You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3365 lines
136 KiB

import asyncio
import json
import os
import re
import datetime
from datetime import timezone
from dataclasses import dataclass, field
from typing import Any, Union, final
import numpy as np
import configparser
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
)
from ..namespace import NameSpace, is_namespace
from ..utils import logger
from ..constants import GRAPH_FIELD_SEP
import pipmaster as pm
if not pm.is_installed("asyncpg"):
pm.install("asyncpg")
import asyncpg # type: ignore
from asyncpg import Pool # type: ignore
from dotenv import load_dotenv
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
class PostgreSQLDB:
def __init__(self, config: dict[str, Any], **kwargs: Any):
self.host = config["host"]
self.port = config["port"]
self.user = config["user"]
self.password = config["password"]
self.database = config["database"]
self.workspace = config["workspace"]
self.max = int(config["max_connections"])
self.increment = 1
self.pool: Pool | None = None
if self.user is None or self.password is None or self.database is None:
raise ValueError("Missing database user, password, or database")
async def initdb(self):
try:
self.pool = await asyncpg.create_pool( # type: ignore
user=self.user,
password=self.password,
database=self.database,
host=self.host,
port=self.port,
min_size=1,
max_size=self.max,
)
logger.info(
f"PostgreSQL, Connected to database at {self.host}:{self.port}/{self.database}"
)
except Exception as e:
logger.error(
f"PostgreSQL, Failed to connect database at {self.host}:{self.port}/{self.database}, Got:{e}"
)
raise
@staticmethod
async def configure_age(connection: asyncpg.Connection, graph_name: str) -> None:
"""Set the Apache AGE environment and creates a graph if it does not exist.
This method:
- Sets the PostgreSQL `search_path` to include `ag_catalog`, ensuring that Apache AGE functions can be used without specifying the schema.
- Attempts to create a new graph with the provided `graph_name` if it does not already exist.
- Silently ignores errors related to the graph already existing.
"""
try:
await connection.execute( # type: ignore
'SET search_path = ag_catalog, "$user", public'
)
await connection.execute( # type: ignore
f"select create_graph('{graph_name}')"
)
except (
asyncpg.exceptions.InvalidSchemaNameError,
asyncpg.exceptions.UniqueViolationError,
):
pass
async def _migrate_llm_cache_add_columns(self):
"""Add chunk_id and cache_type columns to LIGHTRAG_LLM_CACHE table if they don't exist"""
try:
# Check if both columns exist
check_columns_sql = """
SELECT column_name
FROM information_schema.columns
WHERE table_name = 'lightrag_llm_cache'
AND column_name IN ('chunk_id', 'cache_type')
"""
existing_columns = await self.query(check_columns_sql, multirows=True)
existing_column_names = (
{col["column_name"] for col in existing_columns}
if existing_columns
else set()
)
# Add missing chunk_id column
if "chunk_id" not in existing_column_names:
logger.info("Adding chunk_id column to LIGHTRAG_LLM_CACHE table")
add_chunk_id_sql = """
ALTER TABLE LIGHTRAG_LLM_CACHE
ADD COLUMN chunk_id VARCHAR(255) NULL
"""
await self.execute(add_chunk_id_sql)
logger.info(
"Successfully added chunk_id column to LIGHTRAG_LLM_CACHE table"
)
else:
logger.info(
"chunk_id column already exists in LIGHTRAG_LLM_CACHE table"
)
# Add missing cache_type column
if "cache_type" not in existing_column_names:
logger.info("Adding cache_type column to LIGHTRAG_LLM_CACHE table")
add_cache_type_sql = """
ALTER TABLE LIGHTRAG_LLM_CACHE
ADD COLUMN cache_type VARCHAR(32) NULL
"""
await self.execute(add_cache_type_sql)
logger.info(
"Successfully added cache_type column to LIGHTRAG_LLM_CACHE table"
)
# Migrate existing data using optimized regex pattern
logger.info(
"Migrating existing LLM cache data to populate cache_type field (optimized)"
)
optimized_update_sql = """
UPDATE LIGHTRAG_LLM_CACHE
SET cache_type = CASE
WHEN id ~ '^[^:]+:[^:]+:' THEN split_part(id, ':', 2)
ELSE 'extract'
END
WHERE cache_type IS NULL
"""
await self.execute(optimized_update_sql)
logger.info("Successfully migrated existing LLM cache data")
else:
logger.info(
"cache_type column already exists in LIGHTRAG_LLM_CACHE table"
)
except Exception as e:
logger.warning(f"Failed to add columns to LIGHTRAG_LLM_CACHE: {e}")
async def _migrate_timestamp_columns(self):
"""Migrate timestamp columns in tables to witimezone-free types, assuming original data is in UTC time"""
# Tables and columns that need migration
tables_to_migrate = {
"LIGHTRAG_VDB_ENTITY": ["create_time", "update_time"],
"LIGHTRAG_VDB_RELATION": ["create_time", "update_time"],
"LIGHTRAG_DOC_CHUNKS": ["create_time", "update_time"],
"LIGHTRAG_DOC_STATUS": ["created_at", "updated_at"],
}
for table_name, columns in tables_to_migrate.items():
for column_name in columns:
try:
# Check if column exists
check_column_sql = f"""
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_name = '{table_name.lower()}'
AND column_name = '{column_name}'
"""
column_info = await self.query(check_column_sql)
if not column_info:
logger.warning(
f"Column {table_name}.{column_name} does not exist, skipping migration"
)
continue
# Check column type
data_type = column_info.get("data_type")
if data_type == "timestamp without time zone":
logger.debug(
f"Column {table_name}.{column_name} is already witimezone-free, no migration needed"
)
continue
# Execute migration, explicitly specifying UTC timezone for interpreting original data
logger.info(
f"Migrating {table_name}.{column_name} from {data_type} to TIMESTAMP(0) type"
)
migration_sql = f"""
ALTER TABLE {table_name}
ALTER COLUMN {column_name} TYPE TIMESTAMP(0),
ALTER COLUMN {column_name} SET DEFAULT CURRENT_TIMESTAMP
"""
await self.execute(migration_sql)
logger.info(
f"Successfully migrated {table_name}.{column_name} to timezone-free type"
)
except Exception as e:
# Log error but don't interrupt the process
logger.warning(f"Failed to migrate {table_name}.{column_name}: {e}")
async def _migrate_doc_chunks_to_vdb_chunks(self):
"""
Migrate data from LIGHTRAG_DOC_CHUNKS to LIGHTRAG_VDB_CHUNKS if specific conditions are met.
This migration is intended for users who are upgrading and have an older table structure
where LIGHTRAG_DOC_CHUNKS contained a `content_vector` column.
"""
try:
# 1. Check if the new table LIGHTRAG_VDB_CHUNKS is empty
vdb_chunks_count_sql = "SELECT COUNT(1) as count FROM LIGHTRAG_VDB_CHUNKS"
vdb_chunks_count_result = await self.query(vdb_chunks_count_sql)
if vdb_chunks_count_result and vdb_chunks_count_result["count"] > 0:
logger.info(
"Skipping migration: LIGHTRAG_VDB_CHUNKS already contains data."
)
return
# 2. Check if `content_vector` column exists in the old table
check_column_sql = """
SELECT 1 FROM information_schema.columns
WHERE table_name = 'lightrag_doc_chunks' AND column_name = 'content_vector'
"""
column_exists = await self.query(check_column_sql)
if not column_exists:
logger.info(
"Skipping migration: `content_vector` not found in LIGHTRAG_DOC_CHUNKS"
)
return
# 3. Check if the old table LIGHTRAG_DOC_CHUNKS has data
doc_chunks_count_sql = "SELECT COUNT(1) as count FROM LIGHTRAG_DOC_CHUNKS"
doc_chunks_count_result = await self.query(doc_chunks_count_sql)
if not doc_chunks_count_result or doc_chunks_count_result["count"] == 0:
logger.info("Skipping migration: LIGHTRAG_DOC_CHUNKS is empty.")
return
# 4. Perform the migration
logger.info(
"Starting data migration from LIGHTRAG_DOC_CHUNKS to LIGHTRAG_VDB_CHUNKS..."
)
migration_sql = """
INSERT INTO LIGHTRAG_VDB_CHUNKS (
id, workspace, full_doc_id, chunk_order_index, tokens, content,
content_vector, file_path, create_time, update_time
)
SELECT
id, workspace, full_doc_id, chunk_order_index, tokens, content,
content_vector, file_path, create_time, update_time
FROM LIGHTRAG_DOC_CHUNKS
ON CONFLICT (workspace, id) DO NOTHING;
"""
await self.execute(migration_sql)
logger.info("Data migration to LIGHTRAG_VDB_CHUNKS completed successfully.")
except Exception as e:
logger.error(f"Failed during data migration to LIGHTRAG_VDB_CHUNKS: {e}")
# Do not re-raise, to allow the application to start
async def _check_llm_cache_needs_migration(self):
"""Check if LLM cache data needs migration by examining any record with old format"""
try:
# Optimized query: directly check for old format records without sorting
check_sql = """
SELECT 1 FROM LIGHTRAG_LLM_CACHE
WHERE id NOT LIKE '%:%'
LIMIT 1
"""
result = await self.query(check_sql)
# If any old format record exists, migration is needed
return result is not None
except Exception as e:
logger.warning(f"Failed to check LLM cache migration status: {e}")
return False
async def _migrate_llm_cache_to_flattened_keys(self):
"""Optimized version: directly execute single UPDATE migration to migrate old format cache keys to flattened format"""
try:
# Check if migration is needed
check_sql = """
SELECT COUNT(*) as count FROM LIGHTRAG_LLM_CACHE
WHERE id NOT LIKE '%:%'
"""
result = await self.query(check_sql)
if not result or result["count"] == 0:
logger.info("No old format LLM cache data found, skipping migration")
return
old_count = result["count"]
logger.info(f"Found {old_count} old format cache records")
# Check potential primary key conflicts (optional but recommended)
conflict_check_sql = """
WITH new_ids AS (
SELECT
workspace,
mode,
id as old_id,
mode || ':' ||
CASE WHEN mode = 'default' THEN 'extract' ELSE 'unknown' END || ':' ||
md5(original_prompt) as new_id
FROM LIGHTRAG_LLM_CACHE
WHERE id NOT LIKE '%:%'
)
SELECT COUNT(*) as conflicts
FROM new_ids n1
JOIN LIGHTRAG_LLM_CACHE existing
ON existing.workspace = n1.workspace
AND existing.mode = n1.mode
AND existing.id = n1.new_id
WHERE existing.id LIKE '%:%' -- Only check conflicts with existing new format records
"""
conflict_result = await self.query(conflict_check_sql)
if conflict_result and conflict_result["conflicts"] > 0:
logger.warning(
f"Found {conflict_result['conflicts']} potential ID conflicts with existing records"
)
# Can choose to continue or abort, here we choose to continue and log warning
# Execute single UPDATE migration
logger.info("Starting optimized LLM cache migration...")
