|
|
import logging
|
|
|
import logging.config
|
|
|
import os
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
from lightrag import LightRAG
|
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
|
|
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
|
|
|
from openai import OpenAI
|
|
|
|
|
|
from Config.Config import *
|
|
|
|
|
|
|
|
|
async def print_stream(stream):
|
|
|
async for chunk in stream:
|
|
|
if chunk:
|
|
|
print(chunk, end="", flush=True)
|
|
|
|
|
|
|
|
|
def configure_logging():
|
|
|
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
|
|
|
logger_instance = logging.getLogger(logger_name)
|
|
|
logger_instance.handlers = []
|
|
|
logger_instance.filters = []
|
|
|
|
|
|
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
|
|
log_file_path = os.path.abspath(
|
|
|
os.path.join(log_dir, "./Logs/lightrag.log")
|
|
|
)
|
|
|
|
|
|
print(f"\nLightRAG log file: {log_file_path}\n")
|
|
|
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
|
|
|
|
|
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760))
|
|
|
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5))
|
|
|
|
|
|
logging.config.dictConfig(
|
|
|
{
|
|
|
"version": 1,
|
|
|
"disable_existing_loggers": False,
|
|
|
"formatters": {
|
|
|
"default": {
|
|
|
"format": "%(levelname)s: %(message)s",
|
|
|
},
|
|
|
"detailed": {
|
|
|
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
|
},
|
|
|
},
|
|
|
"handlers": {
|
|
|
"console": {
|
|
|
"formatter": "default",
|
|
|
"class": "logging.StreamHandler",
|
|
|
"stream": "ext://sys.stderr",
|
|
|
},
|
|
|
"file": {
|
|
|
"formatter": "detailed",
|
|
|
"class": "logging.handlers.RotatingFileHandler",
|
|
|
"filename": log_file_path,
|
|
|
"maxBytes": log_max_bytes,
|
|
|
"backupCount": log_backup_count,
|
|
|
"encoding": "utf-8",
|
|
|
},
|
|
|
},
|
|
|
"loggers": {
|
|
|
"lightrag": {
|
|
|
"handlers": ["console", "file"],
|
|
|
"level": "INFO",
|
|
|
"propagate": False,
|
|
|
},
|
|
|
},
|
|
|
}
|
|
|
)
|
|
|
logger.setLevel(logging.INFO)
|
|
|
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
|
|
|
|
|
|
|
|
|
async def llm_model_func(
|
|
|
prompt, system_prompt=None, history_messages=None, **kwargs
|
|
|
) -> str:
|
|
|
return await openai_complete_if_cache(
|
|
|
os.getenv("LLM_MODEL", LLM_MODEL_NAME),
|
|
|
prompt,
|
|
|
system_prompt=system_prompt,
|
|
|
history_messages=history_messages,
|
|
|
api_key=LLM_API_KEY,
|
|
|
base_url=LLM_BASE_URL,
|
|
|
**kwargs,
|
|
|
)
|
|
|
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
|
return await openai_embed(
|
|
|
texts,
|
|
|
model=EMBED_MODEL_NAME,
|
|
|
api_key=EMBED_API_KEY,
|
|
|
base_url=EMBED_BASE_URL
|
|
|
)
|
|
|
|
|
|
|
|
|
async def initialize_rag(working_dir):
|
|
|
rag = LightRAG(
|
|
|
working_dir=working_dir,
|
|
|
llm_model_func=llm_model_func,
|
|
|
embedding_func=EmbeddingFunc(
|
|
