You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1273 lines
49 KiB
1273 lines
49 KiB
import asyncio
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Union, final
|
|
import time
|
|
import numpy as np
|
|
|
|
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
|
|
|
|
|
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
|
|
from ..namespace import NameSpace, is_namespace
|
|
from ..utils import logger
|
|
|
|
import pipmaster as pm
|
|
import configparser
|
|
|
|
if not pm.is_installed("pymysql"):
|
|
pm.install("pymysql")
|
|
if not pm.is_installed("sqlalchemy"):
|
|
pm.install("sqlalchemy")
|
|
|
|
from sqlalchemy import create_engine, text # type: ignore
|
|
|
|
|
|
def sanitize_sensitive_info(data: dict) -> dict:
|
|
sanitized_data = data.copy()
|
|
sensitive_fields = [
|
|
"password",
|
|
"user",
|
|
"host",
|
|
"database",
|
|
"port",
|
|
"ssl_verify_cert",
|
|
"ssl_verify_identity",
|
|
]
|
|
for field_name in sensitive_fields:
|
|
if field_name in sanitized_data:
|
|
sanitized_data[field_name] = "***"
|
|
return sanitized_data
|
|
|
|
|
|
class TiDB:
|
|
def __init__(self, config, **kwargs):
|
|
self.host = config.get("host", None)
|
|
self.port = config.get("port", None)
|
|
self.user = config.get("user", None)
|
|
self.password = config.get("password", None)
|
|
self.database = config.get("database", None)
|
|
self.workspace = config.get("workspace", None)
|
|
connection_string = (
|
|
f"mysql+pymysql://{self.user}:{self.password}@{self.host}:{self.port}/{self.database}"
|
|
f"?ssl_verify_cert=true&ssl_verify_identity=true"
|
|
)
|
|
|
|
try:
|
|
self.engine = create_engine(connection_string)
|
|
logger.info("Connected to TiDB database")
|
|
except Exception as e:
|
|
logger.error("Failed to connect to TiDB database")
|
|
logger.error(f"TiDB database error: {e}")
|
|
raise
|
|
|
|
async def _migrate_timestamp_columns(self):
|
|
"""Migrate timestamp columns in tables to timezone-aware types, assuming original data is in UTC"""
|
|
# Not implemented yet
|
|
pass
|
|
|
|
async def check_tables(self):
|
|
# First create all tables
|
|
for k, v in TABLES.items():
|
|
try:
|
|
await self.query(f"SELECT 1 FROM {k}".format(k=k))
|
|
except Exception as e:
|
|
logger.error("Failed to check table in TiDB database")
|
|
logger.error(f"TiDB database error: {e}")
|
|
try:
|
|
await self.execute(v["ddl"])
|
|
logger.info("Created table in TiDB database")
|
|
except Exception as e:
|
|
logger.error("Failed to create table in TiDB database")
|
|
logger.error(f"TiDB database error: {e}")
|
|
|
|
# After all tables are created, try to migrate timestamp fields
|
|
try:
|
|
await self._migrate_timestamp_columns()
|
|
except Exception as e:
|
|
logger.error(f"TiDB, Failed to migrate timestamp columns: {e}")
|
|
# Don't raise exceptions, allow initialization process to continue
|
|
|
|
async def query(
|
|
self, sql: str, params: dict = None, multirows: bool = False
|
|
) -> Union[dict, None]:
|
|
if params is None:
|
|
params = {"workspace": self.workspace}
|
|
else:
|
|
params.update({"workspace": self.workspace})
|
|
with self.engine.connect() as conn, conn.begin():
|
|
try:
|
|
result = conn.execute(text(sql), params)
|
|
except Exception as e:
|
|
sanitized_params = sanitize_sensitive_info(params)
|
|
sanitized_error = sanitize_sensitive_info({"error": str(e)})
|
|
logger.error(
|
|
f"Tidb database,\nsql:{sql},\nparams:{sanitized_params},\nerror:{sanitized_error}"
|
|
)
|
|
raise
|
|
if multirows:
|
|
rows = result.all()
|
|
if rows:
|
|
data = [dict(zip(result.keys(), row)) for row in rows]
|
|
else:
|
|
data = []
|
|
else:
|
|
row = result.first()
|
|
if row:
|
|
data = dict(zip(result.keys(), row))
|
|
else:
|
|
data = None
|
|
return data
|
|
|
|
async def execute(self, sql: str, data: list | dict = None):
|
|
# logger.info("go into TiDBDB execute method")
|
|
try:
|
|
with self.engine.connect() as conn, conn.begin():
|
|
if data is None:
|
|
conn.execute(text(sql))
|
|
else:
|
|
conn.execute(text(sql), parameters=data)
|
|
except Exception as e:
|
|
sanitized_data = sanitize_sensitive_info(data) if data else None
|
|
sanitized_error = sanitize_sensitive_info({"error": str(e)})
|
|
logger.error(
|
|
f"Tidb database,\nsql:{sql},\ndata:{sanitized_data},\nerror:{sanitized_error}"
|
|
)
|
|
raise
|
|
|
|
|
|
class ClientManager:
|
|
_instances: dict[str, Any] = {"db": None, "ref_count": 0}
|
|
_lock = asyncio.Lock()
|
|
|
|
@staticmethod
|
|
def get_config() -> dict[str, Any]:
|
|
config = configparser.ConfigParser()
|
|
config.read("config.ini", "utf-8")
|
|
|
|
return {
|
|
"host": os.environ.get(
|
|
"TIDB_HOST",
|
|
config.get("tidb", "host", fallback="localhost"),
|
|
),
|
|
"port": os.environ.get(
|
|