migration_sql = """
UPDATE LIGHTRAG_LLM_CACHE
SET
id = mode || ':' ||
CASE WHEN mode = 'default' THEN 'extract' ELSE 'unknown' END || ':' ||
md5(original_prompt),
cache_type = CASE WHEN mode = 'default' THEN 'extract' ELSE 'unknown' END,
update_time = CURRENT_TIMESTAMP
WHERE id NOT LIKE '%:%'
"""
# Execute migration
await self.execute(migration_sql)
# Verify migration results
verify_sql = """
SELECT COUNT(*) as remaining_old FROM LIGHTRAG_LLM_CACHE
WHERE id NOT LIKE '%:%'
"""
verify_result = await self.query(verify_sql)
remaining = verify_result["remaining_old"] if verify_result else -1
if remaining == 0:
logger.info(
f"✅ Successfully migrated {old_count} LLM cache records to flattened format"
)
else:
logger.warning(
f"⚠️ Migration completed but {remaining} old format records remain"
)
except Exception as e:
logger.error(f"Optimized LLM cache migration failed: {e}")
raise
async def _migrate_doc_status_add_chunks_list(self):
"""Add chunks_list column to LIGHTRAG_DOC_STATUS table if it doesn't exist"""
try:
# Check if chunks_list column exists
check_column_sql = """
SELECT column_name
FROM information_schema.columns
WHERE table_name = 'lightrag_doc_status'
AND column_name = 'chunks_list'
"""
column_info = await self.query(check_column_sql)
if not column_info:
logger.info("Adding chunks_list column to LIGHTRAG_DOC_STATUS table")
add_column_sql = """
ALTER TABLE LIGHTRAG_DOC_STATUS
ADD COLUMN chunks_list JSONB NULL DEFAULT '[]'::jsonb
"""
await self.execute(add_column_sql)
logger.info(
"Successfully added chunks_list column to LIGHTRAG_DOC_STATUS table"
)
else:
logger.info(
"chunks_list column already exists in LIGHTRAG_DOC_STATUS table"
)
except Exception as e:
logger.warning(
f"Failed to add chunks_list column to LIGHTRAG_DOC_STATUS: {e}"
)
async def _migrate_text_chunks_add_llm_cache_list(self):
"""Add llm_cache_list column to LIGHTRAG_DOC_CHUNKS table if it doesn't exist"""
try:
# Check if llm_cache_list column exists
check_column_sql = """
SELECT column_name
FROM information_schema.columns
WHERE table_name = 'lightrag_doc_chunks'
AND column_name = 'llm_cache_list'
"""
column_info = await self.query(check_column_sql)
if not column_info:
logger.info("Adding llm_cache_list column to LIGHTRAG_DOC_CHUNKS table")
add_column_sql = """
ALTER TABLE LIGHTRAG_DOC_CHUNKS
ADD COLUMN llm_cache_list JSONB NULL DEFAULT '[]'::jsonb
"""
await self.execute(add_column_sql)
logger.info(
"Successfully added llm_cache_list column to LIGHTRAG_DOC_CHUNKS table"
)
else:
logger.info(
"llm_cache_list column already exists in LIGHTRAG_DOC_CHUNKS table"
)
except Exception as e:
logger.warning(
f"Failed to add llm_cache_list column to LIGHTRAG_DOC_CHUNKS: {e}"
)
async def _migrate_field_lengths(self):
"""Migrate database field lengths: entity_name, source_id, target_id, and file_path"""
# Define the field changes needed
field_migrations = [
{
"table": "LIGHTRAG_VDB_ENTITY",
"column": "entity_name",
"old_type": "character varying(255)",
"new_type": "VARCHAR(512)",
"description": "entity_name from 255 to 512",
},
{
"table": "LIGHTRAG_VDB_RELATION",
"column": "source_id",
"old_type": "character varying(256)",
"new_type": "VARCHAR(512)",
"description": "source_id from 256 to 512",
},
{
"table": "LIGHTRAG_VDB_RELATION",
"column": "target_id",
"old_type": "character varying(256)",
"new_type": "VARCHAR(512)",
"description": "target_id from 256 to 512",
},
{
"table": "LIGHTRAG_DOC_CHUNKS",
"column": "file_path",
"old_type": "character varying(256)",
"new_type": "TEXT",
"description": "file_path to TEXT NULL",
},
{
"table": "LIGHTRAG_VDB_CHUNKS",
"column": "file_path",
"old_type": "character varying(256)",
"new_type": "TEXT",
"description": "file_path to TEXT NULL",
},
]
for migration in field_migrations:
try:
# Check current column definition
check_column_sql = """
SELECT column_name, data_type, character_maximum_length, is_nullable
FROM information_schema.columns
WHERE table_name = $1 AND column_name = $2
"""
column_info = await self.query(
check_column_sql,
{
"table_name": migration["table"].lower(),
"column_name": migration["column"],
},
)
if not column_info:
logger.warning(
f"Column {migration['table']}.{migration['column']} does not exist, skipping migration"
)
continue
current_type = column_info.get("data_type", "").lower()
current_length = column_info.get("character_maximum_length")
# Check if migration is needed
needs_migration = False
if migration["column"] == "entity_name" and current_length == 255:
needs_migration = True
elif (
migration["column"] in ["source_id", "target_id"]
and current_length == 256
):
needs_migration = True
elif (
migration["column"] == "file_path"
and current_type == "character varying"
):
needs_migration = True
if needs_migration:
logger.info(
f"Migrating {migration['table']}.{migration['column']}: {migration['description']}"
)
# Execute the migration
alter_sql = f"""
ALTER TABLE {migration['table']}
ALTER COLUMN {migration['column']} TYPE {migration['new_type']}
"""
await self.execute(alter_sql)
logger.info(
f"Successfully migrated {migration['table']}.{migration['column']}"
)
else:
logger.debug(
f"Column {migration['table']}.{migration['column']} already has correct type, no migration needed"
)
except Exception as e:
# Log error but don't interrupt the process
logger.warning(
f"Failed to migrate {migration['table']}.{migration['column']}: {e}"
)
async def check_tables(self):
# First create all tables
for k, v in TABLES.items():
try:
await self.query(f"SELECT 1 FROM {k} LIMIT 1")
except Exception:
try:
logger.info(f"PostgreSQL, Try Creating table {k} in database")
await self.execute(v["ddl"])
logger.info(
f"PostgreSQL, Creation success table {k} in PostgreSQL database"
)
except Exception as e:
logger.error(
f"PostgreSQL, Failed to create table {k} in database, Please verify the connection with PostgreSQL database, Got: {e}"
)
raise e
# Create index for id column in each table
try:
index_name = f"idx_{k.lower()}_id"
check_index_sql = f"""
SELECT 1 FROM pg_indexes
WHERE indexname = '{index_name}'
AND tablename = '{k.lower()}'
"""
index_exists = await self.query(check_index_sql)
if not index_exists:
create_index_sql = f"CREATE INDEX {index_name} ON {k}(id)"
logger.info(f"PostgreSQL, Creating index {index_name} on table {k}")
await self.execute(create_index_sql)
except Exception as e:
logger.error(
f"PostgreSQL, Failed to create index on table {k}, Got: {e}"
)
# Create composite index for (workspace, id) columns in each table
try:
composite_index_name = f"idx_{k.lower()}_workspace_id"
check_composite_index_sql = f"""
SELECT 1 FROM pg_indexes
WHERE indexname = '{composite_index_name}'
AND tablename = '{k.lower()}'
"""
composite_index_exists = await self.query(check_composite_index_sql)
if not composite_index_exists:
create_composite_index_sql = (
f"CREATE INDEX {composite_index_name} ON {k}(workspace, id)"
)
logger.info(
f"PostgreSQL, Creating composite index {composite_index_name} on table {k}"
)
await self.execute(create_composite_index_sql)
except Exception as e:
logger.error(
f"PostgreSQL, Failed to create composite index on table {k}, Got: {e}"
)
# After all tables are created, attempt to migrate timestamp fields
try:
await self._migrate_timestamp_columns()
except Exception as e:
logger.error(f"PostgreSQL, Failed to migrate timestamp columns: {e}")
# Don't throw an exception, allow the initialization process to continue
# Migrate LLM cache table to add chunk_id and cache_type columns if needed
try:
await self._migrate_llm_cache_add_columns()
except Exception as e:
logger.error(f"PostgreSQL, Failed to migrate LLM cache columns: {e}")
# Don't throw an exception, allow the initialization process to continue
# Finally, attempt to migrate old doc chunks data if needed
try:
await self._migrate_doc_chunks_to_vdb_chunks()
except Exception as e:
logger.error(f"PostgreSQL, Failed to migrate doc_chunks to vdb_chunks: {e}")
# Check and migrate LLM cache to flattened keys if needed
try:
if await self._check_llm_cache_needs_migration():
await self._migrate_llm_cache_to_flattened_keys()
except Exception as e:
logger.error(f"PostgreSQL, LLM cache migration failed: {e}")
# Migrate doc status to add chunks_list field if needed
try:
await self._migrate_doc_status_add_chunks_list()
except Exception as e:
logger.error(
f"PostgreSQL, Failed to migrate doc status chunks_list field: {e}"
)
# Migrate text chunks to add llm_cache_list field if needed
try:
await self._migrate_text_chunks_add_llm_cache_list()
except Exception as e:
logger.error(
f"PostgreSQL, Failed to migrate text chunks llm_cache_list field: {e}"
)
# Migrate field lengths for entity_name, source_id, target_id, and file_path
try:
await self._migrate_field_lengths()
except Exception as e:
logger.error(f"PostgreSQL, Failed to migrate field lengths: {e}")
async def query(
self,
sql: str,
params: dict[str, Any] | None = None,
multirows: bool = False,
with_age: bool = False,
graph_name: str | None = None,
) -> dict[str, Any] | None | list[dict[str, Any]]:
# start_time = time.time()
# logger.info(f"PostgreSQL, Querying:\n{sql}")
async with self.pool.acquire() as connection: # type: ignore
if with_age and graph_name:
await self.configure_age(connection, graph_name) # type: ignore
elif with_age and not graph_name:
raise ValueError("Graph name is required when with_age is True")
try:
if params:
rows = await connection.fetch(sql, *params.values())
else:
rows = await connection.fetch(sql)
if multirows:
if rows:
columns = [col for col in rows[0].keys()]
data = [dict(zip(columns, row)) for row in rows]
else:
data = []
else:
if rows:
columns = rows[0].keys()
data = dict(zip(columns, rows[0]))
else:
data = None
# query_time = time.time() - start_time
# logger.info(f"PostgreSQL, Query result len: {len(data)}")
# logger.info(f"PostgreSQL, Query execution time: {query_time:.4f}s")
return data
except Exception as e:
logger.error(f"PostgreSQL database, error:{e}")
raise
async def execute(
self,
sql: str,
data: dict[str, Any] | None = None,
upsert: bool = False,
ignore_if_exists: bool = False,
with_age: bool = False,
graph_name: str | None = None,
):
try:
async with self.pool.acquire() as connection: # type: ignore
if with_age and graph_name:
await self.configure_age(connection, graph_name)
elif with_age and not graph_name:
raise ValueError("Graph name is required when with_age is True")
if data is None:
await connection.execute(sql)
else:
await connection.execute(sql, *data.values())
except (
asyncpg.exceptions.UniqueViolationError,
asyncpg.exceptions.DuplicateTableError,
asyncpg.exceptions.DuplicateObjectError, # Catch "already exists" error
asyncpg.exceptions.InvalidSchemaNameError, # Also catch for AGE extension "already exists"
) as e:
if ignore_if_exists:
# If the flag is set, just ignore these specific errors
pass
elif upsert:
print("Key value duplicate, but upsert succeeded.")
