is the study of the rates of chemical reactions and the factors influencing them, relevant to the hydrogen combustion process described in the text.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Exothermic Reactions">
<data key="d0">Exothermic Reactions</data>
<data key="d1">category</data>
<data key="d2">Exothermic Reactions are chemical processes that release energy, typically in the form of heat, such as the bond formation in the hydrogen combustion reaction.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Redox Processes">
<data key="d0">Redox Processes</data>
<data key="d1">category</data>
<data key="d2">Redox Processes involve electron transfer reactions and are fundamental to understanding the oxidation-reduction dynamics of the hydrogen combustion equation.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<node id="Chemical Equation Modeling">
<data key="d0">Chemical Equation Modeling</data>
<data key="d1">category</data>
<data key="d2">Chemical Equation Modeling involves using mathematical representations to describe and predict the behavior of chemical reactions, such as the hydrogen-oxygen-water system.</data>
<data key="d3">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d4">化学方程式_CHEMISTRY_1.docx</data>
<data key="d5">1751877512</data>
</node>
<edge source="氧化铁" target="硝酸">
<data key="d6">9.0</data>
<data key="d7">"Oxidized iron reacts chemically with nitric acid, producing a specific chemical reaction product."\</data>
<data key="d8">chemical transformation,reactant interaction</data>
<data key="d9">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877344</data>
</edge>
<edge source="氧化铁" target="化学反应方程式">
<data key="d6">8.0</data>
<data key="d7">"Chemical equations describe the reaction behavior of substances such as oxidized iron with acids or other reagents."\</data>
<data key="d8">chemical modeling,stoichiometry</data>
<data key="d9">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877344</data>
</edge>
<edge source="硝酸" target="化学反应方程式">
<data key="d6">8.0</data>
<data key="d7">"Nitric acid's involvement in reactions is often represented through balanced chemical equations."\</data>
<data key="d8">acid chemistry,reaction notation</data>
<data key="d9">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877344</data>
</edge>
<edge source="氢气" target="氧气">
<data key="d6">10.0</data>
<data key="d7">"Hydrogen combines with oxygen in a combustion process to form water as the primary product."\</data>
<data key="d8">chemical bonding,combustion</data>
<data key="d9">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877344</data>
</edge>
<edge source="氢气" target="化学反应方程式">
<data key="d6">8.0</data>
<data key="d7">"The combustion or reaction of hydrogen gas is typically expressed using chemical reaction equations."\</data>
<data key="d8">chemical modeling,reaction analysis</data>
<data key="d9">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877344</data>
</edge>
<edge source="氧气" target="化学反应方程式">
<data key="d6">8.0</data>
<data key="d7">"Oxygen's role in various chemical reactions is described and modeled using chemical equations."\</data>
<data key="d8">chemical modeling,oxidation</data>
<data key="d9">chunk-88389af54695fd95a22699d55f752ccd</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877344</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="FeO">
<data key="d7">Entity FeO belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="HNO3">
<data key="d7">Entity HNO3 belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="Fe(NO3)3">
<data key="d7">Entity Fe(NO3)3 belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="H2">
<data key="d7">Entity H2 belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="NO2">
<data key="d7">Entity NO2 belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="Chemical Reaction">
<data key="d7">Entity Chemical Reaction belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="Redox Process">
<data key="d7">Entity Redox Process belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="Stoichiometry">
<data key="d7">Entity Stoichiometry belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="Industrial Acid Leaching">
<data key="d7">Entity Industrial Acid Leaching belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Iron Oxide and Nitric Acid Reaction (equation)" target="Environmental Chemistry">
<data key="d7">Entity Environmental Chemistry belongs to Iron Oxide and Nitric Acid Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="FeO" target="HNO3">
<data key="d6">9.0</data>
<data key="d7">FeO reacts with HNO₃ in a redox reaction where Fe²⁺ is oxidized and nitrate is reduced.</data>
<data key="d8">chemical reaction,redox interaction</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="FeO" target="Fe(NO3)3">
<data key="d6">9.0</data>
<data key="d7">FeO is the source of Fe²⁺ which is oxidized to Fe³⁺, forming Fe(NO₃)₃ as the final product.</data>
<data key="d8">chemical transformation,oxidation product</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="HNO3" target="NO2">
<data key="d6">10.0</data>
<data key="d7">HNO₃ acts as the source of nitrate which is reduced to form NO₂ during the reaction.</data>
<data key="d8">redox chemistry,reduction product</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Chemical Reaction" target="Redox Process">
<data key="d6">10.0</data>
<data key="d7">The chemical reaction described is an example of a redox process involving electron transfer between species.</data>
<data key="d8">chemical classification,redox nature</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Chemical Reaction" target="Stoichiometry">
<data key="d6">8.0</data>
<data key="d7">The reaction follows stoichiometric principles to maintain atomic balance before and after the transformation.</data>