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
|
|
),
|
|
"user": os.environ.get(
|
|
"TIDB_USER",
|
|
config.get("tidb", "user", fallback=None),
|
|
),
|
|
"password": os.environ.get(
|
|
"TIDB_PASSWORD",
|
|
config.get("tidb", "password", fallback=None),
|
|
),
|
|
"database": os.environ.get(
|
|
"TIDB_DATABASE",
|
|
config.get("tidb", "database", fallback=None),
|
|
),
|
|
"workspace": os.environ.get(
|
|
"TIDB_WORKSPACE",
|
|
config.get("tidb", "workspace", fallback="default"),
|
|
),
|
|
}
|
|
|
|
@classmethod
|
|
async def get_client(cls) -> TiDB:
|
|
async with cls._lock:
|
|
if cls._instances["db"] is None:
|
|
config = ClientManager.get_config()
|
|
db = TiDB(config)
|
|
await db.check_tables()
|
|
cls._instances["db"] = db
|
|
cls._instances["ref_count"] = 0
|
|
cls._instances["ref_count"] += 1
|
|
return cls._instances["db"]
|
|
|
|
@classmethod
|
|
async def release_client(cls, db: TiDB):
|
|
async with cls._lock:
|
|
if db is not None:
|
|
if db is cls._instances["db"]:
|
|
cls._instances["ref_count"] -= 1
|
|
if cls._instances["ref_count"] == 0:
|
|
cls._instances["db"] = None
|
|
|
|
|
|
@final
|
|
@dataclass
|
|
class TiDBKVStorage(BaseKVStorage):
|
|
db: TiDB = field(default=None)
|
|
|
|
def __post_init__(self):
|
|
self._data = {}
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
|
|
async def initialize(self):
|
|
if self.db is None:
|
|
self.db = await ClientManager.get_client()
|
|
|
|
async def finalize(self):
|
|
if self.db is not None:
|
|
await ClientManager.release_client(self.db)
|
|
self.db = None
|
|
|
|
################ QUERY METHODS ################
|
|
async def get_all(self) -> dict[str, Any]:
|
|
"""Get all data from storage
|
|
|
|
Returns:
|
|
Dictionary containing all stored data
|
|
"""
|
|
async with self._storage_lock:
|
|
return dict(self._data)
|
|
|
|
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
|
"""Fetch doc_full data by id."""
|
|
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
|
params = {"id": id}
|
|
response = await self.db.query(SQL, params)
|
|
return response if response else None
|
|
|
|
# Query by id
|
|
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
|
"""Fetch doc_chunks data by id"""
|
|
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
|
ids=",".join([f"'{id}'" for id in ids])
|
|
)
|
|
return await self.db.query(SQL, multirows=True)
|
|
|
|
async def filter_keys(self, keys: set[str]) -> set[str]:
|
|
SQL = SQL_TEMPLATES["filter_keys"].format(
|
|
table_name=namespace_to_table_name(self.namespace),
|
|
id_field=namespace_to_id(self.namespace),
|
|
ids=",".join([f"'{id}'" for id in keys]),
|
|
)
|
|
try:
|
|
await self.db.query(SQL)
|
|
except Exception as e:
|
|
logger.error(f"Tidb database,\nsql:{SQL},\nkeys:{keys},\nerror:{e}")
|
|
res = await self.db.query(SQL, multirows=True)
|
|
if res:
|
|
exist_keys = [key["id"] for key in res]
|
|
data = set([s for s in keys if s not in exist_keys])
|
|
else:
|
|
exist_keys = []
|
|
data = set([s for s in keys if s not in exist_keys])
|
|
return data
|
|
|
|
################ INSERT full_doc AND chunks ################
|
|
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
|
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
|
if not data:
|
|
return
|
|
left_data = {k: v for k, v in data.items() if k not in self._data}
|
|
self._data.update(left_data)
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
|
list_data = [
|
|
{
|
|
"__id__": k,
|
|
**{k1: v1 for k1, v1 in v.items()},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
for i, d in enumerate(list_data):
|
|
d["__vector__"] = embeddings[i]
|
|
|
|
# Get current time as UNIX timestamp
|
|
current_time = int(time.time())
|
|
|
|
merge_sql = SQL_TEMPLATES["upsert_chunk"]
|
|
data = []
|
|
for item in list_data:
|
|
data.append(
|
|
{
|
|
"id": item["__id__"],
|
|
"content": item["content"],
|
|
"tokens": item["tokens"],
|
|
"chunk_order_index": item["chunk_order_index"],
|
|
"full_doc_id": item["full_doc_id"],
|
|
"content_vector": f"{item['__vector__'].tolist()}",
|
|
"workspace": self.db.workspace,
|
|
"timestamp": current_time,
|
|
}
|
|
)
|
|
await self.db.execute(merge_sql, data)
|
|
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
|
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
|
data = []
|
|
for k, v in self._data.items():
|
|
data.append(
|
|
{
|
|
"id": k,
|
|
"content": v["content"],
|
|
"workspace": self.db.workspace,
|
|
}
|
|
)
|
|
await self.db.execute(merge_sql, data)
|
|
return left_data
|
|
|
|
async def index_done_callback(self) -> None:
|
|
# Ti handles persistence automatically
|
|
pass
|
|
|
|
async def delete(self, ids: list[str]) -> None:
|
|
"""Delete records with specified IDs from the storage.
