1 line
588 KiB
JSON
1 line
588 KiB
JSON
{"embedding_dim": 1024, "data": [{"__id__": "chunk-df8e6130c5ea6ee7aa2849ba015a65ce", "__created_at__": 1754902050, "content": "目 录第一章 运动的描述 2\n1 质点 参考系和坐标系 2\n2 时间和位移 7\n3 运动快慢的描述------速度 12\n4 实验:用打点计时器测速度 17\n5 速度改变快慢的描述------加速度 22\n第二章 匀变速直线运动的研究 26\n1 实验:探究小车速度随时间变化的规律 26\n2 匀变速直线运动的速度与时间的关系 30\n3 匀变速直线运动的位移与时间的关系 34\n4 自由落体运动 39\n5 伽利略对自由落体运动的研究 42\n第三章 相互作用 45\n1 重力 基本相互作用 45\n2 弹力 48\n3.3摩擦力 51\n3.4力的合成 54\n5 力的分解 58\n6、受力分析 62\n7 共点力作用下物体的平衡 65\n第四章 牛顿运动定律 69\n1 牛顿第一定律 69\n2 实验:探究加速度与力、质量的关系 73\n3 牛顿第二定律 77\n4 力学单位制 81\n5 牛顿第三定律 84\n6 用牛顿定律解决问题(一) 88\n7 用牛顿运动定律解决问题(二) 92\n第一章 运动的描述\n1 质点 参考系和坐标系\n知识与技能\n1.认识建立质点模型的意义和方法,能根据具体情况将物体简化为质点.知道它是一种科学的抽象,知道科学抽象是一种普遍的研究方法.\n2.理解参考系的选取在物理中的作用,会根据实际情况选定参考系.\n3.认识一维直线坐标系,掌握坐标系的简单应用.\n过程与方法\n1.体会物理模型在探索自然规律中的作用,初步掌握科学抽象理想化模型的方法.让学生将生活实际与物理概念相联系,通过具体事例引出质点的这个理想化的模型.通过几个具体的例子让学生自主讨论,在讨论与交流中自主升华为物理中的概念.\n2.通过参考系的学习,知道从不同角度研究问题的方法.让学生从熟悉的常见现象和已有的生活经验出发,体验不同参考系中运动的相对性,揭示参考系在确定物体运动时客观存在的必要性和合理性,促使学生形成勤于观察、勤于思考的习惯,提高学生自主获取知识的能力.\n3.体会用坐标方法描述物体位置的优越性,可用不同的方法设计实验并体会比较,增强学生发现问题并力求解决问题的意识和能力.\n情感态度与价值观\n1.认识运动是宇宙中的普遍现象,运动和静止的相对性.培养学生热爱自然、关心科技发展、勇于探索的精神.\n2.通过质点概念和参考系的学习,体会物理规律与生活的联系.\n3.渗透抓住主要因素,忽略次要因素的哲学思想.\n4.渗透具体问题具体分析的辩证唯物主义思想,帮助学生建立辩证唯物主义的世界观.\n5.通过本节学习,激发学生学习高中物理课程的兴趣.\n教学重点\n1.理解质点概念以及初步建立质点概念所采用的抽象思维方法.\n2.在研究具体问题时,如何选取参考系.\n3.如何用数学上的坐标轴与实际的物理情景结合起来建立坐标系.\n教学难点\n在什么情况下可以把物体看作质点,即将一个实际的物体抽象为质点的条件.\n教具准备\n录像资料、多媒体课件\n课时安排\n1课时\n教学过程\n[新课导入]\n师:请同学们观看一段录像后思考问题(有关运动的话题).\n(放映录像)选择有关反映物体运动的画面播放给学生看,如:雄鹰、小鸟在空中飞翔,飞机在天空中划过,行星、卫星在宇宙中运行,航天员杨利伟在宇航舱中给地球拍照,汽车在公路飞驰,轮船在海水中搏击海浪。......\n教师总结,讲述机械运动.\n机械运动:简称\"运动\".指物体与物体间或是物体的一部分和另一部分间相对位置随时间发生改变的过程,是最基本、最简单、最普遍的运动形式.机械运动是空间位置随时间变化的体现.这里涉及到空间和时间的问题.\n师:古希腊杰出的哲学家、科学家、圣贤------亚里士多德曾说过\"不了解运动,就不了解自然\",这句话向我们提出了严峻的挑战.我们要充满信心,迎接这一挑战.\n师:我们在刚才的录像片中看到:汽车在公路上飞驰,江水在咆哮着奔向远方,鸟儿在", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-9b70e4bc95b3158586942a660703e906", "__created_at__": 1754902050, "content": "空间和时间的问题.\n师:古希腊杰出的哲学家、科学家、圣贤------亚里士多德曾说过\"不了解运动,就不了解自然\",这句话向我们提出了严峻的挑战.我们要充满信心,迎接这一挑战.\n师:我们在刚才的录像片中看到:汽车在公路上飞驰,江水在咆哮着奔向远方,鸟儿在飞翔,树叶在摇动,高山上流水,瀑布直泻千尺,雪花在空中飞舞......\n(放映录像)(播放\"神舟\"五号升空的录像片)\"2003年10月15日,一个令人骄傲的日子,一个彪炳史册的日子,我国第一艘载人飞船满载着全国人民的希望成功升空.\"\n师:飞船在茫茫太空中遨游,假如你是文学家,你如何描述它的运动呢?\n师:如果你是科学家,你又将如何描述呢?这就是我们今天要研究的课题------认识运动.\n[新课教学]\n一、物体和质点\n针对上面看过的录像,老师提出问题:\n详细描述物体的运动有什么困难?\n我们需要了解物体各部分运动的区别吗?\n学生讨论:\n要准确描述物体的运动,特别是物体各部分的详细运动情况,并不是一件很容易的事.\n因为物体本身都有一定的大小和形状,物体各部分的运动情况一般并不一样.\n师:在刚才看过的录像片中,看到了\"神舟\"五号.据报道,\"神舟\"五号飞船载人舱长7.4\nm,直径2.8 m,用长58 m、重达480\nt的\"长征\"2号火箭发射.升空后,显示在指挥部荧光屏上的仅是一个小小的光点.科学家研究它在空中的位置、离开地面的高度、飞行的速度、运动轨道等问题时,需要考虑它本身的大小和形状吗?\n生:不需要,我们可以用荧光屏上的小光点代替这个\"庞大\"的飞船呀!\n引入质点:用来代替物体的有质量的点.根据所研究问题的性质和需要,抓住问题中的主要因素,忽略次要因素,建立一种理想化的模型,使复杂问题得到简化,这是一种重要的科学研究方法.\n引子:乒乓球小而轻,直径仅4 cm,质量约2.7\ng.运动员研究各种旋转球的打法时,要关注球的受力部位和受力方向对旋转的影响.这种情况下,必须考虑到球的大小和形状,不能把它简化为一个点.\n对质点小结:\n1.质点是一种科学抽象,是一种理想化的模型.\n2.质点是对实际物体的近似,这也是物理学中常用的一种重要的研究方法.\n3.一个物体能否看成质点,取决于它的形状和大小在所研究问题中是否可以忽略不计,而跟自身体积的大小、质量的多少和运动速度的大小无关.\n4.一个物体能否被看作质点,取决于所研究问题的性质.即使是同一个物体,在研究的问题不同时,有的情况下可以看作质点,而有的情况可能不可以看作质点.\n【课堂探究】\n亲自做一做、试一试,书本在下列情景中能否被看成质点.\n1.沿一个方向推动桌面上的书本,如果测量书本移动的距离,是否可以将书本视为质点,为什么?\n2.如果测定书本经过桌面上方某一定点所需要的时间,是否可以将书本视为质点,为什么?\n3.还有什么情况下书本可以被视为质点?什么情况下书本不能被视为质点?\n说明:\n将物体看作质点的条件:\n(1)平动的物体可以看作质点,一般研究物体的转动时不能把物体看作质点.\n(2)物体有转动,但物体的转动不是我们所要研究的主要问题时,物体本身的形状和大小已变成了次要因素.\n(3)物体本身的大小对所研究的问题不能忽略时,不能把物体看作质点,如研究火车过桥的时间时就不能把火车看作质点.\n二、参考系\n引子:请你设想一下,你和一位同伴正坐在火车中去旅行.铁路边的人看到火车中的乘客在飞快地离去,而乘客自己却认为自己是静止的.\n让学生自己分析,教师加以引导.\n生1:车中两个小孩都是静止的,他们都没动.\n生2:这两个小孩是运动的,因为在车窗玻璃上有几个线条表示\"风\",这是画家描述运动时常用的手法.\n师:两个小孩和车都是运动的,这是相对地面来说的,而两个小孩之间是相对静", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-3eb4964c8da72405e923995599cc9089", "__created_at__": 1754902050, "content": "自己却认为自己是静止的.\n让学生自己分析,教师加以引导.\n生1:车中两个小孩都是静止的,他们都没动.\n生2:这两个小孩是运动的,因为在车窗玻璃上有几个线条表示\"风\",这是画家描述运动时常用的手法.\n师:两个小孩和车都是运动的,这是相对地面来说的,而两个小孩之间是相对静止的,他们的相对位置没有改变.\n师:平时我们说树木、房屋是静止的,行驶的汽车是运动的,这是以地面作标准来说的.坐在行驶的火车里的乘客,认为自己是静止的,而在车厢里走动的乘务员在运动,他还认为路旁的树木在向后倒退,这些都是以车厢作标准来说的.在描述一个物体的运动时,选来作为标准的另外的物体------参考系.\n参考系:任何运动都是相对于某个参照物而言的,这个选来作标准的参照物称为参考系.\n展示问题:\n1.电影《闪闪的红星》中有两句歌词:\"小小竹排江中游,巍巍青山两岸走.\"这其中分别描述了两种运动情景,那么它们分别是以什么为参考系的?\n2.\"月亮在莲花般的云朵里穿行.\"\n3.坐在美丽的校园内学习毛泽东的诗句\"坐地日行八万里,巡天遥看一千河\"时,我们感觉是静止不动的.这与诗句里的描述是否矛盾?说明理由.\n4.敦煌曲子词中有这样的诗句:\"满眼风波多闪烁,看山恰似走来迎,仔细看山山不动,是船行.\"其中\"看山恰似走来迎\"和\"是船行\"所选的参考系分别是什么?\n组织学生小结并作好适时适度的引导:\n(1)运动和静止都是相对于参考系的.\n(2)参考系的选取是任意的.\n(3)选择不同的参考系,观察的结果可能不一样,也可能一样.\n(4)选择参考系时,应使物体运动的描述尽可能简单、方便.\n(5)比较两个物体的运动情况,必须选择同一参考系才有意义.\n三、坐标系\n展示问题:\n有时需要准确地描述某个物体所在的位置,如地理上用纬度和经度来确定某个地点.在军事、大地测量等领域常采用全球卫星定位系统(GPS)来确定方位.\n要准确地描述物体的位置及位置变化需要建立坐标系.如果物体在一维空间运动,即沿一条直线运动,只需建立直线坐标系,就能准确表达物体的位置;如果物体在二维空间运动,即在同一平面运动,就需要建立平面直角坐标系来描述物体的位置;当物体在三维空间运动时,则需要建立三维直角坐标系来描述.\n【课堂探究】\n创设一个实例让学生思考,可以结合本地实际选取相应的例子.\n参考示例:\n如图1-1-1所示,一辆汽车从天安门沿长安街驶向西单、南菜园方向,思考汽车的位置随时间怎样变化?\n问题:\n1.如何选择坐标轴和正方向?\n2.如何选择坐标原点?\n3.如何确定坐标轴上的刻度值?\n\n图1-1-1\n师:对质点的直线运动,一般选质点的运动轨迹为坐标轴,质点运动的方向为坐标轴的正方向,选取质点经过坐标轴原点的时刻为时间的起点.\n师:画坐标系时,必须标上原点、正方向和单位长度.\n【课堂训练】\n一质点在*x*轴上运动,各个时刻的位置坐标如下表:\n------- --- --- ----- ----- ----- ---\n*t*/s 0 1 2 3 4 5\n*x*/m 0 5 --4 --1 --7 1\n------- --- --- ----- ----- ----- ---\n(1)请在下面的*x*轴上标出质点在各时刻的位置.\n{width=\"3.022222222222222in\"\n图1-1-2\n(2)哪个时刻离坐标原点最远?有多远?\n参考答案:(1)如图1-1-3标注:\n{width=\"2.5722222222222224in\"\n图1-1-3\n(2)在第4 s末的位置坐标是-7 m,说明这一时刻质点离开坐标原点的距离为7\nm,在*x*轴的负向", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-5e4cb12ac262398ab919569fdb542640", "__created_at__": 1754902050, "content": "-1-3标注:\n{width=\"2.5722222222222224in\"\n图1-1-3\n(2)在第4 s末的位置坐标是-7 m,说明这一时刻质点离开坐标原点的距离为7\nm,在*x*轴的负向上,为最远,而其他几个都不是最远的.\n小结:\n本节学习的参考系和质点的概念是运动学甚至整个力学的最基本、最重要的概念,并且还提供了重要的科学思维方法.了解参考系的概念,对于观察、比较、研究物体的运动有实际的意义.同学们要明白,严格意义上的\"有质量的点\"实际上是不存在的,是一种理想化模型,是对实际物体的近似,是一种科学抽象.\n[布置作业]\n板书设计\n1 质点 参考系和坐标系\n+----------------+----------------+----------------+----------------+\n| 机械运 | | | |\n| 动:简称\"运动 | | | |\n| \",指物体与物 | | | |\n| 体间或是物体的 | | | |\n| 一部分和另一部 | | | |\n| 分间相对位置随 | | | |\n| 时间发生改变的 | | | |\n| 过程,是最基本 | | | |\n| 、最简单、最普 | | | |\n| 遍的运动形式. | | | |\n+----------------+----------------+----------------+----------------+\n| | 物体和质点 | 参考系 | 坐标系 |\n+----------------+----------------+----------------+----------------+\n| 概念 | 用来代替物体 | 描述物体 | 为 |\n| | 的有质量的点. | 的运动时,选择 | 了定量地描述物 |\n| | | 用来作参考的物 | 体的位置及位置 |\n| | | 体称为参考系. | 的变化,而需要 |\n| | | | 在参考系上建立 |\n| | | | 适当的坐标系. |\n+----------------+----------------+----------------+----------------+\n| 说明 | (1 | (1)运 | (1 |\n| | )质点是一种科 | 动和静止都是相 | )描述直线运动 |\n| | 学抽象,是一种 | 对于参考系的. | 的物体的位置变 |\n| | 理想化的模型. | | 化,可以建立一 |\n| | | (2)参考系的 | 维直线坐标系. |\n| | (2)质点是对 | 选取是任意的. | |\n| | 实际物体的近似 | | (2)描述 |\n| | ,这也是物理学 | ( | 平面上运动的物 |\n| | 中常用的一种重 | 3)选择不同的 | 体的位置变化, |\n| | 要的研究方法. | 参考系,观察的 | 可以建立二维平 |\n| | | 结果可能不一样 | 面直角坐标系. |\n| | (3) | ,也可能一样. | |\n| | 一个物体能否看 | | (3)描述立体 |\n| | 成质点,取决于 | (4)选择参考 | 空间内运动的物 |\n| | 它的形状和大小 | 系时,应使物体 | 体的位置变化, |\n| | 在所研究问题中 | 运动的描述尽可 | 可以建立三维立 |\n| | 是否可以忽略不 | 能简单、方便. | 体空间坐标系. |\n| | 计,而跟自身体 | | |\n| | 积的大小、质量 | ( | |\n| | 的多少和运动速 | 5)比较两个物 | |\n| | 度的大小无关. | 体的运动情况, | |\n| | | 必须选择同一参 | |\n| | | 考系才有意义. | |\n+----------------+----------------+----------------+----------------+\n反思:\n自然界中任何一种事物及其运动变化,都是比较复杂的,研究问题,要暂时撇开起作用很小的因素,抓住主要因素.如果在我们研究的问题中,物体的形状、大小,以及物体上各部分运动的差异是次要的或不起作用的,就可以把它看成质点.\n2 时间和位移\n知识与技能\n1.知道时间和时刻的区别和联系.\n2.理解位移的概念,了解路程与位移的区别.\n3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.\n4.能用数轴或一维直线坐标表示时刻和时间、位置和位", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-e3fdd023adb45a25b77e0ed138e7160a", "__created_at__": 1754902050, "content": ",就可以把它看成质点.\n2 时间和位移\n知识与技能\n1.知道时间和时刻的区别和联系.\n2.理解位移的概念,了解路程与位移的区别.\n3.知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量.\n4.能用数轴或一维直线坐标表示时刻和时间、位置和位移.\n5.知道时刻与位置、时间与位移的对应关系.\n过程与方法\n1.围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法.\n2.会用坐标表示时刻与时间、位置和位移及相关方向.\n3.会用矢量表示和计算质点位移,用标量表示路程.\n情感态度与价值观\n1.通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实.\n2.通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量.\n3.养成良好的思考表述习惯和科学的价值观.\n4.从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点.\n教学重点\n1.时间和时刻的概念以及它们之间的区别和联系.\n2.位移的概念以及它与路程的区别.\n教学难点\n1.帮助学生正确认识生活中的时间与时刻.\n2.理解位移的概念,会用有向线段表示位移.\n教具准备\n多媒体课件\n课时安排\n2课时\n教学过程\n[引入新课]\n师:上节课我们学习了描述运动的几个概念,大家想一下是哪几个概念?\n生:质点、参考系、坐标系.\n师:大家想一下,如果仅用这几个概念,能不能全面描述物体的运动情况?\n生:不能.\n师:那么要准确、全面地描述物体的运动,我们还需要用到哪些物理概念?\n引言:宇宙万物都在时间和空间中存在和运动.我们每天按时上课、下课、用餐、休息.从幼儿园、小学、中学,经历一年又一年,我们在时间的长河里成长.对于时间这个名词,我们并不陌生,你能准确说出时间的含义吗?物体的任何机械运动都伴随着物体在空间中位置的改变,你们用什么来量度物体位置的改变呢?这就是我们今天要研究的课题------时间和位移.\n[新课教学]\n一、时刻和时间间隔\n【讨论与交流】\n指导学生仔细阅读\"时刻和时间间隔\"一部分,然后用课件投影展示本校作息时间表.\n师:同时提出问题:\n1.在我校的作息时间表上,你能找出更多的时刻和时间间隔吗?\n2.结合教材,你能列举出哪些关于时间和时刻的说法?\n3.观察教材第14页图1.2-1,如何用数轴表示时间?\n学生在教师的指导下,自主阅读,积极思考,然后每四人一组展开讨论,每组选出代表,发表见解,提出问题.\n生:我们开始上课的\"时间\":8:00就是指的时刻;下课的\"时间\":8:45也是指的时刻.这样每个活动开始和结束的那一瞬间就是指时刻.\n生:我们上一堂课需要45分钟,做眼保健操需要5分钟,这些都是指时间间隔,每一个活动所经历的一段时间都是指时间间隔.\n师:根据以上讨论与交流,能否说出时刻与时间的概念.\n教师帮助总结并回答学生的提问.\n师:时刻是指某一瞬时,时间是时间间隔的简称,指一段持续的时间间隔.两个时刻的间隔表示一段时间.\n让学生再举出一些生活中能反映时间间隔和时刻的实例,并让他们讨论.\n教师利用课件展示某一列车时刻表,帮助学生分析列车运动情况.\n(展示问题)\n根据下列\"列车时刻表\"中的数据,列车从广州到长沙、郑州和北京西站分别需要多长时间?\n+--------+--------+--------+\n| T15 | 站名 | T16 |\n+--------+--------+--------+\n| 18:19 | 北京西 | 14:58 |\n+--------+--------+--------+\n| 00:35 | 郑州 | 08:42 |\n| | | |\n| 00:41 | | 08:36 |\n+--------+--------+--------+\n| 05:49 | 武昌 | 03:28 |\n| | | |\n| 05:57 | | 03:20 |\n+--------+--------+--------+\n| 09:15 | 长沙 | 23:59 |\n| | | |", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-9dc45fbc652bd691347a691a49485a48", "__created_at__": 1754902050, "content": "<22>州 | 08:42 |\n| | | |\n| 00:41 | | 08:36 |\n+--------+--------+--------+\n| 05:49 | 武昌 | 03:28 |\n| | | |\n| 05:57 | | 03:20 |\n+--------+--------+--------+\n| 09:15 | 长沙 | 23:59 |\n| | | |\n| 09:21 | | 23:51 |\n+--------+--------+--------+\n| 16:25 | 广州 | 16:52 |\n+--------+--------+--------+\n参考答案:6小时59分、15小时50分、22小时零6分.\n(教师总结)\n师:平常所说的\"时间\",有时指时刻,有时指时间间隔,如有人问你:\"你们什么时间上课啊?\"这里的时间是指时间间隔吗?\n生:不是,实际上这里的时间就是指的时刻.\n师:我们可以用数轴形象地表示出时刻和时间间隔.\n教师课件投放教材图1.2-1所显示的问题,将其做成Flash动画.\n学生分组讨论,然后说说怎样用时间轴表示时间和时刻.\n生:时刻:在时间坐标轴上用一点来表示时刻.时间:两个时刻的间隔表示一段时间.一段时间在时间坐标轴上用一线段表示.\n师:为了用具体数字说明时间,必须选择某一时刻作为计时起点,计时起点的选择是人为的.单位秒(s).\n师:下图1-2-1给出了时间轴,请你说出第3秒,前3秒,第3秒初第3秒末,第*n*秒的意义.\n{width=\"2.688888888888889in\"\n图1-2-1\n生:如图1-2-2所示.\n{width=\"3.1041666666666665in\"\n图1-2-2\n二、路程和位移\n(情景展示)中国西部的塔克拉玛干沙漠是我国最大的沙漠,在沙漠中,远眺不见边际,抬头不见飞鸟.沙漠中布满了100~200\nm高的沙丘,像大海的巨浪,人们把它称为\"死亡之海\".许多穿越这个沙漠的勇士常常迷路,甚至因此而丧生.归结他们失败的原因都是因为在沙漠中搞不清这样三个问题:我在哪里?我要去哪里?选哪条路线最佳?而这三个问题涉及三个描述物体运动的物理量:位置、位移、路程.\n师:(投影中国地图)让学生思考:从北京到重庆,观察地图,你有哪些不同的选择?这些选择有何相同或不同之处?\n生:从北京到重庆,可以乘汽车,也可以乘火车或飞机,还可以中途改变交通工具.选择的路线不同,运动轨迹不同,但就位置变动而言,都是从北京来到了重庆.\n师:根据上面的学习,你能给出位移及路程的定义吗?\n生:位移:从物体运动的起点指向运动的终点的有向线段.位移是表示物体位置变化的物理量.国际单位为米(m).\n路程:路程是质点实际运动轨迹的长度.\n在坐标系中,我们也可以用数学的方法表示出位移.\n实例:\n质点从*A*点运动到*B*点,我们可以用有方向的线段来表示位移,从初始位置*A*向末位置*B*画有向线段,展示教材图1.2-3.\n【讨论与思考】\n1.(用课件展示中国地图)在地图上查找上海到乌鲁木齐的铁路.请根据地图中的比例尺估算一下,坐火车从上海到乌鲁木齐的位移和经过的路程分别是多少?\n\nheight=\"1.21875in\"}阅读下面的对话:\n甲:请问到市图书馆怎么走?\n乙:从你所在的市中心向南走400 m到一个十字路口,再向东走300 m就到了.\n甲:谢谢!\n乙:不用客气.\n请在图1-2-3上把甲要经过的路程和位移表示出来.\n图1-2-3\n教师总结\n师:只有在单向直线运动中,位移的大小才等于路程,在其他情况中,路程要大于位移的大小.\n三、矢量和标量\n师:像位移这样的物理量,既有大小又有方向,我们以前学过的物理量很多都只有大小,没有方向,请同学们回忆并说给大家听听.\n学生讨论后回答\n生:温度、质量、", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-b68378214ea61c961761b25809b899b3", "__created_at__": 1754902050, "content": "师:只有在单向直线运动中,位移的大小才等于路程,在其他情况中,路程要大于位移的大小.\n三、矢量和标量\n师:像位移这样的物理量,既有大小又有方向,我们以前学过的物理量很多都只有大小,没有方向,请同学们回忆并说给大家听听.\n学生讨论后回答\n生:温度、质量、体积、长度、时间、路程.\n对于讨论中学生可能提出这样的问题,像电流、压强这两个学生学过的物理量,它们是有方向的,但它们仍然是标量.这在以后的学习中会更进一步加深对矢量和标量的认识.\n学生阅读课文后,说说矢量和标量的算法有什么不同.\n生:两个标量相加遵从算术加法的法则.\n【讨论与思考】\n\nheight=\"1.1354166666666667in\"}一位同学从操场中心*A*出发,向北走了40\nm,到达*C*点,然后又向东走了30\nm,到达*B*点.用有向线段表明他第一次、第二次的位移和两次行走的合位移(即代表他的位置变化的最后结果的位移).三个位移的大小各是多少?你能通过这个实例总结出矢量相加的法则吗?\n解析:画图如图1-2-4所示.矢量相加的法则是平行四边形法则.\n图1-2-4\n四、直线运动的位置和位移\n提出问题:我们怎样用数学的方法描述直线运动的位置和位移?\n如果物体做的是直线运动,运动中的某一时刻对应的是物体处在某一位置,如果是一段时间,对应的是这段时间内物体的位移.\n如图1-2-6所示,物体在时刻*t*~1~处于\"位置\"*x*~1~,在时刻*t*~2~运动到\"位置\"*x*~2~,那么,(*x*~2~-*x*~1~)就是物体的\"位移\",记为Δ*x*=*x*~2~-*x*~1~.\n{width=\"2.123611111111111in\"\n图1-2-6\n可见,要描述直线运动的位置和位移,只需建立一维坐标系,用坐标表示位置,用位置坐标的变化量表示物体位移.\n在一维坐标系中,用正、负表示运动物体位移的方向.如图1-2-7所示汽车*A*的位移为负值,*B*的位移则为正值.表明汽车*B*的位移方向为*x*轴正向,汽车*A*的位移方向为*x*轴负向.\n{width=\"2.915277777777778in\"\n图1-2-7\n[小结]\n时间和时刻这两个概念是同学们很容易混淆的,同学们要掌握时间坐标轴.在时间轴上,用点表示时刻,用线段表示一段时间间隔.位移和路程是两个不同的物理量,位移是用来表示质点变动的,它的大小等于运动物体初、末位置间的距离,它的方向是从初位置指向末位置,是矢量;而路程是物体实际运动路径的长度,是标量.只有物体做单向直线运动时,其位移大小才和路程相等,除此以外,物体的位移的大小总是小于路程.找位移的最好办法是从初位置到末位置间画有向线段.有向线段的方向就是位移的方向,有向线段的长度就是位移的大小.时刻对应位置,时间对应位移.在位置坐标轴上,用点来表示位置,用有向线段来表示位移.\n[布置作业]\n教材第16页问题与练习.\n板书设计\n2 时间和位移\n------- --------------------------------------------------------------------------------------------------\n时 间 在时间坐标轴上对应于一段\n时 刻 在时间坐标轴上对应于一点\n位 移 初位置指向末位置的有向线段表示位移,描述物体位置的改变,是矢量,与运动路径无关,只由初末位置决定\n路 程 质点运动轨迹的长度,是标量,取决于物体运动路径\n矢 量 矢量既有大小,又有方向\n标 量 只有大小,没有方向,标量相加遵从算术加法的法则\n位 置 用坐标表示位置\n位 移 用位置坐标的变化量表示物体位移", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-f4a905576bcfa6b891f63ffd88ea49b5", "__created_at__": 1754902050, "content": "无关,只由初末位置决定\n路 程 质点运动轨迹的长度,是标量,取决于物体运动路径\n矢 量 矢量既有大小,又有方向\n标 量 只有大小,没有方向,标量相加遵从算术加法的法则\n位 置 用坐标表示位置\n位 移 用位置坐标的变化量表示物体位移\n------- --------------------------------------------------------------------------------------------------\n反思:\n本节课用到的数学知识和方法:用数轴来表示时间轴和位移轴,在时间轴上,点表示时刻,线段表示时间间隔.要选计时起点(零时刻),计时起点前的时刻为负,计时起点后的时刻为正;在位移轴上,点表示某一时刻的位置,线段表示某段时间内的位移.要选位置参考点(位置零点),直线运动中,可选某一单一方向作为正方向,朝正方向离开参考点的位置都为正,朝负方向离开参考点的位置都为负.位移方向与规定方向相同时为正,相反时为负.标量遵从算术加法的法则,矢量遵从三角形定则(或平行四边形定则,以后会学到,可不让学生知道).\n3 运动快慢的描述------速度\n知识与技能\n1.理解物体运动的速度.知道速度的意义、公式、符号、单位、矢量性.\n2.理解平均速度的意义,会用公式计算物体运动的平均速度,认识各种仪表中的速度.\n3.理解瞬时速度的意义.\n4.能区别质点的平均速度和瞬时速度等概念.\n5.知道速度和速率以及它们的区别.\n过程与方法\n1.通过描述方法的探索,体会如何描述一个有特点的物理量,体会科学的方法,体验用比值定义物理量的方法.\n2.同时通过实际体验感知速度的意义和应用.\n3.让学生在活动中加深对平均速度的理解.通过生活中的实例说明平均速度的局限性.\n4.让学生在相互交流中逐渐领会瞬时速度与平均速度的关系,同时初步领略极限的思想并初步领会数学与物理相结合的方法,进而直接给出瞬时速度的定义.\n5.会通过仪表读数,判断不同速度或变速度.\n情感态度与价值观\n1.通过介绍或学习各种工具的速度,去感知科学的价值和应用.\n2.了解从平均速度求瞬时速度的思想方法,体会数学与物理间的关系.\n3.培养学生认识事物的规律:由简单到复杂.培养学生抽象思维能力.\n4.培养对科学的兴趣,坚定学习思考探索的信念.\n教学重点\n速度、瞬时速度、平均速度三个概念,及三个概念之间的联系.\n教学难点\n对瞬时速度的理解.\n教具准备\n多媒体课件\n课时安排\n2课时\n教学过程\n[新课导入]\n师:为了描述物体的运动,我们已经进行了两节课的学习,学习了描述运动的几个概念,大家还记得是哪几个概念?\n生:质点、参考系、坐标系;时间、时刻、位移和路程.\n师:当物体做直线运动时,我们是用什么方法描述物体位移的?\n生:用坐标系.在坐标系中,与某一时刻*t*~1~对应的点*x*~1~表示*t*~1~时刻物体的位置,与另一时刻*t*~2~对应的点*x*~2~表示*t*~2~时刻物体的位置,则Δ*x*=*x*~2~-*x*~1~,就表示从*t*~1~到*t*~2~这段时间内的位移.\n师:我们已经知道位移是描述物体位置变化的物理量,能不能说,物体的位移越大,物体运动得就越快?\n学生讨论后回答,不能.因为物体的运动快慢与运动的时间有关.\n师:那么,如何来描述物体运动的快慢?\n教师指导学生快速阅读教材中的黑体字标题,提出问题:要描述物体运动的快慢,本节课将会学到哪些概念(物理量)?\n学生通过阅读、思考,对本节涉及的概念有个总体印象,知道这些概念都是为了描述物体运动的快慢而引入的,要研究物体运动的快慢还要学好这些基本概念.\n[新课教学]\n一、坐标与坐标的变化量\n教师指导学生仔细阅读\"坐标与坐标的变化量\"一部分.\n教师帮助总结并回答学生的提问.\n生:汽车在沿*x*轴正方向运动,图示汽车从坐标*x*~1~=10\nm,在经过一段时间之后,到达坐标*x*~2~=30 m处,则Δ*x*=*x*~2~-*x*~1~=30\nm-10 m=20 m,位移Δ*x*>0,表示位移的方向", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-207b657f9d20b47b3e925adc85d490d2", "__created_at__": 1754902050, "content": "变化量\"一部分.\n教师帮助总结并回答学生的提问.\n生:汽车在沿*x*轴正方向运动,图示汽车从坐标*x*~1~=10\nm,在经过一段时间之后,到达坐标*x*~2~=30 m处,则Δ*x*=*x*~2~-*x*~1~=30\nm-10 m=20 m,位移Δ*x*>0,表示位移的方向沿*x*轴正方向.\n师:我们的这种数学表述是与实际的物理情景相一致的,比如,汽车沿笔直的公路向东行驶,我们可以规定向东作为*x*轴的正方向,来讨论汽车的位置和位移.\n二、速度\n展示问题(播放比赛片段):北京时间8月28日凌晨2点40分,雅典奥林匹克体育场,这是一个值得所有中国人铭记的日子,21岁的上海小伙刘翔像闪电一样,挟着狂风与雷鸣般的怒吼冲过终点,以明显的不可撼动的优势获得奥运会男子110米栏冠军,12秒91的成绩平了由英国名将科林·约翰逊1993年8月20日在德国斯图加特创造的世界纪录,改写了奥运会纪录.\n师:那么请问我们怎样比较哪位运动员跑得快呢?有几种方法呢?试举例说明.\n学生讨论、思考并回答.\n生1:同样的位移,比较所用时间的长短,时间短的,运动得快.例如刘翔在110米栏比赛中所用的时间最短,跑得最快,所以他夺得了金牌.\n生2:也可以用相同的时间,比较通过的位移,位移大的,运动得快.假如用相同的时间,刘翔将跑得更远,说明刘翔跑得更快.\n师:请同学们再多想一些比较快慢的例子,哪些是用相同位移比时间,哪些是用相同时间比位移的?\n生1:我们在校运动会上,百米赛跑就是相同位移比时间.\n生2:我亲身经历了,在校运动会前,我们班主任在选拔百米跑运动员的时候,他没有秒表,而是用目测的方法来估计哪位同学跑得最快.他让我们同时起跑,看谁跑得最远.我看这种方法就是相同时间比位移.\n师:由上分析可知,运动的快慢跟运动的时间及通过的位移都有关系.物理学中用速度来描述物体运动的快慢程度.\n【讨论与交流】\n师:以下有四个物体,请同学们来比较一下它们运动的快慢程度.\n-------------------------- --------------- --------------- ---------------\n初始位置(m) 经过时间(s) 末了位置(m)\nA.自行车沿平直道路行驶 0 20 100\nB.公共汽车沿平直道路行驶 0 10 100\nC.火车沿平直轨道行驶 500 30 1 250\nD.飞机在天空直线飞行 500 10 2 500\n-------------------------- --------------- --------------- ---------------\n师:如何比较*A*和*B*、*B*和*D*、*B*和*C*的运动快慢?\n生1:比较*A*和*B*:它们经过的位移相同(都是100 m),*A*用的时间长(20\ns),*B*用的时间短(10\ns).在位移相等的情况下,时间短的运动得快,即汽车比自行车快.\n生2:比较*B*和*D*:它们所用的时间相同(都是10 s),*B*行驶了100\nm,*D*飞行了2 000\nm,*B*行驶的位移比*D*短,在时间相等的情况下,位移大的运动得快,即飞机比汽车快.\n生3:比较*B*和*C*:它们的位移不同,所用的时间也不同,要比较它们的运动快慢,只有计算它们平均每秒钟位移的大小量.单位时间内位移大的运动得快,由上列表可算出以上四个物体每秒钟位移大小分别为5\nm、10 m、25 m、200 m,这说明飞机行驶得最快.\n师:我们为了比较物体的运动快慢,可以用位移跟发生这个位移所用时间的比值,表示物体运动的快慢,这就是速度.\n师:速度公式:*v*={width=\"0.2361111111111111in\"\n生:我们在初中也学过速度,不过那时是路程跟时间的比值.它们一样吗?\n师:那时那样讲是限于当时同学们的接受能力,大家想一下,什么条件下路程等于位移的大小呢?