else:
logger.error(f"Upsert error: {e}")
except Exception as e:
logger.error(f"PostgreSQL database,\nsql:{sql},\ndata:{data},\nerror:{e}")
raise
class ClientManager:
_instances: dict[str, Any] = {"db": None, "ref_count": 0}
_lock = asyncio.Lock()
@staticmethod
#def get_config() -> dict[str, Any]:
def get_config(global_config: dict[str, Any] | None = None) -> dict[str, Any]:
# First try to get workspace from global config
workspace = None
if global_config and "vector_db_storage_cls_kwargs" in global_config:
workspace = global_config["vector_db_storage_cls_kwargs"].get("workspace")
# Read standard config
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
return {
"host": os.environ.get(
"POSTGRES_HOST",
config.get("postgres", "host", fallback="localhost"),
),
"port": os.environ.get(
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
),
"user": os.environ.get(
"POSTGRES_USER", config.get("postgres", "user", fallback="postgres")
),
"password": os.environ.get(
"POSTGRES_PASSWORD",
config.get("postgres", "password", fallback=None),
),
"database": os.environ.get(
"POSTGRES_DATABASE",
config.get("postgres", "database", fallback="postgres"),
),
# Use workspace from global config if available, otherwise fall back to env/config.ini
#"workspace": os.environ.get(
"workspace": workspace or os.environ.get(
"POSTGRES_WORKSPACE",
config.get("postgres", "workspace", fallback="default"),
),
"max_connections": os.environ.get(
"POSTGRES_MAX_CONNECTIONS",
config.get("postgres", "max_connections", fallback=20),
),
}
@classmethod
#async def get_client(cls) -> PostgreSQLDB:
async def get_client(cls, global_config: dict[str, Any] | None = None) -> PostgreSQLDB:
async with cls._lock:
if cls._instances["db"] is None:
#config = ClientManager.get_config()
config = cls.get_config(global_config)
db = PostgreSQLDB(config)
await db.initdb()
await db.check_tables()
cls._instances["db"] = db
cls._instances["ref_count"] = 0
cls._instances["ref_count"] += 1
return cls._instances["db"]
@classmethod
async def release_client(cls, db: PostgreSQLDB):
async with cls._lock:
if db is not None:
if db is cls._instances["db"]:
cls._instances["ref_count"] -= 1
if cls._instances["ref_count"] == 0:
await db.pool.close()
logger.info("Closed PostgreSQL database connection pool")
cls._instances["db"] = None
else:
await db.pool.close()
@final
@dataclass
class PGKVStorage(BaseKVStorage):
db: PostgreSQLDB = field(default=None)
def __post_init__(self):
self.base_namespace = self.global_config["vector_db_storage_cls_kwargs"].get("workspace")
self._max_batch_size = self.global_config["embedding_batch_num"]
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client(self.global_config)
#self.db = await ClientManager.get_client()
# Implement workspace priority: PostgreSQLDB.workspace > self.workspace > "default"
if self.db.workspace:
# Use PostgreSQLDB's workspace (highest priority)
final_workspace = self.db.workspace
elif hasattr(self, "workspace") and self.workspace:
# Use storage class's workspace (medium priority)
final_workspace = self.workspace
self.db.workspace = final_workspace
else:
# Use "default" for compatibility (lowest priority)
final_workspace = "default"
self.db.workspace = final_workspace
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
################ QUERY METHODS ################
async def get_all(self) -> dict[str, Any]:
"""Get all data from storage
Returns:
Dictionary containing all stored data
"""
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for get_all: {self.namespace}")
return {}
sql = f"SELECT * FROM {table_name} WHERE workspace=$1"
params = {"workspace": self.db.workspace}
try:
results = await self.db.query(sql, params, multirows=True)
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
processed_results = {}
for row in results:
create_time = row.get("create_time", 0)
update_time = row.get("update_time", 0)
# Map field names and add cache_type for compatibility
processed_row = {
**row,
"return": row.get("return_value", ""),
"cache_type": row.get("original_prompt", "unknow"),
"original_prompt": row.get("original_prompt", ""),
"chunk_id": row.get("chunk_id"),
"mode": row.get("mode", "default"),
"create_time": create_time,
"update_time": create_time if update_time == 0 else update_time,
}
processed_results[row["id"]] = processed_row
return processed_results
# For text_chunks namespace, parse llm_cache_list JSON string back to list
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
processed_results = {}
for row in results:
llm_cache_list = row.get("llm_cache_list", [])
if isinstance(llm_cache_list, str):
try:
llm_cache_list = json.loads(llm_cache_list)
except json.JSONDecodeError:
llm_cache_list = []
row["llm_cache_list"] = llm_cache_list
create_time = row.get("create_time", 0)
update_time = row.get("update_time", 0)
row["create_time"] = create_time
row["update_time"] = (
create_time if update_time == 0 else update_time
)
processed_results[row["id"]] = row
return processed_results
# For other namespaces, return as-is
return {row["id"]: row for row in results}
except Exception as e:
logger.error(f"Error retrieving all data from {self.namespace}: {e}")
return {}
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get data by id."""
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
response = await self.db.query(sql, params)
if response and is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
# Parse llm_cache_list JSON string back to list
llm_cache_list = response.get("llm_cache_list", [])
if isinstance(llm_cache_list, str):
try:
llm_cache_list = json.loads(llm_cache_list)
except json.JSONDecodeError:
llm_cache_list = []
response["llm_cache_list"] = llm_cache_list
create_time = response.get("create_time", 0)
update_time = response.get("update_time", 0)
response["create_time"] = create_time
response["update_time"] = create_time if update_time == 0 else update_time
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
if response and is_namespace(
self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
):
create_time = response.get("create_time", 0)
update_time = response.get("update_time", 0)
# Map field names and add cache_type for compatibility
response = {
**response,
"return": response.get("return_value", ""),
"cache_type": response.get("cache_type"),
"original_prompt": response.get("original_prompt", ""),
"chunk_id": response.get("chunk_id"),
"mode": response.get("mode", "default"),
"create_time": create_time,
"update_time": create_time if update_time == 0 else update_time,
}
return response if response else None
# Query by id
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get data by ids"""
sql = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
results = await self.db.query(sql, params, multirows=True)
if results and is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
# Parse llm_cache_list JSON string back to list for each result
for result in results:
llm_cache_list = result.get("llm_cache_list", [])
if isinstance(llm_cache_list, str):
try:
llm_cache_list = json.loads(llm_cache_list)
except json.JSONDecodeError:
llm_cache_list = []
result["llm_cache_list"] = llm_cache_list
create_time = result.get("create_time", 0)
update_time = result.get("update_time", 0)
result["create_time"] = create_time
result["update_time"] = create_time if update_time == 0 else update_time
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
if results and is_namespace(
self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
):
processed_results = []
for row in results:
create_time = row.get("create_time", 0)
update_time = row.get("update_time", 0)
# Map field names and add cache_type for compatibility
processed_row = {
**row,
"return": row.get("return_value", ""),
"cache_type": row.get("cache_type"),
"original_prompt": row.get("original_prompt", ""),
"chunk_id": row.get("chunk_id"),
"mode": row.get("mode", "default"),
"create_time": create_time,
"update_time": create_time if update_time == 0 else update_time,
}
processed_results.append(processed_row)
return processed_results
return results if results else []
async def filter_keys(self, keys: set[str]) -> set[str]:
"""Filter out duplicated content"""
sql = SQL_TEMPLATES["filter_keys"].format(
table_name=namespace_to_table_name(self.namespace),
ids=",".join([f"'{id}'" for id in keys]),
)
params = {"workspace": self.db.workspace}
try:
res = await self.db.query(sql, params, multirows=True)
if res:
exist_keys = [key["id"] for key in res]
else:
exist_keys = []
new_keys = set([s for s in keys if s not in exist_keys])
return new_keys
except Exception as e:
logger.error(
f"PostgreSQL database,\nsql:{sql},\nparams:{params},\nerror:{e}"
)
raise
################ INSERT METHODS ################
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.debug(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
# Get current UTC time and convert to naive datetime for database storage
current_time = datetime.datetime.now(timezone.utc).replace(tzinfo=None)
for k, v in data.items():
upsert_sql = SQL_TEMPLATES["upsert_text_chunk"]
_data = {
"workspace": self.db.workspace,
"id": k,
"tokens": v["tokens"],
"chunk_order_index": v["chunk_order_index"],
"full_doc_id": v["full_doc_id"],
"content": v["content"],
"file_path": v["file_path"],
"llm_cache_list": json.dumps(v.get("llm_cache_list", [])),
"create_time": current_time,
"update_time": current_time,
}
await self.db.execute(upsert_sql, _data)
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
for k, v in data.items():
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
_data = {
"id": k,
"content": v["content"],
"workspace": self.db.workspace,
}
await self.db.execute(upsert_sql, _data)
elif is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
for k, v in data.items():
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
_data = {
"workspace": self.db.workspace,
"id": k, # Use flattened key as id
"original_prompt": v["original_prompt"],
"return_value": v["return"],
"mode": v.get("mode", "default"), # Get mode from data
"chunk_id": v.get("chunk_id"),
"cache_type": v.get(
"cache_type", "extract"
), # Get cache_type from data
}
await self.db.execute(upsert_sql, _data)
async def index_done_callback(self) -> None:
# PG handles persistence automatically
pass
async def delete(self, ids: list[str]) -> None:
"""Delete specific records from storage by their IDs
Args:
ids (list[str]): List of document IDs to be deleted from storage
Returns:
None
"""
if not ids:
return
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for deletion: {self.namespace}")
return
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id = ANY($2)"
try:
await self.db.execute(
delete_sql, {"workspace": self.db.workspace, "ids": ids}
)
logger.debug(
f"Successfully deleted {len(ids)} records from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting records from {self.namespace}: {e}")
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
"""Delete specific records from storage by cache mode
Args:
modes (list[str]): List of cache modes to be dropped from storage
Returns:
bool: True if successful, False otherwise
"""
if not modes:
return False
try:
table_name = namespace_to_table_name(self.namespace)
if not table_name:
return False
if table_name != "LIGHTRAG_LLM_CACHE":
return False
sql = f"""
DELETE FROM {table_name}
WHERE workspace = $1 AND mode = ANY($2)
"""
params = {"workspace": self.db.workspace, "modes": modes}
logger.info(f"Deleting cache by modes: {modes}")
await self.db.execute(sql, params)
return True
except Exception as e:
logger.error(f"Error deleting cache by modes {modes}: {e}")
return False
async def drop(self) -> dict[str, str]:
"""Drop the storage"""
try:
table_name = namespace_to_table_name(self.namespace)
if not table_name:
return {
"status": "error",
"message": f"Unknown namespace: {self.namespace}",
}
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
table_name=table_name
)
await self.db.execute(drop_sql, {"workspace": self.db.workspace})
return {"status": "success", "message": "data dropped"}
except Exception as e:
return {"status": "error", "message": str(e)}
@final
@dataclass
class PGVectorStorage(BaseVectorStorage):
db: PostgreSQLDB | None = field(default=None)
def __post_init__(self):
self._max_batch_size = self.global_config["embedding_batch_num"]
self.base_namespace = self.global_config["vector_db_storage_cls_kwargs"].get("workspace")
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = config.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
async def initialize(self):
if self.db is None:
#self.db = await ClientManager.get_client()
self.db = await ClientManager.get_client(self.global_config)
# Implement workspace priority: PostgreSQLDB.workspace > self.workspace > "default"
if self.db.workspace:
# Use PostgreSQLDB's workspace (highest priority)
final_workspace = self.db.workspace
elif hasattr(self, "workspace") and self.workspace:
# Use storage class's workspace (medium priority)
final_workspace = self.workspace
self.db.workspace = final_workspace
else:
# Use "default" for compatibility (lowest priority)
final_workspace = "default"
self.db.workspace = final_workspace
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
def _upsert_chunks(
self, item: dict[str, Any], current_time: datetime.datetime
) -> tuple[str, dict[str, Any]]:
try:
upsert_sql = SQL_TEMPLATES["upsert_chunk"]
data: dict[str, Any] = {
"workspace": self.db.workspace,
"id": item["__id__"],
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
"file_path": item["file_path"],
"create_time": current_time,
"update_time": current_time,
}
except Exception as e:
logger.error(f"Error to prepare upsert,\nsql: {e}\nitem: {item}")
raise
return upsert_sql, data
def _upsert_entities(
self, item: dict[str, Any], current_time: datetime.datetime
) -> tuple[str, dict[str, Any]]:
upsert_sql = SQL_TEMPLATES["upsert_entity"]
source_id = item["source_id"]
if isinstance(source_id, str) and "<SEP>" in source_id:
chunk_ids = source_id.split("<SEP>")
else:
chunk_ids = [source_id]
data: dict[str, Any] = {
"workspace": self.db.workspace,
"id": item["__id__"],
"entity_name": item["entity_name"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
"chunk_ids": chunk_ids,
"file_path": item.get("file_path", None),
"create_time": current_time,
"update_time": current_time,
}
return upsert_sql, data
def _upsert_relationships(
self, item: dict[str, Any], current_time: datetime.datetime
) -> tuple[str, dict[str, Any]]:
upsert_sql = SQL_TEMPLATES["upsert_relationship"]
source_id = item["source_id"]
if isinstance(source_id, str) and "<SEP>" in source_id:
chunk_ids = source_id.split("<SEP>")
else:
chunk_ids = [source_id]
data: dict[str, Any] = {
"workspace": self.db.workspace,
"id": item["__id__"],
"source_id": item["src_id"],
"target_id": item["tgt_id"],
"content": item["content"],
"content_vector": json.dumps(item["__vector__"].tolist()),
"chunk_ids": chunk_ids,
"file_path": item.get("file_path", None),
"create_time": current_time,
"update_time": current_time,
}
return upsert_sql, data
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.debug(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
# Get current UTC time and convert to naive datetime for database storage
current_time = datetime.datetime.now(timezone.utc).replace(tzinfo=None)
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
for item in list_data:
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
upsert_sql, data = self._upsert_chunks(item, current_time)
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
upsert_sql, data = self._upsert_entities(item, current_time)
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
upsert_sql, data = self._upsert_relationships(item, current_time)
else:
raise ValueError(f"{self.namespace} is not supported")
await self.db.execute(upsert_sql, data)
#################### query method ###############
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
) -> list[dict[str, Any]]:
embeddings = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embeddings[0]
embedding_string = ",".join(map(str, embedding))
# Use parameterized document IDs (None means search across all documents)
sql = SQL_TEMPLATES[self.namespace].format(embedding_string=embedding_string)
params = {
"workspace": self.db.workspace,
"doc_ids": ids,
"better_than_threshold": self.cosine_better_than_threshold,
"top_k": top_k,
}
results = await self.db.query(sql, params=params, multirows=True)
return results
async def index_done_callback(self) -> None:
# PG handles persistence automatically
pass
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs from the storage.
