You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

423 lines
16 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
from dataclasses import dataclass
from typing import final
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from lightrag.utils import logger
from lightrag.base import BaseGraphStorage
import pipmaster as pm
if not pm.is_installed("networkx"):
pm.install("networkx")
if not pm.is_installed("graspologic"):
pm.install("graspologic")
import networkx as nx
from .shared_storage import (
get_storage_lock,
get_update_flag,
set_all_update_flags,
)
from dotenv import load_dotenv
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
@final
@dataclass
class NetworkXStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
@staticmethod
def write_nx_graph(graph: nx.Graph, file_name):
logger.info(
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
)
nx.write_graphml(graph, file_name)
def __post_init__(self):
self._graphml_xml_file = os.path.join(
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
)
self._storage_lock = None
self.storage_updated = None
self._graph = None
# Load initial graph
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
else:
logger.info("Created new empty graph")
self._graph = preloaded_graph or nx.Graph()
async def initialize(self):
"""Initialize storage data"""
# Get the update flag for cross-process update notification
self.storage_updated = await get_update_flag(self.namespace)
# Get the storage lock for use in other methods
self._storage_lock = get_storage_lock()
async def _get_graph(self):
"""Check if the storage should be reloaded"""
# Acquire lock to prevent concurrent read and write
async with self._storage_lock:
# Check if data needs to be reloaded
if self.storage_updated.value:
logger.info(
f"Process {os.getpid()} reloading graph {self.namespace} due to update by another process"
)
# Reload data
self._graph = (
NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph()
)
# Reset update flag
self.storage_updated.value = False
return self._graph
async def has_node(self, node_id: str) -> bool:
graph = await self._get_graph()
return graph.has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
graph = await self._get_graph()
return graph.has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> dict[str, str] | None:
graph = await self._get_graph()
return graph.nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
graph = await self._get_graph()
return graph.degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
graph = await self._get_graph()
return graph.degree(src_id) + graph.degree(tgt_id)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
graph = await self._get_graph()
return graph.edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
graph = await self._get_graph()
if graph.has_node(source_node_id):
return list(graph.edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
graph = await self._get_graph()
graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
graph = await self._get_graph()
graph.add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str) -> None:
"""
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
"""
graph = await self._get_graph()
if graph.has_node(node_id):
graph.remove_node(node_id)
logger.debug(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
Args:
nodes: List of node IDs to be deleted
"""
graph = await self._get_graph()
for node in nodes:
if graph.has_node(node):
graph.remove_node(node)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Importance notes:
1. Changes will be persisted to disk during the next index_done_callback
2. Only one process should updating the storage at a time before index_done_callback,
KG-storage-log should be used to avoid data corruption
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
graph = await self._get_graph()
for source, target in edges:
if graph.has_edge(source, target):
graph.remove_edge(source, target)
async def get_all_labels(self) -> list[str]:
"""
Get all node labels in the graph
Returns:
[label1, label2, ...] # Alphabetically sorted label list
"""
graph = await self._get_graph()
labels = set()
for node in graph.nodes():
labels.add(str(node)) # Add node id as a label
# Return sorted list
return sorted(list(labels))
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = MAX_GRAPH_NODES,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Args:
node_label: Label of the starting node* means all nodes
max_depth: Maximum depth of the subgraph, Defaults to 3
max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000
Returns:
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
indicating whether the graph was truncated due to max_nodes limit
"""
graph = await self._get_graph()
result = KnowledgeGraph()
# Handle special case for "*" label
if node_label == "*":
# Get degrees of all nodes
degrees = dict(graph.degree())
# Sort nodes by degree in descending order and take top max_nodes
sorted_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)