\n生:在单方向的直线运动中.\n师:初中我们学的速度是路程跟时间的比值.", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-1518495f8eb9d605c19578c41022399b", "__created_at__": 1754902050, "content": ".2361111111111111in\"\n生:我们在初中也学过速度,不过那时是路程跟时间的比值.它们一样吗?\n师:那时那样讲是限于当时同学们的接受能力,大家想一下,什么条件下路程等于位移的大小呢?\n生:在单方向的直线运动中.\n师:初中我们学的速度是路程跟时间的比值.在单向直线运动中,它与位移跟时间的比值是相等的.现在我们学习的速度概念更严谨.路程与所用时间的比值是另一个物理量,它与这里的速度是不同的.\n师:位移是矢量,既有大小又有方向.那速度呢?\n学生看书后回答.\n生:也是矢量,速度的方向就是物体运动的方向.\n三、平均速度和瞬时速度\n师:大自然中,物体的运动有快有慢.天空,日出日落;草原,骏马奔驰;树丛,蜗牛爬行.仔细观察物体的运动,我们发现,在许多情况下,物体运动的快慢会发生改变:飞机的起飞,汽车的行驶,运动员的奔跑等.在自然界和人类生活中,物体的运动状态各不相同且不断变化.在长期对运动的思索、探究过程中,为了比较准确地描述运动,人们逐步建立了平均速度的概念,并用平均速度来描述物体运动的快慢.如何定义平均速度呢?\n请大家讨论并总结一下.\n生:平均速度:用位移和发生这段位移的时间来描述物体的运动,平均速度是指运动物体在某段时间内的位移与发生这段位移所用时间的比值.\n师:平均速度是矢量,它的方向由位移的方向决定,它的大小表示这段时间内运动的快慢.\n师:平均速度是在描述变速直线运动的情况下,能粗略描述物体运动快慢的物理量.\n【课堂训练】\n一辆汽车沿平直的公路行驶,第1 s内通过5 m的距离,第2 s内和第3 s内各通过20\nm的距离,第4 s内又通过了15 m的距离.求汽车在最初2 s内的平均速度和这4\ns内的平均速度各是多少?\n答案:汽车在最初2 s内的平均速度为12.5 m/s;这4 s内的平均速度为15 m/s.\n解析:所求问题是不同时间内的平均速度,要紧扣平均速度的定义,用位移除以发生这段位移所需的时间,并且必须注意时间和位移的对应关系.最初2\ns内的时间为2 s,位移为(5+20) m=25 m;前4 s的时间间隔为4\ns,位移为(5+20+20+15) m=60 m.\n根据平均速度的定义公式{width=\"0.125in\"\nheight=\"0.3888888888888889in\"}得:\n最初2\ns内的平均速度是{width=\"0.16666666666666666in\"\nheight=\"0.3888888888888889in\"} m/s=12.5 m/s\n4 s内的平均速度是\n{width=\"0.19375in\"\nheight=\"0.3888888888888889in\"} m/s=15 m/s.\n【讨论与交流】\n问题:在这些求出的速度中,哪一个能更准确地描述在起跑时的速度?\n生:取得的位移越接近最初起跑,越能准确描述他的运动快慢.\n师:美国田径运动员刘易斯,平均速度只能粗略地描述运动的快慢.而当我们把时间间隔或位移间隔取得越短时,越能更准确地描述在这一小段时间内的运动快慢,这就是瞬时速度.\n师:在质点从*t*到*t*+Δ*t*时间内的平均速度{width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}中,Δ*t*取值非常非常小时,这个值就可以认为是质点在时刻*t*的瞬时速度.\n师:瞬时速度:运动物体在某一时刻(或某一位置)的速度.准确地讲,瞬时速度是物体在某时刻前后无穷短时间内的平均速度.是矢量,大小反映了物体此时刻的运动快慢,它的方向就是物体此时刻的运动方向,即物体运动轨迹在该点的切线方向.瞬时速度的大小叫做瞬时速率.\n四、速度和速率\n学生阅读教材第18", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-196ebc60aceb99e11d774e1907f93c46", "__created_at__": 1754902050, "content": "某一位置)的速度.准确地讲,瞬时速度是物体在某时刻前后无穷短时间内的平均速度.是矢量,大小反映了物体此时刻的运动快慢,它的方向就是物体此时刻的运动方向,即物体运动轨迹在该点的切线方向.瞬时速度的大小叫做瞬时速率.\n四、速度和速率\n学生阅读教材第18页相应部分的知识点,让学生总结.\n生:速度既有大小,又有方向,是矢量,速度的大小叫速率.\n教师引导学生看教材第18页图1.3-2.观察汽车的速度计,讨论后说出你从表盘上获取的有用信息.\n生:汽车的速率.指针指在相应数字的瞬间,就表示汽车在那一瞬时的速率是那个值.\n生:还可以从表盘上直接读出公里里程.\n师:日常生活中的\"速度\"有时指速度,也有时指速率,要看实际的物理情景.\n【讨论与交流】\n甲、乙两位同学用不同的时间围绕操场跑了一圈,都回到了出发点,他们的平均速度相同吗?怎样比较他们运动的快慢?\n学生讨论,体验平均速度的缺陷,引入平均速率.\n生1:位移都是零,平均速度等于位移跟发生这段位移所用时间的比值,所以他们的平均速度都是零.\n生2:即使一位同学站在原地不跑,他的平均速度也是零啊,可我们运动会上不是这样比快慢的,如果这样,那多不公平啊?\n师:平均速度*v*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"},甲、乙的位移都为零,所以他们的平均速度也都等于零.在这里平均速度无法显示他们运动快慢的不同,要用到另一物理量:平均速率.平均速率等于物体运动通过的路程跟所用时间的比值.他们两人通过的路程相同且都不为零,但所用时间不同.显然用时短的运动得快,也就是平均速率大.\n生:这不是我们初中学过的速度吗?\n师:对!\n[小结]\n本节主要学习了速度的概念及其物理意义,平均速度和瞬时速度的概念及物理意义.知道了平均速度只能粗糙描述质点运动的快慢,而瞬时速度能更准确地描述质点运动的快慢.速度是矢量,方向就是物体运动的方向.平均速度中,速度方向也与位移方向相同.瞬时速度的方向就是质点在那一时刻的运动方向.速率是标量,是指速度的大小.平均速度与平均速率是不同的,前者跟位移相关,后者跟路程相关.\n[布置作业]\n教材第20页问题与练习.\n板书设计\n3 运动快慢的描述------速度\n---------- -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------\n平均速度 瞬时速度\n定 义 运动物体在某段时间内的位移与发生这段位移所用的时间的比值. 运动物体在某一时刻(或某一位置)的速度.准确地讲,瞬时速度是物体在某时刻前后无穷短时间内的平均速度.\n公 式 {width=\"0.125in\" height=\"0.2222222222222222in\"}={width=\"0.2361111111111111in\" height=\"0.3888888888888889in\"} *v*={width=\"0.2361111111111111in\" height=\"0.3888888888888889in\"}(Δ*t*→0)\n物理意义 表示物体运动的平均快慢程度 描述物体在某一时刻或某一位置的运动快慢\n矢量性 方向与位移Δ*x*方向相同,就是物体的运动方向 与物体此时刻的运动方向相同,即物体运动轨迹在该点的切线方向\n---------- -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------\n反思:\n瞬间无长短,位置无大小,除了用速度计外,还可以用光电门测瞬时速度.\n实验装置如图1-3-4所示,使一辆小车从一端垫高的木板上滑下,木板旁有光电门,其中*A*管发出光线,*B*管接收光线.当固定在车上的遮光板通过光电门时,光线被阻挡,记录仪上可以直接读出光线被阻挡的时间.", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-630bf6eca5881b9c044264376a7e18d9", "__created_at__": 1754902050, "content": "可以用光电门测瞬时速度.\n实验装置如图1-3-4所示,使一辆小车从一端垫高的木板上滑下,木板旁有光电门,其中*A*管发出光线,*B*管接收光线.当固定在车上的遮光板通过光电门时,光线被阻挡,记录仪上可以直接读出光线被阻挡的时间.这段时间就是遮光板通过光电门的时间.根据遮光板的宽度Δ*x*和测出的时间Δ*t*,就可以算出遮光板通过光电门的平均速度*v*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}.由于遮光板的宽度Δ*x*很小,因此可以认为,这个平均速度就是小车通过光电门的瞬时速度.\n4 实验:用打点计时器测速度\n知识与技能\n1.了解打点计时器的计时原理,理解纸带中包含的物体运动的信息(时间、位移).\n2.会安装并使用打点计时器,理解根据纸带测量速度的原理并测量瞬时速度.\n3.明确速度---时间图象的物理意义,描点法画图象的方法,并画出该实验中的速度---时间图象,能从图象中获取有用的信息.\n过程与方法\n1.通过学生自己看打点计时器的说明书,培养学生独立学习的能力.\n2.通过实验得出物体的运动信息,用数学方法表述出来.培养学生获取信息、处理信息的能力,体会处理问题的方法,领悟如何间接测一些不能直接测量的物理量的方法.\n3.通过画速度---时间图象培养学生用图象法处理数据的能力,体验数学工具在物理发展中的作用.\n4.体验实验中理性思维的重要,既要动手,更要动脑.\n5.经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物体运动.\n情感态度与价值观\n1.感受打点计时器的巧妙设计思路,体会物理原理在解决实际问题中的指导作用,增强将物理知识应用于生活实际的意识.\n2.经历实验过程,体验科学实验过程的艰辛与喜悦,并乐于探索自然界的奥妙.\n3.体验用图象的方法描述物理现象的乐趣.培养学生用数学方法处理物理问题的意识.培养学生敢于创新和实事求是的科学态度和科学精神.\n4.培养学生合作与交流的精神,有将自己的见解与他人交流的愿望,养成在合作中既坚持原则又尊重他人的习惯.\n教学重点\n1.学会使用打点计时器.\n2.能根据纸带计算物体运动的瞬时速度.\n3.会用描点法描绘物体的速度---时间图象,并从中获取物理信息.\n教学难点\n处理纸带的方法,用描点法画图象的能力.\n教具准备\n多媒体课件、电磁打点计时器、电火花计时器、学生电源、导线、纸带、刻度尺、坐标纸.\n课时安排\n2课时\n教学过程\n[新课导入]\n当物体沿直线运动时,其位移在不断变化,要研究物体的运动,我们首先要准确记录物体运动的信息.直接测量物体运动的速度在技术上是比较复杂的,我们在测量时可以尝试通过测量物体运动的时间和位移,再经过计算或作图来判断物体的运动情况.在实验中,我们可以使用秒表和尺子,直接测量物体运动的时间和位移,但当物体运动速度太快时,采用这种方法的测量误差较大.打点计时器就是一种记录物体运动位移和时间信息的仪器,我们可以通过测量位移和时间来计算物体运动的速度以及速度的变化快慢.\n【课堂活动】\n师:在以上的活动中,同学们认识到了打点和漏沙可以体现物体运动的快慢.今天我们就来学习用打点计时器测定物体运动速度的方法,并用图象把这些速度形象地表示出来.\n一、电磁打点计时器\n教师布置学生对照仪器看说明书,引导学生注意其重点:观察打点计时器并阅读其使用说明书,明确电磁打点计时器的结构、各部分的名称、工作原理及使用方法.\n\nheight=\"1.34375in\"}电磁打点计时器是一种使用交流电源的计时仪器,如图1-4-1所示.工作电压为4\nV~6 V.当电源的频率是50 Hz时,它每隔0.02\ns打一次点.通电以前,把纸带穿过限位孔,再把套在轴上的复", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-e1ce1cd2e0fcea9681f2701f16f7663c", "__created_at__": 1754902050, "content": "47058992f02021392318/media/image20.jpeg)\nheight=\"1.34375in\"}电磁打点计时器是一种使用交流电源的计时仪器,如图1-4-1所示.工作电压为4\nV~6 V.当电源的频率是50 Hz时,它每隔0.02\ns打一次点.通电以前,把纸带穿过限位孔,再把套在轴上的复写纸片压在纸带的上面.当接通电源时,线圈产生的交变磁场使振动片(由弹簧钢制成)磁化,振动片的一端位于永久磁铁的磁场中.由于振动片的磁极随着电流方向的改变而不断变化,在永久磁铁的磁场作用下,振动片将上下振动,其振动周期与线圈中的电流变化周期一致,即为0.02\ns.位于振片一端的振针就跟着上下振动起来.这时,如果纸带运动,振针就在纸带上打出一系列小点.\n图1-4-1 电磁打点计时器\n【交流与讨论】\n电磁打点计时器使用低压交流电源工作,大家想一想能不能使用直流电源,为什么?\n生:工作原理中是靠电流方向的改变来改变磁铁的磁场方向,从而促使振动片上下振动,并且振动片的振动周期与电源的电流变化周期一致.若使用50\nHz的交流电,打点的时间间隔为0.02 s.这个值正好是电源频率的倒数.\n二、电火花计时器\n教师布置学生对照仪器看说明书,引导学生注意其重点:观察打点计时器并阅读说明书,明确两种打点计时器的结构、各部分的名称、工作原理及使用方法.\n电火花计时器电火花计时器它可以代替电磁打点计时器使用,也可以与简易电火花描迹仪配套使用.\n使用时电源插头直接插在交流220 V插座内,将裁成圆片(直径约38\nmm)的墨粉纸盘的中心孔套在纸盘轴上,将剪切整齐的两条普通有光白纸带(20\nmm×700\nmm)从弹性卡和纸盘轴之间的限位槽中穿过,并且要让墨粉纸盘夹在两条纸带之间.这样当两条纸带运动时,也能带动墨粉纸盘运动,当按下脉冲输出开关时,放电火花不至于始终在墨粉纸盘的同一位置而影响到点迹的清晰度.也可以用上述尺寸的白纸带和墨粉纸带(位于下面)做实验,还可以用两条白纸带夹着一条墨粉纸带做实验;墨粉纸可以使用比较长的时间,一条白纸带也可以重复使用,应注意降低实验成本.\n【交流与讨论】\n从原理上考虑,电火花计时器跟电磁打点计时器相比,哪个更好些,误差可能会更小?\n生:电火花计时器可能会更好些,因为电磁打点计时器中振针和纸带间的摩擦会更大些.\n教师评论并系统总结.\n师:电火花计时器使用中运动阻力极小,这种极小阻力来自于纸带运动的本身,而不是打点产生的,因而系统误差小,计时精度与交流电源频率的稳定程度一致(脉冲周期不大于50\nμs,这一方面也远优于电磁打点计时器),同时它的操作简易,使用安全可靠(脉冲放电电流平均值不大于5\nμA).\n师:打点计时器能记录哪些信息?\n生:时间和位移.\n三、练习使用打点计时器\n学生自主阅读教材中的实验步骤提示.\n指导学生动手练习使用打点计时器,并引导学生思考:纸带上的点与小车的位移和时间是如何对应的,怎样将纸带上的点变成相关的数据?\n【交流与讨论】\n针对问题,学生讨论实践后回答.\n问题1.电磁打点计时器中怎样安放复写纸和纸带的位置?\n生:将复写纸套在复写纸定位销上,推动调节片,可调节复写纸位置.将纸带从复写纸圆片下穿过.\n问题2.振针打的点不清晰或打不出点可能是哪些原因?怎样调整?\n生1:可检查压纸框的位置是否升高,而阻碍了振动片,振针打不到纸带上,可将压纸框向下压恢复其原来位置.\n生2:可能是复写纸该换新的了.\n生3:可能是振动片的振幅太小,可调整振动片的位置.\n生4:可能是振针的位置太高,调整振针的位置,直到打出点为止.\n生5:我选的电压在4 V和6\nV的情况下,打点的清晰度有点差别", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-c8e8dfebd34280e8aba130eee31a4e81", "__created_at__": 1754902050, "content": "带上,可将压纸框向下压恢复其原来位置.\n生2:可能是复写纸该换新的了.\n生3:可能是振动片的振幅太小,可调整振动片的位置.\n生4:可能是振针的位置太高,调整振针的位置,直到打出点为止.\n生5:我选的电压在4 V和6\nV的情况下,打点的清晰度有点差别,电压高的时候稍清晰,所以可调高一点电压.\n问题3.开启电源打点完毕后要及时关闭电源,这样做有什么好处?\n生:因打点计时器是按间歇工作设计的,故长期工作可能会因线圈发热而损坏.\n投影展示:电火花计时器的纸带安装方法(让学生阅读):\n使用电火花计时器在纸带上打点,安装纸带的方法有两种:一种是用一条纸带从墨粉盘下穿过,打点时墨粉盘不随纸带转动,电火花只将墨粉盘上某一位置的墨粉蒸发到纸带上,打出的点迹颜色较淡,打过一条纸带后要将墨粉盘转一角度再打另一条纸带.学生实验时可采用这一方法.另一种是用两条纸带,将墨粉盘夹在中间,拖动纸带时由于两条纸带的摩擦作用,墨粉盘会随纸带转动,电火花将墨粉盘上不同位置的墨粉蒸发到纸带上,所以打出的点迹颜色较重.墨粉盘上面的一条纸带没有点迹,可重复使用.用一条纸带打点时,纸带与打点计时器之间的摩擦阻力较小,用两条纸带打点时摩擦阻力较大.不管用哪种方法,打完纸带后应立即切断电源.\n师:处理纸带时,从能够看清的某个点开始,往后数出若干个点.如果数出*n*个点,这些点划分出来的时间间隔数是多少?\n生:共(*n*-1)个.\n学生亲自手拉纸带练习使用打点计时器,自己设计表格,记录测量数据.\n【思考与讨论】\n师:怎样根据纸带上的点迹计算纸带的平均速度?\n生:测出两个点间的距离,数一下这两个点间共有多少个时间间隔,即有多少个0.02\ns,用这个总距离去除以所需用的时间.\n四、用打点计时器测量瞬时速度\n思想方法:用某段时间内的平均速度粗略代表这段时间内的某点的瞬时速度.所取的时间间隔越接近该点,这种描述方法越准确.\n示例:如图1-4-4,测量出包括*E*点在内的*D*、*F*两点间的位移Δ*x*和时间Δ*t*,算出纸带\n{width=\"0.23958333333333334in\"\n在这两点间的平均速度{width=\"0.125in\"\nheight=\"0.2222222222222222in\"}= ,用这个平均速度代表纸带经过*E*点时的瞬时速度.\n\nheight=\"0.6875in\"}图1-4-4\n{width=\"0.23958333333333334in\"\nheight=\"0.3854166666666667in\"} 可以大致表示*E*点的瞬时速度,*D*、*F*两点离*E*点越近,算出的平均速度越接近*E*点的\n瞬时速度.然而*D*、*F*两点距离过小则测量误差增大,应该根据实际情况选取这两个点.\n学生根据粗略表示某点瞬时速度的方法,选择合适的计数点,测量包含这个点的一段时间内的位移Δ*x*,同时记录对应的时间Δ*t*,填入教材第23页中设计好的表1中.\n根据{width=\"0.125in\"\nheight=\"0.3888888888888889in\"}算出刚填完的表1中各点附近的平均速度,把它当作计时器打下这些点时的瞬时速度,抄入教材第24页表2中.从该表中能粗略看出手拉纸带运动的速度变化情况.\n五、用图象表示速度\n师:刚才我们从表2中的数据可以粗略看出我们自己手拉纸带运动的速度变化情况,图", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-db8d25d76db35e08ecb1cb57782caf05", "__created_at__": 1754902050, "content": "in\"}算出刚填完的表1中各点附近的平均速度,把它当作计时器打下这些点时的瞬时速度,抄入教材第24页表2中.从该表中能粗略看出手拉纸带运动的速度变化情况.\n五、用图象表示速度\n师:刚才我们从表2中的数据可以粗略看出我们自己手拉纸带运动的速度变化情况,图象是表示变化规律的好方法,我们可以用图象来描述物体的速度变化情况,那么怎样用图象来表示物体运动的速度呢?请同学们先看课文并回答.\n生:在方格纸上建立直角坐标系,用纵坐标表示物体运动的速度,用横坐标表示时间,根据表中各时刻的速度,将(*v*,*t*)作为一组坐标在图象中描点,将点连线后得出的图象称为速度---时间图象(*v-t*图象),简称速度图象.\n学生具体操作描点.\n师:我们从根据实测数据所描的点,可以从这些点的走向大致看出纸带速度的变化规律.\n师:为了更清晰,你可以把这些点用折线连起来.\n在老师的提示和帮助下连线.\n师:速度的实际变化应该是比较平滑的,所以,如果用一条平滑的曲线来\"拟合\"这些点,曲线反映的规律应该与实际情况更接近.\n指导学生换用红色笔用平滑的线将刚才描过的点再重新描画一遍.\n师:我们现在来观察图象,可以更形象直观地显示自己手拉纸带的运动情况.\n[小结]\n电磁打点计时器和电火花计时器都是记录运动物体在一定时间间隔内位移的仪器.*v*-*t*图象:表示做直线运动物体的速度随时间变化的规律.某段时间图线与时间轴围成的面积值表示该段时间内物体通过的位移大小.形状一样的图线,在不同图象中所表示的物理规律不同.\n[布置作业]\n教材第26~27页\"问题与练习\".\n板书设计\n4 用打点计时器测速度\n---------------- ------------------------------------------------------------\n电磁打点计时器 靠电磁感应带动振针振动通过复写纸打点\n电火花计时器 靠产生电火花放电蒸发墨粉打点\n计时器的使用 注意使用方法和领悟注意事项\n测量瞬时速度 用包含某点在内的一段时间内的平均速度粗略表示该点的瞬时速度\n速度时间图象 以时间为横轴、速度为纵轴,描点连线作图象.\n---------------- ------------------------------------------------------------\n活动与探究\n反思:\n图象在社会、生活中的应用\n现代社会,图象和文字一样,已经成为人们进行研究、交流的一个重要手段.科学家、工程师、社会学家、经济学家......社会上不同行业的人们正在越来越多地运用图象.\n5 速度改变快慢的描述------加速度\n知识与技能\n1.理解加速度的意义,知道加速度是表示速度变化快慢的物理量.知道它的定义、公式、符号和单位,能用公式*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}进行定量计算.\n2.知道加速度与速度的区别和联系,会根据加速度与速度的方向关系判断物体是加速运动还是减速运动.\n3.理解匀变速直线运动的含义,能从匀变速直线运动的*v*-*t*图象理解加速度的意义.\n过程与方法\n1.经历将生活中的实际上升到物理概念的过程,理解物理与生活的联系,初步了解如何描述运动.通过事例,引出生活中物体运动的速度存在加速和减速的现实,提出为了描述物体运动速度变化的快慢,引入了加速度概念的必要性,激发学生学习的兴趣.\n2.帮助学生学会分析数据,归纳总结得出加速度.\n3.教学中从速度---时间图象的角度看物体的加速度,主要引导学生看倾斜直线的\"陡度\"(即斜率),让学生在实践中学会应用数据求加速度.\n情感态度与价值观\n1.利用实例动画激发学生的求知欲,激励其探索的精神.\n2.领会人类探索自然规律中严谨的科学态度,理解加速度概念的建立对人类认识世界的意义,培养学生区分事物的能力及学生的抽象思维能力.\n3.培养合作交流的思想,能主动与他人合作,勇于发表自己的主张,勇于放弃自己的错误观点.\n教学重点\n1.加速度的概念建立和加速度与匀变速直线运动的关系.\n2.加速度是", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-6e275a6ab46dead0fd3eace7c0db925a", "__created_at__": 1754902050, "content": "中严谨的科学态度,理解加速度概念的建立对人类认识世界的意义,培养学生区分事物的能力及学生的抽象思维能力.\n3.培养合作交流的思想,能主动与他人合作,勇于发表自己的主张,勇于放弃自己的错误观点.\n教学重点\n1.加速度的概念建立和加速度与匀变速直线运动的关系.\n2.加速度是速度的变化率,它描述速度变化的快慢和方向.\n教学难点\n1.理解加速度的概念,树立变化率的思想.\n2.区分速度、速度的变化量及速度的变化率.\n3.利用图象来分析加速度的相关问题.\n教具准备\n多媒体课件,带滑轮的长木板、小车及砝码等.\n课时安排\n2课时\n教学过程\n[新课导入]\n【讨论与交流】\n利用多媒体投影播放赛车、高速列车、自行车、运动员等录像,提出问题,让学生思考讨论.谁的速度\"增加\"得快?如何来表示增加的快慢?\n课件展示:某竞赛用的跑车启动时,3.87 s内速度达到100\nkm/h,某高速列车启动时,265 s内速度达到250 km/h,自行车9 s内速度达到15\nm/s,而100 m跑运动员起跑时,0.2 s内速度达到12 m/s.\n师:试根据上述数据,推算出这些物体启动时,速度的增加量和1\ns内速度的增加量,并填入下列表格:\n------------ ------------------- -------------------------- ----------------------------------------------\n启动物体 速度增加量(m/s) 1 s内速度的增加量(m/s) 速度增加的快慢程度(最快、较快、较慢、最慢)\n竞赛用跑车\n高速列车\n自行车\n运动员\n------------ ------------------- -------------------------- ----------------------------------------------\n生:计算可以得到如下数据:\n+------------+-----------------+-----------------+-----------------+\n| 启动物体 | 速 | 1 | 速度 |\n| | 度增加量(m/s) | s内速度 | 增加的快慢程度 |\n| | | 的增加量(m/s) | |\n| | | | (最快、较快 |\n| | | | 、较慢、最慢) |\n+------------+-----------------+-----------------+-----------------+\n| 竞赛用跑车 | 27.8 | 7.2 | 较快 |\n+------------+-----------------+-----------------+-----------------+\n| 高速列车 | 69.4 | 0.26 | 最慢 |\n+------------+-----------------+-----------------+-----------------+\n| 自行车 | 15 | 1.7 | 较慢 |\n+------------+-----------------+-----------------+-----------------+\n| 运动员 | 12 | 60 | 最快 |\n+------------+-----------------+-----------------+-----------------+\n师:很明显,这几个运动物体速度的增加量不同,速度增加的快慢也不同,且速度增加大的不一定就增加得快.为了描述物体运动中速度变化的快慢,人们引入了加速度的概念------加速度是用来描述速度变化的快慢的物理量.\n[新课教学]\n一、加速度\n师:请回忆一下我们是怎样描述物体运动位置的变化的?例如在直线运动中,物体从*A*点运动到*B*点,如下图1-5-1所示.\n{width=\"2.5833333333333335in\"\n图1-5-1\n建立数轴*AB*,设*A*点在数轴上的读数*x*~1~(一维位置坐标,下同)为2\nm,*B*点在数轴上的读数*x*~2~为7 m,则物体运动位置的变化大小为多少?\n生:Δ*x*=*x*~2~-*x*~1~=7 m-2 m=5 m,方向由*A*指向*B*.\n师:如果物体从*A*到*B*是做匀速运动,如果所用时间为*t*=10\ns,怎样求这段过程中物体的速度?\n生:物体运动的速度*v*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"} m/s=0.5 m/s\n方向从*A*指向*B.*\n师:如果物体做加速直线运动,同样在10 s内,速度从2 m/s增加到7\nm/s,怎样描述物体运动的速度增加的快慢呢?\n生:用物体速度的增加量除以所用的时间来描述这段过程中物体运动速度增加的快慢.\n师:如果用符号*a*表示物体速度增加的快慢,Δ*v*表示物体的速度变化量,", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-b3644451aa1a68699117d25631965653", "__created_at__": 1754902050, "content": "师:如果物体做加速直线运动,同样在10 s内,速度从2 m/s增加到7\nm/s,怎样描述物体运动的速度增加的快慢呢?\n生:用物体速度的增加量除以所用的时间来描述这段过程中物体运动速度增加的快慢.\n师:如果用符号*a*表示物体速度增加的快慢,Δ*v*表示物体的速度变化量,Δ*t*表示物体的速度变化所用的时间,那么用公式如何表达呢?\n生:*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"} m/s^2^=0.5 m/s^2^.\n师:不同物体的运动,速度变化的快慢往往是不同的,再看下面的例子.\n案例1:飞机的速度由0增加到约300\nkm/h,飞机的速度的变化是多少?若发生这一变化用时约30\ns,则物体的速度平均每秒增加多少?\n案例2:迫击炮射击时,炮弹在炮筒中的速度在0.005 s内就可以由0增加到250\nm/s,炮弹速度的变化与发生这个变化所用时间的比值是多少?\n学生讨论后回答.\n生1(回答第一个案例):300 km/h约相当于83 m/s,\n*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"} m/s^2^=2.8 m/s^2^.\n生2(回答第二个案例):*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"} m/s^2^=5×10^4^ m/s^2^.\n师:上述方法就是变速直线运动中,描述物体运动速度变化快慢的基本思路和基本方法.其中\n的*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}是变速直线运动的加速度的基本定义式.\n在国际单位制中,加速度的单位是m/s^2^,读作米每二次方秒.\n师:加速度也是矢量,不仅有大小,也有方向.\n当物体加速时,则Δ*v*=*v*~2~-*v*~1~>0,时间Δ*t*是标量,加速度*a*的计算值为正值,如果以初速度的方向为正方向(即初速度*v*~0~取正值),*a*为正值则可表示*a*的方向与初速度的方向相同,或反过来说,若加速度*a*与初速度同向时,则这个直线运动为加速运动.\n当物体是减速时,则Δ*v*=*v*~2~-*v*~1~<0,时间*t*是标量,加速度*a*的计算值为负值,如果仍以初速度的方向为正方向(即初速度*v*~0~取正值),*a*为负值则可表示*a*的方向与初速度的方向相反,或反过来说,若加速度*a*与初速度反向时,则这个直线运动为减速运动.\n师:阅读课文,说说什么是匀变速运动.\n生:如果物体的加速度保持不变,该物体的运动就是匀变速运动.\n师:如同平均速度与瞬时速度那样,加速度也有平均和瞬时之分.在匀变速运动中,平均加速度与瞬时加速度有什么关系?\n生:在匀变速运动中,其速度随时间均匀变化(增加或减少),每时每刻的加速度,即瞬时加速度与一段时间内的加速度,即平均加速度相同.\n师:匀速直线运动可看成什么运动?\n生:可看成加速度为零的匀变速运动.\n师:加速度和速度的区别:\n(1)速度大,加速度不一定大;加速度大,速度不一定大.\n(2)速度变化量大,加速度不一定大.\n(3)加速度为零,速度可以不为零;速度为零,加速度可以不为零.\n二、从*v*-*t*图象看加速度\n师:速度---时间图象描述了什么问题?怎样建立速度---时间图象?\n生:速度---时间图象是描述速度随时间变化关系的图象,它以时间轴为横轴,以纵轴为速度轴,在坐标系中将不同时刻的速度以坐标的形式描点,然后连线,就画出了速度---时间图象.\n【思考与讨论】\n图1-5-2中两条直线*a*、*b*分别是两个物体", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-2b47ff8aa115854c624a8551a6e3e2c9", "__created_at__": 1754902050, "content": "了什么问题?怎样建立速度---时间图象?\n生:速度---时间图象是描述速度随时间变化关系的图象,它以时间轴为横轴,以纵轴为速度轴,在坐标系中将不同时刻的速度以坐标的形式描点,然后连线,就画出了速度---时间图象.\n【思考与讨论】\n图1-5-2中两条直线*a*、*b*分别是两个物体运动的速度---时间图象,哪个物体运动的加速度比较大?\n{width=\"2.332638888888889in\"\n图1-5-2\n教师引导,学生讨论后回答.\n学生在没有学习斜率概念前,可以用陡度的\"平缓\"或\"陡\"来表述.\n生:*a*直线的倾斜程度更厉害,也就是更陡些,而*b*相对较平缓.所以*a*的速度变化快,即*a*的加速度大,*b*的速度变化慢,加速度小.\n师:我们可以从直线上任意选择间隔较大的两点来找到这两个点间的速度变化量Δ*v*,时间间隔Δ*t*.\n生:这样就可以定量求加速度了,用加速度的定义式*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}就行了.\n[小结]\n本节课重点学习了加速度的概念及其特性,注意加速度是矢量及这里的\"加\"并不是\"增加\"的意思,它反映的是速度变化快慢的程度.\n[布置作业]\n教材第31页\"问题与练习.\"\n板书设计\n5 速度变化的快慢------加速度\n------------ ---------------------- ---------------------------------------------------------------------------------------------------------------------------------------\n速度 表示运动的快慢 *v*\n速度的改变 表示速度的变化 Δ*v*=*v~t~*-*v*~0~\n加速度 表示速度变化的快慢 {width=\"0.2222222222222222in\" height=\"0.3888888888888889in\"}\n定义 速度的变化量跟发生这一改变所用时间的比值\n公式 *a*={width=\"0.2222222222222222in\" height=\"0.3888888888888889in\"}\n单位 m/s^2^\n矢量性 方向与速度变化的方向相同\n匀变速直线运动的特点 加速度恒定\n速度图象 速度随时间变化的关系 从倾斜直线的斜率可以求出加速度\n------------ ---------------------- ---------------------------------------------------------------------------------------------------------------------------------------\n反思:注意引导学生区分速度的变化和变化率。\n第二章 匀变速直线运动的研究\n1 实验:探究小车速度随时间变化的规律\n三维目标\n知识与技能\n1.根据相关实验器材,设计实验并熟练操作.\n2.会运用已学知识处理纸带,求各点瞬时速度.\n3.会用表格法处理数据,并合理猜想.\n4.巧用*v*-*t*图象处理数据,观察规律.\n5.掌握画图象的一般方法,并能用简洁语言进行阐述.\n过程与方法\n1.初步学习根据实验要求设计实验,完成某种规律的探究方法.\n2.对打出的纸带,会用近似的方法得出各点的瞬时速度.\n3.初步学会根据实验数据进行猜测、探究、发现规律的探究方法.\n4.认识数学化繁为简的工具作用,直观地运用物理图象展现规律,验证规律.\n5.通过实验探究过程,进一步熟练打点计时器的应用,体验瞬时速度的求解方法.\n情感态度与价值观\n1.通过对小车运动的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性.\n2.通过对纸带的处理、实验数据的图象展现,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题、解决问题、提高创新意识.\n3.在对实验数据的猜测过程中,提高学生合作探究能力.\n4.