You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
7.7 KiB
245 lines
7.7 KiB
import os
|
|
import asyncio
|
|
import inspect
|
|
import logging
|
|
import logging.config
|
|
|
|
import numpy as np
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
|
from lightrag.llm.ollama import ollama_embed
|
|
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv(dotenv_path=".env", override=False)
|
|
|
|
WORKING_DIR = "./dickens"
|
|
|
|
|
|
def configure_logging():
|
|
"""Configure logging for the application"""
|
|
|
|
# Reset any existing handlers to ensure clean configuration
|
|
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
|
|
logger_instance = logging.getLogger(logger_name)
|
|
logger_instance.handlers = []
|
|
logger_instance.filters = []
|
|
|
|
# Get log directory path from environment variable or use current directory
|
|
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
|
log_file_path = os.path.abspath(
|
|
os.path.join(log_dir, "lightrag_compatible_demo.log")
|
|
)
|
|
|
|
print(f"\nLightRAG compatible demo log file: {log_file_path}\n")
|
|
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
|
|
|
# Get log file max size and backup count from environment variables
|
|
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
|
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
|
|
|
logging.config.dictConfig(
|
|
{
|
|
"version": 1,
|
|
"disable_existing_loggers": False,
|
|
"formatters": {
|
|
"default": {
|
|
"format": "%(levelname)s: %(message)s",
|
|
},
|
|
"detailed": {
|
|
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
},
|
|
},
|
|
"handlers": {
|
|
"console": {
|
|
"formatter": "default",
|
|
"class": "logging.StreamHandler",
|
|
"stream": "ext://sys.stderr",
|
|
},
|
|
"file": {
|
|
"formatter": "detailed",
|
|
"class": "logging.handlers.RotatingFileHandler",
|
|
"filename": log_file_path,
|
|
"maxBytes": log_max_bytes,
|
|
"backupCount": log_backup_count,
|
|
"encoding": "utf-8",
|
|
},
|
|
},
|
|
"loggers": {
|
|
"lightrag": {
|
|
"handlers": ["console", "file"],
|
|
"level": "INFO",
|
|
"propagate": False,
|
|
},
|
|
},
|
|
}
|
|
)
|
|
|
|
# Set the logger level to INFO
|
|
logger.setLevel(logging.INFO)
|
|
# Enable verbose debug if needed
|
|
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
|
|
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def llm_model_func(
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
) -> str:
|
|
return await openai_complete_if_cache(
|
|
os.getenv("LLM_MODEL", "deepseek-chat"),
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
# api_key=os.getenv("LLM_BINDING_API_KEY") or os.getenv("OPENAI_API_KEY"),
|
|
# 这里黄海写死了购买的DeepSeek的API_KEY
|
|
api_key='sk-44ae895eeb614aa1a9c6460579e322f1',
|
|
base_url="https://api.deepseek.com",
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
async def print_stream(stream):
|
|
async for chunk in stream:
|
|
if chunk:
|
|
print(chunk, end="", flush=True)
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
# 硅基流动【这里使用了黄海在硅基流动申请的API KEY】
|
|
return await openai_embed(
|
|
texts,
|
|
model="BAAI/bge-m3",
|
|
api_key="sk-pbqibyjwhrgmnlsmdygplahextfaclgnedetybccknxojlyl",
|
|
base_url="https://api.siliconflow.cn/v1"
|
|
)
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=llm_model_func,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=1024,
|
|
max_token_size=8192,
|
|
# 下面的代码黄海修改过
|
|
# func=lambda texts: ollama_embed(
|
|
# texts,
|
|
# embed_model=os.getenv("EMBEDDING_MODEL", "bge-m3:latest"),
|
|
# host=os.getenv("EMBEDDING_BINDING_HOST", "http://localhost:11434"),
|
|
# ),
|
|
func=embedding_func
|
|
),
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
async def main():
|
|
try:
|
|
# 注释掉或删除以下清理代码
|
|
# files_to_delete = [
|
|
# "graph_chunk_entity_relation.graphml",
|
|
# "kv_store_doc_status.json",
|
|
# "kv_store_full_docs.json",
|
|
# "kv_store_text_chunks.json",
|
|
# "vdb_chunks.json",
|
|
# "vdb_entities.json",
|
|
# "vdb_relationships.json",
|
|
# ]
|
|
# for file in files_to_delete:
|
|
# file_path = os.path.join(WORKING_DIR, file)
|
|
# if os.path.exists(file_path):
|
|
# os.remove(file_path)
|
|
# print(f"Deleting old file:: {file_path}")
|
|
|
|
# Initialize RAG instance
|
|
rag = await initialize_rag()
|
|
|
|
# Test embedding function
|
|
test_text = ["This is a test string for embedding."]
|
|
embedding = await rag.embedding_func(test_text)
|
|
embedding_dim = embedding.shape[1]
|
|
print("\n=======================")
|
|
print("Test embedding function")
|
|
print("========================")
|
|
print(f"Test dict: {test_text}")
|
|
print(f"Detected embedding dimension: {embedding_dim}\n\n")
|
|
|
|
#with open("./sushi.txt", "r", encoding="utf-8") as f:
|
|
# await rag.ainsert(f.read())
|
|
|
|
# # Perform naive search
|
|
# print("\n=====================")
|
|
# print("Query mode: naive")
|
|
# print("=====================")
|
|
# resp = await rag.aquery(
|
|
# "What are the top themes in this story?",
|
|
# param=QueryParam(mode="naive", stream=True),
|
|
# )
|
|
# if inspect.isasyncgen(resp):
|
|
# await print_stream(resp)
|
|
# else:
|
|
# print(resp)
|
|
#
|
|
# # Perform local search
|
|
# print("\n=====================")
|
|
# print("Query mode: local")
|
|
# print("=====================")
|
|
# resp = await rag.aquery(
|
|
# "What are the top themes in this story?",
|
|
# param=QueryParam(mode="local", stream=True),
|
|
# )
|
|
# if inspect.isasyncgen(resp):
|
|
# await print_stream(resp)
|
|
# else:
|
|
# print(resp)
|
|
#
|
|
# # Perform global search
|
|
# print("\n=====================")
|
|
# print("Query mode: global")
|
|
# print("=====================")
|
|
# resp = await rag.aquery(
|
|
# "What are the top themes in this story?",
|
|
# param=QueryParam(mode="global", stream=True),
|
|
# )
|
|
# if inspect.isasyncgen(resp):
|
|
# await print_stream(resp)
|
|
# else:
|
|
# print(resp)
|
|
|
|
# Perform hybrid search
|
|
print("\n=====================")
|
|
print("Query mode: hybrid")
|
|
print("=====================")
|
|
resp = await rag.aquery(
|
|
"苏轼与王安石是什么关系?",
|
|
param=QueryParam(mode="hybrid", stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
finally:
|
|
if rag:
|
|
await rag.finalize_storages()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Configure logging before running the main function
|
|
configure_logging()
|
|
asyncio.run(main())
|
|
print("\nDone!")
|