|
|
|
|
Args:
|
|
ids: List of record IDs to be deleted
|
|
"""
|
|
if not ids:
|
|
return
|
|
|
|
try:
|
|
table_name = namespace_to_table_name(self.namespace)
|
|
id_field = namespace_to_id(self.namespace)
|
|
|
|
if not table_name or not id_field:
|
|
logger.error(f"Unknown namespace for deletion: {self.namespace}")
|
|
return
|
|
|
|
ids_list = ",".join([f"'{id}'" for id in ids])
|
|
delete_sql = f"DELETE FROM {table_name} WHERE workspace = :workspace AND {id_field} IN ({ids_list})"
|
|
|
|
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
|
logger.info(
|
|
f"Successfully deleted {len(ids)} records from {self.namespace}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error deleting records from {self.namespace}: {e}")
|
|
|
|
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
|
"""Delete specific records from storage by cache mode
|
|
|
|
Args:
|
|
modes (list[str]): List of cache modes to be dropped from storage
|
|
|
|
Returns:
|
|
bool: True if successful, False otherwise
|
|
"""
|
|
if not modes:
|
|
return False
|
|
|
|
try:
|
|
table_name = namespace_to_table_name(self.namespace)
|
|
if not table_name:
|
|
return False
|
|
|
|
if table_name != "LIGHTRAG_LLM_CACHE":
|
|
return False
|
|
|
|
# Build MySQL style IN query
|
|
modes_list = ", ".join([f"'{mode}'" for mode in modes])
|
|
sql = f"""
|
|
DELETE FROM {table_name}
|
|
WHERE workspace = :workspace
|
|
AND mode IN ({modes_list})
|
|
"""
|
|
|
|
logger.info(f"Deleting cache by modes: {modes}")
|
|
await self.db.execute(sql, {"workspace": self.db.workspace})
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Error deleting cache by modes {modes}: {e}")
|
|
return False
|
|
|
|
async def drop(self) -> dict[str, str]:
|
|
"""Drop the storage"""
|
|
try:
|
|
table_name = namespace_to_table_name(self.namespace)
|
|
if not table_name:
|
|
return {
|
|
"status": "error",
|
|
"message": f"Unknown namespace: {self.namespace}",
|
|
}
|
|
|
|
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
|
table_name=table_name
|
|
)
|
|
await self.db.execute(drop_sql, {"workspace": self.db.workspace})
|
|
return {"status": "success", "message": "data dropped"}
|
|
except Exception as e:
|
|
return {"status": "error", "message": str(e)}
|
|
|
|
|
|
@final
|
|
@dataclass
|
|
class TiDBVectorDBStorage(BaseVectorStorage):
|
|
db: TiDB | None = field(default=None)
|
|
|
|
def __post_init__(self):
|
|
self._client_file_name = os.path.join(
|
|
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
|
)
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
cosine_threshold = config.get("cosine_better_than_threshold")
|
|
if cosine_threshold is None:
|
|
raise ValueError(
|
|
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
|
)
|
|
self.cosine_better_than_threshold = cosine_threshold
|
|
|
|
async def initialize(self):
|
|
if self.db is None:
|
|
self.db = await ClientManager.get_client()
|
|
|
|
async def finalize(self):
|
|
if self.db is not None:
|
|
await ClientManager.release_client(self.db)
|
|
self.db = None
|
|
|
|
async def query(
|
|
self, query: str, top_k: int, ids: list[str] | None = None
|
|
) -> list[dict[str, Any]]:
|
|
"""Search from tidb vector"""
|
|
embeddings = await self.embedding_func(
|
|
[query], _priority=5
|
|
) # higher priority for query
|
|
embedding = embeddings[0]
|
|
|
|
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]"
|
|
|
|
params = {
|
|
"embedding_string": embedding_string,
|
|
"top_k": top_k,
|
|
"better_than_threshold": self.cosine_better_than_threshold,
|
|
}
|
|
|
|
results = await self.db.query(
|
|
SQL_TEMPLATES[self.namespace], params=params, multirows=True
|
|
)
|
|
if not results:
|
|
return []
|
|
return results
|
|
|
|
###### INSERT entities And relationships ######
|
|
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
|
logger.info(f"Inserting {len(data)} to {self.namespace}")
|
|
if not data:
|
|
return
|
|
|
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
|
|
|
# Get current time as UNIX timestamp
|
|
import time
|
|
|
|
current_time = int(time.time())
|
|
|
|
list_data = [
|
|
{
|
|
"id": k,
|
|
"timestamp": current_time,
|
|
**{k1: v1 for k1, v1 in v.items()},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
|
embeddings_list = await asyncio.gather(*embedding_tasks)
|
|
|
|
embeddings = np.concatenate(embeddings_list)
|
|
for i, d in enumerate(list_data):
|
|
d["content_vector"] = embeddings[i]
|
|
|
|
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
|
|
for item in list_data:
|
|
param = {
|
|
"id": item["id"],
|
|
"content": item["content"],
|
|
"tokens": item.get("tokens", 0),
|
|
"chunk_order_index": item.get("chunk_order_index", 0),
|
|
"full_doc_id": item.get("full_doc_id", ""),
|
|
"content_vector": f"{item['content_vector'].tolist()}",
|
|
"workspace": self.db.workspace,
|
|
"timestamp": item["timestamp"],
|
|
}
|
|
await self.db.execute(SQL_TEMPLATES["upsert_chunk"], param)
|
|
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
|
|
for item in list_data:
|
|
param = {
|
|
"id": item["id"],
|
|
"name": item["entity_name"],
|
|
"content": item["content"],
|
|
"content_vector": f"{item['content_vector'].tolist()}",
|
|
"workspace": self.db.workspace,
|
|
"timestamp": item["timestamp"],
|
|
}
|
|
await self.db.execute(SQL_TEMPLATES["upsert_entity"], param)
|
|
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
|
|
for item in list_data:
|
|
param = {
|
|
"id": item["id"],
|
|
"source_name": item["src_id"],
|
|
"target_name": item["tgt_id"],
|
|
"content": item["content"],
|
|
"content_vector": f"{item['content_vector'].tolist()}",
|
|
"workspace": self.db.workspace,
|
|
"timestamp": item["timestamp"],
|
|
}
|
|
await self.db.execute(SQL_TEMPLATES["upsert_relationship"], param)
|
|
|
|
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
|
params = {"workspace": self.db.workspace, "status": status}
|
|
return await self.db.query(SQL, params, multirows=True)
|
|
|
|
async def delete(self, ids: list[str]) -> None:
|
|
"""Delete vectors with specified IDs from the storage.