Args:
ids: List of vector IDs to be deleted
"""
if not ids:
return
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for vector deletion: {self.namespace}")
return
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id = ANY($2)"
try:
await self.db.execute(
delete_sql, {"workspace": self.db.workspace, "ids": ids}
)
logger.debug(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by its name from the vector storage.
Args:
entity_name: The name of the entity to delete
"""
try:
# Construct SQL to delete the entity
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
WHERE workspace=$1 AND entity_name=$2"""
await self.db.execute(
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
)
logger.debug(f"Successfully deleted entity {entity_name}")
except Exception as e:
logger.error(f"Error deleting entity {entity_name}: {e}")
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity.
Args:
entity_name: The name of the entity whose relations should be deleted
"""
try:
# Delete relations where the entity is either the source or target
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
WHERE workspace=$1 AND (source_id=$2 OR target_id=$2)"""
await self.db.execute(
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
)
logger.debug(f"Successfully deleted relations for entity {entity_name}")
except Exception as e:
logger.error(f"Error deleting relations for entity {entity_name}: {e}")
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for ID lookup: {self.namespace}")
return None
query = f"SELECT *, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM {table_name} WHERE workspace=$1 AND id=$2"
params = {"workspace": self.db.workspace, "id": id}
try:
result = await self.db.query(query, params)
if result:
return dict(result)
return None
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for IDs lookup: {self.namespace}")
return []
ids_str = ",".join([f"'{id}'" for id in ids])
query = f"SELECT *, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM {table_name} WHERE workspace=$1 AND id IN ({ids_str})"
params = {"workspace": self.db.workspace}
try:
results = await self.db.query(query, params, multirows=True)
return [dict(record) for record in results]
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
async def drop(self) -> dict[str, str]:
"""Drop the storage"""
try:
table_name = namespace_to_table_name(self.namespace)
if not table_name:
return {
"status": "error",
"message": f"Unknown namespace: {self.namespace}",
}
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
table_name=table_name
)
await self.db.execute(drop_sql, {"workspace": self.db.workspace})
return {"status": "success", "message": "data dropped"}
except Exception as e:
return {"status": "error", "message": str(e)}
@final
@dataclass
class PGDocStatusStorage(DocStatusStorage):
db: PostgreSQLDB = field(default=None)
def _format_datetime_with_timezone(self, dt):
"""Convert datetime to ISO format string with timezone info"""
if dt is None:
return None
# If no timezone info, assume it's UTC time (as stored in database)
if dt.tzinfo is None:
dt = dt.replace(tzinfo=timezone.utc)
# If datetime already has timezone info, keep it as is
return dt.isoformat()
async def initialize(self):
if self.db is None:
#self.db = await ClientManager.get_client()
self.db = await ClientManager.get_client(self.global_config)
# Implement workspace priority: PostgreSQLDB.workspace > self.workspace > "default"
if self.db.workspace:
# Use PostgreSQLDB's workspace (highest priority)
final_workspace = self.db.workspace
elif hasattr(self, "workspace") and self.workspace:
# Use storage class's workspace (medium priority)
final_workspace = self.workspace
self.db.workspace = final_workspace
else:
# Use "default" for compatibility (lowest priority)
final_workspace = global_config["vector_db_storage_cls_kwargs"].get("workspace")
self.db.workspace = final_workspace
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def filter_keys(self, keys: set[str]) -> set[str]:
"""Filter out duplicated content"""
sql = SQL_TEMPLATES["filter_keys"].format(
table_name=namespace_to_table_name(self.namespace),
ids=",".join([f"'{id}'" for id in keys]),
)
params = {"workspace": self.db.workspace}
try:
res = await self.db.query(sql, params, multirows=True)
if res:
exist_keys = [key["id"] for key in res]
else:
exist_keys = []
new_keys = set([s for s in keys if s not in exist_keys])
# print(f"keys: {keys}")
# print(f"new_keys: {new_keys}")
return new_keys
except Exception as e:
logger.error(
f"PostgreSQL database,\nsql:{sql},\nparams:{params},\nerror:{e}"
)
raise
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and id=$2"
params = {"workspace": self.db.workspace, "id": id}
result = await self.db.query(sql, params, True)
if result is None or result == []:
return None
else:
# Parse chunks_list JSON string back to list
chunks_list = result[0].get("chunks_list", [])
if isinstance(chunks_list, str):
try:
chunks_list = json.loads(chunks_list)
except json.JSONDecodeError:
chunks_list = []
# Convert datetime objects to ISO format strings with timezone info
created_at = self._format_datetime_with_timezone(result[0]["created_at"])
updated_at = self._format_datetime_with_timezone(result[0]["updated_at"])
return dict(
content=result[0]["content"],
content_length=result[0]["content_length"],
content_summary=result[0]["content_summary"],
status=result[0]["status"],
chunks_count=result[0]["chunks_count"],
created_at=created_at,
updated_at=updated_at,
file_path=result[0]["file_path"],
chunks_list=chunks_list,
)
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get doc_chunks data by multiple IDs."""
if not ids:
return []
sql = "SELECT * FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id = ANY($2)"
params = {"workspace": self.db.workspace, "ids": ids}
results = await self.db.query(sql, params, True)
if not results:
return []
processed_results = []
for row in results:
# Parse chunks_list JSON string back to list
chunks_list = row.get("chunks_list", [])
if isinstance(chunks_list, str):
try:
chunks_list = json.loads(chunks_list)
except json.JSONDecodeError:
chunks_list = []
# Convert datetime objects to ISO format strings with timezone info
created_at = self._format_datetime_with_timezone(row["created_at"])
updated_at = self._format_datetime_with_timezone(row["updated_at"])
processed_results.append(
{
"content": row["content"],
"content_length": row["content_length"],
"content_summary": row["content_summary"],
"status": row["status"],
"chunks_count": row["chunks_count"],
"created_at": created_at,
"updated_at": updated_at,
"file_path": row["file_path"],
"chunks_list": chunks_list,
}
)
return processed_results
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
sql = """SELECT status as "status", COUNT(1) as "count"
FROM LIGHTRAG_DOC_STATUS
where workspace=$1 GROUP BY STATUS
"""
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
counts = {}
for doc in result:
counts[doc["status"]] = doc["count"]
return counts
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""all documents with a specific status"""
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
params = {"workspace": self.db.workspace, "status": status.value}
result = await self.db.query(sql, params, True)
docs_by_status = {}
for element in result:
# Parse chunks_list JSON string back to list
chunks_list = element.get("chunks_list", [])
if isinstance(chunks_list, str):
try:
chunks_list = json.loads(chunks_list)
except json.JSONDecodeError:
chunks_list = []
# Convert datetime objects to ISO format strings with timezone info
created_at = self._format_datetime_with_timezone(element["created_at"])
updated_at = self._format_datetime_with_timezone(element["updated_at"])
docs_by_status[element["id"]] = DocProcessingStatus(
content=element["content"],
content_summary=element["content_summary"],
content_length=element["content_length"],
status=element["status"],
created_at=created_at,
updated_at=updated_at,
chunks_count=element["chunks_count"],
file_path=element["file_path"],
chunks_list=chunks_list,
)
return docs_by_status
async def index_done_callback(self) -> None:
# PG handles persistence automatically
pass
async def delete(self, ids: list[str]) -> None:
"""Delete specific records from storage by their IDs
Args:
ids (list[str]): List of document IDs to be deleted from storage
Returns:
None
"""
if not ids:
return
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for deletion: {self.namespace}")
return
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id = ANY($2)"
try:
await self.db.execute(
delete_sql, {"workspace": self.db.workspace, "ids": ids}
)
logger.debug(
f"Successfully deleted {len(ids)} records from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting records from {self.namespace}: {e}")
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""Update or insert document status
Args:
data: dictionary of document IDs and their status data
"""
logger.debug(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
def parse_datetime(dt_str):
"""Parse datetime and ensure it's stored as UTC time in database"""
if dt_str is None:
return None
if isinstance(dt_str, (datetime.date, datetime.datetime)):
# If it's a datetime object
if isinstance(dt_str, datetime.datetime):
# If no timezone info, assume it's UTC
if dt_str.tzinfo is None:
dt_str = dt_str.replace(tzinfo=timezone.utc)
# Convert to UTC and remove timezone info for storage
return dt_str.astimezone(timezone.utc).replace(tzinfo=None)
return dt_str
try:
# Process ISO format string with timezone
dt = datetime.datetime.fromisoformat(dt_str)
# If no timezone info, assume it's UTC
if dt.tzinfo is None:
dt = dt.replace(tzinfo=timezone.utc)
# Convert to UTC and remove timezone info for storage
return dt.astimezone(timezone.utc).replace(tzinfo=None)
except (ValueError, TypeError):
logger.warning(f"Unable to parse datetime string: {dt_str}")
return None
# Modified SQL to include created_at, updated_at, and chunks_list in both INSERT and UPDATE operations
# All fields are updated from the input data in both INSERT and UPDATE cases
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content,content_summary,content_length,chunks_count,status,file_path,chunks_list,created_at,updated_at)
values($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11)
on conflict(id,workspace) do update set
content = EXCLUDED.content,
content_summary = EXCLUDED.content_summary,
content_length = EXCLUDED.content_length,
chunks_count = EXCLUDED.chunks_count,
status = EXCLUDED.status,
file_path = EXCLUDED.file_path,
chunks_list = EXCLUDED.chunks_list,
created_at = EXCLUDED.created_at,
updated_at = EXCLUDED.updated_at"""
for k, v in data.items():
# Remove timezone information, store utc time in db
created_at = parse_datetime(v.get("created_at"))
updated_at = parse_datetime(v.get("updated_at"))
# chunks_count and chunks_list are optional
await self.db.execute(
sql,
{
"workspace": self.db.workspace,
"id": k,
"content": v["content"],
"content_summary": v["content_summary"],
"content_length": v["content_length"],
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
"status": v["status"],
"file_path": v["file_path"],
"chunks_list": json.dumps(v.get("chunks_list", [])),
"created_at": created_at, # Use the converted datetime object
"updated_at": updated_at, # Use the converted datetime object
},
)
async def drop(self) -> dict[str, str]:
"""Drop the storage"""
try:
table_name = namespace_to_table_name(self.namespace)
if not table_name:
return {
"status": "error",
"message": f"Unknown namespace: {self.namespace}",
}
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
table_name=table_name
)
await self.db.execute(drop_sql, {"workspace": self.db.workspace})
return {"status": "success", "message": "data dropped"}
except Exception as e:
return {"status": "error", "message": str(e)}
class PGGraphQueryException(Exception):
"""Exception for the AGE queries."""
