Files
dsProject/dsRagAnything/ShiTi/Res/2、识别出结果.md
2025-08-14 15:45:08 +08:00

28 lines
1.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合 \(A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}\),则 \(A \cap B=\) 【答案】A
A. \(\{-1,0\}\) B. \(\{2,3\}\) C. \(\{-3,-1,0\}\) D. \(\{-1,0,2\}\)
解析\(A \cap B=\{-1,0\}\),选 A
2. \(\frac{2}{z-1}=1+i\) \(z=\) 【答案】C
A. \(-1-i\) B. \(-1+i\) C. \(1-i\) D. \(1+i\)
3. 已知向量 \(\vec{a}=(0,1)\)\(\vec{b}=(2,x)\) \(\vec{b} \perp (\vec{b}-4\vec{a})\) \(x=\) 【答案】D
A. \(-2\) B. \(-1\) C. \(1\) D. \(2\)
解析\(\vec{b}-4\vec{a}=(2,x-4)\)\(\vec{b} \perp (\vec{b}-4\vec{a})\)\(\therefore \vec{b}(\vec{b}-4\vec{a})=0\)
\(\therefore 4+x(x-4)=0\)\(\therefore x=2\),选 D
4. 已知 \(\cos(\alpha+\beta)=m\)\(\tan \alpha \tan \beta=2\),则 \(\cos(\alpha-\beta)=\) 答案A
A. \(-3m\) B. \(-\frac{m}{3}\) C. \(\frac{m}{3}\) D. \(3m\)
解析\(\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.\)\(\therefore \left\{\begin{array}{l}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{array}\right.\)
\(\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m\),选 A
5. 已知圆柱和圆锥的底面半径相等侧面积相等且它们的高均为 \(\sqrt{3}\)则圆锥的体积为 答案B
A. \(2\sqrt{3}\pi\) B. \(3\sqrt{3}\pi\) C. \(6\sqrt{3}\pi\) D. \(9\sqrt{3}\pi\)
解析设它们底面半径为 \(r\)圆锥母线 \(l\)\(\therefore 2\pi r\sqrt{3}=\pi rl\)\(\therefore l=\sqrt{3}\),则圆锥的体积为 \(\frac{1}{3}\pi r^{2}h\)