在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引申到各事物间的关联性,使自己融入社会.\n5.通过经历实验探索过程,体验运动规律探索的方法.\n教学重点\n1.图象法研究速度随时间变化的规律.\n2.对运动的速度随时间变化规律的探究.\n教学难点\n1.各点瞬时速度的计算.\n2.对实验数据的处理、", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-6aebcb655607f3f35903b4253790298f", "__created_at__": 1754902050, "content": "中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引申到各事物间的关联性,使自己融入社会.\n5.通过经历实验探索过程,体验运动规律探索的方法.\n教学重点\n1.图象法研究速度随时间变化的规律.\n2.对运动的速度随时间变化规律的探究.\n教学难点\n1.各点瞬时速度的计算.\n2.对实验数据的处理、规律的探究.\n教具准备\n学生电源、导线、打点计时器、小车、4个25\ng的钩码、一端带有滑轮的长木板、带小钩的细线、纸带、刻度尺、坐标纸、多媒体课件、计算机\n课时安排\n2课时\n教学过程\n[新课导入]\n(课件展示)下列语言表述中提及的运动情景.\n师:物体的运动通常是比较复杂的.\n要想探究一个物体随时间变化的规律,必须知道物体在一系列不同时刻的速度.直接测量瞬时速度是比较困难的,我们可以借助打点计时器先记录物体在不同时刻的位置,再通过对纸带的分析、计算得到各个时刻的瞬时速度.\n[新课教学]\n一、进行实验\n【讨论与交流】\n进行实验前,让学生先回顾上一章是怎样使用打点计时器的\n然后分组进行实验\n教师课件投影参考实验过程.\n投影展示的内容\n实验过程参考提示:\n1.把一端附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上远离滑轮的一端,连接好电路.\n2.把一条细绳拴在小车上,使细绳跨过滑轮,下边挂上合适的钩码,启动电源,然后放开小车,让小车拖着纸带运动,打完一条后立即关闭电源.\n3.换上新纸带,重复操作三次.\n引导学生熟练地摆好器材,进行合理、准确的操作,得到一条点迹清晰的纸带.学生进行实验,老师巡回指导,引导学生\"三思而后行\",注意实验逻辑性、合理性及其相关注意事项,而且确保准确,并巡视全场,对出现的问题予以及时纠正.帮助实力较弱的小组实现实验.\n学生进行实验操作,注意把实验过程和已学过的\"练习使用打点计时器\"相对比,及时提出问题.\n点评:(1)在动手操作之前,可以让学生先在头脑中实验,提前思考实验顺序和注意事项;保证操作的顺利进行.\n(2)和已学实验进行对比,使学生很好地应用了比较法,且有助于加深记忆.\n(3)对学生出现的问题,可拿出来让全班同学参与解决,比如:\"有的同学先松手,再开打点计时器电源;有的同学则反之.哪种好?为什么?\"这样让学生参与讨论,调动学生思考的积极性和主动性.\n二、处理数据\n师:我们通过打点计时器得到了若干条纸带,采集了第一手资料,面对打出的纸带如何研究小车的运动呢?接下来我们采集数据,处理数据.\n学生讨论怎样选择纸带,如何测量数据,如何设计表格,填写数据.\n【课堂交流】\n生1:要选择一条最清晰的纸带.\n生2:开始的几个点不清晰,该怎么测啊!\n生3:我建议舍去这几个点算了.\n生4:对啊,计时起点是人为选取的,我们可以找一清晰的点开始当作计时的起点.\n教师及时评论学生的讨论,肯定学生的成绩.\n师:我们可以选一个清晰的点作为计时的起点.还可以选择计数点,建议你们在测量前每五个点选一个计数点.\n学生实时测量,教师巡回指导,指出学生中出现的问题.\n师:大家在测量时,我建议你们在选好计时起点后,测量以后的各个计数点与这个计时起点的距离.大家想想,这样做,有什么好处?\n生:我们是每两个计数点间就测量一个数据.这不是一样吗?\n师:我说的就是你这种做法是合适的,大家就此讨论.\n生:他这样做是每次都要挪动刻度尺,测出每两个点间的距离,而我的做法与老师您说的一样,我感觉这样能减少测量误差.\n学生测量数据,记录结果.\n教师引导学生学会计算各点瞬时速度的方法和表格处理方法.\n师:大家想想怎样计算计数点的瞬时速度.\n生:测量包含某个所研究的点在内的一段时间内的位移Δ*x*,同时找出对应的时间Δ*t*,根据\n{width=\"0.125in\"\nheight=\"0.388", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-fb427638a27ad0774dc415a64fdecb1c", "__created_at__": 1754902050, "content": "时速度的方法和表格处理方法.\n师:大家想想怎样计算计数点的瞬时速度.\n生:测量包含某个所研究的点在内的一段时间内的位移Δ*x*,同时找出对应的时间Δ*t*,根据\n{width=\"0.125in\"\nheight=\"0.3888888888888889in\"}算出该点附近的平均速度,把它当作计时器打下这个点时的瞬时速度.\n生:我们这个小组是选了相邻三个计数点间的间隔为研究对象,根据测量结果算出这两个0.1\ns内的距离Δ*x*,把{width=\"0.125in\"\nheight=\"0.3888888888888889in\"}算出的平均速度近似当作这三个点中的中间点的瞬时速度.\n师:大家可以参考按他说的做,这在近似计算来看,还是个很好的方法.\n学生算出各个计数点的瞬时速度,并填入自己设计的表格中.\n教师课件投影参考提示:\n投影展示的内容(接上次投影中的三条)\n参考提示:\n4.选择所打纸带中最清晰的一条,舍掉开头一些过于密集的点,找一个适当的点当作计时起点.\n5.选择相隔0.1\ns,即中间空四个点的时间间隔的若干计数点进行测量,把数据填入表格.\n6.计算各点的瞬时速度,填入自己设计的表格中,可参考课本第34页表格.\n三、作出速度---时间图象\n师:有了原始数据,确定运动规律的最好办法是作速度---时间图象,这样具体的运动规律才能更直观地显现出来.\n【讨论与交流】\n学生回顾上一章中描画手拉纸带的速度---时间图象的情景,讨论如何在本次实验中描点、连线.\n生:以时间*t*为横轴、速度*v*为纵轴,建立坐标系,把刚才所填表格中的各点在速度---时间坐标系中描出.\n师:要注意选择合适的标度哟!否则,作后看看你的图与别人的有什么不同?(要使图象尽量分布在坐标平面的大部分面积)\n师:请同学们注意观察和思考你所描画的这些点的分布规律.\n生1:我看描出的这些点都大致落在一条直线上.\n生2:我们的也是.\n师:我们是用折线连呢,还是怎样连?\n生:不能用折线连,速度的实际变化应该是比较平滑的,所以,要用一条平滑的曲线来\"拟合\"这些点,这样曲线反映的规律应该与实际情况更接近.\n师:在连线时,还要注意使连线两侧的点数大致相同.\n学生连线,教师指导,随时回答学生可能提出的问题.\n生:我们这儿出现了有一个点明显偏离绝大部分点所在的直线.那该怎么办呢?\n师:这个问题很典型,大家对此进行一下讨论.\n生:大概是那一瞬时小车的速度瞬时突变了.\n生:我看小车的运动快慢还是比较均匀的,那一点的速度值可能是测量或计算出了问题.\n师:如果一旦出现明显偏离较大的点,我们可以认为是测量误差过大、测量中出现偏差所造成的.可以将这个点视为无效点.\n生:那这个点我们就可以擦去不用了.\n师:不是的,这个点我们要仍然保留在坐标纸上,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据.\n教师在与学生交流的过程中体现科学探究要尊重实验事实的严谨科学态度.\n【课堂探究】\n展示问题:怎样根据所画的速度---时间图象求加速度?\n生1:从所画的图象中取两个点,找到它们的纵横坐标(*t*~1~,*v*~1~)、(*t*~2~,*v*~2~),然后代入公式*a*={width=\"0.2361111111111111in\"\nheight=\"0.4166666666666667in\"}.\n生2:我们在找这两个点的时候还可以充分利用已测的数据、已描画的点的坐标,直接代入公式就行了.\n师:上面两位同学的讨论,是大家很容易犯的错误.请大家想想看,如果我们仍贪图方便还取已测得的表格中的数据点来求加速度,那么我们就没必要作图了,直接从表格中找两个数据代入公式算不就行了吗?或者我们也根本不需要测那么多的数据,只测量两组", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-23eba1260fcc2aea13aa45d1d3265873", "__created_at__": 1754902050, "content": "点的坐标,直接代入公式就行了.\n师:上面两位同学的讨论,是大家很容易犯的错误.请大家想想看,如果我们仍贪图方便还取已测得的表格中的数据点来求加速度,那么我们就没必要作图了,直接从表格中找两个数据代入公式算不就行了吗?或者我们也根本不需要测那么多的数据,只测量两组数就够了.这样就失去了作图的意义.\n师:我们求加速度的方法有两个,一个是公式法,可以直接用两组数据代入公式;另一个就是我们今天的图象法.\n师:我们可以任意选两个间隔较远的点,找出它们的坐标值(注意这两个点不能是我们表格中已测得的点),然后再把的它们的坐标值代入到公式*a*={width=\"0.2361111111111111in\"\nheight=\"0.4166666666666667in\"}中,求出加速度,就能更详细地知道物体的运动情况.\n学生根据教师指导求出小车运动的加速度,用自己的语言描述小车的运动速度随时间变化的规律.\n生1:小车速度随时间逐渐增大.\n生2:相同时间里,速度增量相同.\n生3:速度跟时间成正比.\n生4:小车做初速度为零的匀加速直线运动,加速度大小是2.1 m/s^2^.\n师:同学们的描述都是不错的,有的定性说明,有的定量表述.总之,小车的运动速度随着时间的变化在均匀地增大,我们可以用图象法定量求出它的加速度.\n点评:这里答案不唯一,应鼓励学生大胆表达,对正确的地方表扬,不合适的地方应引导、纠正,这样才能使学生加深印象,培养良好的思维习惯,提高创新意识,开阔思维.\n[小结]\n本节课我们主要是运用探究式学习的方式用打点计时器来测量小车的速度随时间变化的规律.重点是对重物牵引下小车的运动进行探究,在探究过程中,涉及到了实验的设计、操作以及作图象的方法、原则,很好地提高了大家各方面的能力,同时又为后面学习这种匀变速运动打下了基础.\n[布置作业]\n教材第36页\"问题与练习\".\n[\n板书设计\n1 实验:探究小车速度随时间变化的规律\n---------- ------------------------------------------------------\n进行实验 小车在重物作用下拖动纸带运动,打点计时器在纸带上打点\n处理数据 用平均速度代替瞬时速度的方法得到各计数点的瞬时速度\n作图象 描点连线作图后,得到的图象是一条倾斜的直线\n---------- ------------------------------------------------------\n反思:通过本节内容让学生学会用图象法分析物体的运动规律\n2 匀变速直线运动的速度与时间的关系\n三维目标\n知识与技能\n1.知道匀变速直线运动的*v*-*t*图象特点,理解图象的物理意义.\n2.掌握匀变速直线运动的概念,知道匀变速直线运动*v*-*t*图象的特点.\n3.理解匀变速直线运动*v*-*t*图象的物理意义,会根据图象分析解决问题.\n4.掌握匀变速直线运动的速度与时间关系的公式,能进行有关的计算.\n过程与方法\n1.培养学生识别、分析图象和用物理语言表达相关过程的能力.\n2.引导学生研究图象、寻找规律得出匀变速直线运动的概念.\n3.引导学生用数学公式表达物理规律并给出各符号的具体含义.\n情感态度与价值观\n1.培养学生用物理语言表达物理规律的意识,激发探索与创新欲望.\n2.培养学生透过现象看本质、用不同方法表达同一规律的科学意识.\n教学重点\n1.理解匀变速直线运动*v*-*t*图象的物理意义.\n2.掌握匀变速直线运动中速度与时间的关系公式及应用.\n教学难点\n1.匀变速直线运动*v*-*t*图象的理解及应用.\n2.匀变速直线运动的速度---时间公式的理解及计算.\n教具准备\n多媒体课件\n课时安排\n2课时\n教学过程\n[新课导入]\n我们通过实验探究的方式描绘出了小车的*v*-*t*图象,它表示小车做什么样的运动呢?小车的速度随时间怎样变化?我们能否用数学方法得出速度随时间变化的关系式呢?\n[新课教学]\n一、匀变速直线运动\n【讨论与交流】\n师:请同学们思考速度---时间图象", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-56675f596ac16ecc4a0dff21511a5d2d", "__created_at__": 1754902050, "content": "[新课导入]\n我们通过实验探究的方式描绘出了小车的*v*-*t*图象,它表示小车做什么样的运动呢?小车的速度随时间怎样变化?我们能否用数学方法得出速度随时间变化的关系式呢?\n[新课教学]\n一、匀变速直线运动\n【讨论与交流】\n师:请同学们思考速度---时间图象的物理意义.\n生:速度---时间图象是以坐标的形式将各个不同时刻的速度用点在坐标系中表现出来.它以图象的形式描述了质点在各个不同时刻的速度.\n(课件展示)匀速直线运动的*v*-*t*图象,如图2-2-1所示.\n{width=\"2.591666666666667in\"\n图2-2-1\n师:请同学们思考讨论课件展示的两个速度---时间图象.在*v*-*t*图象中能看出哪些信息呢?思考讨论图象的特点,尝试描述这种直线运动.\n学生思考讨论后回答.\n(课件展示)上节课我们自己实测得到的小车运动的速度---时间图象,如图2-2-2所示.\n{width=\"1.6243055555555554in\"\n图2-2-2\n师:请大家尝试描述它的运动情况.\n生:图象是一条过原点的倾斜直线,它是初速度为零的加速直线运动.\n师:大家尝试取相等的时间间隔,看它们的速度变化量.\n学生自己画图操作后回答.\n生:在相等的时间间隔内速度的增加量是相同的.\n老师课件投影图2-2-3,进一步加以阐述.\n{width=\"2.001388888888889in\"\n图2-2-3\n师:我们发现每过一个相等的时间间隔,速度的增加量是相等的.所以无论Δ*t*选在什么区间,对应的速度*v*的变化量Δ*v*与时间*t*的变化量Δ*t*之比{width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}都是一样的,即这是一种加速度不随时间(时间间隔)改变的直线运动.\n师:质点沿着一条直线运动,且加速度不变的运动,叫做匀变速直线运动.它的速度---时间图象是一条倾斜的直线.\n在匀变速直线运动中,如果物体的加速度随着时间均匀增大,这个运动就是匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动就是匀减速直线运动.\n(课件展示)展示各种不同的匀变速直线运动的速度---时间图象,让学生说出运动的性质,以及速度方向、加速度方向.如图2-2-4至图2-2-8所示.\n{width=\"1.1347222222222222in\"\nheight=\"0.8326388888888889in\"} {width=\"2.9472222222222224in\"\n图2-2-4 图2-2-5 图2-2-6\n{width=\"4.0125in\"\n图2-2-7 图2-2-8\n生1:图2-2-4是初速度为*v*~0~的匀加速直线运动.\n生2:图2-2-5是初速度为*v*~0~的匀减速直线运动.速度方向为正,加速度方向与规定的正方向相反,是负的.\n生3:图2-2-6是初速度为零的匀加速直线运动,但速度方向与规定的速度方向相反.\n生4:图2-2-7是初速度为*v*~0~的匀减速直线运动,速度为零后又做反向(负向)匀加速运动.\n生5:图2-2-8是初速度为*v*~0~的负向匀减速直线运动,速度为零后又做反向(正向)匀加", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-40273ed22e0fe1305601cb879e37cfc1", "__created_at__": 1754902050, "content": "但速度方向与规定的速度方向相反.\n生4:图2-2-7是初速度为*v*~0~的匀减速直线运动,速度为零后又做反向(负向)匀加速运动.\n生5:图2-2-8是初速度为*v*~0~的负向匀减速直线运动,速度为零后又做反向(正向)匀加速运动.\n教师及时总结和补充学生回答中出现的问题.\n师:下面,大家讨论后系统总结我们能从速度---时间图象中得出哪些信息?\n生:质点在任一时刻的瞬时速度及任一速度所对应的时刻.\n生:比较速度的变化快慢.\n生:加速度的大小和方向.\n二、速度与时间的关系式\n师:数学知识在物理中的应用很多,除了我们上面采用图象法来研究外,还有公式法也能表达质点运动的速度与时间的关系.\n从运动开始(取时刻*t*=0)到时刻*t*,时间的变化量就是*t*,所以Δ*t*=*t*-0.\n请同学们写出速度的变化量.\n让一位学生到黑板上写,其他同学在练习本上做.\n学生的黑板板书:Δ*v*=*v*-*v*~0~.\n因为*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}不变,又Δ*t*=*t*-0\n所以*a*={width=\"0.4166666666666667in\"\nheight=\"0.3888888888888889in\"},于是解得:*v*=*v*~0~+*at*.\n教师及时评价学生的作答情况,并投影部分在练习本上做的典型情况.\n课件投影老师的规范作答.\n教师强调本节的重点,说明匀变速直线运动中速度与时间的关系式.\n【例题剖析】\n(出示例题)某汽车在某路面紧急刹车时,加速度的大小是6\nm/s^2^,如果必须在2 s内停下来,汽车的行驶速度最高不能超过多少?\n让学生审题,弄清题意后用自己的语言将题目所给的物理情景描述出来.\n教师出示规范解题的范例:\n解:设汽车的运动方向为正方向,则汽车的加速度方向为负,可表示为*a*=-6\nm/s^2^,汽车在*t*=2\ns后停下来,末速度为零,将汽车的这一刹车过程作为研究对象.\n根据匀变速直线运动的速度公式*v*=*v*~0~+*at*可得出2 s前的速度为\n*v*~0~=*v*-*at*=0-(-6 m/s^2^)×2 s=12 m/s=43 km/h\n所以汽车的速度不能超过43 km/h.\n[小结]\n本节重点学习了对匀变速直线运动的理解和对公式*v*=*v*~0~+*at*的掌握.对于匀变速直线运动的理解强调以下几点:\n1.任意相等的时间内速度的增量相同,这里包括大小方向,而不是速度相等.\n2.从速度---时间图象上来理解速度与时间的关系式:*v*=*v*~0~+*at*,*t*时刻的末速度*v*是在初速度*v*~0~的基础上,加上速度变化量Δ*v*=*at*得到.\n3.对这个运动中,质点的加速度大小方向不变,但不能说*a*与Δ*v*成正比、与Δ*t*成反比,*a*决定于Δ*v*和Δ*t*的比值.\n4.*a*={width=\"0.2361111111111111in\"\nheight=\"0.3888888888888889in\"}即*v*=*v*~0~+*at*,要明确各状态的速度,不能混淆.\n5.公式中*v*、*v*~0~、*a*都是矢量,必须注意其方向.\n数学公式能简洁地描述自然规律,图象则能直观地描述自然规律.利用数学公式或图象,可以用已知量求出未知量.例如,利用匀变速直线运动的速度公式或*v*-*t*图象,可以求出速度、时间或加速度等.\n用数学公式或图象描述物理规律通常有一定的适用范围,只能在一定条件下合理外推,不能任意外推.例如,讨论加速度*a*=2\nm/s^2^的小车运动时,若将时间*t*推至2 h,即7 200\ns,这从数学上看没有问题,但是从物理上看,则会得", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-7cc3c2febf409dfb666582572c0431f7", "__created_at__": 1754902050, "content": "-*t*图象,可以求出速度、时间或加速度等.\n用数学公式或图象描述物理规律通常有一定的适用范围,只能在一定条件下合理外推,不能任意外推.例如,讨论加速度*a*=2\nm/s^2^的小车运动时,若将时间*t*推至2 h,即7 200\ns,这从数学上看没有问题,但是从物理上看,则会得出荒唐的结果,即小车速度达到了14\n400 m/s,这显然是不合情理的.\n[布置作业]\n教材第39页\"问题与练习\".\n板书设计\n2 匀变速直线运动的速度与时间的关系\n-------------------- -------------------------------------- -------------------------------------------------------------\n匀变速直线运动 沿着一条直线运动,且加速度不变的运动 速度---时间图象是一条倾斜的直线\n速度与时间的关系式 *v*=*v*~0~+*at* 初速度*v*~0~再加上速度的变化量*at*就得到*t*时刻物体的末速度\n-------------------- -------------------------------------- -------------------------------------------------------------\n反思:通过本节内容学习,让学生领会用数学公式和图象法两种方法表示物体运动规律的区别和联系。\n3 匀变速直线运动的位移与时间的关系\n三维目标\n知识与技能\n1.知道匀速直线运动的位移与时间的关系.\n2.了解位移公式的推导方法,掌握位移公式*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^.\n3.理解匀变速直线运动的位移与时间的关系及其应用.\n4.理解*v*-*t*图象中图线与*t*轴所夹的面积表示物体在这段时间内运动的位移.\n5.能推导并掌握位移与速度的关系式*v*^2^-*v*~0~^2^=2*ax*.\n6.会适当地选用公式对匀变速直线运动的问题进行简单的分析和计算.\n过程与方法\n1.通过近似推导位移公式的过程,体验微元法的特点和技巧,能把瞬时速度的求法与此比较.\n2.感悟一些数学方法的应用特点.\n情感态度与价值观\n1.经历微元法推导位移公式和公式法推导速度位移关系,培养自己动手的能力,增加物理情感.\n2.体验成功的快乐和方法的意义,增强科学能力的价值观.\n教学重点\n1.理解匀变速直线运动的位移与时间的关系*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^及其应用.\n2.理解匀变速直线运动的位移与速度的关系*v*^2^-*v*~0~^2^=2*ax*及其应用.\n教学难点\n1.*v*-*t*图象中图线与*t*轴所夹的面积表示物体在这段时间内运动的位移.\n2.微元法推导位移时间关系式.\n3.匀变速直线运动的位移与时间的关系*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^及其灵活应用.\n教具准备\n坐标纸、铅笔、刻度尺、多媒体课件\n课时安排\n2课时\n教学过程\n[新课导入]\n师:匀变速直线运动跟我们生活的关系密切,研究匀变速直线运动很有意义.\n[新课教学]\n一、匀速直线运动的位移\n师:我们先从最简单的匀速直线运动的位移与时间的关系入手,画出匀速直线运动的速度---时间图象.\n如图2-3-1和2-3-2所示.\n{width=\"1.667361111111111in\"\nheight=\"1.3847222222222222in\"} {width=\"1.792361111111111in\"\n图2-3-1 图2-3-2\n师:请同学们求图线与初、末时刻线和时间轴围", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-1a8db21ae7c3d0d6abccd7fd179b5f08", "__created_at__": 1754902050, "content": "=\"1.667361111111111in\"\nheight=\"1.3847222222222222in\"} {width=\"1.792361111111111in\"\n图2-3-1 图2-3-2\n师:请同学们求图线与初、末时刻线和时间轴围成的矩形面积.\n生:正好是*vt*.\n师:当速度值为正值和为负值时,它们的位移有什么不同?\n生:当速度值为正值时,*x*=*vt*/>0,图线与时间轴所围成的矩形在时间轴的上方.当速度值为负值时,*x*=*vt*/<0,图线与时间轴所围成的矩形在时间轴的下方.\n师:位移*x*/>0表示位移方向与规定的正方向相同,位移*x*/<0表示位移方向与规定的正方向相反.\n师:对于匀变速直线运动,它的位移与它的*v*-*t*图象,是不是也有类似的关系呢?\n二、匀变速直线运动的位移\n(课件投影)在\"探究小车的运动规律\"的测量记录中,某同学得到了小车在0,1,2,3,4,5几个位置的瞬时速度.如下表:\n---------------------- ------ ------ ------ ------ ------ ------\n位置编号 0 1 2 3 4 5\n时间*t*/s 0 0.1 0.2 0.3 0.4 0.5\n速度*v*/(m·s^-1^) 0.38 0.63 0.88 1.11 1.38 1.62\n---------------------- ------ ------ ------ ------ ------ ------\n师:能否根据表中的数据,用最简便的方法估算实验中小车从位置0到位置5的位移?\n【交流与讨论】\n(课件投影)请同学们阅读下面的关于刘徽的\"割圆术\".\n分割和逼近的方法在物理学研究中有着广泛的应用.早在公元263年,魏晋时的数学家刘徽首创了\"割圆术\"------圆内正多边形的边数越多,其周长和面积就越接近圆的周长和面积.他著有《九章算术》,在书中有很多创见,尤其是用割圆术来计算圆周率的想法,含有极限观念,是他的一个大创造.他用这种方法计算了圆内接正192边形的周长,得到了圆周率的近似值π=157/50(=3.14);后来又计算了圆内接正3\n072边形的周长,又得到了圆周率的近似值π=3 927/1 250(=3.141\n6),用正多边形逐渐增加边数的方法来计算圆周率,早在古希腊的数学家阿基米德首先采用,但是阿基米德是同时采用内接和外切两种计算,而刘徽只用内接,因而较阿基米德的方法简便得多.\n{width=\"1.8555555555555556in\"\n图2-3-3 \"割圆术\"\n学生讨论刘徽的\"割圆术\"和他的圆周率,体会里面的\"微分\"思想方法.\n生:刘徽采用了无限分割逐渐逼近的思想.圆内一正多边形边数越多,周长和面积就越接近圆的周长和面积.\n让学生动手用剪刀剪圆,体会分割和积累的思想.具体操作是:用剪刀剪一大口,剪口是一条直线;如用剪刀不断地剪许多小口,这许多小口的积累可以变成一条曲线.\n师:下面我们采用这种思想方法研究匀加速直线运动的速度---时间图象.\n(课件展示)一物体做匀变速直线运动的速度---时间图象,如图2-3-4中甲所示.\n{width=\"4.252777777777778in\"\n图2-3-4\n师:请同学们思考这个物体的速度---时间图象,用自己的语言来描述该物体的运动情况.\n生:该物体做初速度为*v*~0~的匀加速直线运动.\n师:我们模仿刘徽的\"割圆术\"做法,来\"分割\"图象中图线与初、末时刻线和时间轴图线所围成的面积.请大家讨论.\n将学生分组后各个进行\"分割\"操作.\nA组生1:我们先", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-3c4e4b7aa8b65eacb98f6cac440df925", "__created_at__": 1754902050, "content": "该物体的运动情况.\n生:该物体做初速度为*v*~0~的匀加速直线运动.\n师:我们模仿刘徽的\"割圆术\"做法,来\"分割\"图象中图线与初、末时刻线和时间轴图线所围成的面积.请大家讨论.\n将学生分组后各个进行\"分割\"操作.\nA组生1:我们先把物体的运动分成5个小段,例如{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*t*算一个小段,在*v*-*t*图象中,每小段起始时刻物体的瞬时速度由相应的纵坐标表示(如图乙).\nA组生2:我们以每小段起始时刻的速度乘以时间{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*t*近似地当作各小段中物体的位移,各位移可以用一个又窄又高的小矩形的面积代表.5个小矩形的面积之和近似地代表物体在整个过程中的位移.\nB组生:我们是把物体的运动分成了10个小段.\n师:请大家对比不同组所做的分割,当它们分成的小段数目越长条矩形与倾斜直线间所夹的小三角形面积越小.这说明什么?\n生:就像刘徽的\"割圆术\",我们分割的小矩形数目越多,小矩形的面积总和越接近于倾斜直线下所围成的梯形的面积.\n师:当然,我们上面的做法是粗糙的.为了精确一些,可以把运动过程划分为更多的小段,如图丙,用所有这些小段的位移之和,近似代表物体在整个过程中的位移.从*v*-*t*图象上看,就是用更多的但更窄的小矩形的面积之和代表物体的位移.\n可以想象,如果把整个运动过程划分得非常非常细,很多很多小矩形的面积之和,就能准确地代表物体的位移了.这时,\"很多很多\"小矩形顶端的\"锯齿形\"就看不出来了,这些小矩形合在一起组成了一个梯形*OABC*,梯形*OABC*的面积就代表做匀变速直线运动物体在0(此时速度是*v*~0~)到*t*(此时速度是*v*)这段时间内的位移.\n教师引导学生分析求解梯形的面积,指导学生怎样求梯形的面积.\n生:在图丁中,*v*-*t*图象中直线下面的梯形*OAB*C的面积是\n*S*={width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}(*OC*+*AB*)×*OA*\n把面积及各条线段换成所代表的物理量,上式变成*x*={width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}(*v*~0~+*v*)*t*\n把前面已经学过的速度公式*v*=*v*~0~+*at*代入,得到*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^\n这就是表示匀变速直线运动的位移与时间关系的公式.\n师:这个位移公式虽然是在匀加速直线运动的情景下导出的,但也同样适用于匀减速直线运动.\n师:在公式*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^中,我们讨论一下并说明各物理量的意义,以及应该注意的问题.\n生:公式中有起始时刻的初速度*v*~0~,有*t*时刻末的位置*x*(*t*时间间隔内的位移),有匀变速运动的加速度*a*,有时间间隔*t*.\n师:注意这里哪些是矢量,讨论一下应该注意哪些问题.\n生:公式中有三个<E4B889>", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-06d2a4b7f264f5d63fe92236a93c82af", "__created_at__": 1754902050, "content": "^中,我们讨论一下并说明各物理量的意义,以及应该注意的问题.\n生:公式中有起始时刻的初速度*v*~0~,有*t*时刻末的位置*x*(*t*时间间隔内的位移),有匀变速运动的加速度*a*,有时间间隔*t*.\n师:注意这里哪些是矢量,讨论一下应该注意哪些问题.\n生:公式中有三个矢量,除时间*t*外,都是矢量.\n师:物体做直线运动时,矢量的方向性可以在选定正方向后,用正、负来体现.方向与规定的正方向相同时,矢量取正值,方向与规定的负方向相反时,矢量取负值.一般我们都选物体的运动方向或是初速度的方向为正.\n师:在匀减速直线运动中,如刹车问题中,尤其要注意加速度的方向与运动相反.\n教师课件投影图2-3-5.\n{width=\"1.9277777777777778in\"\n图2-3-5\n师:我们在本节课的开始发现匀速直线运动的速度---时间图象中图线与坐标轴所围成的面积能反映位移.下面我们也看一下匀变速直线运动的速度---时间图象是否也能反映这个问题.\n师:我给大家在图上形象地标出了初速度、速度的变化量,请大家从图象上用画斜线部分的面积表示位移来进一步加深对公式的理解.请大家讨论后对此加以说明.\n学生讨论.\n生:*at*是0~*t*时间内的速度变化量Δ*v*,就是图上画右斜线部分的三角形的高,而该三角形的底恰好是时间间隔*t*,所以该三角形的面积正好等于{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^.\n师:类似的,请大家自己画出一个初速度为*v*~0~的匀减速直线运动的速度图象,从中体会:图象与时间轴所围成的梯形\"面积\"可看作长方形\"面积\"*v*~0~*t*与三角形\"面积\"\n{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^之差.\n【例题剖析】\n(出示例题)一辆汽车以1 m/s^2^的加速度行驶了12 s,驶过了180\nm.汽车开始加速时的速度是多少?\n让学生审题,弄清题意后用自己的语言将题目所给的物理情景描述出来.\n教师巡视查看学生自己做的情况,并选择典型的样例投影出示加以点评.\n教师出示规范解题的范例:\n解:汽车的加速度*a*=1 m/s^2^,时间*t*=12 s.\n根据匀变速直线运动的位移公式*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^可得:\n初速度为*v*~0~={width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}×1 m/s^2^×12 s=9 m/s.\n二、匀变速直线运动的位移与速度的关系\n【讨论与交流】\n展示问题:射击时,火药在枪筒内燃烧.燃气膨胀,推动弹头加速运动.我们把子弹在枪筒中的运动看作匀加速直线运动,假设子弹的加速度是*a*=5×10^5^\nm/s^2^,枪筒长*x*=0.64 m,请计算射出枪口时的速度.\n让学生讨论后回答解题思路.\n生:子弹在枪筒中运动的初速度是0,所以我们可以用位移公式*x*={width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^先求出运动的时间*t*,然后根据速度公式*v*=*at*,即可得出子弹离开枪口的速度*v*.\n让学生", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-7989daf418e32f242910d5c867efa7b5", "__created_at__": 1754902050, "content": "可以用位移公式*x*={width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^先求出运动的时间*t*,然后根据速度公式*v*=*at*,即可得出子弹离开枪口的速度*v*.\n让学生讨论当初速度不为零时,从速度公式和位移公式导出位移与速度的关系式.\n从速度公式*v*=*v*~0~+*at*和位移公式*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^中消去时间*t*,即可得到:*v*^2^-*v*~0~^2^=2*ax*.\n师:通过大家的讨论和推导可以看出,如果问题的已知量和未知量都不涉及时间,利用位移---速度的关系式*v*^2^-*v*~0~^2^=2*ax*可以很方便地求解.\n【例题剖析】\n(出示例题)一艘快艇以2\nm/s^2^的加速度在海面上做匀加速直线运动,快艇的初速度是6\nm/s.求这艘快艇在8 s末的速度和8 s内经过的位移.\n师:(1)物体做什么运动?\n(2)哪些量已知,要求什么量?作出运动过程示意图.\n(3)选用什么公式进行求解?\n[小结]\n通过本节课的学习,掌握了匀变速直线运动的两个基本公式:\n*x*=*v*~0~*t*+{width=\"0.1527777777777778in\"\nheight=\"0.3888888888888889in\"}*at*^2^\n*v*^2^-*v*~0~^2^=2*ax*\n在理解公式时,一定要注意结合速度---时间图象,掌握速度---时间图象中\"面积\"的意义.在利用公式求解时,一定要注意公式的矢量性问题.