def __init__(self, exception: Union[str, dict[str, Any]]) -> None:
if isinstance(exception, dict):
self.message = exception["message"] if "message" in exception else "unknown"
self.details = exception["details"] if "details" in exception else "unknown"
else:
self.message = exception
self.details = "unknown"
def get_message(self) -> str:
return self.message
def get_details(self) -> Any:
return self.details
@final
@dataclass
class PGGraphStorage(BaseGraphStorage):
def __post_init__(self):
# Graph name will be dynamically generated in initialize() based on workspace
self.db: PostgreSQLDB | None = None
def _get_workspace_graph_name(self) -> str:
"""
Generate graph name based on workspace and namespace for data isolation.
Rules:
- If workspace is empty or "default": graph_name = namespace
- If workspace has other value: graph_name = workspace_namespace
Args:
None
Returns:
str: The graph name for the current workspace
"""
workspace = getattr(self, "workspace", None)
namespace = self.namespace
if workspace and workspace.strip() and workspace.strip().lower() != "default":
# Ensure names comply with PostgreSQL identifier specifications
safe_workspace = re.sub(r"[^a-zA-Z0-9_]", "_", workspace.strip())
safe_namespace = re.sub(r"[^a-zA-Z0-9_]", "_", namespace)
return f"{safe_workspace}_{safe_namespace}"
else:
# When workspace is empty or "default", use namespace directly
return re.sub(r"[^a-zA-Z0-9_]", "_", namespace)
@staticmethod
def _normalize_node_id(node_id: str) -> str:
"""
Normalize node ID to ensure special characters are properly handled in Cypher queries.
Args:
node_id: The original node ID
Returns:
Normalized node ID suitable for Cypher queries
"""
# Escape backslashes
normalized_id = node_id
normalized_id = normalized_id.replace("\\", "\\\\")
normalized_id = normalized_id.replace('"', '\\"')
return normalized_id
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
# Implement workspace priority: PostgreSQLDB.workspace > self.workspace > None
if self.db.workspace:
# Use PostgreSQLDB's workspace (highest priority)
final_workspace = self.db.workspace
elif hasattr(self, "workspace") and self.workspace:
# Use storage class's workspace (medium priority)
final_workspace = self.workspace
self.db.workspace = final_workspace
else:
# Use None for compatibility (lowest priority)
final_workspace = None
self.db.workspace = final_workspace
# Dynamically generate graph name based on workspace
self.workspace = self.db.workspace
self.graph_name = self._get_workspace_graph_name()
# Log the graph initialization for debugging
logger.info(
f"PostgreSQL Graph initialized: workspace='{self.workspace}', graph_name='{self.graph_name}'"
)
# Execute each statement separately and ignore errors
queries = [
f"SELECT create_graph('{self.graph_name}')",
f"SELECT create_vlabel('{self.graph_name}', 'base');",
f"SELECT create_elabel('{self.graph_name}', 'DIRECTED');",
# f'CREATE INDEX CONCURRENTLY vertex_p_idx ON {self.graph_name}."_ag_label_vertex" (id)',
f'CREATE INDEX CONCURRENTLY vertex_idx_node_id ON {self.graph_name}."_ag_label_vertex" (ag_catalog.agtype_access_operator(properties, \'"entity_id"\'::agtype))',
# f'CREATE INDEX CONCURRENTLY edge_p_idx ON {self.graph_name}."_ag_label_edge" (id)',
f'CREATE INDEX CONCURRENTLY edge_sid_idx ON {self.graph_name}."_ag_label_edge" (start_id)',
f'CREATE INDEX CONCURRENTLY edge_eid_idx ON {self.graph_name}."_ag_label_edge" (end_id)',
f'CREATE INDEX CONCURRENTLY edge_seid_idx ON {self.graph_name}."_ag_label_edge" (start_id,end_id)',
f'CREATE INDEX CONCURRENTLY directed_p_idx ON {self.graph_name}."DIRECTED" (id)',
f'CREATE INDEX CONCURRENTLY directed_eid_idx ON {self.graph_name}."DIRECTED" (end_id)',
f'CREATE INDEX CONCURRENTLY directed_sid_idx ON {self.graph_name}."DIRECTED" (start_id)',
f'CREATE INDEX CONCURRENTLY directed_seid_idx ON {self.graph_name}."DIRECTED" (start_id,end_id)',
f'CREATE INDEX CONCURRENTLY entity_p_idx ON {self.graph_name}."base" (id)',
f'CREATE INDEX CONCURRENTLY entity_idx_node_id ON {self.graph_name}."base" (ag_catalog.agtype_access_operator(properties, \'"entity_id"\'::agtype))',
f'CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON {self.graph_name}."base" using gin(properties)',
f'ALTER TABLE {self.graph_name}."DIRECTED" CLUSTER ON directed_sid_idx',
]
for query in queries:
# Use the new flag to silently ignore "already exists" errors
# at the source, preventing log spam.
await self.db.execute(
query,
upsert=True,
ignore_if_exists=True, # Pass the new flag
with_age=True,
graph_name=self.graph_name,
)
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def index_done_callback(self) -> None:
# PG handles persistence automatically
pass
@staticmethod
def _record_to_dict(record: asyncpg.Record) -> dict[str, Any]:
"""
Convert a record returned from an age query to a dictionary
Args:
record (): a record from an age query result
Returns:
dict[str, Any]: a dictionary representation of the record where
the dictionary key is the field name and the value is the
value converted to a python type
"""
# result holder
d = {}
# prebuild a mapping of vertex_id to vertex mappings to be used
# later to build edges
vertices = {}
for k in record.keys():
v = record[k]
# agtype comes back '{key: value}::type' which must be parsed
if isinstance(v, str) and "::" in v:
if v.startswith("[") and v.endswith("]"):
if "::vertex" not in v:
continue
v = v.replace("::vertex", "")
vertexes = json.loads(v)
for vertex in vertexes:
vertices[vertex["id"]] = vertex.get("properties")
else:
dtype = v.split("::")[-1]
v = v.split("::")[0]
if dtype == "vertex":
vertex = json.loads(v)
vertices[vertex["id"]] = vertex.get("properties")
# iterate returned fields and parse appropriately
for k in record.keys():
v = record[k]
if isinstance(v, str) and "::" in v:
if v.startswith("[") and v.endswith("]"):
if "::vertex" in v:
v = v.replace("::vertex", "")
d[k] = json.loads(v)
elif "::edge" in v:
v = v.replace("::edge", "")
d[k] = json.loads(v)
else:
print("WARNING: unsupported type")
continue
else:
dtype = v.split("::")[-1]
v = v.split("::")[0]
if dtype == "vertex":
d[k] = json.loads(v)
elif dtype == "edge":
d[k] = json.loads(v)
else:
d[k] = v # Keep as string
return d
@staticmethod
def _format_properties(
properties: dict[str, Any], _id: Union[str, None] = None
) -> str:
"""
Convert a dictionary of properties to a string representation that
can be used in a cypher query insert/merge statement.
Args:
properties (dict[str,str]): a dictionary containing node/edge properties
_id (Union[str, None]): the id of the node or None if none exists
Returns:
str: the properties dictionary as a properly formatted string
"""
props = []
# wrap property key in backticks to escape
for k, v in properties.items():
prop = f"`{k}`: {json.dumps(v)}"
props.append(prop)
if _id is not None and "id" not in properties:
props.append(
f"id: {json.dumps(_id)}" if isinstance(_id, str) else f"id: {_id}"
)
return "{" + ", ".join(props) + "}"
async def _query(
self,
query: str,
readonly: bool = True,
upsert: bool = False,
) -> list[dict[str, Any]]:
"""
Query the graph by taking a cypher query, converting it to an
age compatible query, executing it and converting the result
Args:
query (str): a cypher query to be executed
Returns:
list[dict[str, Any]]: a list of dictionaries containing the result set
"""
try:
if readonly:
data = await self.db.query(
query,
multirows=True,
with_age=True,
graph_name=self.graph_name,
)
else:
data = await self.db.execute(
query,
upsert=upsert,
with_age=True,
graph_name=self.graph_name,
)
except Exception as e:
raise PGGraphQueryException(
{
"message": f"Error executing graph query: {query}",
"wrapped": query,
"detail": str(e),
}
) from e
if data is None:
result = []
# decode records
else:
result = [self._record_to_dict(d) for d in data]
return result
async def has_node(self, node_id: str) -> bool:
entity_name_label = self._normalize_node_id(node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base {entity_id: "%s"})
RETURN count(n) > 0 AS node_exists
$$) AS (node_exists bool)""" % (self.graph_name, entity_name_label)
single_result = (await self._query(query))[0]
return single_result["node_exists"]
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
src_label = self._normalize_node_id(source_node_id)
tgt_label = self._normalize_node_id(target_node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (a:base {entity_id: "%s"})-[r]-(b:base {entity_id: "%s"})
RETURN COUNT(r) > 0 AS edge_exists
$$) AS (edge_exists bool)""" % (
self.graph_name,
src_label,
tgt_label,
)
single_result = (await self._query(query))[0]
return single_result["edge_exists"]
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""Get node by its label identifier, return only node properties"""
label = self._normalize_node_id(node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base {entity_id: "%s"})
RETURN n
$$) AS (n agtype)""" % (self.graph_name, label)
record = await self._query(query)
if record:
node = record[0]
node_dict = node["n"]["properties"]
# Process string result, parse it to JSON dictionary
if isinstance(node_dict, str):
try:
node_dict = json.loads(node_dict)
except json.JSONDecodeError:
logger.warning(f"Failed to parse node string: {node_dict}")
return node_dict
return None
async def node_degree(self, node_id: str) -> int:
label = self._normalize_node_id(node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base {entity_id: "%s"})-[r]-()
RETURN count(r) AS total_edge_count
$$) AS (total_edge_count integer)""" % (self.graph_name, label)
record = (await self._query(query))[0]
if record:
edge_count = int(record["total_edge_count"])
return edge_count
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
trg_degree = 0 if trg_degree is None else trg_degree
degrees = int(src_degree) + int(trg_degree)
return degrees
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
"""Get edge properties between two nodes"""
src_label = self._normalize_node_id(source_node_id)
tgt_label = self._normalize_node_id(target_node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (a:base {entity_id: "%s"})-[r]-(b:base {entity_id: "%s"})
RETURN properties(r) as edge_properties
LIMIT 1
$$) AS (edge_properties agtype)""" % (
self.graph_name,
src_label,
tgt_label,
)
record = await self._query(query)
if record and record[0] and record[0]["edge_properties"]:
result = record[0]["edge_properties"]
# Process string result, parse it to JSON dictionary
if isinstance(result, str):
try:
result = json.loads(result)
except json.JSONDecodeError:
logger.warning(f"Failed to parse edge string: {result}")
return result
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""
Retrieves all edges (relationships) for a particular node identified by its label.