|
embedding_dim=EMBED_DIM,
|
|
|
max_token_size=EMBED_MAX_TOKEN_SIZE,
|
|
|
func=embedding_func
|
|
|
),
|
|
|
)
|
|
|
|
|
|
await rag.initialize_storages()
|
|
|
await initialize_pipeline_status()
|
|
|
|
|
|
return rag
|
|
|
|
|
|
|
|
|
def create_llm_model_func():
|
|
|
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
|
|
return openai_complete_if_cache(
|
|
|
LLM_MODEL_NAME,
|
|
|
prompt,
|
|
|
system_prompt=system_prompt,
|
|
|
history_messages=history_messages,
|
|
|
api_key=LLM_API_KEY,
|
|
|
base_url=LLM_BASE_URL,
|
|
|
**kwargs,
|
|
|
)
|
|
|
|
|
|
return llm_model_func
|
|
|
|
|
|
|
|
|
def create_embedding_func():
|
|
|
return EmbeddingFunc(
|
|
|
embedding_dim=1024,
|
|
|
max_token_size=8192,
|
|
|
func=lambda texts: openai_embed(
|
|
|
texts,
|
|
|
model=EMBED_MODEL_NAME,
|
|
|
api_key=EMBED_API_KEY,
|
|
|
base_url=EMBED_BASE_URL,
|
|
|
),
|
|
|
)
|
|
|
|
|
|
|
|
|
def create_vision_model_func(llm_model_func):
|
|
|
def vision_model_func(
|
|
|
prompt, system_prompt=None, history_messages=[], image_data=None, **kwargs
|
|
|
):
|
|
|
if image_data:
|
|
|
return openai_complete_if_cache(
|
|
|
VISION_MODEL_NAME,
|
|
|
"",
|
|
|
system_prompt=None,
|
|
|
history_messages=[],
|
|
|
messages=[
|
|
|
{"role": "system", "content": system_prompt}
|
|
|
if system_prompt
|
|
|
else None,
|
|
|
{
|
|
|
"role": "user",
|
|
|
"content": [
|
|
|
{"type": "text", "text": prompt},
|
|
|
{
|
|
|
"type": "image_url",
|
|
|
"image_url": {
|
|
|
"url": f"data:image/jpeg;base64,{image_data}"
|
|
|
},
|
|
|
},
|
|
|
],
|
|
|
}
|
|
|
if image_data
|
|
|
else {"role": "user", "content": prompt},
|
|
|
],
|
|
|
api_key=VISION_API_KEY,
|
|
|
base_url=VISION_BASE_URL,
|
|
|
**kwargs,
|
|
|
)
|
|
|
else:
|
|
|
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
|
|
|
|
|
|
return vision_model_func
|
|
|
|
|
|
|
|
|
def format_exam_content(raw_text, output_path):
|
|
|
client = OpenAI(
|
|
|
api_key=LLM_API_KEY,
|
|
|
base_url=LLM_BASE_URL
|
|
|
)
|
|
|
"""
|
|
|
将OCR识别的原始试卷内容格式化为标准试题格式
|
|
|
|
|
|
参数:
|
|
|
client: OpenAI客户端实例
|
|
|
raw_text: OCR识别的原始文本
|
|
|
output_path: 输出文件路径
|
|
|
|
|
|
返回:
|
|
|
格式化后的试题内容
|
|
|
"""
|
|
|
prompt = """
|
|
|
我将提供一份markdown格式的试卷,请帮我整理出每道题的以下内容:
|
|
|
1. 题目序号
|
|
|
2. 题目内容(自动识别并添加$或$$包裹数学公式)
|
|
|
3. 选项(如果有)
|
|
|
4. 答案
|
|
|
5. 解析
|
|
|
|
|
|
要求:
|
|
|
- 一道题一道题输出,不要使用表格
|
|
|
- 自动检测数学表达式并用$或$$正确包裹
|
|
|
- 确保公式中的特殊字符正确转义
|
|
|
- 除题目内容外,不要输出其它无关信息
|
|
|
|
|
|
内容如下:
|
|
|
"""
|
|
|
prompt += raw_text
|
|
|
|
|
|
completion = client.chat.completions.create(
|
|
|
model="deepseek-v3",
|
|
|
messages=[
|
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
|
{"role": "user", "content": prompt},
|
|
|
],
|
|
|
)
|
|
|
|
|
|
formatted_content = completion.choices[0].message.content
|
|
|
|
|
|
with open(output_path, "w", encoding="utf-8") as f:
|
|
|
f.write(formatted_content)
|