|
|
|
|
Args:
|
|
ids: List of vector IDs to be deleted
|
|
"""
|
|
if not ids:
|
|
return
|
|
|
|
table_name = namespace_to_table_name(self.namespace)
|
|
id_field = namespace_to_id(self.namespace)
|
|
|
|
if not table_name or not id_field:
|
|
logger.error(f"Unknown namespace for vector deletion: {self.namespace}")
|
|
return
|
|
|
|
ids_list = ",".join([f"'{id}'" for id in ids])
|
|
delete_sql = f"DELETE FROM {table_name} WHERE workspace = :workspace AND {id_field} IN ({ids_list})"
|
|
|
|
try:
|
|
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
|
logger.debug(
|
|
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
|
|
|
async def delete_entity(self, entity_name: str) -> None:
|
|
"""Delete an entity by its name from the vector storage.
|
|
|
|
Args:
|
|
entity_name: The name of the entity to delete
|
|
"""
|
|
try:
|
|
# Construct SQL to delete the entity
|
|
delete_sql = """DELETE FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE workspace = :workspace AND name = :entity_name"""
|
|
|
|
await self.db.execute(
|
|
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
|
|
)
|
|
logger.debug(f"Successfully deleted entity {entity_name}")
|
|
except Exception as e:
|
|
logger.error(f"Error deleting entity {entity_name}: {e}")
|
|
|
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
|
"""Delete all relations associated with an entity.
|
|
|
|
Args:
|
|
entity_name: The name of the entity whose relations should be deleted
|
|
"""
|
|
try:
|
|
# Delete relations where the entity is either the source or target
|
|
delete_sql = """DELETE FROM LIGHTRAG_GRAPH_EDGES
|
|
WHERE workspace = :workspace AND (source_name = :entity_name OR target_name = :entity_name)"""
|
|
|
|
await self.db.execute(
|
|
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
|
|
)
|
|
logger.debug(f"Successfully deleted relations for entity {entity_name}")
|
|
except Exception as e:
|
|
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
|
|
|
|
async def index_done_callback(self) -> None:
|
|
# Ti handles persistence automatically
|
|
pass
|
|
|
|
async def drop(self) -> dict[str, str]:
|
|
"""Drop the storage"""
|
|
try:
|
|
table_name = namespace_to_table_name(self.namespace)
|
|
if not table_name:
|
|
return {
|
|
"status": "error",
|
|
"message": f"Unknown namespace: {self.namespace}",
|
|
}
|
|
|
|
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
|
table_name=table_name
|
|
)
|
|
await self.db.execute(drop_sql, {"workspace": self.db.workspace})
|
|
return {"status": "success", "message": "data dropped"}
|
|
except Exception as e:
|
|
return {"status": "error", "message": str(e)}
|
|
|
|
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
|
"""Get vector data by its ID
|
|
|
|
Args:
|
|
id: The unique identifier of the vector
|
|
|
|
Returns:
|
|
The vector data if found, or None if not found
|
|
"""
|
|
try:
|
|
# Determine which table to query based on namespace
|
|
if self.namespace == NameSpace.VECTOR_STORE_ENTITIES:
|
|
sql_template = """
|
|
SELECT entity_id as id, name as entity_name, entity_type, description, content,
|
|
UNIX_TIMESTAMP(createtime) as created_at
|
|
FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE entity_id = :entity_id AND workspace = :workspace
|
|
"""
|
|
params = {"entity_id": id, "workspace": self.db.workspace}
|
|
elif self.namespace == NameSpace.VECTOR_STORE_RELATIONSHIPS:
|
|
sql_template = """
|
|
SELECT relation_id as id, source_name as src_id, target_name as tgt_id,
|
|
keywords, description, content, UNIX_TIMESTAMP(createtime) as created_at
|
|
FROM LIGHTRAG_GRAPH_EDGES
|
|
WHERE relation_id = :relation_id AND workspace = :workspace
|
|
"""
|
|
params = {"relation_id": id, "workspace": self.db.workspace}
|
|
elif self.namespace == NameSpace.VECTOR_STORE_CHUNKS:
|
|
sql_template = """
|
|
SELECT chunk_id as id, content, tokens, chunk_order_index, full_doc_id,
|
|
UNIX_TIMESTAMP(createtime) as created_at
|
|
FROM LIGHTRAG_DOC_CHUNKS
|
|
WHERE chunk_id = :chunk_id AND workspace = :workspace
|
|
"""
|
|
params = {"chunk_id": id, "workspace": self.db.workspace}
|
|
else:
|
|
logger.warning(
|
|
f"Namespace {self.namespace} not supported for get_by_id"
|
|
)
|
|
return None
|
|
|
|
result = await self.db.query(sql_template, params=params)
|
|
return result
|
|
except Exception as e:
|
|
logger.error(f"Error retrieving vector data for ID {id}: {e}")
|
|
return None
|
|
|
|
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
|
"""Get multiple vector data by their IDs
|
|
|
|
Args:
|
|
ids: List of unique identifiers
|
|
|
|
Returns:
|
|
List of vector data objects that were found
|
|
"""
|
|
if not ids:
|
|
return []
|
|
|
|
try:
|
|
# Format IDs for SQL IN clause
|
|
ids_str = ", ".join([f"'{id}'" for id in ids])
|
|
|
|
# Determine which table to query based on namespace
|
|
if self.namespace == NameSpace.VECTOR_STORE_ENTITIES:
|
|
sql_template = f"""
|
|
SELECT entity_id as id, name as entity_name, entity_type, description, content,
|
|
UNIX_TIMESTAMP(createtime) as created_at
|
|
FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE entity_id IN ({ids_str}) AND workspace = :workspace
|
|
"""
|
|
elif self.namespace == NameSpace.VECTOR_STORE_RELATIONSHIPS:
|
|
sql_template = f"""
|
|
SELECT relation_id as id, source_name as src_id, target_name as tgt_id,
|
|
keywords, description, content, UNIX_TIMESTAMP(createtime) as created_at
|
|
FROM LIGHTRAG_GRAPH_EDGES
|
|
WHERE relation_id IN ({ids_str}) AND workspace = :workspace
|
|
"""
|
|
elif self.namespace == NameSpace.VECTOR_STORE_CHUNKS:
|
|
sql_template = f"""
|
|
SELECT chunk_id as id, content, tokens, chunk_order_index, full_doc_id,
|
|
UNIX_TIMESTAMP(createtime) as created_at
|
|
FROM LIGHTRAG_DOC_CHUNKS
|
|
WHERE chunk_id IN ({ids_str}) AND workspace = :workspace
|
|
"""
|
|
else:
|
|
logger.warning(
|
|
f"Namespace {self.namespace} not supported for get_by_ids"
|
|
)
|
|
return []
|
|
|
|
params = {"workspace": self.db.workspace}
|
|
results = await self.db.query(sql_template, params=params, multirows=True)
|
|
return results if results else []
|
|
except Exception as e:
|
|
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
|
return []
|
|
|
|
|
|
@final
|
|
@dataclass
|
|
class TiDBGraphStorage(BaseGraphStorage):
|
|
db: TiDB = field(default=None)
|
|
|
|
def __post_init__(self):
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
|
|
async def initialize(self):
|
|
if self.db is None:
|
|
self.db = await ClientManager.get_client()
|
|
|
|
async def finalize(self):
|
|
if self.db is not None:
|
|
await ClientManager.release_client(self.db)
|
|
self.db = None
|
|
|
|
#################### upsert method ################
|
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
|
entity_name = node_id
|
|
entity_type = node_data["entity_type"]
|
|
description = node_data["description"]
|
|
source_id = node_data["source_id"]
|
|
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
|
|
content = entity_name + description
|
|
contents = [content]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
content_vector = embeddings[0]
|
|
sql = SQL_TEMPLATES["upsert_node"]
|
|
data = {
|
|
"workspace": self.db.workspace,
|
|
"name": entity_name,
|
|
"entity_type": entity_type,
|
|
"description": description,
|
|
"source_chunk_id": source_id,
|
|
"content": content,
|
|
"content_vector": f"{content_vector.tolist()}",
|
|
}
|
|
await self.db.execute(sql, data)
|
|
|
|
async def upsert_edge(
|
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
|
) -> None:
|
|
source_name = source_node_id
|
|
target_name = target_node_id
|
|
weight = edge_data["weight"]
|
|
keywords = edge_data["keywords"]
|
|
description = edge_data["description"]
|
|
source_chunk_id = edge_data["source_id"]
|
|
logger.debug(
|
|
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
|
|
)
|
|
|
|
content = keywords + source_name + target_name + description
|
|
contents = [content]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
content_vector = embeddings[0]
|
|
merge_sql = SQL_TEMPLATES["upsert_edge"]
|
|
data = {
|
|
"workspace": self.db.workspace,
|
|
"source_name": source_name,
|
|
"target_name": target_name,
|
|
"weight": weight,
|
|
"keywords": keywords,
|
|
"description": description,
|
|
"source_chunk_id": source_chunk_id,
|
|
"content": content,
|
|
"content_vector": f"{content_vector.tolist()}",
|
|
}
|
|
await self.db.execute(merge_sql, data)
|
|
|
|
# Query
|
|
|
|
async def has_node(self, node_id: str) -> bool:
|
|
sql = SQL_TEMPLATES["has_entity"]
|
|
param = {"name": node_id, "workspace": self.db.workspace}
|
|
has = await self.db.query(sql, param)
|
|
return has["cnt"] != 0
|
|
|
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
|
sql = SQL_TEMPLATES["has_relationship"]
|
|
param = {
|
|
"source_name": source_node_id,
|
|
"target_name": target_node_id,
|
|
"workspace": self.db.workspace,
|
|
}
|
|
has = await self.db.query(sql, param)
|
|
return has["cnt"] != 0
|
|
|
|
async def node_degree(self, node_id: str) -> int:
|
|
sql = SQL_TEMPLATES["node_degree"]
|
|
param = {"name": node_id, "workspace": self.db.workspace}
|
|
result = await self.db.query(sql, param)
|
|
return result["cnt"]
|
|
|
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
|
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
|
|
return degree
|
|
|
|
async def get_node(self, node_id: str) -> dict[str, str] | None:
|
|
sql = SQL_TEMPLATES["get_node"]
|
|
param = {"name": node_id, "workspace": self.db.workspace}
|
|
return await self.db.query(sql, param)
|
|
|
|
async def get_edge(
|
|
self, source_node_id: str, target_node_id: str
|
|
) -> dict[str, str] | None:
|
|
sql = SQL_TEMPLATES["get_edge"]
|
|
param = {
|
|
"source_name": source_node_id,
|
|
"target_name": target_node_id,
|
|
"workspace": self.db.workspace,
|
|
}
|
|
return await self.db.query(sql, param)
|
|
|
|
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
|
|
sql = SQL_TEMPLATES["get_node_edges"]
|
|
param = {"source_name": source_node_id, "workspace": self.db.workspace}
|
|
res = await self.db.query(sql, param, multirows=True)
|
|
if res:
|
|
data = [(i["source_name"], i["target_name"]) for i in res]