:return: list of dictionaries containing edge information
"""
label = self._normalize_node_id(source_node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base {entity_id: "%s"})
OPTIONAL MATCH (n)-[]-(connected:base)
RETURN n.entity_id AS source_id, connected.entity_id AS connected_id
$$) AS (source_id text, connected_id text)""" % (
self.graph_name,
label,
)
results = await self._query(query)
edges = []
for record in results:
source_id = record["source_id"]
connected_id = record["connected_id"]
if source_id and connected_id:
edges.append((source_id, connected_id))
return edges
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((PGGraphQueryException,)),
)
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Upsert a node in the Neo4j database.
Args:
node_id: The unique identifier for the node (used as label)
node_data: Dictionary of node properties
"""
if "entity_id" not in node_data:
raise ValueError(
"PostgreSQL: node properties must contain an 'entity_id' field"
)
label = self._normalize_node_id(node_id)
properties = self._format_properties(node_data)
query = """SELECT * FROM cypher('%s', $$
MERGE (n:base {entity_id: "%s"})
SET n += %s
RETURN n
$$) AS (n agtype)""" % (
self.graph_name,
label,
properties,
)
try:
await self._query(query, readonly=False, upsert=True)
except Exception:
logger.error(f"POSTGRES, upsert_node error on node_id: `{node_id}`")
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((PGGraphQueryException,)),
)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Upsert an edge and its properties between two nodes identified by their labels.
Args:
source_node_id (str): Label of the source node (used as identifier)
target_node_id (str): Label of the target node (used as identifier)
edge_data (dict): dictionary of properties to set on the edge
"""
src_label = self._normalize_node_id(source_node_id)
tgt_label = self._normalize_node_id(target_node_id)
edge_properties = self._format_properties(edge_data)
query = """SELECT * FROM cypher('%s', $$
MATCH (source:base {entity_id: "%s"})
WITH source
MATCH (target:base {entity_id: "%s"})
MERGE (source)-[r:DIRECTED]-(target)
SET r += %s
SET r += %s
RETURN r
$$) AS (r agtype)""" % (
self.graph_name,
src_label,
tgt_label,
edge_properties,
edge_properties, # https://github.com/HKUDS/LightRAG/issues/1438#issuecomment-2826000195
)
try:
await self._query(query, readonly=False, upsert=True)
except Exception:
logger.error(
f"POSTGRES, upsert_edge error on edge: `{source_node_id}`-`{target_node_id}`"
)
raise
async def delete_node(self, node_id: str) -> None:
"""
Delete a node from the graph.
Args:
node_id (str): The ID of the node to delete.
"""
label = self._normalize_node_id(node_id)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base {entity_id: "%s"})
DETACH DELETE n
$$) AS (n agtype)""" % (self.graph_name, label)
try:
await self._query(query, readonly=False)
except Exception as e:
logger.error("Error during node deletion: {%s}", e)
raise
async def remove_nodes(self, node_ids: list[str]) -> None:
"""
Remove multiple nodes from the graph.
Args:
node_ids (list[str]): A list of node IDs to remove.
"""
node_ids = [self._normalize_node_id(node_id) for node_id in node_ids]
node_id_list = ", ".join([f'"{node_id}"' for node_id in node_ids])
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base)
WHERE n.entity_id IN [%s]
DETACH DELETE n
$$) AS (n agtype)""" % (self.graph_name, node_id_list)
try:
await self._query(query, readonly=False)
except Exception as e:
logger.error("Error during node removal: {%s}", e)
raise
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
"""
Remove multiple edges from the graph.
Args:
edges (list[tuple[str, str]]): A list of edges to remove, where each edge is a tuple of (source_node_id, target_node_id).
"""
for source, target in edges:
src_label = self._normalize_node_id(source)
tgt_label = self._normalize_node_id(target)
query = """SELECT * FROM cypher('%s', $$
MATCH (a:base {entity_id: "%s"})-[r]-(b:base {entity_id: "%s"})
DELETE r
$$) AS (r agtype)""" % (self.graph_name, src_label, tgt_label)
try:
await self._query(query, readonly=False)
logger.debug(f"Deleted edge from '{source}' to '{target}'")
except Exception as e:
logger.error(f"Error during edge deletion: {str(e)}")
raise
async def get_nodes_batch(self, node_ids: list[str]) -> dict[str, dict]:
"""
Retrieve multiple nodes in one query using UNWIND.
Args:
node_ids: List of node entity IDs to fetch.
Returns:
A dictionary mapping each node_id to its node data (or None if not found).
"""
if not node_ids:
return {}
# Format node IDs for the query
formatted_ids = ", ".join(
['"' + self._normalize_node_id(node_id) + '"' for node_id in node_ids]
)
query = """SELECT * FROM cypher('%s', $$
UNWIND [%s] AS node_id
MATCH (n:base {entity_id: node_id})
RETURN node_id, n
$$) AS (node_id text, n agtype)""" % (self.graph_name, formatted_ids)
results = await self._query(query)
# Build result dictionary
nodes_dict = {}
for result in results:
if result["node_id"] and result["n"]:
node_dict = result["n"]["properties"]
# Process string result, parse it to JSON dictionary
if isinstance(node_dict, str):
try:
node_dict = json.loads(node_dict)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse node string in batch: {node_dict}"
)
# Remove the 'base' label if present in a 'labels' property
# if "labels" in node_dict:
# node_dict["labels"] = [
# label for label in node_dict["labels"] if label != "base"
# ]
nodes_dict[result["node_id"]] = node_dict
return nodes_dict
async def node_degrees_batch(self, node_ids: list[str]) -> dict[str, int]:
"""
Retrieve the degree for multiple nodes in a single query using UNWIND.
Calculates the total degree by counting distinct relationships.
Uses separate queries for outgoing and incoming edges.
Args:
node_ids: List of node labels (entity_id values) to look up.
Returns:
A dictionary mapping each node_id to its degree (total number of relationships).
If a node is not found, its degree will be set to 0.
"""
if not node_ids:
return {}
# Format node IDs for the query
formatted_ids = ", ".join(
['"' + self._normalize_node_id(node_id) + '"' for node_id in node_ids]
)
outgoing_query = """SELECT * FROM cypher('%s', $$
UNWIND [%s] AS node_id
MATCH (n:base {entity_id: node_id})
OPTIONAL MATCH (n)-[r]->(a)
RETURN node_id, count(a) AS out_degree
$$) AS (node_id text, out_degree bigint)""" % (
self.graph_name,
formatted_ids,
)
incoming_query = """SELECT * FROM cypher('%s', $$
UNWIND [%s] AS node_id
MATCH (n:base {entity_id: node_id})
OPTIONAL MATCH (n)<-[r]-(b)
RETURN node_id, count(b) AS in_degree
$$) AS (node_id text, in_degree bigint)""" % (
self.graph_name,
formatted_ids,
)
outgoing_results = await self._query(outgoing_query)
incoming_results = await self._query(incoming_query)
out_degrees = {}
in_degrees = {}
for result in outgoing_results:
if result["node_id"] is not None:
out_degrees[result["node_id"]] = int(result["out_degree"])
for result in incoming_results:
if result["node_id"] is not None:
in_degrees[result["node_id"]] = int(result["in_degree"])
degrees_dict = {}
for node_id in node_ids:
out_degree = out_degrees.get(node_id, 0)
in_degree = in_degrees.get(node_id, 0)
degrees_dict[node_id] = out_degree + in_degree
return degrees_dict
async def edge_degrees_batch(
self, edges: list[tuple[str, str]]
) -> dict[tuple[str, str], int]:
"""
Calculate the combined degree for each edge (sum of the source and target node degrees)
in batch using the already implemented node_degrees_batch.
Args:
edges: List of (source_node_id, target_node_id) tuples
Returns:
Dictionary mapping edge tuples to their combined degrees
"""
if not edges:
return {}
# Use node_degrees_batch to get all node degrees efficiently
all_nodes = set()
for src, tgt in edges:
all_nodes.add(src)
all_nodes.add(tgt)
node_degrees = await self.node_degrees_batch(list(all_nodes))
# Calculate edge degrees
edge_degrees_dict = {}
for src, tgt in edges:
src_degree = node_degrees.get(src, 0)
tgt_degree = node_degrees.get(tgt, 0)
edge_degrees_dict[(src, tgt)] = src_degree + tgt_degree
return edge_degrees_dict
async def get_edges_batch(
self, pairs: list[dict[str, str]]
) -> dict[tuple[str, str], dict]:
"""
Retrieve edge properties for multiple (src, tgt) pairs in one query.
Get forward and backward edges seperately and merge them before return
Args:
pairs: List of dictionaries, e.g. [{"src": "node1", "tgt": "node2"}, ...]
Returns:
A dictionary mapping (src, tgt) tuples to their edge properties.
"""
if not pairs:
return {}
src_nodes = []
tgt_nodes = []
for pair in pairs:
src_nodes.append(self._normalize_node_id(pair["src"]))
tgt_nodes.append(self._normalize_node_id(pair["tgt"]))
src_array = ", ".join([f'"{src}"' for src in src_nodes])
tgt_array = ", ".join([f'"{tgt}"' for tgt in tgt_nodes])
forward_query = f"""SELECT * FROM cypher('{self.graph_name}', $$
WITH [{src_array}] AS sources, [{tgt_array}] AS targets
UNWIND range(0, size(sources)-1) AS i
MATCH (a:base {{entity_id: sources[i]}})-[r]->(b:base {{entity_id: targets[i]}})
RETURN sources[i] AS source, targets[i] AS target, properties(r) AS edge_properties
$$) AS (source text, target text, edge_properties agtype)"""
backward_query = f"""SELECT * FROM cypher('{self.graph_name}', $$
WITH [{src_array}] AS sources, [{tgt_array}] AS targets
UNWIND range(0, size(sources)-1) AS i
MATCH (a:base {{entity_id: sources[i]}})<-[r]-(b:base {{entity_id: targets[i]}})
RETURN sources[i] AS source, targets[i] AS target, properties(r) AS edge_properties
$$) AS (source text, target text, edge_properties agtype)"""
forward_results = await self._query(forward_query)
backward_results = await self._query(backward_query)
edges_dict = {}
for result in forward_results:
if result["source"] and result["target"] and result["edge_properties"]:
edge_props = result["edge_properties"]
# Process string result, parse it to JSON dictionary
if isinstance(edge_props, str):
try:
edge_props = json.loads(edge_props)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse edge properties string: {edge_props}"
)
continue
edges_dict[(result["source"], result["target"])] = edge_props
for result in backward_results:
if result["source"] and result["target"] and result["edge_properties"]:
edge_props = result["edge_properties"]
# Process string result, parse it to JSON dictionary
if isinstance(edge_props, str):
try:
edge_props = json.loads(edge_props)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse edge properties string: {edge_props}"
)
continue
edges_dict[(result["source"], result["target"])] = edge_props
return edges_dict
async def get_nodes_edges_batch(
self, node_ids: list[str]
) -> dict[str, list[tuple[str, str]]]:
"""
Get all edges (both outgoing and incoming) for multiple nodes in a single batch operation.
