76 lines
2.4 KiB
Python
76 lines
2.4 KiB
Python
import logging
|
||
import os
|
||
import tempfile
|
||
from datetime import datetime
|
||
|
||
from fastapi import APIRouter, Request, File, UploadFile
|
||
from fastapi.responses import JSONResponse
|
||
|
||
# 创建路由路由器
|
||
router = APIRouter(prefix="/api", tags=["学伴"])
|
||
|
||
# 配置日志
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
@router.post("/xueban/upload-audio")
|
||
async def upload_audio(file: UploadFile = File(...)):
|
||
"""
|
||
上传音频文件并进行ASR处理
|
||
- 参数: file - 音频文件
|
||
- 返回: JSON包含识别结果
|
||
"""
|
||
try:
|
||
# 记录日志
|
||
logger.info(f"接收到音频文件: {file.filename}")
|
||
|
||
# 保存临时文件
|
||
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
||
file_ext = os.path.splitext(file.filename)[1]
|
||
temp_file_name = f"temp_audio_{timestamp}{file_ext}"
|
||
temp_file_path = os.path.join(tempfile.gettempdir(), temp_file_name)
|
||
|
||
with open(temp_file_path, "wb") as f:
|
||
content = await file.read()
|
||
f.write(content)
|
||
|
||
logger.info(f"音频文件已保存至临时目录: {temp_file_path}")
|
||
|
||
# 这里应该调用ASR服务进行处理
|
||
# 示例:asr_result = await process_asr(temp_file_path)
|
||
# 为了演示,这里返回模拟结果
|
||
asr_result = {
|
||
"text": "这是一段测试音频的识别结果",
|
||
"confidence": 0.95,
|
||
"audio_duration": len(content) / 1024 / 16 # 估算音频时长
|
||
}
|
||
|
||
# 删除临时文件
|
||
os.remove(temp_file_path)
|
||
logger.info(f"临时文件已删除: {temp_file_path}")
|
||
|
||
# 返回识别结果
|
||
return JSONResponse(content={
|
||
"success": True,
|
||
"message": "音频识别成功",
|
||
"data": asr_result
|
||
})
|
||
|
||
except Exception as e:
|
||
logger.error(f"音频处理失败: {str(e)}")
|
||
return JSONResponse(content={
|
||
"success": False,
|
||
"message": f"音频处理失败: {str(e)}"
|
||
}, status_code=500)
|
||
|
||
# 实际应用中,您需要实现ASR处理函数
|
||
async def process_asr(audio_path: str) -> dict:
|
||
"""
|
||
调用ASR服务处理音频文件
|
||
:param audio_path: 音频文件路径
|
||
:return: 识别结果字典
|
||
"""
|
||
# 这里应该集成实际的ASR服务
|
||
# 例如百度AI、阿里云、讯飞等ASR服务
|
||
# 或者本地的ASR模型
|
||
pass |