|
|
return data
|
|
else:
|
|
return []
|
|
|
|
async def index_done_callback(self) -> None:
|
|
# Ti handles persistence automatically
|
|
pass
|
|
|
|
async def drop(self) -> dict[str, str]:
|
|
"""Drop the storage"""
|
|
try:
|
|
drop_sql = """
|
|
DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace;
|
|
DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace = :workspace;
|
|
"""
|
|
await self.db.execute(drop_sql, {"workspace": self.db.workspace})
|
|
return {"status": "success", "message": "graph data dropped"}
|
|
except Exception as e:
|
|
return {"status": "error", "message": str(e)}
|
|
|
|
async def delete_node(self, node_id: str) -> None:
|
|
"""Delete a node and all its related edges
|
|
|
|
Args:
|
|
node_id: The ID of the node to delete
|
|
"""
|
|
# First delete all edges related to this node
|
|
await self.db.execute(
|
|
SQL_TEMPLATES["delete_node_edges"],
|
|
{"name": node_id, "workspace": self.db.workspace},
|
|
)
|
|
|
|
# Then delete the node itself
|
|
await self.db.execute(
|
|
SQL_TEMPLATES["delete_node"],
|
|
{"name": node_id, "workspace": self.db.workspace},
|
|
)
|
|
|
|
logger.debug(
|
|
f"Node {node_id} and its related edges have been deleted from the graph"
|
|
)
|
|
|
|
async def get_all_labels(self) -> list[str]:
|
|
"""Get all entity types (labels) in the database
|
|
|
|
Returns:
|
|
List of labels sorted alphabetically
|
|
"""
|
|
result = await self.db.query(
|
|
SQL_TEMPLATES["get_all_labels"],
|
|
{"workspace": self.db.workspace},
|
|
multirows=True,
|
|
)
|
|
|
|
if not result:
|
|
return []
|
|
|
|
# Extract all labels
|
|
return [item["label"] for item in result]
|
|
|
|
async def get_knowledge_graph(
|
|
self, node_label: str, max_depth: int = 5
|
|
) -> KnowledgeGraph:
|
|
"""
|
|
Get a connected subgraph of nodes matching the specified label
|
|
Maximum number of nodes is limited by MAX_GRAPH_NODES environment variable (default: 1000)
|
|
|
|
Args:
|
|
node_label: The node label to match
|
|
max_depth: Maximum depth of the subgraph
|
|
|
|
Returns:
|
|
KnowledgeGraph object containing nodes and edges
|
|
"""
|
|
result = KnowledgeGraph()
|
|
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
|
|
|
# Get matching nodes
|
|
if node_label == "*":
|
|
# Handle special case, get all nodes
|
|
node_results = await self.db.query(
|
|
SQL_TEMPLATES["get_all_nodes"],
|
|
{"workspace": self.db.workspace, "max_nodes": MAX_GRAPH_NODES},
|
|
multirows=True,
|
|
)
|
|
else:
|
|
# Get nodes matching the label
|
|
label_pattern = f"%{node_label}%"
|
|
node_results = await self.db.query(
|
|
SQL_TEMPLATES["get_matching_nodes"],
|
|
{"workspace": self.db.workspace, "label_pattern": label_pattern},
|
|
multirows=True,
|
|
)
|
|
|
|
if not node_results:
|
|
logger.warning(f"No nodes found matching label {node_label}")
|
|
return result
|
|
|
|
# Limit the number of returned nodes
|
|
if len(node_results) > MAX_GRAPH_NODES:
|
|
node_results = node_results[:MAX_GRAPH_NODES]
|
|
|
|
# Extract node names for edge query
|
|
node_names = [node["name"] for node in node_results]
|
|
node_names_str = ",".join([f"'{name}'" for name in node_names])
|
|
|
|
# Add nodes to result
|
|
for node in node_results:
|
|
node_properties = {
|
|
k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]
|
|
}
|
|
result.nodes.append(
|
|
KnowledgeGraphNode(
|
|
id=node["name"],
|
|
labels=[node["entity_type"]]
|
|
if node.get("entity_type")
|
|
else [node["name"]],
|
|
properties=node_properties,
|
|
)
|
|
)
|
|
|
|
# Get related edges
|
|
edge_results = await self.db.query(
|
|
SQL_TEMPLATES["get_related_edges"].format(node_names=node_names_str),
|
|
{"workspace": self.db.workspace},
|
|
multirows=True,
|
|
)
|
|
|
|
if edge_results:
|
|
# Add edges to result
|
|
for edge in edge_results:
|
|
# Only include edges related to selected nodes
|
|
if (
|
|
edge["source_name"] in node_names
|
|
and edge["target_name"] in node_names
|
|
):
|
|
edge_id = f"{edge['source_name']}-{edge['target_name']}"
|
|
edge_properties = {
|
|
k: v
|
|
for k, v in edge.items()
|
|
if k not in ["id", "source_name", "target_name"]
|
|
}
|
|
|
|
result.edges.append(
|
|
KnowledgeGraphEdge(
|
|
id=edge_id,
|
|
type="RELATED",
|
|
source=edge["source_name"],
|
|
target=edge["target_name"],
|
|
properties=edge_properties,
|
|
)
|
|
)
|
|
|
|
logger.info(
|
|
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
|
)
|
|
return result
|
|
|
|
async def remove_nodes(self, nodes: list[str]):
|
|
"""Delete multiple nodes
|
|
|
|
Args:
|
|
nodes: List of node IDs to delete
|
|
"""
|
|
for node_id in nodes:
|
|
await self.delete_node(node_id)
|
|
|
|
async def remove_edges(self, edges: list[tuple[str, str]]):
|
|
"""Delete multiple edges
|
|
|
|
Args:
|
|
edges: List of edges to delete, each edge is a (source, target) tuple
|
|
"""
|
|
for source, target in edges:
|
|
await self.db.execute(
|
|
SQL_TEMPLATES["remove_multiple_edges"],
|
|
{"source": source, "target": target, "workspace": self.db.workspace},
|
|
)
|
|
|
|
|
|
N_T = {
|
|
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