Args:
node_ids: List of node IDs to get edges for
Returns:
Dictionary mapping node IDs to lists of (source, target) edge tuples
"""
if not node_ids:
return {}
# Format node IDs for the query
formatted_ids = ", ".join(
['"' + self._normalize_node_id(node_id) + '"' for node_id in node_ids]
)
outgoing_query = """SELECT * FROM cypher('%s', $$
UNWIND [%s] AS node_id
MATCH (n:base {entity_id: node_id})
OPTIONAL MATCH (n:base)-[]->(connected:base)
RETURN node_id, connected.entity_id AS connected_id
$$) AS (node_id text, connected_id text)""" % (
self.graph_name,
formatted_ids,
)
incoming_query = """SELECT * FROM cypher('%s', $$
UNWIND [%s] AS node_id
MATCH (n:base {entity_id: node_id})
OPTIONAL MATCH (n:base)<-[]-(connected:base)
RETURN node_id, connected.entity_id AS connected_id
$$) AS (node_id text, connected_id text)""" % (
self.graph_name,
formatted_ids,
)
outgoing_results = await self._query(outgoing_query)
incoming_results = await self._query(incoming_query)
nodes_edges_dict = {node_id: [] for node_id in node_ids}
for result in outgoing_results:
if result["node_id"] and result["connected_id"]:
nodes_edges_dict[result["node_id"]].append(
(result["node_id"], result["connected_id"])
)
for result in incoming_results:
if result["node_id"] and result["connected_id"]:
nodes_edges_dict[result["node_id"]].append(
(result["connected_id"], result["node_id"])
)
return nodes_edges_dict
async def get_all_labels(self) -> list[str]:
"""
Get all labels (node IDs) in the graph.
Returns:
list[str]: A list of all labels in the graph.
"""
query = (
"""SELECT * FROM cypher('%s', $$
MATCH (n:base)
WHERE n.entity_id IS NOT NULL
RETURN DISTINCT n.entity_id AS label
ORDER BY n.entity_id
$$) AS (label text)"""
% self.graph_name
)
results = await self._query(query)
labels = []
for result in results:
if result and isinstance(result, dict) and "label" in result:
labels.append(result["label"])
return labels
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""
Retrieves nodes from the graph that are associated with a given list of chunk IDs.
This method uses a Cypher query with UNWIND to efficiently find all nodes
where the `source_id` property contains any of the specified chunk IDs.
"""
# The string representation of the list for the cypher query
chunk_ids_str = json.dumps(chunk_ids)
query = f"""
SELECT * FROM cypher('{self.graph_name}', $$
UNWIND {chunk_ids_str} AS chunk_id
MATCH (n:base)
WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, '{GRAPH_FIELD_SEP}')
RETURN n
$$) AS (n agtype);
"""
results = await self._query(query)
# Build result list
nodes = []
for result in results:
if result["n"]:
node_dict = result["n"]["properties"]
# Process string result, parse it to JSON dictionary
if isinstance(node_dict, str):
try:
node_dict = json.loads(node_dict)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse node string in batch: {node_dict}"
)
node_dict["id"] = node_dict["entity_id"]
nodes.append(node_dict)
return nodes
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""
Retrieves edges from the graph that are associated with a given list of chunk IDs.
This method uses a Cypher query with UNWIND to efficiently find all edges
where the `source_id` property contains any of the specified chunk IDs.
"""
chunk_ids_str = json.dumps(chunk_ids)
query = f"""
SELECT * FROM cypher('{self.graph_name}', $$
UNWIND {chunk_ids_str} AS chunk_id
MATCH (a:base)-[r]-(b:base)
WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, '{GRAPH_FIELD_SEP}')
RETURN DISTINCT r, startNode(r) AS source, endNode(r) AS target
$$) AS (edge agtype, source agtype, target agtype);
"""
results = await self._query(query)
edges = []
if results:
for item in results:
edge_agtype = item["edge"]["properties"]
# Process string result, parse it to JSON dictionary
if isinstance(edge_agtype, str):
try:
edge_agtype = json.loads(edge_agtype)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse edge string in batch: {edge_agtype}"
)
source_agtype = item["source"]["properties"]
# Process string result, parse it to JSON dictionary
if isinstance(source_agtype, str):
try:
source_agtype = json.loads(source_agtype)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse node string in batch: {source_agtype}"
)
target_agtype = item["target"]["properties"]
# Process string result, parse it to JSON dictionary
if isinstance(target_agtype, str):
try:
target_agtype = json.loads(target_agtype)
except json.JSONDecodeError:
logger.warning(
f"Failed to parse node string in batch: {target_agtype}"
)
if edge_agtype and source_agtype and target_agtype:
edge_properties = edge_agtype
edge_properties["source"] = source_agtype["entity_id"]
edge_properties["target"] = target_agtype["entity_id"]
edges.append(edge_properties)
return edges
async def _bfs_subgraph(
self, node_label: str, max_depth: int, max_nodes: int
) -> KnowledgeGraph:
"""
Implements a true breadth-first search algorithm for subgraph retrieval.
This method is used as a fallback when the standard Cypher query is too slow
or when we need to guarantee BFS ordering.
Args:
node_label: Label of the starting node
max_depth: Maximum depth of the subgraph
max_nodes: Maximum number of nodes to return
Returns:
KnowledgeGraph object containing nodes and edges
"""
from collections import deque
result = KnowledgeGraph()
visited_nodes = set()
visited_node_ids = set()
visited_edges = set()
visited_edge_pairs = set()
# Get starting node data
label = self._normalize_node_id(node_label)
query = """SELECT * FROM cypher('%s', $$
MATCH (n:base {entity_id: "%s"})
RETURN id(n) as node_id, n
$$) AS (node_id bigint, n agtype)""" % (self.graph_name, label)
node_result = await self._query(query)
if not node_result or not node_result[0].get("n"):
return result
# Create initial KnowledgeGraphNode
start_node_data = node_result[0]["n"]
entity_id = start_node_data["properties"]["entity_id"]
internal_id = str(start_node_data["id"])
start_node = KnowledgeGraphNode(
id=internal_id,
labels=[entity_id],
properties=start_node_data["properties"],
)
# Initialize BFS queue, each element is a tuple of (node, depth)
queue = deque([(start_node, 0)])
visited_nodes.add(entity_id)
visited_node_ids.add(internal_id)
result.nodes.append(start_node)
result.is_truncated = False
# BFS search main loop
while queue:
# Get all nodes at the current depth
current_level_nodes = []
current_depth = None
# Determine current depth
if queue:
current_depth = queue[0][1]
# Extract all nodes at current depth from the queue
while queue and queue[0][1] == current_depth:
node, depth = queue.popleft()
if depth > max_depth:
continue
current_level_nodes.append(node)
if not current_level_nodes:
continue
# Check depth limit
if current_depth > max_depth:
continue
# Prepare node IDs list
node_ids = [node.labels[0] for node in current_level_nodes]
formatted_ids = ", ".join(
[f'"{self._normalize_node_id(node_id)}"' for node_id in node_ids]
)
# Construct batch query for outgoing edges
outgoing_query = f"""SELECT * FROM cypher('{self.graph_name}', $$
UNWIND [{formatted_ids}] AS node_id
MATCH (n:base {{entity_id: node_id}})
OPTIONAL MATCH (n)-[r]->(neighbor:base)
RETURN node_id AS current_id,
id(n) AS current_internal_id,
id(neighbor) AS neighbor_internal_id,
neighbor.entity_id AS neighbor_id,
id(r) AS edge_id,
r,
neighbor,
true AS is_outgoing
$$) AS (current_id text, current_internal_id bigint, neighbor_internal_id bigint,
neighbor_id text, edge_id bigint, r agtype, neighbor agtype, is_outgoing bool)"""
# Construct batch query for incoming edges
incoming_query = f"""SELECT * FROM cypher('{self.graph_name}', $$
UNWIND [{formatted_ids}] AS node_id
MATCH (n:base {{entity_id: node_id}})
OPTIONAL MATCH (n)<-[r]-(neighbor:base)
RETURN node_id AS current_id,
id(n) AS current_internal_id,
id(neighbor) AS neighbor_internal_id,
neighbor.entity_id AS neighbor_id,
id(r) AS edge_id,
r,
neighbor,
false AS is_outgoing
$$) AS (current_id text, current_internal_id bigint, neighbor_internal_id bigint,
neighbor_id text, edge_id bigint, r agtype, neighbor agtype, is_outgoing bool)"""
# Execute queries
outgoing_results = await self._query(outgoing_query)
incoming_results = await self._query(incoming_query)
# Combine results
neighbors = outgoing_results + incoming_results
# Create mapping from node ID to node object
node_map = {node.labels[0]: node for node in current_level_nodes}
# Process all results in a single loop
for record in neighbors:
if not record.get("neighbor") or not record.get("r"):
continue
# Get current node information
current_entity_id = record["current_id"]
current_node = node_map[current_entity_id]
# Get neighbor node information
neighbor_entity_id = record["neighbor_id"]
neighbor_internal_id = str(record["neighbor_internal_id"])
is_outgoing = record["is_outgoing"]
# Determine edge direction
if is_outgoing:
source_id = current_node.id
target_id = neighbor_internal_id
else:
source_id = neighbor_internal_id
target_id = current_node.id
if not neighbor_entity_id:
continue
# Get edge and node information
b_node = record["neighbor"]
rel = record["r"]
edge_id = str(record["edge_id"])
# Create neighbor node object
neighbor_node = KnowledgeGraphNode(
id=neighbor_internal_id,
labels=[neighbor_entity_id],
properties=b_node["properties"],
)
# Sort entity_ids to ensure (A,B) and (B,A) are treated as the same edge
sorted_pair = tuple(sorted([current_entity_id, neighbor_entity_id]))
# Create edge object
edge = KnowledgeGraphEdge(
id=edge_id,
type=rel["label"],
source=source_id,
target=target_id,
properties=rel["properties"],
)
if neighbor_internal_id in visited_node_ids:
# Add backward edge if neighbor node is already visited
if (
edge_id not in visited_edges
and sorted_pair not in visited_edge_pairs
):
result.edges.append(edge)
visited_edges.add(edge_id)
visited_edge_pairs.add(sorted_pair)
else:
if len(visited_node_ids) < max_nodes and current_depth < max_depth:
# Add new node to result and queue
result.nodes.append(neighbor_node)
visited_nodes.add(neighbor_entity_id)
visited_node_ids.add(neighbor_internal_id)
# Add node to queue with incremented depth
queue.append((neighbor_node, current_depth + 1))
# Add forward edge
if (
edge_id not in visited_edges
and sorted_pair not in visited_edge_pairs
):
result.edges.append(edge)
visited_edges.add(edge_id)
visited_edge_pairs.add(sorted_pair)
else:
if current_depth < max_depth:
result.is_truncated = True
return result
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = None,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Args:
node_label: Label of the starting node, * means all nodes
max_depth: Maximum depth of the subgraph, Defaults to 3
max_nodes: Maximum nodes to return, Defaults to global_config max_graph_nodes
Returns:
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
indicating whether the graph was truncated due to max_nodes limit
"""
# Use global_config max_graph_nodes as default if max_nodes is None
if max_nodes is None:
max_nodes = self.global_config.get("max_graph_nodes", 1000)
else:
# Limit max_nodes to not exceed global_config max_graph_nodes
max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
kg = KnowledgeGraph()
# Handle wildcard query - get all nodes
if node_label == "*":