一般情况下,以初速度方向为正方向;当*a*与*v*~0~方向相同时,*a*为正值,公式即反映了匀加速直线运动的速度和位移随时间的变化规律;当*a*与*v*~0~方向相反,*a*为负值,公式反映了匀减速直线运动的速度和位移随时间的变化规律.代入公式求解时,与正方向相同的物理量代入正值,与正方向相反的物理量应代入负值.\n[布置作业]\n教材第44页\"问题与练习\".\n板书设计\n3 匀变速直线运动的位移与时间的关系\n---------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------\n匀速直线运动的位移 *x*=*vt* *v*-*t*图象中图线与时间轴、时刻线围成的面积表示位移\n匀变速直线运动的位移 *x*=*v*~0~*t*+{width=\"0.1527777777777778in\" height=\"0.3888888888888889in\"}*at*^2^ *v*-*t*图象中图线与时间轴、时刻线围成的面积表示位移\n匀变速直线运动的位移与速度的关系 *v*^2^-*v*~0~^2^=2*ax*\n---------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------\n反思:注意引导学生利用匀变速直线运动的相关规律进行规范解答。\n4 自由落体运动\n三维目标\n知识与技能\n1.认识自由落体运动,知道影响物体下落快慢的因素,理解自由落体运动是在理想条件下的运动,知道它是初速度为零的匀加速直线运动.\n2.能用打点计时器或其他实验仪器得到相关的运动轨迹并能自主进行分析.\n3.知道什么是自由落体的加速度,知道它的方向,知道在地球上的不同地方,重力加速度大小不同.\n4.掌握如何从匀变速直线运动的规律推出自由落体运动规律,并能够运用自由落体规律解决实际问题.\n5.初步了解探索自然规律的科学方法.培养学生的观察、概括能力.\n过程与方法\n由学生自主进行实验探究,采用实验室的基本实验仪器------打点计时器,记录下运动的信息,定量地测定重物自由下落的加", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-cadbb1592b76b2607c86a9d4918635e0", "__created_at__": 1754902050, "content": "不同.\n4.掌握如何从匀变速直线运动的规律推出自由落体运动规律,并能够运用自由落体规律解决实际问题.\n5.初步了解探索自然规律的科学方法.培养学生的观察、概括能力.\n过程与方法\n由学生自主进行实验探究,采用实验室的基本实验仪器------打点计时器,记录下运动的信息,定量地测定重物自由下落的加速度,探究运动规律的同时让学生进一步体验科学探究方法.\n1.培养学生利用物理语言归纳总结规律的能力.\n2.引导学生养成进行简单物理研究习惯、根据现象进行合理假设与猜想的探究方法.\n3.引导学生学会分析数据,归纳总结自由落体的加速度*g*随纬度变化的规律.\n4.教师应该在教学中尽量为学生提供制定探究计划的机会.根据学生的实际能力去引导学生进行观察、思考、讨论和交流.\n情感态度与价值观\n1.调动学生积极参与讨论的兴趣,培养逻辑思维能力及表述能力.\n2.渗透物理方法的教育,在研究物理规律的过程中抽象出一种物理模型------自由落体.\n3.培养学生的团结合作精神和协作意识,敢于提出与别人不同的见解.\n教学重点\n1.自由落体运动的概念及探究自由落体运动的过程.\n2.掌握自由落体运动的规律,并能运用其解决实际问题.\n教学难点\n1.理解并运用自由落体运动的条件及规律解决实际问题.\n2.照相机曝光时间的估算.\n教具准备\n多媒体课件、牛顿管、硬币、天平、小纸片、打点计时器、刻度尺、铁架台、纸带、重物(两个质量不同)等.\n课时安排\n2课时\n教学过程\n[新课导入]\n师:两个轻重不同的小球同时落地的声音,是那样地清脆美妙!它使人们清醒地认识到,轻重不是下落快慢的原因;它动摇了2\n000多年来统治着人们头脑的旧观念,开创了实验和科学推理之先河,将近代物理学以至近代科学推上了历史的舞台.当树叶从树上飘落下来,雨滴从屋檐上落下来的时候,你们想过这种运动吗?物体下落的过程有没有一定的规律可循呢?今天我们将一起探究这种运动------\"探究自由落体运动\".\n[新课教学]\n一、自由落体运动\n在现实生活中,不同物体的落体运动,下落快慢在不少情况下是不同的.从苹果树上落下的苹果和飘下的树叶能一起同时下落吗?\n提出问题:\n1.重的物体一定下落得快吗?\n2.你能否证明自己的观点?\n【实验探究】\n猜想:物体下落过程的运动情况与哪些因素有关,质量大的物体下落的速度比质量小的快吗?\n(实验):\n取两枚相同的硬币和两张与硬币表面面积相同的纸片,把其中一张纸片揉成纸团,在下述几种情况下,都让它们从同一高度自由下落,观察下落快慢情况.\n①从同一高度同时释放一枚硬币和一个与硬币面积相同的纸片,可以看到硬币比纸片下落得快,说明质量大的下落得快.\n②两张完全相同的纸片,将其中一张卷紧后从同一高度同时释放,观察到卷紧的纸团比纸片下落得快,说明质量相同时体积小的下落得快.\n③将一枚硬币与已经粘贴了纸片的硬币从同一高度同时释放,观察到一样快,说明体积相同质量不同时下落一样快.\n④一块面积较大的硬纸板、一个小软木塞,分别放到已调平的托盘天平的两个盘中,可以看出纸板比软木塞重,从同一高度同时释放它们,软木塞比纸板下落得快,说明在特定的条件下,质量小的下落得会比质量大的还快.\n结论:物体下落过程的运动情况与物体质量无关.\n【实验演示】\n\"牛顿管\"的实验\n将羽毛和金属片放入有空气的玻璃管中,让它们同时下落,观察到的现象是金属片下落得快,羽毛下落得慢.将羽毛和金属片放入抽去空气的玻璃管中,让它们同时下落,观察到的现象是金属片和羽毛下落的快慢相同.\n结论:影响落体运动快慢的因素是空气阻力的作用,没有空气阻力时,只在重力作用下轻重不同的物体下落快慢相同.\n阅读课本并回答:\n(1)什么叫自由落体运动?(2)自由落体运动的特点是怎样的?\n【实验探究】\n按照教材第", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-3284bec142b48e5c65474220e130cdc5", "__created_at__": 1754902050, "content": "落,观察到的现象是金属片和羽毛下落的快慢相同.\n结论:影响落体运动快慢的因素是空气阻力的作用,没有空气阻力时,只在重力作用下轻重不同的物体下落快慢相同.\n阅读课本并回答:\n(1)什么叫自由落体运动?(2)自由落体运动的特点是怎样的?\n【实验探究】\n按照教材第45页的图2.4-1装置做实验,将一系有纸带的重物从一定的高度自由下落,利用打点计时器记录重物的下落过程.\n说明:落体运动物体的位置往往变化得比较快,凭目测难以观察和记录,用打点计时器或频闪照相就可以记录下运动物体每隔相等时间所在的位置(运动信息),这样得到的纸带(或照片)可以用来对运动过程进行分析.教材中用打点计时器较好地将重物下落过程记录下来,这样做既简便易行,又拓宽了对基本仪器的应用,但实验的准确度较难把握.因此在实验中要注意:\n①按教材图示和实验要求连接好线路,并用手托重物将纸带拉到最上端;\n②打点计时器的安装要使两限位孔在同一竖直线上,以减少摩擦阻力;\n③应选用质量和密度较大的重物,增大重力可使阻力的影响相对减小,增大密度可以减小体积,可使空气阻力减小;\n④先接通电路再放开纸带;\n⑤手捏纸带松手之前,不要晃动,保证打出的第一个点清晰.\n⑥重复上述步骤多次,直到选取只有打出的第一点与第二点之间间隔约为2\nmm的纸带才是有效的;(学生的疑问暂且不要解释)\n⑦教师一定要提醒学生思考讨论,影响实验准确度的因素有哪些?并给予具体引导,注意培养实事求是的科学态度;\n⑧要求学生保存好记录了自由落体运动信息的纸带,为下节课研究运动规律作准备.\n师:完成实验后,分析纸带上记录的运动信息,请思考下列问题:\n(1)自由落体运动的轨迹是怎样的?\n(2)重物做自由落体运动的过程中,其速度有没有发生变化?\n(3)有的同学从实验结果中得出*x*∝*t*^2^,有的同学得出*x*∝*t*,你的结论又如何呢?\n(4)相邻、相等时间间隔的位移之差有怎样的关系?\n(5)影响实验精确程度的因素有哪些?\n学生运用自己所学知识计算重力加速度,通过比较得出结论.\n实验探究结果:自由落体运动是初速度为零的匀加速直线运动,加速度大约是9.8\nm/s^2^.\n二、自由落体加速度\n通过算*g*值理解自由落体运动的加速度是一个定值(在同一地点),引导学生学会分析数据,归纳总结规律.\n教师引导学生思考两个问题:\n1.自由落体运动的加速度在各个地方相同吗?\n2.它的方向如何?\n生:使用不同的物体进行的反复实验表明,在同一地点,一切物体自由下落的加速度都相同,方向总是竖直向下的.\n师:这个加速度叫做自由落体加速度,也叫重力加速度.符号:*g*;方向:竖直向下(与重力方向一致);大小:与地点有关.一般计算中*g*=9.8\nm/s^2^,粗略计算中可以取*g*=10 m/s^2^.\n.\n[小结]\n这节课我们学习了对自由落体运动概念和规律的认识及理解.自由落体运动是物体从静止开始的只受重力作用的匀加速直线运动,加速度为*g*,学好本节可更好地认识匀变速直线运动的规律和特点,是对上节内容的有益补充.要突破此重点内容,一定要把握住一点,即自由落体运动只是匀变速直线运动的一个特例*v*~0~=0,*a*=*g*.我们在以前章节中所掌握的所有匀变速直线运动的规律及推论,在自由落体运动中均可使用.在使用时要注意自由落体运动的特点,判断是自由落体运动之后方可代入计算.\n自由落体运动是一种非常重要的运动形式,在现实生活中有许多落体运动可以看成是自由落体运动,研究自由落体运动有着普遍的意义.\n为了研究自由落体运动,我们运用了物理学中的理想化方法,从最简单、最基本的情况入手,抓住影响运动的主要因素,去掉次要的非本质因素的干扰,建立了理想化的物理模型------自由落体运动,并且研究了自由落体的运动规律,理想化是研究", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-b8486393fcce9e5b3da6e24a615e61fb", "__created_at__": 1754902050, "content": "可以看成是自由落体运动,研究自由落体运动有着普遍的意义.\n为了研究自由落体运动,我们运用了物理学中的理想化方法,从最简单、最基本的情况入手,抓住影响运动的主要因素,去掉次要的非本质因素的干扰,建立了理想化的物理模型------自由落体运动,并且研究了自由落体的运动规律,理想化是研究物理问题常用的方法之一,在后面的学习中我们还要用到.\n[布置作业]\n教材第47页\"问题与练习\".\n板书设计\n4 自由落体运动\n-------------------- -----------------------------------------------------------\n自由落体运动的概念 物体仅在重力作用下,从静止开始下落的运动,叫自由落体运动.\n自由落体运动的规律 是初速度为0的匀加速直线运动.\n自由落体加速度 一切物体自由下落的加速度都相同,叫做自由落体加速度.\n-------------------- -----------------------------------------------------------\n反思:课后让学生将自己的尺子改造成\"反应时间尺\"\n,可加深学生对自由落体运动规律的理解。\n5 伽利略对自由落体运动的研究\n三维目标\n知识与技能\n1.了解落体运动研究的史实,了解逻辑推理的特色.\n2.理解任何猜想和假说都须要有实验验证的重要性.\n过程与方法\n1.让学生初步体会抽象思维、提出假说、科学实验是进行科学研究的重要思路和方法.\n2.通过史实了解伽利略研究自由落体规律的过程,体会其推理方法的奥妙,同时了解猜想的必要性,感受探究规律的几个必要过程和科学方法的重要性,了解体会一些科学的方法.\n情感态度与价值观\n1.渗透研究自然规律的科学方法.\n2.通过了解史实能培养同学们的意志和科学的方法观,避免盲目和急功近利思想,提高自己的认识观.\n3.经历伽利略对自由落体运动的研究过程,体验数学在研究物理问题中的重要性.体会人类对客观世界发现之旅的乐趣.\n教学重点\n了解探索过程,明确探索的步骤,同时了解实验及科学的思维方法在探究中的重要作用,从中提炼自己的学习方法.\n教学难点\n\"观念---思考---推理---猜想---验证\"是本节的重点思路,也是培养良好思维习惯的重要参考.\n教具准备\n录像资料、多媒体课件\n课时安排\n1课时\n教学过程\n[新课导入]\n师:我们用手拿一个小球和一张纸片,放开后,小球和纸片从静止开始下落.我们可以看到,小球先落地,纸片后落地.\n公元前4世纪,古希腊伟大的思想家、哲学家亚里士多德(Arestotle)根据与我们类似的观察,直接得出结论:重的物体比轻的物体下落得快.\n亚里士多德的论断流传了近2\n000年,直到16世纪,在意大利的比萨斜塔上,伽利略做了著名的两个球同时落地的实验.两个轻重不同的小球同时落地的声音,是那样的清脆美妙,又是那样的发聋振聩!它动摇了人们头脑中的旧观念,开创了实验和科学推理之先河,将近代物理学以至近代科学推上了历史的舞台.\n今天这节课我们就一起来经历伽利略对自由落体运动的研究过程,领悟这位大师的科学精神、物理思想、研究方法,得其精髓,有所借鉴.\n[新课教学]\n一、绵延两千年的错误\n(课件展示)亚里士多德的观点:物体越重,下落越快.\n公元前,人们对物体下落的研究很少,凭着观察认为重的物体比轻的物体下落得快.当时,著名的思想家亚里士多德(Aristotle,前384~前322)经过了观察和总结认为\"物体下落的速度与重力成正比\".这一观点正好应和了人们潜意识里的想法;同时,它又是伟大的亚里士多德提出的论断,人们深信不疑.从那以后,人们判断物体下落的快慢,甚至给孩子们上课时一直坚持这一观点,这一观点一直延续了2\n000多年,从没有人对它提出异议.\n【交流与讨论】\n提出问题:为什么会有错误的认识呢?\n学生思考问题,交流体会.\n二、逻辑的力量\n学生阅读:\n16世纪末,意大利比萨大学的青年学者伽利略(Galileo\nGalilei,1564~1642)对亚里士多德的论断表示了怀疑.后来,他在1638年出版的《两种新科学的对话》一书中对此作出了评论.\n问题:伽利略是怎样论证亚里士多德", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-520e7d18822c0396db11e36a68da6773", "__created_at__": 1754902050, "content": ",交流体会.\n二、逻辑的力量\n学生阅读:\n16世纪末,意大利比萨大学的青年学者伽利略(Galileo\nGalilei,1564~1642)对亚里士多德的论断表示了怀疑.后来,他在1638年出版的《两种新科学的对话》一书中对此作出了评论.\n问题:伽利略是怎样论证亚里士多德观点是错误的?\n猜想:既然物体下落过程中的运动情况与物体质量无关,那么为什么在现实生活中,不同物体的落体运动,下落快慢不同呢?我们能否猜想是由于空气阻力的作用造成的呢?如果没有空气阻力将会怎样呢?\n学生讨论后回答.\n三、猜想与假说\n伽利略认为,自由落体是一种最简单的变速运动.他设想,最简单的变速运动的速度应该是均匀变化的.但是,速度的变化怎样才算均匀呢?他考虑了两种可能:一种是速度的变化对时间来说是均匀的,即经过相等的时间,速度的变化相等;另一种是速度的变化对位移来说是均匀的,即经过相等的位移,速度的变化相等.伽利略假设第一种方式最简单,并把这种运动叫做匀变速运动.\n四、实验验证\n师:实验验证是检验理论正确与否的唯一标准.任何结论和猜想都必须经过实验验证,否则不成理论.猜想或假说只有通过验证才会成为理论.所谓实验验证就是任何人,在理论条件下去操作都能到得实验结果,它具有任意性,但不是无条件的,实验是在一定条件下的验证,而与实际有区别.\n伽利略根据斜面结果出发,认为:在初速度为零的匀加速直线运动中,经过的距离正比于时间的平方,即{width=\"0.20833333333333334in\"\nheight=\"0.4027777777777778in\"}的比值为最大,这时小球仍然会保持匀变速直线运动的性质,自由落体运动是一种特殊的匀变速直线运动.\n伽利略将实验与逻辑思维相联系进行科学研究的思想,开辟了一条科学研究之路.\n五、伽利略的科学方法\n对现象一般观察---提出猜想---运用逻辑推理---实验对推理验证-对猜想进行修证(补充)---推广应用.\n伽利略的科学思想方法的核心是把实验和逻辑推理(包括数学推理)和谐地结合起来,从而有力地推进了人类科学认识的发展.\n【课堂训练】\n1.在物理学的发展历程中,下面的哪位科学家首先建立了平均速度、瞬时速度和加速度等概念用来描述物体的运动,并首先采用了实验检验猜想和假设的科学方法,把实验和逻辑推理和谐地结合起来,从而有力地推进了人类科学的发展\nA.亚里士多德 B.伽利略 C.牛顿 D.爱因斯坦\n2.红孩同学摇动苹果树,从同一高度一个苹果和一片树叶同时从静止直接落向地面,苹果先着地,下面说法中正确的是\nA.苹果和树叶做的都是自由落体运动\nB.苹果和树叶的运动都不能看成自由落体运动\nC.苹果的运动可看成自由落体运动,树叶的运动不能看成自由落体运动\nD.假如地球上没有空气,则苹果和树叶会同时落地\n3.甲同学看到乙同学从10层楼的楼顶同时由静止释放两个看上去完全相同的铁球,结果甲同学看到两球不是同时落地的.他分析了两球未能同时落地的原因.你认为他的下列分析哪些是正确的\nA.两球在下落过程中受到的空气阻力不同,先落地的受空气阻力小\nB.两球在下落过程中受到的空气阻力不同,先落地的受空气阻力大\nC.两球下落过程中受到的空气阻力相同,先落地的是实心球,重力远大于阻力\nD.两球下落过程中受到的空气阻力相同,先落地的是空心球,阻力与重力比,差别较小\n参考答案:1.答案:B 2.答案:CD 3.答案:C\n[小结]\n通过这节课的学习,我们从伽利略对落体的研究上,学习他的观察思考等科学方法,为我们下一步(以后)的探究打下基础,不能盲目,也不能惧怕困难,要用科学的方法指导我们.\n[布置作业]\n请仔细回顾伽利略研究落体运动的全过程,把他的每一个步骤列出来,并说明哪一步骤是提出问题,哪一步骤是数学推理", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-90c9912a4815db8a7c78f4e4b4c23569", "__created_at__": 1754902050, "content": "节课的学习,我们从伽利略对落体的研究上,学习他的观察思考等科学方法,为我们下一步(以后)的探究打下基础,不能盲目,也不能惧怕困难,要用科学的方法指导我们.\n[布置作业]\n请仔细回顾伽利略研究落体运动的全过程,把他的每一个步骤列出来,并说明哪一步骤是提出问题,哪一步骤是数学推理,哪一步骤是实验验证等等.再讨论一下,在一般物理问题的研究过程中,是否都需要经历这些步骤?\n参考答案:如下表所示.\n---------- -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n提出问题 落体运动的性质是什么\n猜想 *v*∝*t*\n数学推理 *x*∝*t*^2^\n实验验证 斜面实验\n合理外推 {width=\"0.20833333333333334in\" height=\"0.4027777777777778in\"}的数值随倾角的增大而增大,当倾角等于90°时,变为自由落体运动\n得出结论 自由落体运动是一种速度均匀增大的运动\n---------- -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n在一般物理问题的研究中,并不需要完整地经历这些步骤.\n板书设计\n5 伽利略对自由落体运动的研究\n------------------ ----------------------------------------------------------------------------------------------\n绵延两千年的错误 重的物体比轻的物体下落得快.\n逻辑的力量 伽利略佯谬得出重物与轻物应该下落得同样快.\n猜想与假说 猜想自由落体运动是最简单的变速运动,速度的变化对时间来说是均匀的.\n实验验证 伽利略斜面实验得出:只要斜面的倾角相同,小球的加速度就是相同的,由此外推到斜面的倾角达到90°.\n伽利略的科学方法 伽利略科学思想方法的核心是把实验和逻辑推理(包括数学推演)和谐地结合起来.\n------------------ ----------------------------------------------------------------------------------------------\n反思:注意引导学生从辩证的角度认识和看待物理学史的发展历程,并从中领会科学研究的方法和严谨的科学态度。\n第三章 相互作用\n1 重力 基本相互作用\n三维目标\n知识与技能\n1.了解力是物体对物体的作用,力的作用是相互的,认识力能使物体发生形变或使物体运动状态发生改变.\n2.知道力的三要素,会画力的图示和力的示意图.\n3.知道重力的方向以及重力的大小与物体质量的关系.\n4.知道物体重心的含义.\n5.知道重力产生的原因及其定义.\n6.了解四种基本相互作用.\n过程与方法\n1.知道人类认识力的作用是从力的作用产生的效果开始的.\n2.能通过探究活动体验力的作用效果与力的大小、方向、作用点三个因素有关.\n3.能通过多个实验现象归纳得出力的作用是相互的.\n4.自己动手,找不规则薄板重心的实验锻炼自己的动手能力.\n5.通过\"重心\"概念的引入渗透\"等效代换\"的物理学方法.\n情感态度与价值观\n1.通过实例激发学生对科学的求知欲、激励探索与创新的意识.\n2.通过实验,培养学生的团结协作精神.\n3.通过本节课的学习,培养全面观察分析问题的能力.\n教学重点\n1.力的概念、图示以及力的作用效果.\n2.重力的概念及重心的理解.\n教学难点\n1.力的概念.\n2.重心的概念和位置.\n教具准备\n多媒体课件,长方形木块,锯条,橡皮条,已知质量的钩码,重垂线,铅笔,刻度尺,质量均匀的金属板等.\n课时安排\n2课时\n教学过程\n[新课导入]\n【多媒体投影】\n播放\"运动员踢球、守门员接球、运动员用头顶球、人推物体(但没有推动)、火箭发射、压缩海绵\"等录像资料.\n学生观察讨论,引发学生的兴趣.\n通过以上的观看,大家可以总结出这几个物体的共同点吗?\n[新课教学]\n一、力和力的图示\n【演示实验】\n演示用手压锯条、拉橡皮条等等,提出问题.\n师:类似这些你还能举出哪些生活实例?\n生:类似这样的例子很多,比如小树在大风的作用下的弯曲,直尺在力的作用下的弯曲,绳子在力的作用下的扭转,弹簧对压缩它的物体的力的作用.\n师:所有这些现象说明了什么?\n生:要使物体形状发生变化,要对", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-7800a94b22b30e0571ef18b9d471090f", "__created_at__": 1754902050, "content": "等等,提出问题.\n师:类似这些你还能举出哪些生活实例?\n生:类似这样的例子很多,比如小树在大风的作用下的弯曲,直尺在力的作用下的弯曲,绳子在力的作用下的扭转,弹簧对压缩它的物体的力的作用.\n师:所有这些现象说明了什么?\n生:要使物体形状发生变化,要对它施加力的作用.\n师:物体形状或体积的变化称为形变,从刚才几个例子我们可以得到什么样的结论?\n生:力是使物体产生形变的原因.\n师:这是力的作用效果之一,除了这样一种作用效果之外,力还有什么样的作用效果呢?试举例说明.\n生1:用力推箱子,可以发现箱子开始运动了,说明是力使物体从静止变为运动了.可见力可以使物体从静止变为运动.\n生2:汽车停下来,首先要刹车,可见要使物体从运动变为静止,需要力的作用.\n生3:飞行在空中的足球,当一个运动员用头顶一下,发现足球的运动方向发生了变化,可见运动方向的变化需要力的作用.\n师:刚才几个同学举例非常好,物体速度的变化称为物体运动状态的变化,那么我们能不能把上述几位同学的话总结成一句话呢?\n生:力是物体运动状态发生变化的原因.\n师:结合上面的分析,再加上我们初中所学的知识,大家给力下一个定义.\n生:力是物体间的相互作用,力是物体运动状态变化的原因,力是物体发生形变的原因.\n师:当我们向东拉一个物体和向南拉一个物体时,同样大小的力产生的作用效果一样吗?\n生:不一样.\n师:所以力是既有大小又有方向的物理量,这样的物理量叫什么?以前我们所学的哪几个物理量和力具有相同的情况?\n生:这样既有大小又有方向的物理量称为矢量,我们在以前的学习中位移、速度、加速度都是矢量.\n师:物理量都有自己的单位,力的单位是什么呢?\n生:力的单位是牛顿,简称牛,符号是N.\n师:要想测量力的大小,我们可以用什么工具呢?\n生:可以用测力计(弹簧秤).\n师:要具体描述作用在物体上的一个力,我们可以采用什么样的方法?\n生:可以用力的图示的方法.\n师:要想画力的图示,需要了解哪几个问题?\n生:力的三要素:大小、方向和作用点.\n师:下面我们就进行一下力的图示的练习.\n(多媒体投影例题)\n【参考例题】\n如图3-1-1所示,绳对物体竖直向上的拉力大小为150\nN,用力的图示法表示拉力.\n{width=\"1.4569444444444444in\"\n图3-1-1\n解析:画力的图示要严格按照以下步骤进行:\n(1)选定标度.\n(2)从作用点沿力的方向画一线段,线段长短按选定的标度和力的大小画.线段上加刻度,如图甲所示从*O*点竖直向上画一段3倍于标度的线段;\n(3)在线段终点上加箭头表示力的方向.为了简便也可以照图乙那样不画物体,而用质点来表示物体,画出力*F*的图示.\n学生活动:做例题中物体受力的图示,教师巡回指导,帮助水平较差的学生,把做得好的同学的图示用实物投影投到大屏幕上,和学生自己做的进行比较,也可以让同位之间互换进行检查,找出对方的缺点,锻炼学生发现错误的能力.\n用悬挂法确定薄板的重心\n这是一种老师们比较熟悉的方法.演示时可以增加重心在物体之外的情况.例如,如图3-1-2所示的薄板,在用悬挂法确定了物体的重心之后,在板上固定一条细线*ab*,再在其重心*c*处拴上细线提拉,可使薄板水平平衡.\n{width=\"2.8in\"\n图3-1-2\n生:可以用悬挂的方法来确定这块薄木板的重心位置.\n师:实验的原理是什么呢?\n生:根据物体的拉力和物体的重力平衡,拉力的方向一定是竖直向上,绳子的反向延长线一定通过重心的位置,我们可以改变薄木板的悬挂点,用两条直线的交", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-69524896d52393fc017e8d008782a758", "__created_at__": 1754902050, "content": ".8in\"\n图3-1-2\n生:可以用悬挂的方法来确定这块薄木板的重心位置.\n师:实验的原理是什么呢?\n生:根据物体的拉力和物体的重力平衡,拉力的方向一定是竖直向上,绳子的反向延长线一定通过重心的位置,我们可以改变薄木板的悬挂点,用两条直线的交点来确定薄木板的重心.\n师:很好,根据自己的实验方案,大家分组进行实验,同时,也可以选择其他的物体想办法测出他们的重心,例如我们的直尺、三角板、物理课本、橡皮等等.\n师:除了重力之外,自然界还有很多力的作用,它们的类别很多,根据不同的分类方法有很多方法,这些相互作用都是由四种基本相互作用演变而来,下面我们来看一下这四种基本相互作用.\n三、四种基本相互作用\n(学生自己阅读教材第56页四种基本相互作用)\n师:它们的基本特点是什么?\n生:万有引力相互作用存在于一切物体之间,相互作用的强度随距离的增大而减小;电磁相互作用是存在于电荷之间和磁体之间,它们的本质是相同的,称之为电磁相互作用;强相互作用和弱相互作用存在范围很小,它们的作用范围只有10^-15^\nm,但是弱相互作用的强度只有强相互作用的10^-12^.\n[小结]\n力的概念在初中已经有所接触,但是它的理解仍然是一个难点,关键是在于力是物体间的相互作用这一问题上,并且两个力地位是相同的.重力是在初中已经学习过的一个概念,对它的理解主要应该放在重心的研究上,知道不同情况下物体重心的位置.自然界四种基本相互作用是新教材新增的内容,对它的理解不必太深,了解这方面的知识,为将来发展打下基础.\n[布置作业]\n教材第57页问题与练习.\n板书设计\n1 重力 基本相互作用\n------------------------ ---------------- --------------------------\n一、力和力的图示 二、重力 三、四种基本相互作用\n1.力的定义 1.大小*G*=*mg* 1.万有引力\n2.力的单位 2.方向 2.电磁相互作用\n3.力的图示和力的示意图 3.重心 3.强相互作用和弱相互作用\n------------------------ ---------------- --------------------------\n反思:\n本节重点是注重理解力是物体间的相互作用。\n2 弹力\n三维目标\n知识与技能\n1.知道什么是弹力以及弹力产生的条件.\n2.知道压力、支持力、绳的拉力都是弹力,能在力的示意图中正确画出力的方向.\n3.知道弹力大小的决定因素及胡克定律.\n过程与方法\n通过探究弹力的存在,使学生体会假设推理法及微量放大法解决问题的巧妙.\n情感态度与价值观\n观察和了解形变的有趣现象,感受自然界的奥秘,培养对科学的好奇心和求知欲.\n教学重点\n弹力产生的条件及弹力方向的判定,胡克定律的内容及应用.\n教学难点\n接触的物体是否发生形变及弹力方向的确定.\n课时安排\n1课时\n课前准备\n各种弹簧、橡皮筋(泥)、钢尺、细钢丝、微小形变演示、多媒体课件\n教学过程\n导入新课\n情景导入\n(课件展示)多媒体播放拉弓射箭、蹦极、跳水等情景:\n{width=\"0.9833333333333333in\"\nheight=\"1.179861111111111in\"} {width=\"1.0833333333333333in\"\nheight=\"1.2097222222222221in\"} {width=\"1.070138888888889in\"\n射箭 蹦极 水\n图3-2-1\n让学生试着回答以上动作的完成有什么共同特点.\n结论:都离不开物体的弹性作用.\n弹性物体对作用对象的作用我们称之为弹力,本节课我们就来研究弹力产生的条件及其方向的判定等系列问题.\n感知导入\n学生分成几个小组,每组分发一根细铁丝.让大家自己动手制作成一个小弹簧,然后轻轻地拉一拉或者压一压,并说出自己的感受.\n总结", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-85e26b36c438986015d822a9ee25f536", "__created_at__": 1754902050, "content": ":都离不开物体的弹性作用.\n弹性物体对作用对象的作用我们称之为弹力,本节课我们就来研究弹力产生的条件及其方向的判定等系列问题.\n感知导入\n学生分成几个小组,每组分发一根细铁丝.让大家自己动手制作成一个小弹簧,然后轻轻地拉一拉或者压一压,并说出自己的感受.\n总结:当手拉或压弹簧时,都要给弹簧一个力的作用,也就是说手都要受到弹簧的力的作用.\n那么,这又是什么力呢?它是怎样产生的呢?它的大小、方向各如何呢?\n推进新课\n一、弹性形变和弹力\n实验演示1:\n压缩弹簧、海绵,用手弯曲竹片,我们能明显地观察到什么现象?\n结论:看到形状或体积改变,我们就把物体形状或体积的变化叫做形变.\n讨论交流:物体的形变有两种情况:一种是物体在形变后能够恢复原状,这种形变叫做弹性形变,如弹簧的形变、竹片的形变等;另一种是物体在形变后,撤去外力物体也不能够恢复原状的形变,这种形变叫做非弹性形变.\n形变的种类有:\n1.纵向形变:杆的两端受到压力或拉力时,长度发生改变;\n2.体积形变:物体体积大小的改变;\n3.切变:物体两相对的表面受到在表面内的(切向)力偶作用时,两表面发生相对位移,称为切变;\n4.扭转:一圆柱状物体,两端各受方向相反的力矩作用而扭转,称扭转形变;\n5.弯曲:两端固定的钢筋,因负荷而弯曲,称弯曲形变.\n【实验探究】\n怎么才能够使物体发生形变呢?(分组合作进行实验探究、讨论,不难得出结论)\n结论:物体间相互接触并相互挤压.\n学生实验:鼓励大家自己使劲拉课下制作好的小弹簧,拉到再不能伸长为止.\n现象:弹簧被拉直后不能恢复原长.\n结论:如果形变过大,超过一定的限度,撤去外力作用后,物体就不能完全恢复原来的形状,这个限度叫做弹性限度.\n弹性限度微观解释(设计意图:教师引导提高的过程)\n问题设置:发生弹性形变的物体有什么用途呢?\n引导学生举出弯弓射箭、撑杆起跳、拍打篮球、击打网球等例子.\n师生交流讨论以上例子的本质.\n结论:发生弹性形变的物体由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力.\n问题设置:任何物体都能发生形变吗?\n此时教师可以在桌子上放一本书,借此提问桌子会发生形变吗?\n(学生可能回答不发生形变)\n二、几种弹力\n事实上,只要两个相互接触的物体相互挤压,就一定能产生弹力的作用.可见,弹力的产生需两个条件:直接接触并发生形变.\n常见的弹力除了以上讲到的外,还有支持力和拉力等.\n弹力的方向:一般情况下,凡是支持物对物体的支持力,都是支持物因发生形变而对物体产生弹力,所以支持力的方向总是垂直于支持面而指向被支持的物体.\n教师精讲:放在水平桌面上的书,由于重力的作用而压迫桌面,使书和桌面同时发生微小形变,书要恢复原状,对桌面产生垂直于桌面向下的弹力F~1~,这就是书对桌面的压力;桌面由于发生微小的形变,对书产生垂直于书面向上的弹力F~2~,这就是桌面对书的支持力.如图3-2-3.\n{width=\"0.9in\"\nheight=\"0.7201388888888889in\"} {width=\"0.9in\"\n图3-2-3 图3-2-4\n学生活动:静止地放在倾斜木板上的书,书对木板有压力,木板对书有支持力.指导学生并画出力的示意图.如图3-2-4.\n结论:压力、支持力都是弹力.压力的方向总是垂直于支持面而指向被压的物体,支持力的方向总是垂直于支持面而指向被支持的", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-3c04abd40bbfa1d018ceb39eae2775f6", "__created_at__": 1754902050, "content": "学生活动:静止地放在倾斜木板上的书,书对木板有压力,木板对书有支持力.指导学生并画出力的示意图.如图3-2-4.\n结论:压力、支持力都是弹力.压力的方向总是垂直于支持面而指向被压的物体,支持力的方向总是垂直于支持面而指向被支持的物体.\n引导得出:悬挂物由于重力的作用而拉紧悬绳,使重物、悬绳同时发生微小的形变.重物由于发生微小的形变,对悬绳产生竖直向下的弹力F~1~,这是物对绳的拉力;悬绳由于发生微小形变,对物产生竖直向上的弹力F~2~,这就是绳对物体的拉力.\n结论:拉力是弹力,方向总是沿着绳而指向绳收缩的方向.\n三、胡克定律\n参考实验案例\n{width=\"1.0569444444444445in\"\n图3-2-7\n如图3-2-7所示,用悬挂钩码的方法给弹簧施加拉力,系统静止时,弹簧的弹力等于所悬挂钩码的总重;弹簧的长度及伸长量可由刻度尺测出.\n注意事项\n1.本实验要求定量测量,因此要尽可能减小实验误差.标尺要竖直且紧靠指针以减小读数带来的误差,每次改变悬挂钩码个数后,要待系统稳定后再读数.\n2.实验中所提供的米尺精确度为1 mm,应估读一位.\n3.弹簧组的说明书已说明每个弹簧的弹性限度,注意不要超过它的弹性限度使用.\n说明:不同材料的弹簧劲度系数是不一样的,同一种材料的弹簧形状和长度不相同时,\n课堂小结\n在弹力的教学过程中,有这样几个难点需要突破,一是任何相接触的物体间都可能有弹力,弹力的产生条件是接触并且有形变,但是有些物体的形变量很小,不容易观察到,就会使学生产生这样的疑问:这种情况下弹力到底有没有?例如物体放在桌面上,压力和支持力不通过形变来进行判断,解决这个问题的方法是微小形变的演示,通过演示,使学生确信任何两个接触的物体间都可以有弹力.另外一个难点是弹力有无的判断,解决这个问题可以用假设判断的方法,不仅让学生知道判断的方法,更应该让学生学会这些方法的迁移,例如假设的判断方法,也可以用到摩擦力有无的判断中去.一般弹力大小的判断要根据物体的实际情况判断,而弹簧弹力的判断可以根据胡克定律进行判断,让学生通过实验\"发现\"胡克定律,在发现中锻炼探究物理规律的能力.\n布置作业\n1.教材第56页\"问题与练习\"2、3、4题.\n2.实验测量不同弹簧的劲度系数,给出原始数据,写出处理数据的过程.\n板书设计\n2 弹力\n1.弹性形变和弹力\n弹性形变:在外力停止作用后,能够恢复原状的形变.\n非弹性形变:在外力停止作用后,不能恢复原状的形变.\n弹力:发生形变的物体,由于要恢复原状,会对跟它接触的物体产生力的作用,这种力叫弹力.\n弹力产生的条件:①物体间直接接触;②物体发生弹性形变.\n2.几种弹力\n支持力、拉力\n3.