|
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
|
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
|
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
|
}
|
|
N_ID = {
|
|
NameSpace.KV_STORE_FULL_DOCS: "doc_id",
|
|
NameSpace.KV_STORE_TEXT_CHUNKS: "chunk_id",
|
|
NameSpace.VECTOR_STORE_CHUNKS: "chunk_id",
|
|
NameSpace.VECTOR_STORE_ENTITIES: "entity_id",
|
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "relation_id",
|
|
}
|
|
|
|
|
|
def namespace_to_table_name(namespace: str) -> str:
|
|
for k, v in N_T.items():
|
|
if is_namespace(namespace, k):
|
|
return v
|
|
|
|
|
|
def namespace_to_id(namespace: str) -> str:
|
|
for k, v in N_ID.items():
|
|
if is_namespace(namespace, k):
|
|
return v
|
|
|
|
|
|
TABLES = {
|
|
"LIGHTRAG_DOC_FULL": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_DOC_FULL (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`doc_id` VARCHAR(256) NOT NULL,
|
|
`workspace` varchar(1024),
|
|
`content` LONGTEXT,
|
|
`meta` JSON,
|
|
`createtime` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
`updatetime` TIMESTAMP DEFAULT NULL,
|
|
UNIQUE KEY (`doc_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_DOC_CHUNKS": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`chunk_id` VARCHAR(256) NOT NULL,
|
|
`full_doc_id` VARCHAR(256) NOT NULL,
|
|
`workspace` varchar(1024),
|
|
`chunk_order_index` INT,
|
|
`tokens` INT,
|
|
`content` LONGTEXT,
|
|
`content_vector` VECTOR,
|
|
`createtime` TIMESTAMP,
|
|
`updatetime` TIMESTAMP,
|
|
UNIQUE KEY (`chunk_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_GRAPH_NODES": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_GRAPH_NODES (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`entity_id` VARCHAR(256),
|
|
`workspace` varchar(1024),
|
|
`name` VARCHAR(2048),
|
|
`entity_type` VARCHAR(1024),
|
|
`description` LONGTEXT,
|
|
`source_chunk_id` VARCHAR(256),
|
|
`content` LONGTEXT,
|
|
`content_vector` VECTOR,
|
|
`createtime` TIMESTAMP,
|
|
`updatetime` TIMESTAMP,
|
|
KEY (`entity_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_GRAPH_EDGES": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_GRAPH_EDGES (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`relation_id` VARCHAR(256),
|
|
`workspace` varchar(1024),
|
|
`source_name` VARCHAR(2048),
|
|
`target_name` VARCHAR(2048),
|
|
`weight` DECIMAL,
|
|
`keywords` TEXT,
|
|
`description` LONGTEXT,
|
|
`source_chunk_id` varchar(256),
|
|
`content` LONGTEXT,
|
|
`content_vector` VECTOR,
|
|
`createtime` TIMESTAMP,
|
|
`updatetime` TIMESTAMP,
|
|
KEY (`relation_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_LLM_CACHE": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_LLM_CACHE (
|
|
id BIGINT PRIMARY KEY AUTO_INCREMENT,
|
|
send TEXT,
|
|
return TEXT,
|
|
model VARCHAR(1024),
|
|
createtime DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime DATETIME DEFAULT NULL
|
|
);
|
|
"""
|
|
},
|
|
}
|
|
|
|
|
|
SQL_TEMPLATES = {
|
|
# SQL for KVStorage
|
|
"get_by_id_full_docs": "SELECT doc_id as id, IFNULL(content, '') AS content FROM LIGHTRAG_DOC_FULL WHERE doc_id = :id AND workspace = :workspace",
|
|
"get_by_id_text_chunks": "SELECT chunk_id as id, tokens, IFNULL(content, '') AS content, chunk_order_index, full_doc_id FROM LIGHTRAG_DOC_CHUNKS WHERE chunk_id = :id AND workspace = :workspace",
|
|
"get_by_ids_full_docs": "SELECT doc_id as id, IFNULL(content, '') AS content FROM LIGHTRAG_DOC_FULL WHERE doc_id IN ({ids}) AND workspace = :workspace",
|
|
"get_by_ids_text_chunks": "SELECT chunk_id as id, tokens, IFNULL(content, '') AS content, chunk_order_index, full_doc_id FROM LIGHTRAG_DOC_CHUNKS WHERE chunk_id IN ({ids}) AND workspace = :workspace",
|
|
"filter_keys": "SELECT {id_field} AS id FROM {table_name} WHERE {id_field} IN ({ids}) AND workspace = :workspace",
|
|
# SQL for Merge operations (TiDB version with INSERT ... ON DUPLICATE KEY UPDATE)
|
|
"upsert_doc_full": """
|
|
INSERT INTO LIGHTRAG_DOC_FULL (doc_id, content, workspace)
|
|
VALUES (:id, :content, :workspace)
|
|
ON DUPLICATE KEY UPDATE content = VALUES(content), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
|
""",
|
|
"upsert_chunk": """
|
|
INSERT INTO LIGHTRAG_DOC_CHUNKS(chunk_id, content, tokens, chunk_order_index, full_doc_id, content_vector, workspace, createtime, updatetime)
|
|
VALUES (:id, :content, :tokens, :chunk_order_index, :full_doc_id, :content_vector, :workspace, FROM_UNIXTIME(:timestamp), FROM_UNIXTIME(:timestamp))
|
|
ON DUPLICATE KEY UPDATE
|
|
content = VALUES(content), tokens = VALUES(tokens), chunk_order_index = VALUES(chunk_order_index),
|
|
full_doc_id = VALUES(full_doc_id), content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = FROM_UNIXTIME(:timestamp)
|
|
""",
|
|
# SQL for VectorStorage
|
|
"entities": """SELECT n.name as entity_name, UNIX_TIMESTAMP(n.createtime) as created_at FROM
|
|
(SELECT entity_id as id, name, createtime, VEC_COSINE_DISTANCE(content_vector,:embedding_string) as distance
|
|
FROM LIGHTRAG_GRAPH_NODES WHERE workspace = :workspace) n
|
|