<data key="d8">quantitative analysis,reaction balancing</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Chemical Reaction" target="Industrial Acid Leaching">
<data key="d6">7.0</data>
<data key="d7">This type of acid-metal reaction is commonly applied in industrial acid leaching for metal extraction.</data>
<data key="d8">chemical processing,industrial application</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Chemical Reaction" target="Environmental Chemistry">
<data key="d6">6.0</data>
<data key="d7">Such redox reactions involving nitric acid and oxides are relevant in environmental chemistry contexts like pollution and soil chemistry.</data>
<data key="d8">acid-base interaction,environmental relevance</data>
<data key="d9">chunk-fe09a420dff75815a3948cd11ebe70d4</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Stoichiometry" target="Hydrogen Combustion Reaction (equation)">
<data key="d7">Entity Stoichiometry belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Stoichiometry" target="Hydrogen Combustion Reaction">
<data key="d6">10.0</data>
<data key="d7">The hydrogen combustion equation is a foundational example used in Stoichiometry to illustrate molar ratios and reaction modeling.</data>
<data key="d8">quantitative chemistry,reaction modeling</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Environmental Chemistry" target="Hydrogen Combustion Reaction (equation)">
<data key="d7">Entity Environmental Chemistry belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Environmental Chemistry" target="Hydrogen Combustion Reaction">
<data key="d6">6.0</data>
<data key="d7">The hydrogen combustion reaction contributes to Environmental Chemistry by explaining natural water formation cycles and potential clean energy applications.</data>
<data key="d8">clean energy,environmental impact</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Hydrogen Combustion Reaction">
<data key="d7">Entity Hydrogen Combustion Reaction belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Law of Conservation of Mass">
<data key="d7">Entity Law of Conservation of Mass belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Thermodynamics">
<data key="d7">Entity Thermodynamics belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Fuel Cell Technology">
<data key="d7">Entity Fuel Cell Technology belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Rocket Propulsion">
<data key="d7">Entity Rocket Propulsion belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Reaction Kinetics">
<data key="d7">Entity Reaction Kinetics belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Exothermic Reactions">
<data key="d7">Entity Exothermic Reactions belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Redox Processes">
<data key="d7">Entity Redox Processes belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction (equation)" target="Chemical Equation Modeling">
<data key="d7">Entity Chemical Equation Modeling belongs to Hydrogen Combustion Reaction (equation)</data>
<data key="d8">belongs_to,contained_in,part_of</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d6">20.0</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Law of Conservation of Mass">
<data key="d6">9.0</data>
<data key="d7">The hydrogen combustion reaction demonstrates the Law of Conservation of Mass by maintaining equal numbers of atoms on both sides of the balanced equation.</data>
<data key="d8">chemical balance,conservation principle</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Thermodynamics">
<data key="d6">8.0</data>
<data key="d7">The hydrogen combustion reaction illustrates Thermodynamic principles, particularly the release of energy through bond formation in an exothermic process.</data>
<data key="d8">energy transformation,exothermic reaction</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Fuel Cell Technology">
<data key="d6">7.0</data>
<data key="d7">Fuel Cell Technology utilizes the hydrogen combustion reaction to generate electrical energy efficiently.</data>
<data key="d8">chemical reaction,energy conversion</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Rocket Propulsion">
<data key="d6">8.0</data>
<data key="d7">Rocket Propulsion systems often use the hydrogen combustion reaction to produce high-energy thrust for space travel.</data>
<data key="d8">aerospace application,propulsion mechanism</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Reaction Kinetics">
<data key="d6">7.0</data>
<data key="d7">The hydrogen combustion reaction serves as a case study in Reaction Kinetics to analyze the rate and efficiency of energy release in chemical processes.</data>
<data key="d8">energy efficiency,reaction rate</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Exothermic Reactions">
<data key="d6">9.0</data>
<data key="d7">The hydrogen combustion reaction is an example of an Exothermic Reaction, where energy is released during the formation of water molecules.</data>
<data key="d8">chemical transformation,energy release</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Redox Processes">
<data key="d6">8.0</data>
<data key="d7">The hydrogen combustion reaction involves Redox Processes, where hydrogen is oxidized and oxygen is reduced during the formation of water.</data>
<data key="d8">electron transfer,oxidation-reduction</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
<edge source="Hydrogen Combustion Reaction" target="Chemical Equation Modeling">
<data key="d6">9.0</data>
<data key="d7">The hydrogen combustion equation serves as a canonical model in Chemical Equation Modeling for studying reaction dynamics and equilibrium systems.</data>
<data key="d8">mathematical representation,reaction analysis</data>
<data key="d9">chunk-9f52f83c342b42bccdf214c7fa5bba9f</data>
<data key="d10">化学方程式_CHEMISTRY_1.docx</data>
<data key="d11">1751877512</data>
</edge>
</graph>
</graphml>