胡克定律\n胡克定律:在弹性限度内,弹性体的弹力和弹性体伸长(或缩短)的长度成正比,即\nF=kx,其中k是劲度系数,单位N/m.\n反思:\n教学中要通过一些典型实例主让学生理解弹力产生和有无的判断方法。\n3.3摩擦力\n1. 教学目标\n知识与技能\n1.知道什么是静摩擦力、最大静摩擦力、滑动摩擦力.\n2.能计算静摩擦力、滑动摩擦力的大小并会判断它们的方向.\n过程与方法\n1.学生通过设计实验,并使用控制变量法对影响滑动摩擦力和静摩擦力大小的因素进行实验探究.\n2.培养学生的逻辑思维能力,培养学生利用知识解决实际问题的能力.\n情感态度与价值观\n通过静摩擦力的探究过程,培养学生科学的思想方法.\n2. 教学重点\n1.滑动", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-7fb312e6ed99343caf828916ee337868", "__created_at__": 1754902050, "content": "并会判断它们的方向.\n过程与方法\n1.学生通过设计实验,并使用控制变量法对影响滑动摩擦力和静摩擦力大小的因素进行实验探究.\n2.培养学生的逻辑思维能力,培养学生利用知识解决实际问题的能力.\n情感态度与价值观\n通过静摩擦力的探究过程,培养学生科学的思想方法.\n2. 教学重点\n1.滑动摩擦力的大小及方向的判断.\n2.静摩擦力的有无及方向的判断.\n3.静摩擦力产生的条件及规律.\n3. 教学难点\n1.静摩擦力有无的判断和方向的判断.\n2.静摩擦力大小的计算.\n4. 教学过程\n活动导入\n准备两只碗,分别放入数量较多的玻璃小球,一只碗内是光滑干净的,另一只碗内是粘有灰尘的.请两个同学把玻璃球从碗中用筷子夹出来,比赛看谁夹得快.然后让两位同学分别说出自己的感想,从而引出摩擦力的问题.\n\nheight=\"0.8694444444444445in\"} 情景导入\n(课件展示)播放运动员滑雪的录像,如图,让学生说出滑雪要求的环境条件,然后导出摩擦力的概念.\n问题导入\n粉笔在黑板上可以写出字来,在玻璃上写得出来吗?试试看.想想若在外面的柏油路面上用粉笔写字又会有何不同?为什么?你认为摩擦力是一种什么样的力?\n让学生用自己的语言叙述摩擦力.\n推进新课\n学生在初中阶段已经学习过摩擦力,通过直接提问使学生回忆并叙述摩擦力的概念.\n概念:两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,就会在接触面上产生阻碍相对运动或相对运动趋势的力,这种力叫做摩擦力.本节课就来深入研究摩擦力.\n请学生做个小实验:要求学生用逐渐增大的水平力推动在教室中放置的桌子,直到推动一段距离.(设计意图:让学生体会并分析出桌子受到推力和摩擦力的作用,使学生产生对静摩擦力和滑动摩擦力的感性认识)\n学生活动:学生按老师要求推桌子,并感受推力大小变化.\n问题:为什么用力推桌子而桌子不一定运动?为什么想让桌子继续运动还要继续推?\n初步引出对静摩擦力和滑动摩擦力的感性认识.\n一、静摩擦力\n由用力推桌子而不动,师生讨论引导出静摩擦力的概念:两个相互接触的物体之间有相对运动趋势而又保持相对静止时,在接触面间所产生的阻碍相对运动趋势的力叫静摩擦力.\n问题:静摩擦力是一恒定的力吗?怎样求静摩擦力的大小?怎样判断静摩擦力的方向?\n【实验探究】\n在水平桌面上放一木块,用弹簧测力计沿水平方向用较小的力拉木块但保持木块不动,并不断缓慢地增大拉力.注意提示学生观察弹簧秤的示数变化.\n实验如图3-3-2:\n{width=\"2.4in\"\n图3-3-2\n实验现象:我们可以看到随着拉力的增大,弹簧秤的示数不断增大.\n结论:由二力平衡的知识可以知道,木块受到的静摩擦力大小等于弹簧秤的拉力,方向和拉力的方向相反.所以静摩擦力不是一固定值,它随外力的变化而变化,总是和外力大小相等、方向相反.\n继续试验:在弹簧测力计指针下轻塞一个小纸团,它可以随指针移动,并作为指针到达最大位置的标志.在刚才实验的基础上继续用力,当拉力达到一定的值时木块开始移动,此时拉力会突然变小.要求学生记下刚才的最大值.\n结论:静摩擦力的增大有一个限度,这个限度就是最大静摩擦力F~max~,其值等于物体刚刚开始运动时的拉力.两物体间实际发生的静摩擦力F在0与最大静摩擦力F~max~之间.\n问题:最大静摩擦力的大小和什么因素有关呢?(教师提出问题,由学生自主设计实验验证最大静摩擦力大小的决定因素)\n学生活动:学生设计", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-4a9a9f78c6fba949c26021bd079f0f38", "__created_at__": 1754902050, "content": "一个限度,这个限度就是最大静摩擦力F~max~,其值等于物体刚刚开始运动时的拉力.两物体间实际发生的静摩擦力F在0与最大静摩擦力F~max~之间.\n问题:最大静摩擦力的大小和什么因素有关呢?(教师提出问题,由学生自主设计实验验证最大静摩擦力大小的决定因素)\n学生活动:学生设计实验并探究,整理分析实验数据.\n参考设计:\n1.装置如上面的实验,在木块上面增加砝码,验证在不同的压力作用下的最大静摩擦力的大小;保持压力不变,分别在桌面上、棉布面上、毛巾面上验证最大静摩擦力的值.\n2.用手握一油瓶,手的握力恰好使得油瓶不下落,此时最大静摩擦力等于瓶的重力.不断增加瓶中的油,要想瓶恰不滑落,应该增加手的握力即压力,由此判断最大静摩擦力和压力的关系.换用不同粗糙程度的瓶子做实验,验证最大静摩擦力和接触面的粗糙程度的关系.\n活动:学生交流讨论并得出结论:\n1.静摩擦力大小值并不唯一;\n2.最大静摩擦力与压力和接触面有关系.\n二、滑动摩擦力\n概念:当一个物体在另一个物体表面上滑动的时候,会受到另一个物体阻碍它滑动的力,这种力叫做滑动摩擦力.滑动摩擦力的方向总是沿着接触面,并且跟物体的相对运动方向相反.(可以通过复习回忆得出,或者通过演示实验总结得出,也可以直接给出)\n小结:滑动摩擦力的计算公式f=μN.(设计意图:训练学生语言表达及逻辑推理能力)\n介绍动摩擦因数的物理意义及常见材料间的动摩擦因数.\n例题.滑雪是北方地区人们喜爱的一种运动.有的地方人们用鹿拉滑雪板进行滑雪比赛.已知滑雪板与冰面间的动摩擦因数为0.02,滑雪板和人的总质量为180\nkg.如果鹿拉着滑雪板做匀速直线运动,求鹿的拉力大小.\n解析:由于滑雪板做匀速直线运动,可知鹿的拉力F与滑动摩擦力的大小相等,即F=f.同时,滑雪板与冰面的压力N与滑雪板和人的重力相等,即N=G.\n由滑动摩擦力公式,可求出鹿的拉力大小为\nF=f=μN=μMg=0.02×180×9.8 N=35.3 N.\n知识拓展\n增大有益摩擦:\n1.增加物体表面的粗糙程度.如:鞋底、车轮胎、各种旋钮表面都有花纹.\n2.增大压力.如:电动机的皮带拉得很紧,以便增大压力来增大摩擦力,防止皮带打滑.\n减小有害摩擦:\n1.用滚动摩擦代替滑动摩擦:用滚动轴承代替滑动轴承.\n2.减小表面粗糙程度:加润滑油.\n5. 课堂小结\n6. 板书设计\n1.两个互相接触的物体,当它们要发生或已经发生相对运动时,在接触面上产生一种阻碍物体间相对运动的力,叫摩擦力.\n+----------+-------------------+-------------------+---------------+\n| | 静摩擦力 | 滑动摩擦力 | 符号及单位 |\n+----------+-------------------+-------------------+---------------+\n| 产生原因 | 表面粗糙有挤 | 表面粗糙 | 摩擦力用f表示 |\n| | 压作用的物体间具 | 有挤压作用的物体 | |\n| | 有相对运动趋势时 | 间发生相对运动时 | 单位:牛顿 |\n| | | | |\n| | | | 简称:牛 |\n| | | | |\n| | | | 符号:N |\n+----------+-------------------+-------------------+---------------+\n| 大小 | 始终与外力沿着 | f=μN | |\n| | 接触面的分量相等 | | |\n+----------+-------------------+-------------------+---------------+\n| 方向 | 与 | 与 | |\n| | 相对运动趋势相反 | 相对运动方向相反 | |\n+----------+-------------------+-------------------+---------------+\n2.摩擦力的大小与压力大小有关,跟物体间接触面的粗糙程度有关.\n常用增大压力和使接触面更粗糙的方法增大有益摩擦.减小有害摩擦的方法有:使摩擦面光滑,用滚动代替滑动", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-09b4500b17926a0a5eb6dcf503f6a480", "__created_at__": 1754902050, "content": "| 相对运动趋势相反 | 相对运动方向相反 | |\n+----------+-------------------+-------------------+---------------+\n2.摩擦力的大小与压力大小有关,跟物体间接触面的粗糙程度有关.\n常用增大压力和使接触面更粗糙的方法增大有益摩擦.减小有害摩擦的方法有:使摩擦面光滑,用滚动代替滑动,使摩擦面脱离接触(加润滑油、气垫)这三种方法.\n反思:\n摩擦力方向的判断是本节的难点,需通过实例或实验进行教学。\n3.4力的合成\n教学目标\n知识与技能\n1.理解合力、分力、力的合成、共点力的概念.\n2.理解力的合成本质上是从作用效果相等的角度进行力的相互替代.\n3.会用力的合成的平行四边形定则进行力的合成.\n过程与方法\n1.培养学生的实验能力,理解问题的能力,应用数学知识解决物理问题的能力;\n2.进行科学态度和科学方法教育,了解研究自然规律的科学方法,培养探求知识的能力;\n3.树立等效观点,形成等效思想,这是非常重要的处理问题的思想.\n情感态度与价值观\n1.培养学生善于交流的合作精神,在交流合作中发展能力,并形成良好的学习习惯和学习方法.\n2.通过力的等效替代,使学生领略跨学科知识结合的奇妙,同时领会科学探究中严谨、务实的精神和态度.\n3.让学生积极参与课堂活动,设疑、解疑、探求规律,使学生始终处于积极探求知识的过程中,达到最佳的学习心理状态.\n7. 教学重点\n1.运用平行四边形定则求合力.\n2.合力与分力的关系.\n8. 教学难点\n运用等效替代思想理解合力概念是难点.\n9. 教学过程\n实验导入\n两个女同学把一桶水抬到讲桌上,然后再让一个男同学自己把水提到讲桌上.\n在这个实验中两个女同学对水桶的作用效果和一个男同学的作用效果相同.\n推进新课\n一、力的合成\n一个力与几个力产生了同样的效果,可以用这一个力代替那几个力,这一个力是那几个力的合力,那几个力是这一个力的分力.\n当一个物体受到几个力共同作用时,我们常常可以求出这样一个力,这个力的作用效果跟原来几个力的作用效果相同,这个力就叫做那几个力的合力.求几个力的合力的过程叫做力的合成.下面我们来探究一下求几个力的合力的方法.\n演示1:两个弹簧秤互成角度地悬挂一个钩码,拉力分别为F~1~和F~2~;再用一个弹簧秤悬挂同一个钩码,拉力为F.\n分析:F~1~和F~2~共同产生的效果与力F产生的效果是相同的,即均使钩码处于静止状态.由于力F产生的效果与力F~1~和F~2~共同作用产生的效果相同,力F就叫做力F~1~和F~2~的合力.这种等效代替的方法是物理学中常用的方法.\n问题:互成角度的两个力的合力与分力的大小、方向是否有关?如果有关,又有什么样的关系?\n我们通过实验来研究这个问题.\n实验设计:一根橡皮条,使其伸长一定的长度,可以用一个力F作用,也可以用2个力F~1~和F~2~同时作用.如能想办法确定F~1~和F~2~以及F的大小和方向,就可知F与F~1~和F~2~间的关系.\n实验:将白纸钉在方木板上,用图钉固定一橡皮筋,用两只弹簧秤同时用力互成角度地沿规定方向拉橡皮筋,使橡皮筋的另一端伸长到O点,记下此时两弹簧秤的示数,这就是分力的大小,再用一只弹簧秤通过细绳套也把橡皮筋拉到位置O,弹簧秤的读数就是合力的大小,细绳的方向就是合力的方向.用力的图示作出这3个力观察找出3个力之间的关系\n演示3:以OA、OB为邻边作平行四边形OACB,画平行四边形的对角线,发现对角线与合力很接近.\n问题:由此看来,求互成角度的两个力的合力,不是简单地将两个力相加减.那么互成角度的两个力F~1~和F~2~的合力的大小和方向是不是可以用以F~1~和F~2~的有", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-50c1762a9181a4696543e8cab5fa7a58", "__created_at__": 1754902050, "content": "边作平行四边形OACB,画平行四边形的对角线,发现对角线与合力很接近.\n问题:由此看来,求互成角度的两个力的合力,不是简单地将两个力相加减.那么互成角度的两个力F~1~和F~2~的合力的大小和方向是不是可以用以F~1~和F~2~的有向线段为邻边所作的平行四边形的对角线来表示呢?下面请同学根据自己的实验数据来验证.\n{width=\"1.3736111111111111in\"\n图3-4-2\n结论:总结平行四边形定则:求互成角度的两个力的合力,可以用表示两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,这就是平行四边形定则.如图3-4-2.\n问题:合力F与F~1~和F~2~的夹角有什么关系?\n如果两个分力的大小分别为F~1~、F~2~,两个分力之间的夹角为θ,当θ=0°时,它们的合力等于多少?当θ=180°时,它们的合力又等于多少?\n平行四边形定则的具体应用方法有两种:\n1.图解法\n(1)两个共点力的合成:从力的作用点作两个共点力的图示,然后以F~1~、F~2~为边作平行四边形,对角线的长度即为合力的大小,对角线的方向即为合力的方向.\n用直尺量出对角线的长度,依据力的标度折算出合力的大小,用量角器量出合力与其中一个力之间的夹角θ.\n如图3-4-3所示.\n{width=\"1.5166666666666666in\"\n图3-4-3\n图3-4-3中F~1~=50 N,F~2~=40 N,合力F=80 N.\n(2)两个以上力的合成:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到所有的力都合成进去,最后得到的结果就是这些力的合力.\n2.计算法\n先依据平行四边形定则画出力的平行四边形,然后依据数学公式(如余弦定理)算出对角线所表示的合力的大小和方向.\n{width=\"0.9736111111111111in\"\n图3-4-4\n当两个力互相垂直时,如图3-4-4有:\nF=\ntanθ=F~2~/F~1~.\n例1教材例题\n例2如图3-4-5所示,一个木块放在水平桌面上,在水平方向共受到三个力即F~1~、F~2~和静摩擦力作用,而且三个力的合力为零,其中F~1~=10\nN,F~2~=2 N.若撤去力F~1~,则木块在水平方向受到的合力为多少?\n{width=\"1.1534722222222222in\"\n图3-4-5\n解析:F~1~和F~2~的合力F~12~=F~1~-F~2~=8\nN,方向向右,又因物体受三力作用且合力为零,故静摩擦力f=8 N,方向向左.\n若撤去力F~1~,则木块受F~2~作用而有向左运动的趋势,此时物体受到的静摩擦力为2\nN,方向向右,木块仍保持静止状态,木块在水平方向受到的合力为零.\n答案:0\n合力大小的范围:\n运用合力与分力关系模拟演示器,让两个力F~1~和F~2~之间的夹角θ由0°→180°变化,可以得到:\n(1)合力F随θ的增大而减小.\n(2)当θ=0°时,F有最大值F~max~=F~1~+F~2~,当θ=180°时,F有最小", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-04456c85814b5a9d97a1d4fc5a6a2a56", "__created_at__": 1754902050, "content": "合力大小的范围:\n运用合力与分力关系模拟演示器,让两个力F~1~和F~2~之间的夹角θ由0°→180°变化,可以得到:\n(1)合力F随θ的增大而减小.\n(2)当θ=0°时,F有最大值F~max~=F~1~+F~2~,当θ=180°时,F有最小值F~min~=F~1~-F~2~.\n(3)合力F既可以大于,也可以等于或小于原来的任意一个分力.\n一般地/|F~1~-F~2~/|≤F≤F~1~+F~2~\n问题:如何求多个力的合力?\n引导学生分析:任何两个共点力均可以用平行四边形定则求出其合力,因此对多个共点力的合成,我们可以先求出任意两个力的合力,再求这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力.\n3.矢量和标量\n问题:我们学过许多物理量,如:长度、质量、时间、能量、温度、力、速度等.这些物理量有什么异同?\n引导学生分析:力、速度是既有大小又有方向的物理量,而质量、时间、能量、长度等物理量只有大小,没有方向,前者叫矢量,后者叫标量,矢量的合成遵守平行四边形定则.\n二、共点力\n学生自学课本上有关共点力的知识,教师提示学生在阅读的时候注意这样几个问题:\n1.什么样的力是共点力?\n2.你认为掌握共点力概念时应该注意什么问题?\n3.力的合成的平行四边形定则有没有适用条件,如果有,适用条件是什么?\n注:这一部分知识相对简单,可以通过学生自学,锻炼学生的阅读能力和自学能力.\n课堂小结\n学生习惯于代数运算,产生定势思维,所以对矢量运算特别不习惯,不易接受.因此在作用效果相同的基础上理解合力与分力的关系,理解平行四边形定则,是难点.平行四边形定则的探索是应用的重点.\n板书设计\n4 力的合成\n1.合力:一个力与几个力产生了同样的效果,可以用这一个力代替那几个力,这一个力\n是那几个力的合力,那几个力是这一个力的分力.\n2.力的合成:求几个力的合力的过程叫做力的合成.\n(1)平行四边形定则:求互成角度的两个力的合力,可以用表示两个力的有向线段为邻\n边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,这就是平行四边\n形定则.\n(2)合力F与F~1~及F~2~的夹角的关系:\n①合力F随θ的增大而减小.\n②当θ=0°时,F有最大值F~max~=F~1~+F~2~,当θ=180°时,F有最小值F~min~=F~1~-F~2~\n③合力F既可以大于,也可以等于或小于原来的任意一个分力.\n一般地/|F~1~-F~2~/|≤F≤F~1~+F~2~.\n(3)多个力的合成:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直\n到所有的力都合成进去,最后得到的结果就是这些力的合力.\n3.矢量和标量\n4.共点力\n反思:\n为让学生习惯矢量运算,教学中,无论从课堂讲解,还是实验的设计操作、习题练习、课后作业等,都应围绕平行四边形定则展开.\n5 力的分解\n三维目标\n知识与技能\n1.了解分力的概念,清楚分解是合成的逆运算.\n2.用平行四边形定则作图并计算.\n3.了解力的分解具有唯一性的条件.\n4.能应用力的分解分析生产生活中的问题.\n过程与方法\n1.强化\"等效替代\"的思想.\n2.掌握根据力的效果进行分解的方法.\n情感态度与价值观\n1.激发学生参与课堂活动的热情.\n2.培养学生将所学知识应用于生产实践的意识和勇气.\n教学重点\n1.理解力的分解是力的合成的逆运算,利用平行四边形进行力的分解.\n2.如何判定力的作用效果及分力之间的确定.\n教学难点\n1.力的分解方法及矢量相加法则.\n2.力分解时如何判断力的作用效果及确定两分力的方向.\n时间安排\n1课时\n课", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-1f47a0d3595c931dc1b5284aeff77d34", "__created_at__": 1754902050, "content": "和勇气.\n教学重点\n1.理解力的分解是力的合成的逆运算,利用平行四边形进行力的分解.\n2.如何判定力的作用效果及分力之间的确定.\n教学难点\n1.力的分解方法及矢量相加法则.\n2.力分解时如何判断力的作用效果及确定两分力的方向.\n时间安排\n1课时\n课前准备\n多媒体课件、弹簧秤若干,细绳套、橡皮筋若干,图钉、白纸、长塑料板、铁块、能活动的木板等.\n教学过程\n导入新课\n情景导入\n观察一下生活中有哪些类似的情况,可以用一个力来代替多个力来达到同样的效果,想一下,为什么有时人们不用一个力去做而要用多个力来做呢?使用吊车的时候大家观察一下钓钩是不是用一根钢丝吊着?如图3-5-1.\n课件展示:\n{width=\"1.3902777777777777in\"\n图3-5-1\n根据图片可以看出,其实吊车的钓钩不是用一根钢丝吊着的,而是用几根钢丝共同吊着,这又是为什么呢?\n推进新课\n一、力的分解\n上一节课我们学习了力的合成,知道了什么是合力,什么是分力,什么是力的合成,及力的合成遵循的法则,下面我们来一起回顾一下这些内容.\n总结:如果原来几个力产生的效果跟一个力产生的效果相同,这个力就叫做那几个力的合力;那几个力就叫做这个力的分力,求几个力的合力叫做力的合成.\n下面回忆一下验证力的平行四边形定则的实验.\n我们知道不论有多少个共点力都可以用一个合力来等效替代,换句话说也就是:力的合成是唯一的.那么力的分解是否也是唯一的呢?\n【学生实验】\n不给学生任何限制,同学间可以自由组合,只要把橡皮绳的结点拉到O点即可.通过实验我们发现,可以用多组不同的力来达到同样的效果.\n也就是说力的合成是唯一的,但力的分解却不是唯一的.那么我们要如何分解一个力呢?\n如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形.为此,在分解某个力时,常可采用以下方式:按照力产生的实际效果进行分解------先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小.\n(放录像:牛耕地、人拉旅行箱等)\n{width=\"3.1798611111111112in\"\n图3-5-2\n问题:各段录像片有什么共同的物理现象?斜向上的拉力产生了什么样的效果?如何分解这个斜向上的拉力?\n例1放在水平面上的物体受一个斜向上方、与水平面成θ角的拉力F,这个力的作用效果如何?\n解析:方向确定,根据平行四边形定则,分解就是唯一的.\n如图3-5-3所示分解为F~1~=Fcosθ,F~2~=Fsinθ.力F有水平向前拉物体和竖直向上提物体的效果,那么F的两个分力就在水平方向和竖直方向上.\n{width=\"1.0263888888888888in\"\n图3-5-3\n讨论:当θ=0°时,F水平,只有向前拉的效果;当θ=90°时,F竖直,只有向上提的效果.θ越小,向上提的效果越小.\n例2物体放在倾角为θ的斜面上,物体受到的重力产生什么样的效果?\n解析:方向确定,根据平行四边形定则,分解就是唯一的.\n{width=\"0.9in\"\n图3-5-4\n如图3-5-4所示分解为G~1~=Gsinθ,G~2~=Gcosθ.在斜面上的人或物体受到竖直向下的重力作用,此重力产生了两个效果:一个是平行于斜面的方向向下的,使物体沿斜面下滑;另一个是在垂直于斜面的方向上,使物体紧压斜面(给学生强调这个", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-6553564647e7f774d57900b6ffde8638", "__created_at__": 1754902050, "content": "-4所示分解为G~1~=Gsinθ,G~2~=Gcosθ.在斜面上的人或物体受到竖直向下的重力作用,此重力产生了两个效果:一个是平行于斜面的方向向下的,使物体沿斜面下滑;另一个是在垂直于斜面的方向上,使物体紧压斜面(给学生强调这个力并不是物体对斜面的压力).\n应用\n1.公园的滑梯倾角为什么比较大呢?\n2.为什么高大的立交桥要建有很长的引桥?\n教师总结:θ越大G~1~就越大,滑梯上的人就较容易下滑.长长的引桥可以减小上坡的倾角,因为θ越大G~1~就越大.车辆上坡艰难而下坡又不安全.\n总结:1.求一个已知力的实际分力的方法步骤:\n(1)根据物体(结点)所处的状态分析力的作用效果;\n(2)根据力的作用效果,确定两个实际分力的方向;\n(3)根据两个分力的方向画出平行四边形;\n(4)由平行四边形利用几何知识求两个分力.\n2.力的分解的几种常见情形:\n(1)已知合力和两分力的方向.(类似于已知两角夹边可以确定三角形)\n(2)已知合力F和一个分力F~1~.(类似于已知两边夹角可以确定三角形)\n以上两种情形有唯一解.\n(3)已知合力F和一个分力F~1~的方向(F~1~与F的夹角为θ)及分力F~2~的大小.\n作图讨论:当F~2~=Fsinθ时有唯一解;当F~2~/<Fsinθ时无解;当Fsinθ/<F~2~/<F时有两组解;当F~2~/>F时有一组解.\n(4)已知合力和两分力的大小.(类似于已知三边可以确定三角形)\n学生作图讨论:当三力的大小满足任意两力之和大于第三个力,任意两力之差小于第三个力,有唯一解.\n二、矢量相加的法则\n问题:力是矢量,求两个力的合力时,能不能简单地把两个力的大小相加呢?\n教师可以引导学生实例讨论.\n结论:不能简单地把两个力的大小相加,而要按平行四边形定则来确定合力的大小和方向.凡是矢量在合成与分解时都要遵循平行四边形定则.\n根据平行四边形的性质推导出矢量合成的三角形法则.\n在求三个或三个以上的共点力的合力时,可采用矢量相加的三角形法则.如图3-5-8(a)所示,求F~1~、F~2~、F~3~、F~4~这四个共点力的合力,可不必用平行四边形定则将它们逐个合成,而是将表示这些力的矢量依次首尾相接,那么从第一个力矢量的始端到最后一个力矢量的末端的矢量就表示这几个共点力的合力.\n对同一直线上的矢量进行加减时,可沿着矢量所在直线选定一个正方向,规定凡是方向跟正方向相同的矢量都取正值,凡是方向跟正方向相反的矢量都取负值,这样便可将矢量运算简化为代数运算.矢量的正负仅表示矢量的方向,不表示矢量的大小.如-10\nN的力比5\nN的力大,而不能机械套用数学中正数一定大于负数的结论.不在同一直线上的矢量,则不能用正、负表示方向.\n{width=\"2.7368055555555557in\"\n图3-5-8\n课堂小结\n这节课主要学习了力的分解.力的分解从理论上按照平行四边形定则分解是无数组的,实际分解时一般是根据合力的作用效果操作的.要求同学掌握矢量的运算法则:平行四边形定则和三角形法则.\n布置作业\n1.教材第67页\"问题与练习\"1、2、3题.\n2.观察一下生活中哪些地方是用分解力的方法来工作的,这样做有什么好处.\n板书设计\n5 力的分解\n一、力的分解\n1.概念:求一个已知力的分力叫做力的分解\n2.力的分解的几种常见情形\n3.有唯一解的力的分解", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-d5f657a81172f8be92be7e582dda7395", "__created_at__": 1754902050, "content": "67页\"问题与练习\"1、2、3题.\n2.观察一下生活中哪些地方是用分解力的方法来工作的,这样做有什么好处.\n板书设计\n5 力的分解\n一、力的分解\n1.概念:求一个已知力的分力叫做力的分解\n2.力的分解的几种常见情形\n3.有唯一解的力的分解\n二、矢量的相加法则\n平行四边形定则\n三角形法则\n反思:\n力的分解是力的合成的逆运算,要使学生理解平行四边形定则既是力的合成规律也是力的分解规律.所不同的是已知两个分力求合力作出的平行四边形是唯一的,求出的合力也是唯一的;已知一个力求它的分力,如果不加以限制的话,作出的平行四边形有无数个,也就是说有无数组解,所以在对力进行分解时,要加上限制条件,通过例题的教学来说明如何根据一个力产生的实际作用效果和需要对力进行分解.本设计在教学中多举实例,分解和合成对比,说明如何根据一个力产生的实际效果来确定两个分力的方向.\n6、受力分析\n> 教学目标\n知识与技能\n1.知道重力、弹力和摩擦力三种性质力的大小和方向.\n2.掌握对一物体同时受多个力时如何正确地画出其受力分析图.\n过程与方法\n培养学生的逻辑思维能力,培养学生利用知识解决实际问题的能力.\n情感态度与价值观\n通过画受力图教学过程,培养学生科学的思想方法.\n> 教学重点\n正确对物体进行受力分析\n教学难点\n弹力的方向判断和防止增、漏力.\n> 教学过程\n>\n> 我们从初中到高中,学了不少的物理知识和规律,也做了不少的物理题,在做题时发现,如果能正确地对物体进行受力分析,采用数形结合,它将给我们解题带来方便,找到解题的捷经,能正确指导我们解题,因此正确地分析物体受力情况十分重要,那么怎样才能正确分析物体的受力呢?\n>\n> 这节学习物体的受力分析。\n>\n> 复习导入\n一、 三种性质力的特点:\n1、重力:\n(1)施力物体是地球,是由于地球的吸引而产生的\n(2)重力的大小:G = mg\n(3)方向:总是竖直向下\n2、弹力:\n(1)弹力有无的判断方法\n直接法:对于形变比较明显的情况,可根据力产生的条件来判断,即物体间相互接触并且发生弹性形变,两个条件必须同时满足才能有弹力产生。\n假设法:对于形变不明显的情况,可假设与研究对象相接触的物体不存在,看研究对象的运动状态是否改变,如果运动状态改变,则存在弹力,否则不存在弹力。\n(2)弹力大小的判断\n弹簧的弹力大小计算应用胡克定律\n非弹簧的弹力大小计算,与物体的形变程度有关,一般要借助于物体所遵循的物理规律求解。\n3、摩擦力\n(1)产生条件\n相互接触\n发生弹性形变\n接触面粗糙\n有相对运动的趋势或相对运动\n(2)大小\n静摩擦力的大小由物体的运动状态和受到的其他力决定 ,通常用二力玩意儿求解。\n滑动摩擦力用公式求解,其中要注意正压力不一定是物体所受物重力,且与物体的运动速度接触面积无关。\n(3)方向\n总是沿接触面,与相对运动方向或相对运动的趋势方向相反。\n二、物体的受力分析\n要研究物体的运动必须分析物体的受力情况,把指定物(研究对象)在物理情景中受到的作用力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析,物体受力分析的思路如下:\n1、确定受力分析的研究对象,可以是单个物体,也可以是多个物体的组合。\n2、按顺序进行受力分析:注意先重力,然后依次是弹力、摩擦力,最后是分析其他力。\n3、画出物体的受力示意图,注意各力的方向和作用点\n4、检查各力的施力物体,防止漏力和添力。(找直接接触的物体不找间接接触的物体)\n5.当物体受多个力时,作用点画在物体的重心上。\n三、受力分析的方法\n1.整体法:(把多个物体看成一个整体或系统)只画外力不画内力\n2.隔离体法:(单独将物体从系统中拿出来分析的方法。)\n注意:一般求外力采用整体法,求内力采用隔离体", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-e488d50ddd3a2181d6ec2f7710f0abb3", "__created_at__": 1754902050, "content": "找间接接触的物体)\n5.当物体受多个力时,作用点画在物体的重心上。\n三、受力分析的方法\n1.整体法:(把多个物体看成一个整体或系统)只画外力不画内力\n2.隔离体法:(单独将物体从系统中拿出来分析的方法。)\n注意:一般求外力采用整体法,求内力采用隔离体法\n四、例题分析\n五、 课堂小结\n反思:\n作受力示意图时要规范作图,方向务必正确,要防止作图的随意性。。\n7 共点力作用下物体的平衡\n> 1、知识与技能:\n>\n> (1)知道什么叫共点力作用下物体的平衡状态。\n>\n> (2)知道共点力作用下的物体的平衡条件。\n>\n> (3)掌握共点力的平衡条件并能处理平衡问题。\n>\n> 2、过程与方法:\n>\n> (1)通过 简单的物理现象,认识共点力和共点力下的物体的平衡状态。\n>\n> (2)能从简单的二力平衡设计实验,得出三力的平衡,总结推理得出共点力的平衡条件。\n>\n> (3)根据共点力的平衡条件对简单的现象进行分析。\n>\n> 3、情感态度价值观:\n>\n> 培养学生能从简单的问题出发,善于思考,从中发现规律性的知识的能力。认识生活中的平衡也是一种美。\n教学重点:掌握共点力的平衡条件并能处理平衡问题\n教学难点:物体的受力分析\n教学方法:讲练结合\n教学内容及过程:\n知识回顾\n1. 什么是共点力?\n2.物体在不受力的时候 ,它能保持什么状态?\n思考\n是不是物体 只有在不受力的时候 才保持静止或匀速直线运动呢 ?\n展示图片和事例。\n结论\n可见平衡是普遍的,并非物体只有在不受力的时候才保持静止或匀速直线运动状态,物体在共点力作用下也能处平衡.\n- 那么,什么才是共点力的平衡呢?共点力的平衡需要哪些条件呢?怎样应用共点力的平衡来解有关的物理问题呢?\n常见的几种平衡\n一、共点力作用下物体的平衡\n- 1.平衡状态\n- 物体处于静止或保持匀速直线运动的状态.\n- 2共点力的平衡\n- 物体如果受到共点力的作用且处于平衡状态.\n自我测验\n根据概念来判断下面的物体是否处于平衡状态:\n(1)静止在水平面上的木箱\n(2)平直马路上在牵引力作用下匀速前进的汽车\n(3)用细线悬挂在天花板上的静止小球\n(4)刹车后停下来了的汽车\n(5)用细线悬挂在天花板上的静止小球,在剪断细线的瞬间\n(6)竖直上抛达到了最高点的小球(不计空气阻力)\n概括与总结\n以上是我们从生活中的例子定性的来研究受共点力作用的物体的平衡,\n如果处于平衡状态下的物体受二个力或者三个力或者是多个\n思考与讨论\n质量为2千克的物体放在水平桌面上(取g=9.8N/kg)。\n(1)受到哪几个力作用?\n(二个力,重力G和支持力F )\n(2)能称之为平衡吗?\n(能,在两力作用下,物体处于静止 状态)\n(3)支持力的大小和方向如何?\n(支持力的大小与重力大小相等,等于19.6牛顿,\n方向竖直向上。)\n结论:两个力大小相等,方向相反,作用在同一\n直线上,物体处于平衡状态。(二力平衡)\n二、共点力作用下物体的平衡条件:\n1.实验探究:\n2.分析论证:\n3.得出结论:\n任意两个力的合力与第三个力大小相等,\n方向相反,作用在同一直线上。这三个力\n的合力为零。\n三力平衡条件: *F*合= 0\n\nheight=\"1.979861111111111in\"}推广到多个共点力平衡条件:\n作用在物体上各力的合力为零,即:*F*合=0\n任意两个力的合力与第三个力大小相等,方向相反,作用在同一直线上。\n由二力平衡的条件和刚才三力平衡的实验,能否推出多个(三个以上)共点力平衡的条件?\n拓展:\n若物体", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-8ddaaae7d283ac7f67e82432d4d32b71", "__created_at__": 1754902050, "content": "111111111in\"}推广到多个共点力平衡条件:\n作用在物体上各力的合力为零,即:*F*合=0\n任意两个力的合力与第三个力大小相等,方向相反,作用在同一直线上。\n由二力平衡的条件和刚才三力平衡的实验,能否推出多个(三个以上)共点力平衡的条件?\n拓展:\n若物体在n个共点力作用下处于平衡,则其中(n-1)个力的合力与第n个力大小相等、方向相反、且在一条直线上.\n物体在共点力作用下的平衡条件是所受合外力为零。即:F合 = 0\n共点力的平衡条件\n物体所受合力为零即:\nF合= 0\n1.两个共点力使物体平衡:\n这两个力等大反向. F1- F2=0\n2.三个共点使物体平衡\n任意两个力的合力与第三个力等大反向. F12-F3=0\n3.N个共点力使物体平衡:任意N-1个力 的合力与第N个力等大反向。FN-1-\nFN=0\n3、共点力平衡的应用(例题讲解)\n知识小结(略)\n反思:本节内容重难点还是学生是否能正确进行受力分析,故在这方面需加强教学倾斜。\n第四章 牛顿运动定律\n1 牛顿第一定律\n三维目标\n知识与技能\n1.理解力和运动的关系,知道物体的运动不需要力来维持.\n2.理解牛顿第一定律,知道它是逻辑推理的结果,不受力的物体是不存在的.\n3.理解惯性的概念,知道质量是惯性大小的量度.\n过程与方法\n培养分析问题的能力,要能透过现象了解事物的本质,不能不加研究、分析而只凭经验,对物理问题决不能主观臆断.正确地认识力和运动的关系.\n情感态度与价值观\n1.培养科学研究问题的态度.\n2.利用生活中的例子来认识惯性与质量的关系.鼓励学生大胆发言,并学以致用.\n教学重点\n1.理解力和运动的关系.\n2.理解牛顿第一定律,知识惯性与质量的关系.\n教学难点\n惯性与质量的关系.\n课时安排\n1课时\n教学过程\n导入新课\n常识导入\n1.我国公安交通部门规定,在各种小型车辆前排乘坐的人(包括司机)必须系好安全带,为什么?\n2.