WHERE n.distance>:better_than_threshold ORDER BY n.distance DESC LIMIT :top_k
|
|
""",
|
|
"relationships": """SELECT e.source_name as src_id, e.target_name as tgt_id, UNIX_TIMESTAMP(e.createtime) as created_at FROM
|
|
(SELECT source_name, target_name, createtime, VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace) e
|
|
WHERE e.distance>:better_than_threshold ORDER BY e.distance DESC LIMIT :top_k
|
|
""",
|
|
"chunks": """SELECT c.id, UNIX_TIMESTAMP(c.createtime) as created_at FROM
|
|
(SELECT chunk_id as id, createtime, VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
|
|
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace = :workspace) c
|
|
WHERE c.distance>:better_than_threshold ORDER BY c.distance DESC LIMIT :top_k
|
|
""",
|
|
"has_entity": """
|
|
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
|
|
""",
|
|
"has_relationship": """
|
|
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
|
|
""",
|
|
"upsert_entity": """
|
|
INSERT INTO LIGHTRAG_GRAPH_NODES(entity_id, name, content, content_vector, workspace, createtime, updatetime)
|
|
VALUES(:id, :name, :content, :content_vector, :workspace, FROM_UNIXTIME(:timestamp), FROM_UNIXTIME(:timestamp))
|
|
ON DUPLICATE KEY UPDATE
|
|
content = VALUES(content),
|
|
content_vector = VALUES(content_vector),
|
|
updatetime = FROM_UNIXTIME(:timestamp)
|
|
""",
|
|
"upsert_relationship": """
|
|
INSERT INTO LIGHTRAG_GRAPH_EDGES(relation_id, source_name, target_name, content, content_vector, workspace, createtime, updatetime)
|
|
VALUES(:id, :source_name, :target_name, :content, :content_vector, :workspace, FROM_UNIXTIME(:timestamp), FROM_UNIXTIME(:timestamp))
|
|
ON DUPLICATE KEY UPDATE
|
|
content = VALUES(content),
|
|
content_vector = VALUES(content_vector),
|
|
updatetime = FROM_UNIXTIME(:timestamp)
|
|
""",
|
|
# SQL for GraphStorage
|
|
"get_node": """
|
|
SELECT entity_id AS id, workspace, name, entity_type, description, source_chunk_id AS source_id, content, content_vector
|
|
FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
|
|
""",
|
|
"get_edge": """
|
|
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id AS source_id, content, content_vector
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
|
|
""",
|
|
"get_node_edges": """
|
|
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id, content, content_vector
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND workspace = :workspace
|
|
""",
|
|
"node_degree": """
|
|
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace AND :name IN (source_name, target_name)
|
|
""",
|
|
"upsert_node": """
|
|
INSERT INTO LIGHTRAG_GRAPH_NODES(name, content, content_vector, workspace, source_chunk_id, entity_type, description)
|
|
VALUES(:name, :content, :content_vector, :workspace, :source_chunk_id, :entity_type, :description)
|
|
ON DUPLICATE KEY UPDATE
|
|
name = VALUES(name), content = VALUES(content), content_vector = VALUES(content_vector),
|
|
workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
|
|
source_chunk_id = VALUES(source_chunk_id), entity_type = VALUES(entity_type), description = VALUES(description)
|
|
""",
|
|
"upsert_edge": """
|
|
INSERT INTO LIGHTRAG_GRAPH_EDGES(source_name, target_name, content, content_vector,
|
|
workspace, weight, keywords, description, source_chunk_id)
|
|
VALUES(:source_name, :target_name, :content, :content_vector,
|
|
:workspace, :weight, :keywords, :description, :source_chunk_id)
|
|
ON DUPLICATE KEY UPDATE
|
|
source_name = VALUES(source_name), target_name = VALUES(target_name), content = VALUES(content),
|
|
content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
|
|
weight = VALUES(weight), keywords = VALUES(keywords), description = VALUES(description),
|
|
source_chunk_id = VALUES(source_chunk_id)
|
|
""",
|
|
"delete_node": """
|
|
DELETE FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE name = :name AND workspace = :workspace
|
|
""",
|
|
"delete_node_edges": """
|
|
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
|
WHERE (source_name = :name OR target_name = :name) AND workspace = :workspace
|
|
""",
|
|
"get_all_labels": """
|
|
SELECT DISTINCT entity_type as label
|
|
FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE workspace = :workspace
|
|
ORDER BY entity_type
|
|
""",
|
|
"get_matching_nodes": """
|
|
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE name LIKE :label_pattern AND workspace = :workspace
|
|
ORDER BY name
|
|
""",
|
|
"get_all_nodes": """
|
|
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
|
WHERE workspace = :workspace
|
|
ORDER BY name
|
|
LIMIT :max_nodes
|
|
""",
|
|
"get_related_edges": """
|
|
SELECT * FROM LIGHTRAG_GRAPH_EDGES
|
|
WHERE (source_name IN (:node_names) OR target_name IN (:node_names))
|
|
AND workspace = :workspace
|
|
""",
|
|
"remove_multiple_edges": """
|
|
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
|
WHERE (source_name = :source AND target_name = :target)
|
|
AND workspace = :workspace
|
|
""",
|
|
# Drop tables
|
|
"drop_specifiy_table_workspace": "DELETE FROM {table_name} WHERE workspace = :workspace",
|
|
}
|