# First check total node count to determine if graph should be truncated
count_query = f"""SELECT * FROM cypher('{self.graph_name}', $$
MATCH (n:base)
RETURN count(distinct n) AS total_nodes
$$) AS (total_nodes bigint)"""
count_result = await self._query(count_query)
total_nodes = count_result[0]["total_nodes"] if count_result else 0
is_truncated = total_nodes > max_nodes
# Get max_nodes with highest degrees
query_nodes = f"""SELECT * FROM cypher('{self.graph_name}', $$
MATCH (n:base)
OPTIONAL MATCH (n)-[r]->()
RETURN id(n) as node_id, count(r) as degree
$$) AS (node_id BIGINT, degree BIGINT)
ORDER BY degree DESC
LIMIT {max_nodes}"""
node_results = await self._query(query_nodes)
node_ids = [str(result["node_id"]) for result in node_results]
logger.info(f"Total nodes: {total_nodes}, Selected nodes: {len(node_ids)}")
if node_ids:
formatted_ids = ", ".join(node_ids)
# Construct batch query for subgraph within max_nodes
query = f"""SELECT * FROM cypher('{self.graph_name}', $$
WITH [{formatted_ids}] AS node_ids
MATCH (a)
WHERE id(a) IN node_ids
OPTIONAL MATCH (a)-[r]->(b)
WHERE id(b) IN node_ids
RETURN a, r, b
$$) AS (a AGTYPE, r AGTYPE, b AGTYPE)"""
results = await self._query(query)
# Process query results, deduplicate nodes and edges
nodes_dict = {}
edges_dict = {}
for result in results:
# Process node a
if result.get("a") and isinstance(result["a"], dict):
node_a = result["a"]
node_id = str(node_a["id"])
if node_id not in nodes_dict and "properties" in node_a:
nodes_dict[node_id] = KnowledgeGraphNode(
id=node_id,
labels=[node_a["properties"]["entity_id"]],
properties=node_a["properties"],
)
# Process node b
if result.get("b") and isinstance(result["b"], dict):
node_b = result["b"]
node_id = str(node_b["id"])
if node_id not in nodes_dict and "properties" in node_b:
nodes_dict[node_id] = KnowledgeGraphNode(
id=node_id,
labels=[node_b["properties"]["entity_id"]],
properties=node_b["properties"],
)
# Process edge r
if result.get("r") and isinstance(result["r"], dict):
edge = result["r"]
edge_id = str(edge["id"])
if edge_id not in edges_dict:
edges_dict[edge_id] = KnowledgeGraphEdge(
id=edge_id,
type=edge["label"],
source=str(edge["start_id"]),
target=str(edge["end_id"]),
properties=edge["properties"],
)
kg = KnowledgeGraph(
nodes=list(nodes_dict.values()),
edges=list(edges_dict.values()),
is_truncated=is_truncated,
)
else:
# For single node query, use BFS algorithm
kg = await self._bfs_subgraph(node_label, max_depth, max_nodes)
logger.info(
f"Subgraph query successful | Node count: {len(kg.nodes)} | Edge count: {len(kg.edges)}"
)
else:
# For non-wildcard queries, use the BFS algorithm
kg = await self._bfs_subgraph(node_label, max_depth, max_nodes)
logger.info(
f"Subgraph query for '{node_label}' successful | Node count: {len(kg.nodes)} | Edge count: {len(kg.edges)}"
)
return kg
async def drop(self) -> dict[str, str]:
"""Drop the storage"""
try:
drop_query = f"""SELECT * FROM cypher('{self.graph_name}', $$
MATCH (n)
DETACH DELETE n
$$) AS (result agtype)"""
await self._query(drop_query, readonly=False)
return {
"status": "success",
"message": f"workspace '{self.workspace}' graph data dropped",
}
except Exception as e:
logger.error(f"Error dropping graph: {e}")
return {"status": "error", "message": str(e)}
NAMESPACE_TABLE_MAP = {
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_VDB_CHUNKS",
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
NameSpace.KV_STORE_LLM_RESPONSE_CACHE: "LIGHTRAG_LLM_CACHE",
}
def namespace_to_table_name(namespace: str) -> str:
for k, v in NAMESPACE_TABLE_MAP.items():
if is_namespace(namespace, k):
return v
TABLES = {
"LIGHTRAG_DOC_FULL": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
id VARCHAR(255),
workspace VARCHAR(255),
doc_name VARCHAR(1024),
content TEXT,
meta JSONB,
create_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT LIGHTRAG_DOC_FULL_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_DOC_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
id VARCHAR(255),
workspace VARCHAR(255),
full_doc_id VARCHAR(256),
chunk_order_index INTEGER,
tokens INTEGER,
content TEXT,
file_path TEXT NULL,
llm_cache_list JSONB NULL DEFAULT '[]'::jsonb,
create_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_CHUNKS (
id VARCHAR(255),
workspace VARCHAR(255),
full_doc_id VARCHAR(256),
chunk_order_index INTEGER,
tokens INTEGER,
content TEXT,
content_vector VECTOR,
file_path TEXT NULL,
create_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT LIGHTRAG_VDB_CHUNKS_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_ENTITY": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_ENTITY (
id VARCHAR(255),
workspace VARCHAR(255),
entity_name VARCHAR(512),
content TEXT,
content_vector VECTOR,
create_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
chunk_ids VARCHAR(255)[] NULL,
file_path TEXT NULL,
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_RELATION": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_RELATION (
id VARCHAR(255),
workspace VARCHAR(255),
source_id VARCHAR(512),
target_id VARCHAR(512),
content TEXT,
content_vector VECTOR,
create_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP(0) DEFAULT CURRENT_TIMESTAMP,
chunk_ids VARCHAR(255)[] NULL,
file_path TEXT NULL,
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_LLM_CACHE": {
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
workspace varchar(255) NOT NULL,
id varchar(255) NOT NULL,
mode varchar(32) NOT NULL,
original_prompt TEXT,
return_value TEXT,
chunk_id VARCHAR(255) NULL,
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
update_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT LIGHTRAG_LLM_CACHE_PK PRIMARY KEY (workspace, mode, id)
)"""
},
"LIGHTRAG_DOC_STATUS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_STATUS (
workspace varchar(255) NOT NULL,
id varchar(255) NOT NULL,
content TEXT NULL,
content_summary varchar(255) NULL,
content_length int4 NULL,
chunks_count int4 NULL,
status varchar(64) NULL,
file_path TEXT NULL,
chunks_list JSONB NULL DEFAULT '[]'::jsonb,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT LIGHTRAG_DOC_STATUS_PK PRIMARY KEY (workspace, id)
)"""
},
}
SQL_TEMPLATES = {
# SQL for KVStorage
"get_by_id_full_docs": """SELECT id, COALESCE(content, '') as content
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id=$2
""",
"get_by_id_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
chunk_order_index, full_doc_id, file_path,
COALESCE(llm_cache_list, '[]'::jsonb) as llm_cache_list,
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id=$2
""",
"get_by_id_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id, cache_type,
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND id=$2
""",
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2 AND id=$3
""",
"get_by_ids_full_docs": """SELECT id, COALESCE(content, '') as content
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id IN ({ids})
""",
"get_by_ids_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
chunk_order_index, full_doc_id, file_path,
COALESCE(llm_cache_list, '[]'::jsonb) as llm_cache_list,
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id IN ({ids})
""",
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id, cache_type,
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND id IN ({ids})
""",
"filter_keys": "SELECT id FROM {table_name} WHERE workspace=$1 AND id IN ({ids})",
"upsert_doc_full": """INSERT INTO LIGHTRAG_DOC_FULL (id, content, workspace)
VALUES ($1, $2, $3)
ON CONFLICT (workspace,id) DO UPDATE
SET content = $2, update_time = CURRENT_TIMESTAMP
""",
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,return_value,mode,chunk_id,cache_type)
VALUES ($1, $2, $3, $4, $5, $6, $7)
ON CONFLICT (workspace,mode,id) DO UPDATE
SET original_prompt = EXCLUDED.original_prompt,
return_value=EXCLUDED.return_value,
mode=EXCLUDED.mode,
chunk_id=EXCLUDED.chunk_id,
cache_type=EXCLUDED.cache_type,
update_time = CURRENT_TIMESTAMP
""",
"upsert_text_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
chunk_order_index, full_doc_id, content, file_path, llm_cache_list,
create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
ON CONFLICT (workspace,id) DO UPDATE
SET tokens=EXCLUDED.tokens,
chunk_order_index=EXCLUDED.chunk_order_index,
full_doc_id=EXCLUDED.full_doc_id,
content = EXCLUDED.content,
file_path=EXCLUDED.file_path,
llm_cache_list=EXCLUDED.llm_cache_list,
update_time = EXCLUDED.update_time
""",
# SQL for VectorStorage
"upsert_chunk": """INSERT INTO LIGHTRAG_VDB_CHUNKS (workspace, id, tokens,
chunk_order_index, full_doc_id, content, content_vector, file_path,
create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
ON CONFLICT (workspace,id) DO UPDATE
SET tokens=EXCLUDED.tokens,
chunk_order_index=EXCLUDED.chunk_order_index,
full_doc_id=EXCLUDED.full_doc_id,
content = EXCLUDED.content,
content_vector=EXCLUDED.content_vector,
file_path=EXCLUDED.file_path,
update_time = EXCLUDED.update_time
""",
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
content_vector, chunk_ids, file_path, create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6::varchar[], $7, $8, $9)
ON CONFLICT (workspace,id) DO UPDATE
SET entity_name=EXCLUDED.entity_name,
content=EXCLUDED.content,
content_vector=EXCLUDED.content_vector,
chunk_ids=EXCLUDED.chunk_ids,
file_path=EXCLUDED.file_path,
update_time=EXCLUDED.update_time
""",
"upsert_relationship": """INSERT INTO LIGHTRAG_VDB_RELATION (workspace, id, source_id,
target_id, content, content_vector, chunk_ids, file_path, create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6, $7::varchar[], $8, $9, $10)
ON CONFLICT (workspace,id) DO UPDATE
SET source_id=EXCLUDED.source_id,
target_id=EXCLUDED.target_id,
content=EXCLUDED.content,
content_vector=EXCLUDED.content_vector,
chunk_ids=EXCLUDED.chunk_ids,
file_path=EXCLUDED.file_path,
update_time = EXCLUDED.update_time
""",
"relationships": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
)
SELECT source_id as src_id, target_id as tgt_id, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at
FROM (
SELECT r.id, r.source_id, r.target_id, r.create_time, 1 - (r.content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_RELATION r
JOIN relevant_chunks c ON c.chunk_id = ANY(r.chunk_ids)
WHERE r.workspace=$1
) filtered
WHERE distance>$3
ORDER BY distance DESC
LIMIT $4
""",
"entities": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
)
SELECT entity_name, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
(
SELECT e.id, e.entity_name, e.create_time, 1 - (e.content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_ENTITY e
JOIN relevant_chunks c ON c.chunk_id = ANY(e.chunk_ids)
WHERE e.workspace=$1
) as chunk_distances
WHERE distance>$3
ORDER BY distance DESC
LIMIT $4
""",
"chunks": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
)
SELECT id, content, file_path, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
(
SELECT id, content, file_path, create_time, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_VDB_CHUNKS
WHERE workspace=$1
AND id IN (SELECT chunk_id FROM relevant_chunks)
) as chunk_distances
WHERE distance>$3
ORDER BY distance DESC
LIMIT $4
""",
# DROP tables
"drop_specifiy_table_workspace": """
DELETE FROM {table_name} WHERE workspace=$1
""",
}