# Check if graph is truncated
if len(sorted_nodes) > max_nodes:
result.is_truncated = True
logger.info(
f"Graph truncated: {len(sorted_nodes)} nodes found, limited to {max_nodes}"
)
limited_nodes = [node for node, _ in sorted_nodes[:max_nodes]]
# Create subgraph with the highest degree nodes
subgraph = graph.subgraph(limited_nodes)
else:
# Check if node exists
if node_label not in graph:
logger.warning(f"Node {node_label} not found in the graph")
return KnowledgeGraph() # Return empty graph
# Use modified BFS to get nodes, prioritizing high-degree nodes at the same depth
bfs_nodes = []
visited = set()
# Store (node, depth, degree) in the queue
queue = [(node_label, 0, graph.degree(node_label))]
# Modified breadth-first search with degree-based prioritization
while queue and len(bfs_nodes) < max_nodes:
# Get the current depth from the first node in queue
current_depth = queue[0][1]
# Collect all nodes at the current depth
current_level_nodes = []
while queue and queue[0][1] == current_depth:
current_level_nodes.append(queue.pop(0))
# Sort nodes at current depth by degree (highest first)
current_level_nodes.sort(key=lambda x: x[2], reverse=True)
# Process all nodes at current depth in order of degree
for current_node, depth, degree in current_level_nodes:
if current_node not in visited:
visited.add(current_node)
bfs_nodes.append(current_node)
# Only explore neighbors if we haven't reached max_depth
if depth < max_depth:
# Add neighbor nodes to queue with incremented depth
neighbors = list(graph.neighbors(current_node))
# Filter out already visited neighbors
unvisited_neighbors = [
n for n in neighbors if n not in visited
]
# Add neighbors to the queue with their degrees
for neighbor in unvisited_neighbors:
neighbor_degree = graph.degree(neighbor)
queue.append((neighbor, depth + 1, neighbor_degree))
# Check if we've reached max_nodes
if len(bfs_nodes) >= max_nodes:
break
# Check if graph is truncated - if we still have nodes in the queue
# and we've reached max_nodes, then the graph is truncated
if queue and len(bfs_nodes) >= max_nodes:
result.is_truncated = True
logger.info(
f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
)
# Create subgraph with BFS discovered nodes
subgraph = graph.subgraph(bfs_nodes)
# Add nodes to result
seen_nodes = set()
seen_edges = set()
for node in subgraph.nodes():
if str(node) in seen_nodes:
continue
node_data = dict(subgraph.nodes[node])
# Get entity_type as labels
labels = []
if "entity_type" in node_data:
if isinstance(node_data["entity_type"], list):
labels.extend(node_data["entity_type"])
else:
labels.append(node_data["entity_type"])
# Create node with properties
node_properties = {k: v for k, v in node_data.items()}
result.nodes.append(
KnowledgeGraphNode(
id=str(node), labels=[str(node)], properties=node_properties
)
)
seen_nodes.add(str(node))
# Add edges to result
for edge in subgraph.edges():
source, target = edge
# Esure unique edge_id for undirect graph
if str(source) > str(target):
source, target = target, source
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
edge_data = dict(subgraph.edges[edge])
# Create edge with complete information
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source),
target=str(target),
properties=edge_data,
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
return result
async def index_done_callback(self) -> bool:
"""Save data to disk"""
async with self._storage_lock:
# Check if storage was updated by another process
if self.storage_updated.value:
# Storage was updated by another process, reload data instead of saving
logger.info(
f"Graph for {self.namespace} was updated by another process, reloading..."
)
self._graph = (
NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph()
)
# Reset update flag
self.storage_updated.value = False
return False # Return error
# Acquire lock and perform persistence
async with self._storage_lock:
try:
# Save data to disk
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
return True # Return success
except Exception as e:
logger.error(f"Error saving graph for {self.namespace}: {e}")
return False # Return error
return True
async def drop(self) -> dict[str, str]:
"""Drop all graph data from storage and clean up resources
This method will:
1. Remove the graph storage file if it exists
2. Reset the graph to an empty state
3. Update flags to notify other processes
4. Changes is persisted to disk immediately
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
# delete _client_file_name
if os.path.exists(self._graphml_xml_file):
os.remove(self._graphml_xml_file)
self._graph = nx.Graph()
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
self.storage_updated.value = False
logger.info(
f"Process {os.getpid()} drop graph {self.namespace} (file:{self._graphml_xml_file})"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(f"Error dropping graph {self.namespace}: {e}")
return {"status": "error", "message": str(e)}