常见的柴油机、电动机等机器的底座非常沉重,而参加作战任务的战斗机却要抛掉副油箱以减小质量,这是为什么呢?你能解释一下吗?\n情景导入\n用多媒体播放牛耕地的画面:牛耕地时,牛拉着犁前进;牛停止拉犁,犁也停止运动.边播放边介绍,牛拉犁,犁前进;牛停犁也停.由此看来,必须有力作用在物体上,物体才运动;没有力作用在物体上,物体就不运动------两千多年前古希腊科学家亚里士多德就得出了这样的结论,这个结论正确吗?\n学生讨论,教师借机导入新课.\n推进新课\n一、理想实验的魅力\n自主探究\n1.桌子上铺毛巾,小车放在毛巾上,推它就动,不推就停;\n2.将毛巾换成玻璃板,或直接用桌面,把小车在桌面或玻璃板上推一下,它运动一段时间才停下来.\n结论:物体的运动不需要力来维持.\n\n为了证明这个结论的正确性,再让学生举出一些其他的实例来说明.如:蹬一段时间自行车后停止蹬车,自行车还会滑行一段距离;在冰面上踢出去的冰块要运动一段距离才停止运动;空中飞行的飞机制动后仍然还会向前滑翔;射出枪蹚的子弹等等.\n既然物体的运动不需要力来维持,刚才的两个实验为什么会出现两种现象呢?矛盾出现在哪里呢?下面用小球来做个对比实验.\n实验探究 图4-1-1\nA.使斜槽下端与桌子上铺好的毛巾吻合,让小球从斜槽上自由滚下,标出小球在毛巾上滚动的距离;\nB.使斜槽下端直接与桌面吻合,让小球从斜槽上同一位置自由滚下,标出小球在桌面上滚动的距离;\nC.使斜槽下端与桌面上的玻璃吻合,让小球从斜槽上同一位置", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-139bc9a3df44e3524751c0c3c110fd5a", "__created_at__": 1754902050, "content": "毛巾吻合,让小球从斜槽上自由滚下,标出小球在毛巾上滚动的距离;\nB.使斜槽下端直接与桌面吻合,让小球从斜槽上同一位置自由滚下,标出小球在桌面上滚动的距离;\nC.使斜槽下端与桌面上的玻璃吻合,让小球从斜槽上同一位置自由滚下,标出小球在玻璃上滚动的距离.\n通过观察对比实验,让学生分析实验,总结实验:\n接触面越光滑,小球滚动的距离越远.\n结论:运动小球停下来的原因是受到摩擦力的作用.\n为了引出伽利略的理想实验,教师可继续设疑:若接触面光滑无摩擦小球会怎样?\n结论:物体的运动不需要力来维持.力撤物停的原因是因为摩擦力.若无摩擦力,运动物体会一直运动下去.最早发现这一问题的科学家是伽利略,他是怎样研究这个问题的呢?\n(课件展示)用多媒体播放伽利略的理想实验(边播放边介绍)要动态出以下效果:\n\n图4-1-2\nA.对称斜面,无摩擦小球滚到等高.\nB.减小另一侧斜面倾角,小球从同一位置自由释放要滚到等高,滚动距离越远.\nC.把另一侧斜面放平,小球要到等高,就会一直滚下去.\n根据这一现象伽利略得出了:运动的物体若不受力,物体将匀速运动下去.\n1.伽利略的观点.\n2.笛卡儿的补充和完善.\n3.牛顿第一定律.\n对比三个人的观点,他们都是叙述力和运动关系的,谁的更全面?\n学生回答问题:\n1.伽利略:物体不受力时,运动的物体一直做匀速直线运动.\n2.笛卡儿:物体不受力时,物体将永远保持静止或运动状态,永远不会使自己沿曲线运动,而只保持在直线上运动.\n3.牛顿:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.\n综上所述,牛顿第一定律更全面、更完善.\n二、牛顿物理学的基石------惯性定律\n总结:\n力不是维持物体运动状态的原因,力是改变物体运动状态的原因.\n设疑:牛顿第一定律能否用实验来验证?\n结论:不能,因为不受力作用的物体是不存在的.\n\n受力但合力为零可看作不受力.在学生回答的基础上,作出肯定,并指出:牛顿第一定律虽然所描述的是一种理想化状态,但它却正确揭示了自然规律.\n三、惯性与质量\n演示2:在小车上竖放一长条木块,让小车在光滑玻璃板上运动,前面固定一个物体,\n当车被物块挡住时,车上的木块向前倾倒,为什么? 图4-1-3\n引导学生分析:木块随车一起运动,当车被挡住时,车停止运动,木块的下半部分受到车的摩擦作用也随车停止运动,而上半部分由于要保持原来的运动状态,故向前倾倒.物体这种保持原来运动状态不变的性质叫惯性.\n举例说明:①木块立在静止的车上,忽然拉动小车,木块后倾.\n②人站在匀速行驶的车厢内竖直向上跳起,仍落回原地.\n总结:惯性是指物体具有保持原来匀速直线运动状态或静止状态的性质.\n从牛顿第一定律我们得知,一切物体都有保持它们原来的匀速直线运动或静止状态的性质,所以牛顿第一定律又叫惯性定律.当力迫使它改变这种状态时,它就会有抵抗运动状态改变的\"本领\".这个\"本领\"与什么因素有关?请大家通过实例分析.\n讨论交流:载重货车启动时,由静止到高速得需要较长一段时间;百米冲刺到终点后,体重大的运动员较难停下来.\n通过这样的实例分析,使学生总结出:运动状态变化的难易程度与质量有关.\n结论:惯性大小与质量有关,质量大的物体惯性大;质量小的物体惯性小.\n课堂小结\n通过本节的学习,我们知道了:\n1.历史上几位科学家对力和运动关系的看法和研究.\n2.伽利略得到力和运动关系的研究方法.\n3.牛顿第一定律的", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-0383d8ab0fe9e9206b1b9f6f63066fb3", "__created_at__": 1754902050, "content": "实例分析,使学生总结出:运动状态变化的难易程度与质量有关.\n结论:惯性大小与质量有关,质量大的物体惯性大;质量小的物体惯性小.\n课堂小结\n通过本节的学习,我们知道了:\n1.历史上几位科学家对力和运动关系的看法和研究.\n2.伽利略得到力和运动关系的研究方法.\n3.牛顿第一定律的内容.\n4.惯性及应用惯性知识解决实际问题的方法.\n布置作业\n1.教材第71页\"问题与练习\"1、2、3题.\n2.阅读科学漫步,思考讨论惯性参考系.\n板书设计\n1 牛顿第一定律\n+--------------+----------------+----------------+----------------+\n| | 理想实验的魅力 | 牛 | 惯性与质量 |\n| | | 顿物理学的基石 | |\n| | | ------惯性定律 | |\n+--------------+----------------+----------------+----------------+\n| 内容(或定义) | 1.亚 | 一切 | 物体保持原 |\n| | 里士多德的观点 | 物体总保持匀速 | 来匀速直线运动 |\n| | | 直线运动状态或 | 状态或静止状态 |\n| | 2. | 静止状态,直到 | 的性质叫做惯性 |\n| | 伽利略的观点3 | 有外力迫使它改 | |\n| | .笛卡儿的观点 | 变这种状态为止 | |\n+--------------+----------------+----------------+----------------+\n| 说明 | 通过学 | (1)物体不 | (1) |\n| | 习人类对运动和 | 受外力时,运动 | 一切物体在任何 |\n| | 力关系的认识, | 状态保持静止或 | 状态下都有惯性 |\n| | 体会科学家对人 | 匀速直线运动, | |\n| | 类的贡献和正确 | 说明力不是维持 | (2)惯性是 |\n| | 思想的来之不易 | 物体运动的原因 | 物体的固有性质 |\n| | | | |\n| | | (2) | (3)物体的惯 |\n| | | 外力的作用是迫 | 性只与质量有关 |\n| | | 使物体改变原来 | |\n| | | 的运动状态,说 | |\n| | | 明力是改变物体 | |\n| | | 运动状态的原因 | |\n| | | | |\n| | | (3)一切物 | |\n| | | 体都有保持原来 | |\n| | | 匀速直线运动状 | |\n| | | 态或静止状态的 | |\n| | | 性质,叫做惯性 | |\n+--------------+----------------+----------------+----------------+\n反思:\n本节课先通过多媒体播放画面引出束缚人类思想近两千年的亚里士多德的观点,通过让学生亲自实验操作,并举例分析认识到他的观点是错误的,引出伽利略的观点,并通过实验来验证它的正确性.在此基础上引出牛顿的观点,即牛顿第一定律的内容及惯性的概念.对惯性的理解对学生来说是一个难点,本节课是通过实验来增强学生的感性认识,并通过实例分析让学生理解质量是物体惯性大小的量度,实现从感性认识到理性认识的过渡.\n2 实验:探究加速度与力、质量的关系\n三维目标\n知识与技能\n1.理解物体运动状态的变化快慢,即加速度大小与力有关,也与质量有关.\n2.通过实验探究加速度与力和质量的定量关系.\n3.培养学生动手操作能力.\n过程与方法\n1.使学生掌握在研究三个物理量之间关系时,用控制变量法实现.\n2.指导学生根据原理去设计实验,处理实验数据,得出结论.\n3.帮助学生会分析数据表格,利用图象寻求物理规律.\n情感态度与价值观\n1.通过实验探究激发学生的求知欲和创新精神.\n2.使学生养成实事求是的科学态度,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦.\n3.培养学生的合作意识,相互学习、交流、共同提高的学习态度.\n教学重点\n1.怎样测量物体的加速度.\n2.怎样提供和测量物体所受的力.\n教学难点\n指导学生选器材,设计方案,进行实验,作出图象,得出结论.\n课时安排\n1课时\n教学过程\n导入新课\n复习导入\n复习提问:物体运动状态的改变是指哪个物理量的改变?标志物体运动状态变化快慢的物理量是什么?\n回答:物体运动状态的改变是", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-6dde001221f4047b4bc25c17c81bf803", "__created_at__": 1754902050, "content": "测量物体所受的力.\n教学难点\n指导学生选器材,设计方案,进行实验,作出图象,得出结论.\n课时安排\n1课时\n教学过程\n导入新课\n复习导入\n复习提问:物体运动状态的改变是指哪个物理量的改变?标志物体运动状态变化快慢的物理量是什么?\n回答:物体运动状态的改变是指速度的改变,加速度是反映物体运动状态变化快慢的物理量.\n推进新课\n既然物体的加速度与物体的质量和它受到的力有关,到底存在怎样的关系,请同学们讨论一下,通过什么实例可定性地说明它们之间的关系.\n教师总结:当研究三个物理量之间的关系时,先要保持某个量不变,研究另外两个量之间的关系,再保持另一个量不变时,研究其余两个量之间的关系,然后综合起来得出结论.这种研究问题的方法叫控制变量法,是物理学中研究和处理问题时经常用到的方法.\n一、加速度与力的关系\n让学生阅读课本,明确以下两个方面内容:\n1.实验的基本思路:保持物体的质量不变,测量不同力下的加速度,分析加速度与力的关系.\n2.实验数据的分析:根据定性分析判断结果:力越大,加速度越大,猜测a∝F,F^n^.\n(1)设计表格,如:\n+---------------+---+---+---+---+---+---+\n| 次数 | 1 | 2 | 3 | 4 | 5 | 6 |\n| | | | | | | |\n| 项目 | | | | | | |\n+---------------+---+---+---+---+---+---+\n| F/N | | | | | | |\n+---------------+---+---+---+---+---+---+\n| a/(m·s^-2^) | | | | | | |\n+---------------+---+---+---+---+---+---+\n(2)建立坐标系如图4-2-2:\n{width=\"1.34375in\"\nheight=\"1.125in\"} {width=\"1.4493055555555556in\"\n图4-2-2\n(3)描点\n(4)连线\n通过得到的图线,分析a与F的关系.实验发现a-F图象是一条过原点的直线.改变小车的质量重复上面步骤,看得出的图象有什么不同.\n二、加速度与质量的关系\n让学生阅读课本,明确以下两个方面的内容:\n1.实验的基本思路:保持物体受力不变,测量不同质量下的加速度,分析加速度与质量的关系.\n2.实验数据的分析:根据定性分析判断结果:质量越大,加速度越小,猜测\n(1)设计表格,如:\n+-----------+---+---+---+---+---+---+\n| 次数 | 1 | 2 | 3 | 4 | 5 | 6 |\n| | | | | | | |\n| 项目 | | | | | | |\n+-----------+---+---+---+---+---+---+\n| a/m·s^-2^ | | | | | | |\n+-----------+---+---+---+---+---+---+\n| m/kg | | | | | | |\n+-----------+---+---+---+---+---+---+\n| /kg^-1^ | | | | | | |\n+-----------+---+---+---+---+---+---+\n| /kg^-n^ | | | | | | |\n+-----------+---+---+---+---+---+---+\n(2)建立坐标系如图4-2-3:a-或a-\n{width=\"2.2083333333333335in\"\n图4-2-3\n(3)描点\n(4)连线\n得到图线分析,分析a与m的关系.\n为了增强学生做实验的目的性,引导学生分析以下内容:\n这个实验需要测量的物理量有三个:物体的速度、物体所受的力、物体的质量.质量可用天平测量,本实验要解决的主要问题是怎样测量加速度和怎样提供与测量物体受到的力.\n三、制定实验方案时的两个问题\n{width=\"", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-056befd2b0fcd4bbc7c68f50b65cd281", "__created_at__": 1754902050, "content": "物理量有三个:物体的速度、物体所受的力、物体的质量.质量可用天平测量,本实验要解决的主要问题是怎样测量加速度和怎样提供与测量物体受到的力.\n三、制定实验方案时的两个问题\n{width=\"2.1569444444444446in\"\n图4-2-4\n1.怎样测量(或比较)物体的加速度:用如图4-2-4所示的装置:在一端有滑轮的长木板上,放一小车,通过细绳另一端的钩码拉小车.\n(1)让物体做初速度为零的匀加速直线运动,用刻度尺测量物体运动的位移,用秒表测量出运动的时间,由x=at^2^公式算出.\n(2)让物体做初速度为零的匀加速直线运动.在运动物体后安装一条通过打点计时器的纸带,根据纸带上打出的点来测量加速度.\n(3)直接用加速度计测量.\n总结:这些方法的共同特点是直接测出了加速度的大小,我们要探究的是加速度与其他量之间的比例关系,如果不直接测出加速度,我们能否找出加速度和质量之间的定量关系呢?\n学生思考后回答:\n①如果测出两个初速度为零的匀加速直线运动在相同时间内发生的位移x~1~、x~2~,位移之比就是加速度之比.\n②如果测出两个初速度为零的匀加速直线运动物体在相同位移内所用时间t~1~、t~2~,时间比的平方就是加速度之比的倒数.\n2.怎样提供和测量物体所受的恒力.\n一个单独的力的作用效果与跟它大小、方向都相同的合力的作用效果是相同的,因此,实验中力F的含义可以是物体所受的合力.那么,如何为一个运动的物体提供一个恒定的合力?如何测出这个合力呢?\n使物体做匀加速运动的力就是物体的合力,这个合力就等于钩码的重力.通过改变钩码的个数就可以改变物体所受的合力,通过测量钩码的重力就可测得物体所受的合力.\n注意事项:\n(1)在钩码质量远小于小车质量的条件下,钩码的重力大小才近似等于小车所受合力.(至于为什么,以后再讨论)\n(2)小车在运动时还受到木板对它的滑动摩擦力,那么我们如何减小滑动摩擦力,使物体所受的合力尽可能接近钩码的重力?\n结论:(1)换用接触面光滑的木板.\n(2)平衡滑动摩擦力.方法:将木板一端垫高,让小车从木板上能匀速滑动.\n根据上面讨论的内容选定自己的实验方案进行实验,记录实验数据.\n学生进行分组实验,教师巡回指导.\n四、怎样由实验结果得出结论\n学生分组实验结束后,利用前面的方法处理实验数据,分析得出实验结论,让小组代表发言.\n教师对各小组学生的实验方案、数据处理方法、实验结论等情况进行评价,让学生明确,只要设计方案合理,亲身体验探究过程,至于能否得出正确结果并不多么重要.\n板书设计\n2 实验:探究加速度与力、质量的关系\n一、加速度与力的关系\n1.实验思路:保持质量不变,探究a与F的关系\n2.数据分析\n二、加速度与质量的关系\n1.实验思路:保持受力不变,探究a与M的关系\n2.数据分析\n三、制定实验方案时的两个问题\n1.怎样测量(或比较)物体的加速度\n2.怎样提供和测量物体所受的恒力\n四、怎样由实验得出结论\n反思:\n本节课通过实例大胆猜测(或作出假设),再通过实验搜集实验数据,利用图象通过对数据分析,最后反复验证得出定律.让学生深刻体会了探究实验的模式,培养了学生实事求是的科学态度,乐于探究自然界的奥秘,深刻体验科学家探索自然规律的艰辛与喜悦.\n3 牛顿第二定律\n三维目标\n知识与技能\n1.掌握牛顿第二定律的文字内容和数学公式.\n2.理解公式中各物理量的意义及相互关系.\n3.知道在国际单位制中力的单位\"牛顿\"是怎样定义的.\n4.会用牛顿第二定律的公式进行有关的计算.\n过程与方法\n1.以实验为基础,归纳得到物体的加速度跟它", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-4a69a5e4f4929ab3c8c837cc0946e80c", "__created_at__": 1754902050, "content": "定律\n三维目标\n知识与技能\n1.掌握牛顿第二定律的文字内容和数学公式.\n2.理解公式中各物理量的意义及相互关系.\n3.知道在国际单位制中力的单位\"牛顿\"是怎样定义的.\n4.会用牛顿第二定律的公式进行有关的计算.\n过程与方法\n1.以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律.\n2.认识到由实验归纳总结物理规律是物理学研究的重要方法.\n情感态度与价值观\n渗透物理学研究方法的教育,体验物理方法的魅力.\n教学重点\n牛顿第二定律应用\n教学难点\n牛顿第二定律的意义\n课时安排\n1课时\n教学过程\n导入新课\n情景导入\n多媒体播放刘翔在国际比赛中的画面.图4-3-1.\n{width=\"1.5208333333333333in\"\n图4-3-1\n边播放边介绍:短跑运动员在起跑时的好坏,对于取得好成绩十分关键,因此,发令枪响必须奋力蹬地,发挥自己的最大体能,以获得最大的加速度,在最短的时间内达到最大的运动速度.我们学习了本节内容后就会知道,运动员是怎样获得最大加速度的.\n问题导入\n当物体所受的力和物体的质量都发生变化时,物体的加速度与其所受的作用力、质量之间存在怎样的关系呢?\n推进新课\n一、牛顿第二定律\n为了培养学生自主学习的能力,让学生带着以下几个问题阅读课本75页的内容:\n1.牛顿第二定律的内容是怎样表述的?\n2.它的比例式如何表示,式中各符号表示什么?\n3.式中各物理量的单位是什么,其中力的单位\"牛顿\"是怎样定义的?\n学生用3------5分钟阅读结束后,让学生回答以上几个问题:\n明确:1.内容:物体的加速度跟作用力成正比,跟物体的质量成反比.\n2.比例式:a∝或者F∝ma或者写成等式F=kma\n式中a表示物体的加速度,F表示物体所受的力,m表示物体的质量,k是比例系数.\n3.式中各物理量在国际单位制中的单位分别是m/s^2^、N、kg.\n在以上各量都用国际单位制中的单位时k=1,那么当物体的质量是m=1\nkg,在某力的作用下它获得的加速度是a=1 m/s^2^时,\nF=ma=1 kg×1 m/s^2^=1 kg·m/s^2^\n我们就把这个力叫做\"一个单位的力\",后人为了纪念牛顿,就把力的单位称作\"牛顿\",用符号N表示.\n问题:上面我们研究的是物体受到一个力作用的情况,当物体受到几个力作用时,上述规律又将如何表述?\n总结:物体加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.\n表达式:a=或者F~合~=ma.\n交流总结\n力是使物体产生加速度的原因,力与物体的加速度具有矢量性、瞬时性、同体性、独立性等几个特点,引导学生总结:\n1.矢量性.物体加速度的方向与物体所受合外力的方向永远相同,时刻相同,合外力的方向即为加速度的方向.\n2.瞬时性.加速度矢量与合外力矢量之间的正比关系具有瞬时性,即某时刻的合外力对应着某时刻的加速度,所以它适合解决物体在某一时刻或某一位置力和运动关系的问题.同时还表明物体只要一受到合外力作用,物体立即产生加速度;合外力消失,加速度也立即消失.\n3.同体性:a=各量都是属于同一物体的,即研究对象的统一性.\n4.独立性:F~合~产生的a是物体的合加速度,x方向的合力产生x方向的加速度,y方向的合力产生y方向的加速度.牛顿第二定律的分量式为F~x~=ma~x~,F~y~=ma~y~.\n多媒体展示例题\n例2.某质量为1 000 kg的汽车在平直路面上试车,当达到72\nkm/h的速度时关闭发动机,经过20\ns停下来,汽车受到的阻力是多大?重新起步加速时牵引力为2 000\nN,产生的加速度应为多大?(假定试车过程中汽车受到的阻力不变)\n解析:物体在减速过程的初", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-bb679333ec5b2f5df2afca1d0c285a79", "__created_at__": 1754902050, "content": "例2.某质量为1 000 kg的汽车在平直路面上试车,当达到72\nkm/h的速度时关闭发动机,经过20\ns停下来,汽车受到的阻力是多大?重新起步加速时牵引力为2 000\nN,产生的加速度应为多大?(假定试车过程中汽车受到的阻力不变)\n解析:物体在减速过程的初速度为72 km/h=20\nm/s,末速度为零,根据a=得物体的加速度为a=-1\nm/s^2^,方向向后.物体受到的阻力f=ma=-1 000\nN.当物体重新启动时牵引力为2 000 N,所以此时的加速度为a~2~==1\nm/s^2^,方向向车运动的方向.\n根据以上的学习,同学们讨论总结一下牛顿第二定律应用时的一般步骤.\n1.确定研究对象.\n2.分析物体的受力情况和运动情况,画出研究对象的受力分析图.\n3.求出合力.注意用国际单位制统一各个物理量的单位.\n4.根据牛顿运动定律和运动学规律建立方程并求解.\n方法总结:\n用牛顿第二定律解题时对物体受力的处理方法:\n1.合成法\n若物体只受到两个力作用而产生加速度时,应用力的合成法较简单,注意合外力方向就是加速度方向.\n2.正交分解法\n课堂小结\n这节课我们学习了\n1.牛顿第二定律:F=ma.\n2.牛顿第二定律具有同向性、瞬时性、同体性、独立性.\n3.牛顿第二定律解决问题的一般方法.\n布置作业\n教材第78页\"问题与练习\"2、3、4、5题.\n板书设计\n3 牛顿第二定律\n1.内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比.加速度的方向跟合外力的方向相同\n2.表达式:a=或F~合~=ma\n说明:①a=是加速度的决定式\n②力是产生加速度的原因\n③m=中m与F、a无关\n3.对牛顿第二定律的理解:①矢量性 ②瞬时性 ③同体性 ④独立性\n4.应用牛顿第二定律解题的一般步骤\n反思:\n本节课通过对上节课探究实验得到的结论进行归纳总结引出牛顿第二定律.牛顿第二定律的内容、比例式本身较简单,但对牛顿第二定律深层理解和具体应用对学生来说有一定困难.本节课是通过多举有针对性的实例,通过对实例的细致分析来突破这些困难的.精讲多练,注重总结归纳是本教学设计的特点.\n4 力学单位制\n三维目标\n知识与技能\n1.了解什么是单位制,知道力学中的三个基本单位.\n2.认识单位制在物理计算中的作用.\n过程与方法\n1.让学生认识到统一单位的必要性.\n2.使学生了解单位制的基本思想.\n3.培养学生在计算中采用国际单位,从而使运算过程的书写简化.\n4.通过学过的物理量了解单位的重要性,知道单位换算的方法.\n情感态度与价值观\n1.使学生理解建立单位制的重要性,了解单位制的基本思想.\n2.了解度量衡的统一对中国文化的发展所起的作用,培养学生的爱国主义情操.\n3.让学生了解单位制与促进世界文化的交流和科技的关系.\n4.通过一些单位的规定方式,了解单位统一的重要性,并能运用单位制对计算过程或结果进行检验.教学重点\n1.什么是基本单位,什么是导出单位.\n2.什么是力学中的三个基本单位.\n3.单位制.\n教学难点\n统一单位后,计算过程的正确书写.\n课时安排\n1课时\n教学过程\n导入新课\n问题导入\n问题:单位的不统一会造成什么样的困难?\n学生讨论交流,活跃课堂气氛.\n总结:单位的统一有利于各个国家之间、一个国家各个地区之间进行文化交流和经贸往来,可以促进科学文化尽快地发展,使全球人类能够共享光明,共享人类文明进步的成果.\n推进新课\n教师投影展示问题,学生带着问题阅读课文.\n(课件展示)\n1.什么是基本量,什么是基本单位?力学中的基本单位都有哪些,分别对应什么物理量?\n2.什么是导出单位?你学过的物理量中哪些是导出单位?借助物理公式来推导.\n3.什么是国际单位制?国际单位制中的基本单位共有几个?它们分别是什么?对应什么物理量?\n说明:在这个过程中,老师可以巡回指导学生自己总结,并帮助水平较差的同学进行总结,这个过程大约持续10\nmin左右.然后让学生回答所提出的问题并巩", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-ee5025c03c1abdd24ed1faf81a81c2ca", "__created_at__": 1754902050, "content": "导出单位?你学过的物理量中哪些是导出单位?借助物理公式来推导.\n3.什么是国际单位制?国际单位制中的基本单位共有几个?它们分别是什么?对应什么物理量?\n说明:在这个过程中,老师可以巡回指导学生自己总结,并帮助水平较差的同学进行总结,这个过程大约持续10\nmin左右.然后让学生回答所提出的问题并巩固补充学生掌握的知识.\n明确:1.选定几个物理量的单位,就能够利用物理量之间的关系推导出其他物理量的单位,这些被选定的物理量叫做基本量,它们的单位叫做基本单位.\n力学中的基本量有长度、质量和时间,它们的单位分别是米、千克和秒.\n2.由基本量根据物理关系推导出来的其他物理量的单位,叫做导出单位.\n我们学过的导出单位很多,比如加速度的单位m/s^2^,它可以根据公式a=来进行推导.密度的单位是kg/m^3^,可以根据密度的计算公式:ρ=进行推导.\n3.国际计量委员会在1960年的第11届国际计量大会上制订了一种国际通用的、包括一切计量领域的单位制,叫做国际单位制.简称SI.\n-------------- -------------- ----------\n物理量的名称 单位名称 单位符号\n长度 米 m\n质量 千克(公斤) kg\n时间 秒 s\n电流 安(培) A\n热力学温度 开(尔文) K\n物质的量 摩(尔) mol\n发光强度 坎(德拉) cd\n-------------- -------------- ----------\n例题 一个原来静止的物体,质量是7 kg,在14 N的恒力作用下,5\ns末的速度是多大?5 s内通过的位移是多少?\n(展示例题,学生求解探究)\n解:根据已知条件,m=7 kg,F=14 N,t=5 s\n根据牛顿第二定律,有\na===2 N/kg=2 m/s^2^\nv=at=2 m/s^2^×5 s=10 m/s\nx=at^2^=×2 m/s^2^×25 s^2^=25 m.\n教师点评:我们看到,题目的已知量的单位都用国际单位制表示时,计算的结果也是用国际单位制表示的.既然如此,在统一已知量的单位后,就不必一一写出各量后面的单位,只在数字后面写出正确的单位就可以了.这样,上面的计算就可以写成:\na== m/s^2^=2 m/s^2^\nv=at=2×5 m/s=10 m/s\nx=at^2^=×2×25 m=25 m.\n总结:通过分析实例,培养学生分析问题、解决问题的能力,同时体会单位制的意义.\n教师设疑\n我们学过的力的单位牛顿是不是基本单位呢?\n学生讨论、交流,与老师交换意见.\n结论:牛顿也是一个导出单位.根据牛顿第二定律F=ma,可得力的单位应该与质量的单位和加速度的单位有关,1\nN=1 kg·m/s^2^.\n课堂小结\n通过本节课的学习,我们知道了什么是基本单位,什么是导出单位,什么是单位制,知道了力学中的三个基本单位以及统一单位后,解题过程的正确书写方法.\n布置作业\n教材第80页\"问题与练习\".\n板书设计\n4 力学单位制\n-------- ------------ ---------- ---------- --------------- ---------- ----------\n单位制 物理量的名称 单位名称 单位符号\n国际单位制 基本单位 力学单位 长度 米 m\n质量 千米 kg\n时间 秒 s\n其他单位\n导出单位 公式+基本单位\n-------- ------------ ---------- ---------- --------------- ---------- ----------\n反思:\n单位制由基本单位和导出单位组成.基本单位是基本物理量的单位,导出单位是基本物理量单位制确定后根据物理关系式而推导出来的单位.本着这一思路,本节介绍了基本力学量和它们的单位,并重点介绍了11届国际计量大会制定的一种通用的,包括一切计量领域的单位制------国际单位制(SI).根据实例说明应用国际单位制的重要性;简化计算、清晰过程、方便交流,并能对公式的验证起辅助作用.\n5 牛顿第三定律\n三维目标\n知识与技能\n1.知道力的作用是相互的,知道作用力和反作用力的概念.\n2.理解牛顿第三定律的确切含义,会用它解决有关问题.\n3.会区分平衡力与作用力和反作用力.\n过程与方法\n1.观察生活中力的相互作用现象,思考力的相互作用的规律.\n2.通过实验探究力的相互作用规律.\n3.通过鼓励学生动手、大胆质疑、勇于探索,可提高学生自信心并养成科学思维习惯", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-35f508bd903a6dfd5239e40a47a5f1be", "__created_at__": 1754902050, "content": "定律的确切含义,会用它解决有关问题.\n3.会区分平衡力与作用力和反作用力.\n过程与方法\n1.观察生活中力的相互作用现象,思考力的相互作用的规律.\n2.通过实验探究力的相互作用规律.\n3.通过鼓励学生动手、大胆质疑、勇于探索,可提高学生自信心并养成科学思维习惯.\n情感态度与价值观\n1.经历观察、实验、探究等学习活动,培养尊重客观事实、实事求是的科学态度.\n2.通过研究性学习,获得成功的喜悦,培养学好物理的信心.\n3.培养与人合作的团队精神.\n教学重点\n对牛顿第三定律的理解及应用.\n教学难点\n作用力、反作用力与平衡力的区别.\n课时安排\n1课时\n课前准备\n弹簧、弹簧测力计两个、力传感器、钩码、计算机.\n教学过程\n导入新课\n实验导入\n拔河比赛是一项很有趣的娱乐活动,为探究双方作用力的情况,把两队运动员简化为两个人,一个高大强壮的男生与一个瘦小柔弱的女生.让他们各拿着一个完全相同的测力计对拉.将实验分成如下步骤并让学生仔细观察.\n1.让女生\"主动\"施力,两测力计的示数情况如何?\n2.让男生\"主动\"施力,两测力计的示数情况又如何?\n3.让男生穿上溜冰鞋站在水泥地上,女生穿运动鞋与之对拉,在男生运动过程中,两弹簧秤的示数情况又有何特点?\n实验中我们能得到什么结论?\n复习导入\n力的概念及其特点是什么?\n力是物体间的相互作用,力具有物质性、相互性、同时性、矢量性和独立性的特点.\n推进新课\n一、作用力和反作用力\n力是物体对物体的作用.只要谈到力就一定存在施力物体和受力物体.\n演示:用手拉弹簧,弹簧受到手的拉力,弹簧发生形变.手也因而受到弹簧力的作用而产生形变.\n(课件展示)平静的湖面上停着两只小船.一只船上的人用船桨用力去推另一只小船,结果两只小船同时从静止开始向相反的方向运动.\n设定情景:让学生坐在椅子上,用力推桌子,让他们体会有何感觉.\n教师设疑:\n1.以上情况中,施力物体和受力物体各是什么?\n2.以上事例中,各力的作用方向有何关系?作用点位置有何特点?各是什么性质的力?\n3.各事例中,力的先后顺序有何特点?\n4.各事例中所涉及的两个力的作用效果能否抵消?\n合作探究\n1.对弹簧来说,手是施力物体,弹簧是受力物体;对手而言,弹簧是施力物体,手是受力物体.两船事例中,每个小船都可以是施力物体,又是受力物体,这取决于研究对象的选择.同样,学生推桌子事例,桌子和学生既可以是施力物体,也可以是受力物体.\n2.手对弹簧的作用力与弹簧对手的作用力,方向相反,彼此作为对方的作用点.弹簧对手的作用力与手对弹簧的作用力都是由形变引起的,都是弹力.下两例与之相类似.\n3.以上事例,力总是同时出现、同时消失,无先后顺序.\n4.作用效果不能抵消.\n以上所举事例所涉及的力均为弹力.是否只有弹力才具有以上的特点呢?\n提示:地面上的物体受到地球的吸引,其实地球也在受到地面上物体的吸引,这种吸引力也是相互的.\n归纳结论:两物体之间的作用总是相互的.一个物体对另一个物体施加了力,后一物体一定同时对前一个物体也施加了力.物体间相互作用的这一对力,通常叫做作用力和反作用力.作用力和反作用力总是互相依存、同时存在、性质相同.我们可以把其中任何一个力叫做作用力,另一个叫做反作用力.它们分别作用在两个不同的物体上.\n二、牛顿第三定律\n作用力和反作用力间的关系:从上述事例中我们得到的相关信息是:方向相反,同时作用.它们之间的大小关系是一个定量的问题,而定量的问题只靠日常观察和经验是解决不了的,它需要通过实验来测量.\n实验演示\n探究作用力与反作用力的关系\n把A、B两个弹簧测力计", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-fc9e974fca9990c7aadde5a02bd36e0c", "__created_at__": 1754902050, "content": "物体上.\n二、牛顿第三定律\n作用力和反作用力间的关系:从上述事例中我们得到的相关信息是:方向相反,同时作用.它们之间的大小关系是一个定量的问题,而定量的问题只靠日常观察和经验是解决不了的,它需要通过实验来测量.\n实验演示\n探究作用力与反作用力的关系\n把A、B两个弹簧测力计连接在一起,B的一端固定.用手拉弹簧测力计,如图4-5-1所示,可以看到两弹簧测力计指针同时移动.这说明弹簧测力计A受到B的拉力F′,弹簧测力计B受到A的拉力F.F与F′大小总是相等、方向总是相反.\n{width=\"2.46875in\"\n两个弹簧测力计的读数有什么关系?它们受力的方向有什么关系?\n图4-5-1\n结论:两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一条直线上,这就是牛顿第三定律.\n教师设疑:以上实验中,相互作用的两个物体都是静止不动的,处在平衡状态.那么两个运动中的物体之间的相互作用力是否满足上述规律呢?\n结论:牛顿第三定律所揭示的规律与物体的运动状态无关,与参考系的选择也无关.\n综上所述,我们可以总结出作用力与反作用力的特点:\n四同:同大小,同直线,同性质,同时性.\n三不同:方向相反,作用点分别在两物体上,作用效果不能相互抵消.\n在生活和生产中牛顿第三定律的例子是很多的.\n交流讨论:划船时桨向后推水,水就向前推桨,从而将船推向前进.\n汽车发动机驱动车轮转动,由于轮胎和地面间的摩擦,车轮向后推地面,地面给车轮一个向前的反作用力,使汽车前进.如图4-5-5,把驱动轮架起悬空,不让它跟地面接触,这时车轮虽然转动,但车轮不接触地面,不产生向前推车的力,汽车不会前进.\n{width=\"1.9166666666666667in\"\n汽车驱动轮向后推动地面,\n它们获得的反作用力成为汽车的牵引力\n图4-5-5\n三、作用力反作用力与平衡力的区别\n前面我们曾经学过平衡力的概念.若二力平衡,则这两个力大小相等、方向相反,作用在同一条直线上.那么一对平衡力与作用力反作用力有什么区别呢?\n学生交流讨论后归纳总结.\n相同点:一对平衡力与作用力反作用力都是大小相等、方向相反,作用在同一条直线上.\n不同点:作用力反作用力必定是同种性质的力,而一对平衡力性质可以不相同;作用力反作用力同时产生、同时消失.一对平衡力却不具有同时性;作用力反作用力分别作用在两个不同的物体上,但平衡力的作用点是同一个物体;就作用效果而言,作用力反作用力分别对两个物体起作用,而平衡力对一个物体起作用,效果可以相抵消.\n课堂小结\n本节课主要学习了作用力、反作用力的概念及其特点,牛顿第三定律的内容及在简单情境中的应用.从日常生活中司空见惯的现象入手,符合由感性知识到理性知识发展的认知规律.从实验现象的观察分析、归纳、总结中逐步得出牛顿第三定律所揭示的内容,突出了实验在物理学发展中的重要地位,让学生体会到物理学是基于实验发展起来的一门精密科学.本节课主要的知识点有:1.作用力和反作用力的概念及特点.2.牛顿第三定律的内容.3.作用力和反作用力与平衡力的区别.\n布置作业\n1.教材第83页\"问题与练习\"4、5题.\n2.课下组织合作小组,分析讨论人行走过程中所涉及的作用力反作用力,平衡力的情况.\n板书设计\n5 牛顿第三定律\n1.作用力和反作用力:物体间相互作用的一对力,通常叫做作用力和反作用力\n2.牛顿第三定律:两物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一条直线上\n3.平衡力与作用力反作用力的区别:(1)性质不同 (2)同时性关系\n(3)作用", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-3526be5ce76518af9b2a4b647e3bce6b", "__created_at__": 1754902050, "content": "顿第三定律\n1.作用力和反作用力:物体间相互作用的一对力,通常叫做作用力和反作用力\n2.牛顿第三定律:两物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一条直线上\n3.平衡力与作用力反作用力的区别:(1)性质不同 (2)同时性关系\n(3)作用点不同 (4)效果不同\n反思:\n作用力反作用力之间的关系问题在生产和生活中经常遇到.在某些现象当中又似是而非,常被定势思维所干扰而得出错误的结论.教学过程中从常见现象入手先得到定性的浅显的关系再通过实验、分析论证得出定量的深入的关系.最后通过对比作用力反作用力与平衡力,让学生产生清晰、明确的认识.\n6 用牛顿定律解决问题(一)\n三维目标\n知识与技能\n1.知道动力学的两类基本问题,掌握求解这两类基本问题的思路和基本方法.\n2.进一步认识力的概念,掌握分析受力情况的一般方法,画出研究对象的受力图.\n过程与方法\n1.培养学生运用实例总结归纳一般解题规律的能力.\n2.会利用正交分解法在相互垂直的两个方向上分别应用牛顿定律求解动力学问题.\n3.掌握用数学工具表达、解决物理问题的能力.\n情感态度与价值观\n通过牛顿第二定律的应用,提高分析综合能力,灵活运用物理知识解决实际问题.\n教学重点\n应用牛顿定律解决动力学的两类基本问题.\n教学难点\n动力学两类基本问题的分析解决方法.\n课时安排\n1课时\n教学过程\n导入新课\n引导:我国科技工作者能准确地预测火箭的升空、变轨,列车的再一次大提速节约了很多宝贵的时间,\"缩短\"了城市间的距离.这一切都得益于人们对力和运动的研究.我们现在还不能研究如此复杂的课题,就让我们从类似较为简单的问题入手,看一下这类问题的研究方法.\n推进新课\n牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与受力的情况联系起来.因此,它在天体运动的研究、车辆的设计等许多基础学科和工程技术中都有广泛的应用.由于我们知识的局限,这里只通过一些最简单的例子作介绍.\n一、从受力确定运动情况\n如果已知物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律就可以确定物体的运动情况.\n例1一个静止在水平地面上的物体,质量是2 kg,在6.4\nN的水平拉力作用下沿水平方向向右运动.物体与地面间的摩擦力是4.2\nN,求物体在4 s末的速度和4 s内发生的位移.\n分析:这个问题是已知物体受的力,求它的速度和位移,即它的运动情况.\n教师设疑:\n1.物体受到的合力沿什么方向?大小是多少?\n2.这个题目要求计算物体的速度和位移,而我们目前只能解决匀变速运动的速度和位移.物体的运动是匀变速运动吗?\n师生讨论交流:\n1.对物体进行受力分析,如图4-6-2.\n{width=\"1.1666666666666667in\"\n图4-6-2 物体受力的图示\n物体受到四个力的作用:重力G,方向竖直向下;地面支持力F~N~,竖直向上;拉力F~1~,水平向右;摩擦力F~2~,水平向左.物体在竖直方向上没有发生位移,没有加速度,所以重力G和支持力F~N~大小相等、方向相反,彼此平衡,物体所受合力等于水平方向的拉力F~1~与摩擦力F~2~的合力.取水平向右的方向为正方向,则合力:F=F~1~-F~2~=2.2\nN,方向水平向右.\n2.物体原来静止,初速度为0,在恒定的合力作用下产生恒定的加速度,所以物体做初速度为0的匀加速直线运动.\n解析:由牛顿第二定律可知,\nF~1~-F~2~=ma\na=\na=m/s^2^=1.1 m/s^2^\n求出了加速度,由运动学公式可求出4 s末的速度和4 s内发生的位移\nv=at=1.1×4 m/s=4.4 m/s\nx=at^2^=×1.1×16 m", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-189ea9efd515bf51f1c016550e8eef85", "__created_at__": 1754902050, "content": "直线运动.\n解析:由牛顿第二定律可知,\nF~1~-F~2~=ma\na=\na=m/s^2^=1.1 m/s^2^\n求出了加速度,由运动学公式可求出4 s末的速度和4 s内发生的位移\nv=at=1.1×4 m/s=4.4 m/s\nx=at^2^=×1.1×16 m=8.8 m.\n讨论交流:(1)从以上解题过程中,总结一下运用牛顿定律解决由受力情况确定运动情况的一般步骤.\n(2)受力情况和运动情况的链接点是牛顿第二定律,在运用过程中应注意哪些问题?\n参考:运用牛顿定律解决由受力情况确定物体的运动情况大致分为以下步骤:(1)确定研究对象.(2)对确定的研究对象进行受力分析,画出物体的受力示意图.(3)建立直角坐标系,在相互垂直的方向上分别应用牛顿第二定律列式F~x~=ma~x~,F~y~=ma~y~.求得物体运动的加速度.(4)应用运动学的公式求解物体的运动学量.\n3.受力分析的过程中要按照一定的步骤以避免\"添力\"或\"漏力\".一般是先场力,再接触力,最后是其他力.即一重、二弹、三摩擦、四其他.再者每一个力都会独立地产生一个加速度.但是解题过程中往往应用的是合外力所产生的合加速度.再就是牛顿第二定律是一矢量定律,要注意正方向的选择和直角坐标系的应用.\n二、从运动情况确定受力\n与第一种情况过程相反,若已经知道物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的外力,这是力学所要解决的又一方面的问题.\n例2一个滑雪的人,质量m=50 kg,以v~0~=2\nm/s的初速度沿山坡匀加速滑下,山坡倾角θ=30°,在t=5 s的时间内滑下的路程x=60\nm,求滑雪人受到的阻力(包括摩擦和空气阻力).\n合作探讨:这个题目是已知人的运动情况,求人所受的力.应该注意三个问题:\n{width=\"1.3652777777777778in\"\n图4-6-4 滑雪人受到的力\n1.分析人的受力情况,作出受力示意图.然后考虑以下几个问题:滑雪的人共受到几个力的作用?这几个力各沿什么方向?它们之中哪个力是待求的,哪个力实际上是已知的?\n2.根据运动学的关系得到下滑加速度,求出对应的合力,再由合力求出人受的阻力.\n3.适当选取坐标系.坐标系的选择,原则上是任意的,但是为了解决问题的方便,选择时一般根据以下要求选取:(1)运动正好沿着坐标轴的方向.(2)尽可能多的力落在坐标轴上.如有可能,待求的未知力尽量落在坐标轴上,不去分解.\n{width=\"1.1756944444444444in\"\n图4-6-5 求滑雪人受到的阻力\n解析:如图4-6-5,受力分析建立如图坐标系,把重力G沿x轴和y轴的方向分解,得到\nG~x~=mg·sinθ\nG~y~=mg·cosθ\n与山坡垂直方向,物体没有发生位移,没有加速度,所以G~y~与F~N~大小相等、方向相反,彼此平衡,物体所受的合力F等于G~x~与阻力F~阻~的合力.\n由于沿山坡向下的方向为正方向,所以合力F=G~x~-F~阻~,合力方向沿山坡向下,使滑雪的人产生沿山坡向下的加速度.滑雪人的加速度可以根据运动学的规律求得:x=v~0~t+at^2^\na= a=4 m/s^2^\n根据牛顿第二定律F=ma\nG~x~-F~阻~=ma\nF~阻~=G~x~-ma\nF~阻~=mg·sinθ-ma\n得F~阻~=67.5 N.\n答案:67.5 N\n结合两种类型中两个例题的解题过程,总结出用牛顿定律解题的基本思路和解题步骤:\n1.选定研究对象,并用隔离法将研究对象隔离出来.\n2.分别对研究对象进行受力分析和运动情况分析,并作出其受力图", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-405906d8b071f6595cc958d8c19d2617", "__created_at__": 1754902050, "content": "~-ma\nF~阻~=mg·sinθ-ma\n得F~阻~=67.5 N.\n答案:67.5 N\n结合两种类型中两个例题的解题过程,总结出用牛顿定律解题的基本思路和解题步骤:\n1.选定研究对象,并用隔离法将研究对象隔离出来.\n2.分别对研究对象进行受力分析和运动情况分析,并作出其受力图.\n3.建立适当的坐标系,选定正方向,正交分解.\n4.根据牛顿第二定律分别在两个正交方向上列出方程.\n5.把已知量代入方程求解,检验结果的正确性.\n课堂小结\n本节课主要讲述了动力学中的两类基本问题:(1)已知受力情况求解运动情况.(2)已知运动情况求物体受力情况.通过对例题的分析解决过程,总结出这两类基本问题的解决方法、思路和一般解题步骤.\n布置作业\n教材第86页\"问题与练习\"1、2、3、4题.\n板书设计\n6 用牛顿定律解决问题(一)\n一、从受力情况确定运动情况 例1\n二、从运动情况确定受力情况 例2\n总结:加速度是连接动力学和运动学的桥梁\n反思:\n动力学的两类基本问题在高中阶段的地位相当重要,对于培养学生的分析、判断、综合能力有很大的帮助.对于方法的总结,遵循由特殊到一般、再由一般到特殊的人们认识事物的基本发展思路.过程清晰,层次分明,有助于学生理解和掌握.\n7 用牛顿运动定律解决问题(二)\n三维目标\n知识与技能\n1.理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件.\n2.会用共点力平衡条件解决有关力的平衡问题.\n3.通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质.\n4.进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤.\n过程与方法\n1.培养学生的分析推理能力和实验观察能力.\n2.培养学生处理三力平衡问题时一题多解的能力.\n3.引导帮助学生归纳总结发生超重、失重现象的条件及实质.\n情感态度与价值观\n1.渗透\"学以致用\"的思想,有将物理知识应用于生产和生活实践的意识,勇于探究与日常生活有关的物理问题.\n2.培养学生联系实际、实事求是的科学态度和科学精神.\n教学重点\n1.共点力作用下物体的平衡条件及应用.\n2.发生超重、失重现象的条件及本质.\n教学难点\n1.共点力平衡条件的应用.\n2.超重、失重现象的实质.正确分析受力并恰当地运用正交分解法.\n教具准备\n多媒体教学设备,体重计、装满水的塑料瓶等.\n课时安排\n1课时\n教学过程\n[新课导入]\n师:上一节课中我们学习了用牛顿运动定律解决问题的两种方法,根据物体的受力情况确定物体的运动情况和根据物体运动情况求解受力情况.这一节我们继续学习用牛顿运动定律解题.\n多媒体投影课本中的例题、三角形的悬挂结构及其理想化模型\n师:轻质细绳中的受力特点是什么?\n生:轻质细绳中的受力特点是两端受力大小相等,内部张力处处相等.\n师:节点*O*的受力特点是什么?\n生:节点*O*的受力特点是一理想化模型,所受合外力为零.\n师:我们分析的依据是什么?\n生:上面的分析借助牛顿第二定律进行,是牛顿第二定律中合力等于零的特殊情况.\n师:同学们把具体的解答过程写出来.\n投影学生的解答过程\n解答:如图4-7-1所示,*F*~1~、*F*~2~、*F*~3~三个力的合力为零,表示这三个力在*x*方向的分矢量之和及*y*轴方向的分矢量之和也都为零,也就是:\n{width=\"1.4791666666666667in\"\n图4-7-1\n*F*~2~-*F*~1~cos*θ*=0\n*F*~1~sin*θ*-*F*~3~=0\n由以上两式解出钢索*OA*受到的拉力*F*~1~\n*F*~1~==\n硬杆*OB*的支持力*F*~2~\n*F*~2~=*F*~1~cos*θ*=\n师:", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-1be8eef46a7c5ab617891ef489b8d8d6", "__created_at__": 1754902050, "content": "*F*~2~-*F*~1~cos*θ*=0\n*F*~1~sin*θ*-*F*~3~=0\n由以上两式解出钢索*OA*受到的拉力*F*~1~\n*F*~1~==\n硬杆*OB*的支持力*F*~2~\n*F*~2~=*F*~1~cos*θ*=\n师:在这个同学解题的过程中,他采用的是什么方法?\n生:正交分解法:将其中任意一个力沿其余两个力的作用线进行分解,其分力必然与其余两个力大小相等.\n师:除了这种方法之外,还有没有其他的方法?\n生1:可以用力的合成法,任意两个力的合力与第三个力大小相等,方向相反.\n生2:也可以用三角形法,将其中任意两个力进行平移,使三个力首尾依次连接起来,应构成一闭合三角形.\n师:总结:处理多个力平衡的方法有很多,其中最常见的就是刚才几位同学分析的这三种方法,即正交分解法、力的合成法和三角形定则.这几种方法到底采用哪一种方法进行分析就要看具体的题目,在实际操作的过程中大家可以灵活掌握.\n二、超重和失重\n我们把物体对支持物的压力或对悬挂物的拉力叫做物体的视重,当物体运动状态发生变化时,视重就不再等于物体的重力,而是比重力大或小.大家再看这样一个问题:\n多媒体投影例题:人站在电梯中,人的质量为*m*.如果当电梯以加速度*a*加速上升时,人对地板的压力为多大?\n学生思考解答\n生1:选取人作为研究对象,分析人的受力情况:人受到两个力的作用,分别是人的重力和电梯地板对人的支持力.由于地板对人的支持力与人对地板的压力是一对作用力与反作用力,根据牛顿第三定律,只要求出地板对人的支持力就可以求出人对地板的压力.\n生2:取向上为正方向,根据牛顿第二定律写出支持力*F*、重力*G*、质量*m*、加速度*a*的方程*F*-*G*=*ma*,由此可得:*F*=*G*+*ma*=*m*(*g*+*a*)\n人对地板的压力*F*′与地板对人的支持力大小相等,即*F*′=*m*(*g*+*a*)\n由于*m*(*g*+*a*)/>*mg*,所以当电梯加速上升时,人对地板的压力比人的重力大.\n师:物体对支持物的压力(或对悬挂物的拉力)大于物体受到的重力的现象称为超重现象.物体处于超重现象时物体的加速度方向如何呢?\n生:物体的加速度方向向上.\n师:当物体的加速度方向向上时,物体的运动状态是怎样的?\n生:应该是加速上升.\n师:大家看这样一个问题:\n投影展示:人以加速度*a*减速下降,这时人对地板的压力又是多大?\n学生讨论回答\n生1:此时人对地板的压力也是大于重力的,压力大小是:*F*=*m*(*g*+*a*).\n生2:加速度向上时物体的运动状态分为两种情况,即加速向上运动或减速向下.\n师:大家再看这样几个问题:\n【投影展示】\n1.人以加速度*a*加速向下运动,这时人对地板的压力多大?\n2.人随电梯以加速度*a*减速上升,人对地板的压力为多大?\n3.人随电梯向下的加速度*a*=*g*,这时人对地板的压力又是多大?\n师:这几种情况物体对地板的压力与物体的重力相比较哪一个大?\n生:应该是物体的重力大于物体对地板的压力.\n师:结合超重的定义方法,这一种现象应该称为什么现象?\n生:应该称为失重现象.当物体对支持物的压力和对悬挂物的拉力小于物体重力的现象称为失重.\n师:第三种情况中人对地板的压力大小是多少?\n生:应该是零.\n师:我们把这种现象叫做完全失重,完全失重状态下物体的加速度等于重力加速度*g*.\n师:发生超重和失重现象时,物体实际受的重力是否发生了变化?\n生:没有发生变化,只是物体的视重发生了变化.\n师:为了加深同学们对完全失重的理解,我们看下面一个实验,仔细观察实验现象.\n课堂演示实验:取一装满水", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}, {"__id__": "chunk-c15532b0ffd8c103bbac67f1cf5b939c", "__created_at__": 1754902050, "content": "完全失重,完全失重状态下物体的加速度等于重力加速度*g*.\n师:发生超重和失重现象时,物体实际受的重力是否发生了变化?\n生:没有发生变化,只是物体的视重发生了变化.\n师:为了加深同学们对完全失重的理解,我们看下面一个实验,仔细观察实验现象.\n课堂演示实验:取一装满水的塑料瓶,在靠近底部的侧面打一小孔,让其做自由落体运动.\n生:观察到的现象是水并不从小孔中喷出,原因是水受到的重力完全用来提供水做自由落体运动的加速度了.\n师:现在大家就可以解释人站在台秤上,突然下蹲和站起时出现的现象了.\n[布置作业]\n教材第94页问题与练习.\n板书设计\n7 牛顿运动定律的应用(二)\n------------------ ------------------------------------------------------------------------ ------------------------------------------\n共点力的平衡条件 1.在共点力的作用下物体的平衡条件是合力为零\n2.力的合成方法:平行四边形定则和三角形定则\n超重和失重 超重: 当物体加速度方向向上时,物体处于超重状态\n物体的运动情况:加速上升或减速下降\n失重: 当物体加速度方向向下时,物体处于超重状态\n物体的运动情况:减速上升或加速下降\n完全失重:物体下落的加速度等于重力加速度\n实质:对支持物的压力和对悬挂物的拉力发生变化,而物体实际重力不发生变化\n------------------ ------------------------------------------------------------------------ ------------------------------------------\n反思:\n牛顿运动定律的运用,物体的受力分析仍是基础和解题的关健所在,在教学中仍要多次强调和重视。", "full_doc_id": "高中物理必修一教案_1591280.docx", "file_path": "高中物理必修一教案_1591280.docx"}], "matrix": "sOjjO4yBZbxUGT29YX8Ru4Q8nTqKdo48aCHuO+jqSDyQua47U8zeOpJeQr1H+b88fAcLvL5HsTur/Xg9xYrRPBLSjzsf+zu80fAlO7ElDL3hAhW8q0pXvQPX3Tw8hV09FnejPJ7SJDxEVCy72Cw/vFF0qTwKrTM8hj7FPHKV0LwcvGs7Gh7fN48meb080ru8T+j6u6qlw7wvUwK9KONvPbpjTbxiKyy90PcsPfJlMr3U+3y8tIbwvJ446LzGfEO9cD0bvP/Lhr36TWa6nYXGu/6FrzxMQ+e8XTeSO9qL+zz+P1i9WqI0veVDjb15ci29V2rrOpAf8jyG2AG7YDCLvCGgTz1UzF49rZCuO//LBrySVRM8LQ0rvZWdEjzhpQA9mee5vL6tdLyg1vS80pzAO+uP3Lp/Aqw7FCGWOoH0HT04ofm8fQkzPYp2jrvcF6q8OIiUvIfqXz2Utve8NEAVPeOnqLp0L428HgJDvVxOT7zzEU08h/HmvBKOYLwbXa+82nKWvEEKhbxDqBE98xHNu1z66Tyz0049edhwul03Er37NIE8K2+evBJ8gjxFVKw8MpuBPPKykLyuiac7oCPTPJih4jsjiRI9FyxtvCgpR7wR4kW8amC+vDQD7TvXOk08pW36PKTI5jyfbok9f2hvu2UWFzq5sKu8KcODPI56XjtwPRu8Rk0lPRgMAb0Biv+6WqI0vf840TlgKQS9kFyavA6q/Dw/d089/EZfPMY2bL3aJTg9aLuqPD8RDD3oN6e8pwCwPJMKXb3q0ws7mZpbPIcuD7x6ayY9nXyXvJFs0DwSLyQ9sdpVu5f1x7sgWvi7PX7WumluzDx/Aiy9a1m3vGTQv7vGg0q8uWrUPNaHq7wbXS88gEgDPdSFg7xlybg8QbafvJg7H70QihC7vQHau8tgJ7xieIo8cem1PLtTFzzRmpg9hpKqPPHS/Dzo4Rm9jcc8uzKksDvdXQG7fbzUvKOvATzBMpw8B6uLvccWAL1gMIu8iY9zPK6JJ7xCHOM7DFJHPOGlgDrOBTs9aW5MvfuaxDzGg0o6KClHPP6Fr7wvuUU9VBK2O6UHt7vKZ6688hhUvWlnxbu7oh29kxHkvP6FrzxIpVq9Wf0gPJMR5Dx+aG882x4xPKMMlrsXaZU9nXyXO6ryob2hcDE8+picvXWHQj3XOk08QhXcu7SG8Lyns9E8z/6zvGSDYbsyTqM86ePBPAxSRzwAMkq8j8A1PdNP4js+xK2550W1PIvVyrz+ha+8MwNtuiXYGD13M908cTYUvaLPbb19w9s8eHk0O238Ir14xpK8/vL5PJjuQDzDgSK99vOIu3Hptby5alS8cpzXO2qtnDwFwsg8o89tO7pcxjwyXlm6UcEHve9qEb2tkK47aWfFPDuM5Dz7NAE9gp6QPMjCGr0nfay8/uvyvEvkKr2d2as8VmprPLtcRrwaWwc914AkvIsiqTvNBbs8/ZO9vF8wCz0vBqQ9VBI2vcEyHLzMxuq8Zij1Ogn6kbuDBvw8xjbsvF9AQbu2cVs6rd0MPaz9eLzduhU9flYRvUbwkD0Eyc+8BHzxvMWK0Ty7TBC8MLI+vmAyM7wQ4J28VHj5OwtJGD3ucZg8EOlMvSMzhb111KC8pA4+PUKvmDYqbx69ckjyvIPtlrzoiww9KOPvPOL7DT39kz28v0AqPNVB1Lz5ocs56DenO+w7dz1jJKU8o89tPE3WnLw1OQ49BrKSPAxCkbyLIqm8Wqk7vB61ZL3zy/U6dOIuPR5hfzyRBo0714CkPEeaA73vLWm8NfxlO681Qj0imUg77nrHu4OgODy0hvC81TEevfBjijxONdk89aQCvScnH729rfS88Wy5vH0AhLxRJ0s8iswbvZMRZDxhmHa81EjbPK2XNbxjJKU8DEIRPfhCj7w2Qr08DTsKvTGiiLyeyx29V7dJPfw0ATwyXlk72yW4vM38Cz1MgI+8QGcZPXfmfrso4++6EyidvEpK7rzgCZw7rZAuvdWOsr0GXAU9t7UKvf3gm7yCoDg9fqwevbGUfjyno5s8EygdvahGhzzzXIM+b6plvcsa0LszUMu8pFucPHfNmTwpKce6Xzk6vC5z7rpXBKi8iDA3vY3HPDzPsVU83XZmPOaSE7357qk8CqasvAm0ujtWAoA9C6YsPHQohjzB3I68fQkzvDuMZDxlyTi9Y4povXffd7sDJLw8i4jsOwHe5DuFmTG8g6A4vFsIeDxGTSW9YpHvvBSH2Tw2Qr28JtERvDcyBzymVJU8dOIuPFHabLyyyh+9jBuivJIYazy8CGG87IhVPP84UbzwJuI8umPNvBCDiTs+yzQ9HaOGvPJsubsWLG272Sy/PDIRe7yRbNA8emsmvF/z4jsf+7s8vbT7Ow89Mjkp3Gg8D5GXPL+NCL28CGG8YOVUvfuKjj3ybDk8vEyQOjOksDwtevW8xNcvOy8GJD0VxIE7PX5WuvLL9TzuGws8k1e7vL7qHL0frt28Km8ePHwQuryQBo08mKFiPLAuOz2Lbwc9dUHrPGXJuDxx4Aa9cKPevOOgobuGPkU8fAcLvCzHUzxfMIu7jRSbPEJZC70BeKE74LU2PTb13jwFDyc86IQFvG+RAD3F0Ci9d4A7vN68vTzqQn68q568u8bJob2BnhA9nYzNPBfGqTyKdg49jXrePDGiiDz6kRU9ubArO+C1Nj3Q96y77y1pPGA5Oj15FZm8ergEvKHEljqdjM08E8uIvNjm5ztAI+o8ulMXu3Z3DL1hMrO7eXKtPDRAlT20ZoQ7BrISu/58AD0o4+87LBSyvEjpCb2Nx7y8SzEJvWgh7jsrzlq8lvxOPHm/izvddua8dNsnvdx9bTsimci6DZgevQn6kTyYOx+9s9NOPL/60rxpZ8U7l48EvTMK9LwaHl+8E8uIu2+qZb00A+28pW16PUhYfDxlybg5NFBLPFsIeD0WxAG9S4cWuxGc7jugZwK9GAwBvZW2dzvoN6c8Hk8hPapYZb0x/5w8+01mvLpTFz30q4k8Mk6jPEf5v7wGdWo9yNt/vI16Xr3Y5ue7oN17vCkZET1ejR+99b1nO3QoBj6Fkqq62XkdvQMdNT0A5Wu9P3fPPIrMG73dw8Q8ON4hvUnrsTzr3Lo8dIWaPKXB3zyefr+8JZJBvBHiRbw54Ek8aQgJvC9TAry1eOK8DUvAvDNOI7xDqBE9L2xnvcUkDrwhWng9x3MUvJavcDyo+ai8mZrbvPJsObwTywg82x6xvIfx5jzlTLw8pQUPPZW29zsbynm8/IoOvHcs1jue0iS9TYAPPNVB1LxCYro8glrhPHgs1jz1CsY8DJ+lvJ7SpLy3roM8zfwLPf7SDTyZoeI8BBauvE97sLwUIZa8/j9YvMLVBz2b4DI9/fJ5usoh1zvTjAo9/tKNvOvcurxWamu729FSvAln3Dz0Ec288mWyu7sP6LuGkio83rMOvHwXwTyQbFC9EJxuvZW297r7Tea8XkdIvGIrLL3CkVi9PyrxO4xoAL35VG29+pEVvaPPbTykwV+8kLmuu+6BTrxCWYu9JjfVvMaDyjzgAhU9h+rfPHsOkjzRo0e7vpuWPEBgkjxPgjc9JDMFvD9wyDsXxqm8MbK+vKUFjz2e0qQ8KcODvE/Plb1gKYQ9DJ8lveL7DT1RFxW8WpmFPR75k7nTjIq8f6UXvcgo3jsM7IO8+K9ZvRuqjTyUUDS8eBwgO8kRobwGbmM8K4H8PDzSOz1UzN47L7nFPAoT97zr3Lo8v/rSPDk0Lz37msS8UB4cOmMkJTw2SUS950W1PDQD7Tw3Moe696/ZO3tkHzodo4a8I+amPG6YB70iTGq8eMYSva+JJ7lUXxQ9ubeyu2QdHju0hvA8rZe1PEg/l7wqb549RbpvvIvVyjyPJnk8zrjcvGlnxbysjgY8ob0PPZ7SpDzGepu8VmprvBZ5S73uNHC5HgLDvBi/orwFdWq81yqXPYjjWLyRBg28GluHPWhlHTynTQ683RCjvJJlSTwayvk8fBC6vXY6ZDwgQZO8YCkEvbGN9zyPJnk8fBA6O4rMG73dECM8OJpyu3Z3DL0nhLM8YOzbPCxhEL2MIqm9qZwUvbLKn7w0R5w7jyb5vIgwN70Cin88Zyj1u2+qZT0NO4q9syCtPGDlVL21zMe7ntIkvjObgbo144C6wDmjvP2Tvby2vrk8NEccvb2t9LyJ0yK8HgJDvftN5jw6k+s8WpkFPYbYAbxsDFk8EeJFPWXJuLtusWy8fMNbPPioUjtAI2o7VF8UvONaSj1ONdm5XvPiPGKRb7p9dv28emsmux5Pobzca4+92nIWPXprJryY7sA8qT+APXklT7waWwc9TOQqvFuitLu+lI88eHk0PDqT6zqLIqk7o2IjPMbJobyw6OO7IzOFPUbwkLyNxzy92nIWvfBjCjyOtwa9Df5hPdCqzjzoN6c9OCuAvC9TAj2sSle8q568PLpTF72ehcY81vT1vJbznzwWM/S8va30vBZwHL0Fwkg9GxdYvL2t9DwKpAS8gqe/vEUHzjya57k9xCQOPaQFjzp8Bws9eMYSPbckfT0UOvu89gM/vHOFGr0qIkA9Mk4jvUJiurxjJCU8LM7aPM24XDx2OmS8o68BuyTfn7pDWzO8g+0WvXHwPL0LBem8arQjOiRF47wnygq9wuU9uhMoHTzG0Ki80PcsvLQZJj3uzqy8uwjhPLQZpryw6GO8QL2mPaZm87vKIVe8XOgLPTGiCDpPyI68EZxuumxJAb3dw8S84LU2vZePBD2WSS29/i+iPOFo2DyUCl28lpaLu/58gLuJj3M88hjUvBlrvbvX7W49ZNdGPbHhXLw/biC8/34ovUis4Tyx4Vy92ov7PMcWALy1zMe5CbQ6vC1zbjwmN9U84wblvDp6hr2TToy8BcJIvD/ELTwNmJ68q568PLqppLxlfNo7ydR4PMcoXr0k3x+9k04Muga7QTzTSFu9U2abPZIY67w+d8+7dEFrO/Am4jyb4LI8D0S5PNpyljs7yQy98wieOVxFIDvZHAm96ykZPU0qgryCpz+8BclPvV8wCz1+aO88KNxoPf58AL0SL6S8KCAYPHQoBr0YDAE8yrSMPAqtszwPRLm8u6mkOl36aT3F0Cg9bpgHO5bsmLt4xpI841rKO35o7zwAMso6pf6HPH8CrLwFdWo7dofCPFMQDr3rj1w9/jjRPG+RgDxNkMU8tMMYvPKyED0gQRO9uWpUvP7rcr0sFLI7eN/3vKuevLyEkAK8Ys4Xvf4/WLyW/E68dH4TvdczxrwpGRG87nifPNczxjyffr+7wDkjPTIRez0lksE7jMUUvfW95zxx6TU8kGMhvH5v9rx1QWu8iimwvPf8t7yq65q7BXXqvKNpKr1x6TU8hJmxvEhYfLxWrpo87jTwPKcAMDyW7Bi8ODu2uWumFT2zIC279lCdPGumFbyVr/C6tIbwPLnhBD1Xt7285fQkvXc63bqs2IU7k8aHun4Uz7tS/tU7R6OUPGoQ1LvQ8Km8ud6rPPduxbskpsi5mfUUPSSpoTqwel+7S5CNvHCBdTxSH+C80cltvOplxrxGWHU8vTGcPXELUD3pAqg8dJWqO+iZ17vki9Q81JXcOzp2sjzV/iy8ahDUPA73aLzOSB69LSVtvTwADbu2ew29g0mOu7OOFD2qLSG9he5AvVAEiLuM7JW9Je6OvE3PyLw48gm9PN8CvVCeEL3zYEK90er3vAb8bDybnaA8ud6rvE3SobpjV+w8Q2t8vd5fIL1CdAe9IdrZvAzcEDuqUQQ95e5yO/L3cby2WgM92cqbPf5ItzsgmMW8Vc0dvBonJL3dPpa8g6wsOyeWmrwV+Ba8fLEwvZSccjwbS4e7HTUnPEnEnry7QUo9uJZluiUwo7xBL5o83fN2PO0TBLu1ynY9Nv/evKZkC7vq/HU8+hN4O6NxYL3IjN25ImS0PNHq97wmKvG83lxHu1iWM72p64y7vcskPXSVKr2yJcQ8XeZKPWdrITyU5xG9nkgFPAYmgrzvUj89gJj3PECEtbscq0y8b2DrPH+hAj29xXK7kdY1PUXUzLzuECs7VcrEuzCOPbwfUH88SHl/vOUYCD2Ad209geC9Pd6Dg7xHWHW701NIvPyd0jw8uMY7ek4SvI+1qzzR8Cm7k1rePCukHb0ZvlM8APQbvNUiELw0nMA8JTAjPUjBxTzHa1O91vj6PNHPH71WeIK8zQMxvZo00DzshlC5dNe+PBoh8jy87C487nYiPXejrbwCNrA8wdyAPRidSb32Jn87J7RLvMoWuDvJGRE98mObvWtz8rwRyYk8KdVVveSLVLs6Lmy7NJxAPRY9hLuqcg68Ml2FPayNZrx1H4W8+PifvLXQKDyOCkc6SMQePTYg6buOK9E83fkoPa3Pejxsmi49+8QOvTD3Db0SLwE7pd0JO0XUTLwOGHM8EOoTPTDxW72DZOa8eeXBvN4djLtSJRK9nbh4vNXXcLzwlNO8r6GbPSn8Eb0/PO8895UBOydLezt7SOC8bUWTPH+hgjwrOPQ8Ml0FvW+oMb2jUNa7YTZivdTdIrynXlk9gJ4pvfZxnjx+XBU8nMEDPUDGST0RCx685c1oPdN00jt3oy29PzxvPL+R4bzSETQ9UJu3uwSfgLyhxnu9JnUQPUZeJzpXupa8yIzdOsI/nzv4sFk8QOdTO3X7IT1HoDu71QEGPD+omDxB51O9SOiBvVOpOjzHSkk851dDPAN4RDwxOSK9h3JpPOXTmjsvbTO9bdzCvCk+pjwGZb28ngA/vA736Lvblgq80cntvGpYmjreO708dR8FPZp2ZDxd5so8hg/LvMiSD7y+EBK7V1Qfu1zFwDyp64w75e7yPNu3lDy9DTm90jUXvStfML17kKa6dfjIOiNnDTxd6SM8RdRMPRZ8P7wrgxO99007PR3zkrwd7eA8YfRNPREsqLvMoJK8XIOsvGnOvzzzgUw8sSidPHide70QgUM7J3WQvK32tju87K682k7EPD+EtbxQdHs9+16XO/0AcbwZ5Q880TK+PEOzQr5mI9u8q0tSvKUfHr0Uj8Y8Dj+vO2ePhLhmShe9G0guvICY9zwYoCK871WYvINqGL38fMi8ULzBOzJdhTvA+jE9L0Z3vP4nrTxiFVi8mLAnvVNA6jwzfo89j1KNPM79/jwaIXK845EGvLr/tTx01768sbzzvHknVrzR84K8ffYdvPYssTus1Sw9clMWO4OsLD21yva8/mnBvLkCD7wN1t48VjOVPHu0CbxR3cs7j7WrvH59n70XfD87CTQFPOuGUDzHrWe9ifxDOgoK8LsTtoK6e2lqvLTTgbw+ZoQ80TI+PB5ZCj3uc0m8udj5O2udBz2SOdS8EiwoPQdEs7zg5iE89gV1vIneEj1h9M07B0SzPCDgC7zYqRE8BJlOvCSFPj2xKB284H3RO3pvHLxJ4k+6CnaZvGZE5byp6LO9XciZPVSLCbzTlVy81R83PbEonbxnj4Q8q2xcu69fBzxyEYI9kT+GPkJQpLwV0dq8kjlUvFiZjDs++to8r1lVOwHN3zy5IMC8zkgevb0QEr2NMQM8K4C6PD9jqzzNAzG9kRjKOu52Ir2t9jY80K6VPVj/gzzfpI27LOmKvBXyZLzWHzc8OQ1ivXyQprz7W7672QywPOIB+jrPjQu8FNcMvQ3cELxeTxs9/gBxvYSmertahoU845GGu1nYx7z8owQ8l24TPHXXPrxHfzG88mObu4dRX71QnhA9DR4lvL9w17xOeq28U6m6vECEtbvzYMI8tIhiPdyx4ryVvXw7lgVDu4YPyzxnZe+5b6ixPKjos7ph9M07qegzPJR76DwSTTI9yJIPPGyaLjqY9ZS8DLVUPASZzr0SJvY8zbtqPPSoiDxknzK8v3DXvFoa3Lxl5B89C3aZu2tYGrxMjTQ9j1KNPLXxsrwG/Oy8b6uKvHCBdbzKGZE6neKNPD887zv6Wz49DhjzPMygkjyUvfw7wmOCu1OsE7wok8G8n4RnPGyUfLwp9l+7Alc6O8tYzDlqUui82lGdO5TGBz0l7o48IhxuPMNdULx980Q9fdK6vFCbtzut2IU8V7oWPEOVETzaD4m90er3PEuuvrsaIXI99nGeO+nb6zxR3cs7EOoTux4UnbypCT49H1D/vGXhRrtKJGQ9c27uvFkgDr3DPMa7QMZJPcCy67sU1wy9aIb5PMNdULuCBCG9WhpcvYiT8zwnk8E91d2ivM9mz7zC9H88sSidvFHdyzviKw+9tPEyuyZRLb2uOMs8nQOYvJI51Dyg7Te9k6KkOySpob00n5m71kBBPHCBdbxPnhC8HI2bvDCyoLxUykS8oIoZO7zsLr0OP6+8pLN0vNeIB70eehS8UASIO39W4z2vWVU8EQuePF9wJT1jV+w8zkieuyd1kDxcpDY8n2NdvOuMAr1WDFm803RSPPM/OD2KHU69wdwAPfvEDr3ki1Q9aO/JPJo00Dy7Qcq76vx1Pac9T70A0xG9mToCvMHcAL17b5w8sgQ6vFdv9zpqENQ9cMm7vMit57xflIg9z2wBuQEPdD0kpki94H1RPET7CL0UsNA6t72hvDo0Hryoxyk8N60cvXXXvjqaOgI7fdK6PBjEBb3OAzE8YJEvveTN6LuCapi8iLovPEkqlr2d37S8PJc8PZJa3jvwmgW8T30GvYJJDr2idxI8RfXWPPZuxbkEmc484mrKO6NQ1jwB7mk7pR8evJTnkbv2L4o6WLc9veHFlzvJ9a28EKLNPOIoNju53qs8H78BPUejlLxxC1C8v5eTPCEBFjyJtH086eGdPOm64bxo0Zi8zAYKu2pS6LyuOMs8FT0EPb9PTTwndZA8N2J9O6h/Y7tjn7K8B0SzvG3cwrhreaQ8AQ90vUoD2rzt7yC6X5Gvumo3kLsRLCg71P4svXpOkrs58gk7FNcMvZj1FLtlCIO9V3gCvTIS5jxA51O81AGGvZiwJ70VPYQ8+dFjvACLSz2of2M7hTDVvKCl8TwfWYo8LIA6PJSc8jzjkYa8oQ5Cvf9pQTxkogs8o7kmPdyx4ryjUNa6F1u1vFEECL12GdM8VhKLPOyG0DyImaW9+hN4PYY2BzwGZT09j7WrvNDwqTyLp6g5JejcvKts3Lw/Y6u8XShfvMTqg70x8du7AnsdO60aGjs1vUq9Q2t8PA5gOT2UnHI8JTCjvI0xAzznnwm9wzzGO3yK9DyxwqU8BmU9vVe6FrwYnUm8WztmvdEUjbouTKk7tK8eO93YHr2CBKG7+8SOvMNd0DzI+Aa9YNYcvOm64bwaSC66yIzdPPiw2bzt6W68RLYbPJ9j3Ttt3EK8Ml2FPdz8gbs3qkM9x0rJu2KBAb3tECu8rK5wPFSIsDzB3IC6dzpdPGjOvzq2Er28vOwuvP3fZrlV6068VevOOzdriD3d+ai8zkgevUYWYT2LZRS8MI49vAN7HbzvUr883dgePSyAOr3Y66U8/eWYvD+ENTwyWiw9TjJnPLnhBL1Axkm9bdxCPF+UiDmTe+i6dI94PItf4jwtJW29Civ6vCukHbxuZp283RqzPDiJubxbO+a8roARPLB6X7wB7uk8iiOAvbdaAzz6GSq9TPaEO6CrI75wybs8FfiWvJHWNT2p6DO9Nb3KPJnyu7xCDhC8VQzZOBZeDr2JtP08PJoVPMUItTxGgoq73fmoPMCRYT1zuY29JnUQO/DcGbw6DeI8ccwUvPYvCjsiZw09qcqCvO3IZD32BXW9OlUovYyhdrt7b5y87RMEvQ73aDzA/Yq8f56purNGTj0rXzC9GickPXHqxbuOTFu89SwxPCyAOjpfT5u8e7GwPLHjrzwiZLS8rRqau04RXT1J4s+740nAvP4Acb1vigC9KLRLvb9PTT1CSnI8c01kPbG887wtws48WNhHu5p8Fj3tEKu8NiBpPINk5rwfUH+8MjmiOnHtHr1+O4u9AloTPYodTril+zo9hRIkPHSVKrx5xLe7vIPePNObjjzOA7G7TfBSPcugEj2HV5E9M8AjvajrjLzvVZi8YIt9Pd47Pb2s1ay8gSgEvSOIlzxfT5s83h0MPFdO7Tqopp+8oMwtOx3tYL3dGrO8W6cPvML0/zyZOgK93lxHPJjLf7w7T/a5VIiwvPYm/7zmNjk8LkypuJE/hrv4sFm8A1qTOzXeVD1xEYI8AjYwO5IYSjx4fPG63ju9vPSoiLzPjQu9o7kmvTDxW70yWiw9zv3+vGpYmrwd8xI8l7MAO0NxrrxVM5U7FLDQvKnB97z/sYe8oQ5CPUpLoD0/hLW8IUaDPNIRNL2yJcQ8XQ0HvDeMkjxQvMG8IAGWvMvBHLvA2ac8lL38O84DMbyPr/m85dOaukXUzLuCBKE8BkeMvM0kuzyWBcO8k1rePGCyuTx3oy28Xg0HvTW9SjyeaQ+8SHn/vKkJPj3bb068wJFhPD88bzxGXqc8v5HhPNHwqbt56Bo92gb+vLIlxLxt/Uy8cepFvNXX8Dx/VmO8I6ZIOx96FL38ndI8QcbJO1+UiD0UsNC88JTTvMnvezzqaB+8h1cRPM5IHj17aWo8PJc8vRJxFTvbUR09+RyDvOnhnTvfpA29kLUrO7tiVLq8pGg9ocb7PINqGD0RCx66lKIkOzJaLDxGXqe8IdpZPZu+qjxN9gQ960Q8PckZkTxGXic9xSwYvRc0ebwGIym95hgIPKh/Y7xuYOs7khjKO5nyu7tTZ6a8APQbPP0Go70M3BA6seYIu2EbCjw1BRE9Uv7VO+uMgj0kzQQ93fP2PHuxsDvRye08thK9PJzBA73CPx+9CO8XvKjHKTxruzi9HcxWPZ5C07xrWJo7G40bvEtsqrwdNSe8t1TRPKXasDw3R6U8T1kjPX32HTxLZvg8pRxFvLYzRzvUAQa9BeEUOnJTFrtTlGy9tdRgvBgVVb3RMJw6bLgkPACyErxuiac839NEO9M5oruxkFU8mCQNvcgMhDyhFiY8PwgxvIrPeD2x9FM8s/rXuzr2JLzOjpY8lOMDvedhX7xD6D29njydPOxzaz27uvE8axkhPG2DI715Vcm81KkovC5cgj0LETA8qnLBvIGlXLvvf3M7dq2/vG/BqrwZsda8LsOCvZnAjrym/DY9OYyiOwlvqrxv86k8yxiMvAX8IbwCHxe9e/fOu39nVb17I0q8F+PVvJwBGL0vX4Q7nQQaPWTDCb2Et+i8aHEXPdCUmr1jWQe9erlHvbaiYbyi6io8/AMFPf92jTtOSt07gJ/YvGPAhz13s0M81+cvPJgkjbvr0WW96jVkubRkWrxBTLy8Des4vKPwrrxvXSw9h1luvUGwujtY3nu8qgi/PIw/f7ygEKI8b10sPDa1mzzks9E87rFyPQVgoLsmtfs8USTmPOKtzbuApdy8D/E8vAgFqDxpppi8zlYTvYlldryX74u8b10svEJ+uzznYV88boknPWt9nzzeacK7D4c6vQlvqrsvlAU7Au0XPQhpJj0twAC9OYwivO4V8Ty3PuM80TYgvQ+HujwTNUi8yUSHulL46rx6VUk8dXU8PPsyArxzNzU9+2oFPXSnuz1vJSm928E4PH9n1bsVbcs8oBOkPK4ayzukVK08F6vSvKQiLj3PXBe9r7bMui9ihjpp2Je8YlaFPH6Z1Dz+Eg88/kGMveKtTT2xJlO8N7idPKhmOb2dNhk9hOPjvN5pQj1LotM7+i8APc3vkjuqOr68M3GQPNNroTyuUk66PdCtvNGanrwUn8o7VczvPIzV/LxrrBy8bR+lPM+Olrv7y4E7mcAOuv9EDj0MF7Q8N+cavC1ZgD1oo5a7eB1GvTMKkDqJkXE8n3QgPDwCrTz8nwY9QEC0PK+KUT3aV7Y7e7/LO+qZ4ryt4ke8PdAtPEYmRTz+2gu80MaZPA4dOD0U1828Q7Y+vcg+AzuJkXG8F+PVvLrscLweLWU7BjEjvDWslT0TNci8CqctPSCj7zywvNA74hHMvOALyDwvxoQ8Z2iRO6hmOb2kKLK8f2dVPK+EzbwH/yO9BCufPW1OIr07Lig9JoN8PDUTljzie06869HlO8Bo/zyLB/y7mvsTvVAe4jyI+/O8Pp6uPBLLxTukVC29pCIuvQjTqDwmH/68fpnUu7YMZDwvXwQ8ZwSTvJceCTxrSJ48aqkavJWxhLxXPHa8LioDva2wSLxh6QC8P9axPHZDvTxuJam72OcvvbNkWj0bWWA8N06bvH39Ur3iF1A9Qho9ukjOTry/xnm8HpfnPBCNvruMo307EmHDPKyqRDyWTYY7b/OpO23qo7wy2BA8yKgFvEO2PjscJ2E8LiqDPIUb5zwcJ2E8OFGdvA3rOL2qpMA7VdLzvKO4qzznxd27gXNdvEnOzjxjJwi9LvUBvAaVITz80QW9TKjXOlc8dj1AeDe9Yu8EPIA7Wr1Rjug8NrWbvL+UejwZsda83pvBPJ+pIT3gQ8s8NHeUvJ9CoTwwMAe7yuOKPR9rbDpLDNa8iPVvvCPh9rt3s0O+BSufvLjg6LugrCO78SH5PEo+1TvGbYC9PwixvZ+poTyE6Wc9mjCVOrc+47wPjT69f23ZvJghCz2XUwo810uuPFBW5Tt/Z1U8cze1vH0vUryjhqy7zlaTPQEfFzy4Eug6OmAnvFLA5zxyMTE9mjCVOpgkDb3jT9M8VcxvvR5l6Ls/DrU8ZsyPPILd3zz9cAk981n8u6g0ujp6jUw8/qiMPM0hEj10C7q8+mQBPaIcKjqomLi9ZZSMPO1BbDy+lPo7BGAgvWkKF71mmpC7lx4JvOSzUTxEhL+8g7HkPGVijTtGwsa8v8z9vMwbDj0RL8Q7o4asvLRq3jzz9f28ZPWIvXzFT7w5IqA9EpPCPMyCjjxOfFy8o/CuPDN0Er2ZWQ48mIuNu9dLrryVsYS7pmC1vOUdVLylxLO8gg/fvVBW5TwdyWa7I6/3u6WMMDwyOY28hOnnvOLfzLv+Poq80PuaPO15bz6byRS74RHMu2YBkb16jUw8tgzkO/vLgTtvXSy8vPL0uwvfsLyZ9Q+9rRRHPP3XiTzjgVI8gDtavA5PNz3+QQy9M6MPvALqlT0QKUA7M6aRvATEHrw8Ziu8ZPgKPVXMb70P8by8ff3SvDa1mzycoJu7QUY4PAGyEr3WE6s7ubRtPU6uW72XHok7T+bePEo40TxD6L28YlaFPM9fGbwJPSu9dq0/vBM1yLzyi3u9QuI5PCR9+Lw2tRs8n3qkvARdnjs2S5m8ZPiKu4Yh6zznYV+8yUSHO82LFL1S8uY7tgZguy71gTyURwK92R+zPMcGAD0ckeM77DtoPMyCjjoiqXM8ZzwWvd4FxDy0zly9nWsaPW8lqTyEf+U8vfh4ukBGuLwUO0y7UvJmPJNEADw025K7Oo8kPdGdILtIyMq8O8opvS1ZAL0xB448UzBuPIudebsINyc8nDOXOz5sLz0yBw681eErPJ8NILu44Og7ZpcOvbiuabytGsu82le2u+wPbbynyrc7StTSvJzMljxKONE8yq6JPFFcabx1dTy8yuOKPTiGnr0Zhdu6L/gDPS1ZADyBD988yRWKvUJMvDvUqSg8r7bMO5ZQCD3NuhE9l7eIPMt8Cjw3HJy6VQRzPZqRkbyHJ2+7isl0PNLVo7yqCD+9zr2TPA8jvLtllAy7AoaXvP8VET0Wc888WKz8vMuxi72GWW47qJi4PZ4KnjwBtRQ7HcnmPDJuDjzPjhY8nGUWvQutMb2nyre8pL6vPDlaIzumkjQ9vPJ0vBmF27w69qS9lYIHvcyCjjpKONG8hr3svLUG4LxjJwi6rbDIvDUTlrrhp8m8Pp6uvGdrk7zQl5y7oOQmPJxlFrx+0Vc9yXaGPGyAIT37Z4M8cfmtPEgyzbsCVxo87hVxPAO+mrxBsLq8FnnTu+/pdbqx9FM8B5ulvW0fJTw58CC9G4vfPErU0jxkXwu5reLHO8lEhzyWUIi8qJg4uxVBULwKQ6+8HcNiPHIFNr02Sxm9/GoFPtNuI73M7JC7QEY4PQebJb2fqaE9hU3mOB9l6LqE42O9FnlTvAGAkzpml448msYSPQk9K7xlxgu8HvvluxWlzjwj2/I6rRpLOgdmpLz/qw47MMwIvQMimTwjRfW8QUy8vDYWmD01fZi7sO7PvHU9Ob0U0cm8dKE3vKVaMT0RxUG95fHYOy4nAT2XhQk9cZUvPRVB0Lz/dg06SGRMOjvEpbzzw/68PDQsPGfSE7uACVu8FddNvE+03zw+pLK8T+zivIaF6TucZRa8MwoQPTaAGj1mARG95lvbvGpCGr10p7u8u+zwPDOjDz0OHbg8CgssPRer0rveaUK8/NGFuz6erjz7MoI8TRLaPIEP37z9cIm8AoYXPBBbvzy9wHU8Q1LAPDI5Db0ga+y8aKOWu5nyjbym9rK7MJ2LvagCO72qCD89HcPivJTgAb2G72u9QNw1vDAEjLyljLA8lHmBvKlsPb1pcRc7eylOPXM3tTufPx89IDntvLy6cTyuGss70zmiuxKTQj3RMx68Vgp3u4IP37vY7bO8mcAOPREpwDtFikO7ahCbvbNkWj3mW1s8UYjkPDvEpbvks1E9gkHevKMirrzM7BC9eblHvPovgLwIBai8/GoFPAebJb2WhYm8yQ8GvdV3qTy7gu48DBe0PNHMHbwX49U8ZzYSvUJ+u7roL+A8TRhePK1+SbzbXbq8ykeJvDYZmr3sD+27Sj5Vu2lxlzs03hS82ys7vGijFrwbi1+8ZzYSvZdTCr2ILXO7CAUovNE2ILwPjb68qGw9vH1hUT0FK588ESnAPOulaj0E8xu9YB6CPKEWprzY7TO8ruhLvRu9Xrz+qIw8UCRmPIcnbzzaV7a7iCfvvEeWy7yIw3C6/AaHu9sru7jNwJU9O8opPWFQAb1IZMw9IDntvERYxLzWRSq8/qWKOqKAKD014Za9EzVIPdvzN72vvFC8wGj/PLpQ7zsXR1S8SJzPvP5BjDzbwTi8oKwjPGlxlzuU4AE9rn5JvWHpAL2akZE8SZxPvJbmhbsYf1e9D40+vRH9RLzaV7a74G9GPUTuQb2ljDA8Jh9+vfovgDzUPya+cgW2PEyo1zurRsY78On1vNVFqjyseEW93WM+vS8zibtzBTa6GX9XOwSMmzyZwA49zSGSvGRfizy5tG09HwHqvBmF27xFJsU7DHuyPM6LFLqEsWQ81HElPW67JjsxaIo7EPE8vajQu7wA4Y88/AaHu37RV72d2J48zBsOvaOGLDyt4kc9xwaAOxjjVT3oYd87+mcDPAdpJjz7zoM7QNw1PS4qgzyiHKo6bVGkvGZljzyFU2o9lumHvIqd+bwFkp86m/uTu5fvC7xARjg9Nxwcu5wBmD26HnC8WBB7PaZgtTwPjT49Zv6OvJa0BjzjT9O8BpWhPPuZArs0QpO9gkfivCVL+Tzd/7+8WeT/PG3qIz0VCc2855NeOwCvkD0TZ0c9y7SNO20fpTyAO9o81xkvPZ2gm7xvV6g8nw2gvJchC7diVoW8zYsUPAAWkTzRmp48DIG2utM8JDtrrJy8tABcuvKL+7wXR9S80f4cOv5zC70NT7c8L2WIvHXZujv7agW9+zKCPKhmObyLz3i8G1ngO0X0RbxmmhA8lrSGu5xoGL2ApVw9uXxqPGdokTyVroI8wP78ugg9q7zf08S8sfRTvX811rxjwAe9akWcPNLPn7znxd07FnNPPTYcHDzueW+8mviRPJtilLvgC8i8ulBvvLLCVD3RMJw9/NGFPHRvOLvxi3s73ZvBurpQb720al47dntAPBJnR7tF9EW852HfvIZZbjx8W8071Xcpva+2TLv9cIk714OxvDmJIL1DGr08Zv6OvGK6gzvLGAw9StRSvEcsybznKVw8P3KzvOB1Sr0/pDI96PfcvEFMvLypnjw8T4LgPO1BbLzUo6S7FqVOPchwAr3Lf4y8UCTmO+W/Wbx/A1c9uh7wPEMgwbhh7AK96pniPAO+Gj3IcII92R8zveIRTLww/gc7StRSvL3AdTw1spk8mfWPPD0CLb2pOj48BSsfPafKN7x7I8q7YYIAO5iOjzyZJ4+8o4YsPYEP3zzspeq5EwNJu+OB0rw2GZo8Pwgxvd83Qz0Ph7o8tJxdvAxJMz1KatA8O5KmPNrzt7nusXK88H9zvSFx8LrLGIy8E2fHuwjTKDyJZfY7pVqxvEOEPzyCeWG9GRvZvAx7MjyMo309dhE+O+oDZbu65uw8nm4cPcBof7yf26A7rX7JPA+HujzVDae8ndgevaPqqrx6v0u8gkdivWsZITwmg3y85lXXvM9fGTzsD229gkFevDOpkzpIyEo9RyzJPKS+rzy1OF+86jVkPejLYbwY41U98ot7veKtzTw7kia8jKmUPI+R57zXYyS9PoARvE0bQjy2h3S797izvEGJgTyMQxG8RBawvGNEFL1xecE8qY8wPM8UWzyX4DA9SNVoPG5wUTyylMK8R649Pcrkv7vrtZC8nYEuvTetibtdHHY95Qm0PBaBFLxUngS8tw4VPKXY9DzlmFE9SOumPCZDcLyk2HQ9PpNtOsUlB72HohO8Q0qpvO1CP72e3FK8jmo8PQlos7xbZi29ymABPcaLCr0xm6k62fsxvdPp0byWo0e91ET2vEM0a70T/GK8Q7sLu6maDz1lxuO8pO6yPIy88DzGnma9jLxwvQKKTL2eWBS9nliUvHMRzzwZ8Ae7gly6u7RgSTz3ovU8ppEfPN4rzbuhViW8/bRVvfUrBbvIGDk8p/civRS1DbwyZzC9OGPSPFSIxrzPFNs7I8GgPAloszzEQ8K83V9GPXU4ervmepa8GH8lPE6MJD3EWYA7Mz4WPbUs0Lu6zU089uysvLRgSTtP50i8yyyIO63zxLyRfgu9IRNVu81I1LxWr/E8Tv2GvLWdMj1HmH89W2atPPWRCL2w5vY7sp+hvLkXBbwTOcw8WrjhOqW6ubufvhc9PE6HO+IWAr3RwiY9sdOavPGmU7th8ey86xsUvckCezzBUBC8ZRAbPQiG7jy0BaU9hjyQvAloszsbAXW7PbSKvLpyKbx777W8UA70PMaAK73Pb/88e2CYvAWemzxY7Fo8vxMnvNUxmjwRrB09m1qDPDbLRL1DVQg9uZBkvEjV6DxQs8+8S97YPM34Dr1W42o6RIcSPbimIjzOxJU8g6SCPLTRKz0eIKM8cXnBO3U4ejlywQk8ymCBO9UmOz3SeG+9j0yBvIOkgryqAJO8K58HOqfhZLy/okQ95D2tPG+tursrBQs9DeIFvc7Elb0U3ic8kX6LO8IG2TvrtZC8wrYTPbmQ5DwqvcI9VuNqPKXFmDzhHv+8bKTKvC9ewDzNSNS7jNKuvK3zxLjT6dE8v0cgvaUrnLx2qVy8SXpEvPIXNr2a6aA7l+AwvH9TyrpheI093V/GvBKDAzxCaOQ8e9l3PFqapryhViW8bSCMPBZNmzvhP5y8kBiIvYRP7LvjcSa9xFkAvXd1Yz1DNGu97IGXPESHkjwgR843l/7rPKADfjyvGnA9ipVFvNP/j700HXk8+RNYvUa5HD0hj5Y8TE+7vE9jirweCuU8PbSKvIlFgLx2qdw8WOzaOde+SLxqm1o89D7hPJzABj1spEq8UGMKPLUsULtS8Di9paR7PNHCJj0avI482Bltva6/S70T3ic55a4PO3tKWr0ljSe9ulxrPR66H7y/MWK8+swCurfaGzyfqFm8Oi/ZO7tJD7sWQjw9RwniO7hAHz1GuZy89M3+vEjV6LoATeO7t1N7O3nICrwpgFk8DgkxPXtK2rzqyOy8Q6VNvHSNkLxwCF888gH4OwmGbrwQMNw8Ch58vPBWDjoWQrw8LTeVvJajRzzUtVg9yXPdvI+npbxGuRy9GrwOPSEpEz1k+tw8qM6IvHTdVTxq9n47vda9PPZdj7yPpyU9U2EbvYF6dT0c4zk5MzM3vR4K5bsufPu8V5E2vl7+uruk+ZG8eGIHuyWNJz3UyxY9hqKTvflufL37Mga9Y584PdqxerzPKhm9RBawvA09qrw8Tgc9NstEO/6WGjw5RZe7/rTVPHeLobxheI28YmJPvJwQTD0bcle6hPTHPOEe/zv6UEE9D/NyPeFoNrzqyOy8SVwJvYCQM72iLQu7ViDUPME6Ujx8LB+7t2m5uoEBFr20BaW8QQ1AO3hBajziAEQ8orFJvA4UEDtnfw686jlPvQ4UkLkycg+7JlkuvNNlE7zH8Q28m9NiPIyI97sZDsM75phRvKdSxzz2XY86VyBUPIOkAr0NzMc8mQfcPB26n7zd0Cg9k5pXvEQWML2Zlnm9gQEWPRuIFbyjkw68RXHUvF9GAz3yIhW9S/QWPUXiNrxTOAG9unKpu0jrprw83SS9DpjOvB4go73W8sE8DHyCunoNcTxBiYE8MM+ivGcDTTx7YJg8eGIHvN+cLz2zEIQ+bEmmvLpyqbw5eZC9DT0qPLQQBLoaptC6dGzzusi9FDyyI+C8+xzIvI+yBLzMsEY7+d/euqaRH7yw/LQ8rW8GvVSeBDsCoIo9EaydPIMowTtpQLY72QYRPbWdsjw9k229hPTHvI5qvDpHCWI8SNVovF9GAzz1IKa8nzf3uz2pKz1ms4e95MzKvB/W6ztV+Si8rJggO0yDtLozPhY9zCEpvPgT2DtUngS8p+HkvEBMmLzEQ8K8KIDZuO3nGrxS8Dg9DsxHvFqlhTxMWho8V5yVvLD8NDlnf468UC+RPPHaTLytCQM9EznMvJT1ezxfykE9VWqLO6tFeTyn9yI7M/ZNPFLa+rxdjdi6MZspvcaeZj3SMwk90o6tPGmb2jwbcle8Fk2bPCQcxTwjbvk7CjQ6u4XWjD2bWoM8Xv66vP/xvrwTyOm8ShLSPLTRqzskmIY8T1grvIYxMbzaVlY8DUiJu4mVxTziAMS8rDKdvPHaTLy03Iq8wN8tvHVZFzzOo3i8sjmePNwPgb0ibvm8Yr3zPFYgVD2rRfk7zMYEPGmxGD2uTmm9ZrMHvUa5nDzw2sw8ceqjvHp+U73vigc9t1P7PABuADvorCA9fLu8PLUs0DtKEtI8SigQvND2Hz2nUse8kws6OMOCGj1L9Ba9EhIhvIk6obwOrow7m1oDvTPC1LwEsXc8TE87vExPO73yclq83duHvBDVtz20YEk8hPTHvMgYOTxxhCC99tbuuxKDA70EbBG9VPmovNwEIj3MfM282eVzPDbp/7s8Toe8FgVTvXTzk7waSyw5owzuvKF0YLwbAXW9cB6duoYxsbwvfPs6Kr3CvKOTDr1YaJy8kAJKu1sLibzwVg69Vq9xPe7R3DzNXpI8dho/PQLl8DzFtCS9JBzFuxV2NTwtsPS8ISmTvGT6XLtLoW88NkeGOt3QqL12Gj89+BPYO7WoET37HMg8n6hZPCNuebwFnhs9OQguvPe4M7zMC+s6T1irvIYxMT0bFzO8ULNPvXLBCT5+U0q9RXHUvF7ofD1wPFi9Nf89Pd+cr7yd8pA8hE9svUENQDyAkLM8ztdxvL9HoDw51LS8CA2PvJ8ZvLwc47k8P+YUvXO2Krwdr8C8QmhkvdHCprxQL5E8Z3SvvNS1WLxfysE9bEkmPE/JjboRrB27+qtlvDurmrvq/OU84VJ4vCrIIT1PWKu8WGgcPRPI6TtoXvG8jNKuvEDmlDrKYIG9gXp1PA9kVbxAnN07F51gu4jJvjvMkos7paT7u7S7bbwmyhC7iNSdPF/VoLtTvL88FgVTvXO2KjswKsc7O3chvWY3Rj1QJDI9Q6XNPE6MJD21Qg49PoCRu5m3lrwEbJE8ARnqOQUEHz0xDIy9W1DvO717Gbw1/708MzO3OzEMDLwF7mC9uQHHvDxOh7w6oDu80o6tvDetCb0rGGe9nJ/pPOfVOr086AO9BDgYveyUc7tsM2i8+IS6O0uDNL2u1Ym9+syCvKvMGT2GG3M8U8eePGK9c7wyZ7C7p+HkOVv1yjxICWI9Wbjhu2d0rzxPYwq74qWfvFbjajwz2JK7MM+iPOyBF73T6VE959U6vDhjUj21nTK7f/ilPRsXs7tSYRu8dPMTvaRJV7ubWgO8j6clvYdY3LzddQQ8Ch58OcwhKbytCQO8YfHsPALl8Dy3dBi8rIJiPQ3iBb1BfqI8en7TPMssCD17Stq8EznMvC9eQLtEFjC9/BxIvBzNezxaPwI8dN1VPGlAtrvMC2u6oPuAPAe657z4j5m84FL4vBsB9TvghvE5UfC4u4yetTxpSxU9JY2nPI+nJTrj4og9xFkAva8a8DzoocE8M8LUvA9kVb0f1ms8aUsVPWykyjzvDkY8qupUPDDPIr3aVla55a6PvABugDtQJLK8OquaPeE/nLmt88S7LTeVPXAenTvxvBG87GD6u3Rsczq1LFA8gVy6vcywRjxr2MO8uz6wvBL84jzVgd88bEkmvQsAwbz7MgY9KUxgOzJRcjmPNsM8un0IPLg1QL3q6Qm9V3v4vOrpCb2x0xq9k/X7vBsXM738d+w7KZYXPM34Dj0BLyi97IEXvJHOUL1xeUE8Dq4MvpkH3Lu0doc8CwsgO0NVCL1mN8Y7clsGvdS12LzYL6u8VJ4Evc+FPTwYfyU9NuECPf4lODv59Zw8jJ41PfV7Sr20u227E94nuQdBCDyn4eS7CZysu5ajRz1apYW83O5jPJF+C731Cui83ASiOSzREbzYL6u9bEmmPIHr17whjxY8D2RVPTsvWbxWNhI9GjXuumXGY7zg2Zg874qHO9TLljzUyxY7HiuCO1SehDzhNL28/VmxPVO8P7tl3CG9vJlUPMgYuTsHK0q9POiDPRnayTsTOUw9YCXmPLWoET2naAW8igaoPFkpxDtXAhk8/DIGPGqbWjyAkDM70pmMvR/sqbzj4gg9Ki4lvOYUkzyAkLO6/coTvZJKEru6fYg9DFvlPJFzLDz+lho9fvglPE6Xgz0biJW8gJuSvCWNp7wGdQE93A+BvZxERbyRfos8fCwfPUXitjxnkmo8qM4IvBJtRbw4CK68Zk2EvN4rzbwTyGm8fKX+PGHx7Lx9h8M8+42qvEcJ4jtUiMa7avb+vOyBlzxMTzu8KwWLPP4wF7x2v5q8JehLPZ8kG7zRzYU8JejLPHAI3ztC2ca8EDBcu/fDEr35bny8uDVAvarq1DyF1gy9wN+tO435WTxJekS8ntzSvFhdvTt5yIo6It/bvILNnLsEIlo94haCPfMBeDz294s8PMdmvLyvEj3Zik+9/HdsPMgYObxbUO88H+ypvJmsN7zXY6Q8f88LvTqKfb2Ct1486B2DvLTRKzyPkee8Q7sLPdpWVrwxmyk8N5dLOoyeNb1UngS9HT5eu6g0jDvSHUu73itNPVhoHLy1nbK8NuECPXMRTz01WuI8L17APEXM+DueWJS9IF0MOzG55LxnGQu8aZtaPUqhb7rLsEa40cImvbHIuzwVGxE9ppEfPdgvK71BQTm8FKquPIK3Xrv9ypM8QmjkvFzXDz0FfX69us1Nu5taAz2ZB9w8aF7xOUjV6DuyI+C7lqPHO4mVxTxkEBs7/UPzO5wmCjq8Cre7xSWHvD51Mr3hw1o9EznMPIy8cDwjwaA9Zk0EvMssCD0D0pS8PoARvW/L9bzf99O7w4KavGOfOLvMIam8oseHvI9MgTxKEtI78iKVvYMowbziFoI7+qtlPc9v/zwaptA8Xuj8PDrfkz2CXDq82rF6vJP1+zyd8pA8bSCMvJcUqryPNsO7AS+ot/PjvLxI9gW859W6vK+L0ryXHwk9X8pBvUVx1Ly4pqI8mQdcPaoAkzxivXM8Yt4Quo+nJT2dga68Q1UIPRV2Nb3slPO7qgCTvG7P+jtcG+K8uia3vAoNY7wmB4+8L92fO61hIrxuF6o8RlhpPFhcqLzrU328wCUpPLnm/jutEXw8usIXPQduBT3+h4a74OaFOq5ZKz3wHhq9nJWkvGEKZr09is+8b7OKPcu6cz1cA327FL8MPLseQLw7anM91XQUPR0RojzVoPI5nBkgPDScWbwd0Wm9IujAvGHOmTu3NzM772LdvJJf/zy/5fC8ZcWUvI6wszsKFVq9OIPmPLUvvLyyaAu9brMKvQs1tjpz3lq9VI0AvYSKfDsMNbY8zLL8vDO0vrrWwM476KSxvWACb73M+iu9+UDlvK1RNLz+b6E853RnPSqu47sLyZ+7S6cBPQEv2zqgbMM8zdrPuww1Nr2tKWG8xOzZPKAYEr1OZru8MHkAvVszRz2u/YI8vxW7PLJQpjytaRk9k8eKvOKlPzyXbt+4dt1MvONJl7vVqOk8Bw5xvANXLj36WEq71nwLvK5ZK730SWq8d+26vFNdtrzozAS7GqYZvVNFUb1KT2Q88ZInPcinCLyWljI9ZcWUPEKJwTzwJhG9aeB2O4F/iLxTHf48m2XaOzS0Pjyafb+8+lDTPPpoOD32oYc8RrAGPWEa1LzDFK28OItdvG73zbz2oQc8myGXO3zkNT0MLb88gKtmPSvWNr0rruM8kqeuvBUDULuo9hm8K9Y2vdWw4Dy6NqU8avBkPakGiLxHsIY8+Wi4vNbAzrvxgrk8skA4PRAM1bvDDDa9IfiuPC/llrzNngO9J++pvPAmkTxcI9m8ct7aPD2C2DyWjjs8YQpmPEaAPDqJgfc829elPEZYab2Aw8s7ZTmiPDSU4rzEPIA9+nimvVRVP7wsBgG8sBjlvI1we7uXto48QaEmPVl0jbs9ksa8yMN4PY6gxboHTik7ZTmiPP43YDza9wE9pDP0O+y7CD0CD/887Ft0Pf5XvDxTPdq6uu71uxHQCL2fPHk8e+ysPGBCJzyhpAS7Ga4QPYSSc72SSwa9ds1evB4JKzwZKhW9bt9ou0o3fzypQtQ7ZdWCPY64qrxYTDo9J/cgvAfyAD0saiC9J8/NuwtNmzzVmHs7qFJCPInpgr0v7Q07xbgEvUsjBrprMJ09ajgUvZKnLj3jpb88pA+NPHz8mjzZj3a8IiACPd9qgTy7Jje9hMK9PKlqJ7x7pP08tv9xOzh777y3T5i8/mcqPQInZDv5WEq8rTnPO+xz2TvnrCi8Ux3+PPWRGT00xKw8DEWkvLsGWzxTLey8IhiLvdHB3DywGOU8Az/JOxTz4bwQ0Ii8ZVGHPPUNnjs0zCO89WFPvVMtbD3N4ka9PZLGvE9usjxgMrk8UyX1vLJglLw9ik+8WyNZPGYhvTl85DU9PYLYvEEtGTyPyJg8tj8qO3P2vzy7Ppw8DDW2PMW4BD1uFyq932KKvcMEv7xGHB07c/62O61ZK7s9Nh67sQj3PDVgDb0r1ja7/vsTPVdcKL3R0co7yMN4Ped0Z7zjzZI7v8EJvSLI5Dzexqk8YCpCPAtFJL3xalS7472ku+yTtTxPdqm8reWdPNbYM7ybRX49Ag//vOisKL1GWOk8fIAWvSfnMr5TLew71tizuwxNG7yO2AY9ui6uPI6YTr3fpk29QTUQvRTbfD2JsUE8QHnTvDyaPb2gpIS8wwS/POxj67q2X4Y87Fv0vCfnMry+7ee8GraHu9bQvLs9emE9Gercu+ekMTw4o8I5xCSbPITCvTwCJ2Q8mn0/veDmhbypBoi8zMrhuzlHGj2PyJg8wCUpvNmf5Dubdci8lV7xudvXpTxFSPs8+VBTPDmbS7ytUTS8HimHvD26Gb12zd48jtgGPVw7vrxLfy669R0MvBW3FbtYfIS8XBvivK39Ar280oU7S6cBPFgsXj0s/gm93r4yO2AyOTxYfIQ8HulOPRUbNb0nBw87GNJ3vIbyhz2paie8fASSPOiEVb2hnI08YALvuRkSsDw9sqK8Ju+pO0pX27tvB7y8bi8PvdmvUry2L7y9PJo9Pb8toDyF6hA8NWiEPBZDCL1qEME7DyyxO7ZPmLo9ygc8b7OKPvUdDDwr7hu9jqi8vNmH/zv5SNy7reUdu1g8TDw+siK8bt/ovOPNEr27NqW5oGzDO4Wyz7ybZdq8m2XaPOS1Lb1UbaQ7bruBPUKpHTybRX689RUVvZKft7zR0cq8PcKQvYDTOTzeziA9l0IBPZytCb3wJhE8bvdNPFP5ljupggw95NWJvZd+TbxUjQA8/mcqOcfzQr1y1mM8K+4bu1ACnLzjvSQ8qHIeO3e9cL3kta07OLOwvKB8sbzVbB28yCMNvU9O1jv1iaK7d5kJPQwdUbxqOBQ8QqEmPAcuTTxtz/q8hJrqPAsNYzrARYU8qf4QPUZY6TwZKpU8Sl9SPAw1NjzpUIA7gKtmPd6+Mr0DP0k9hJpqvP4/1zzvSng83o7ovKSTiLqtaRk9RZAqvEFp5TxYPEw8kq+lPHcdhTs9qqu8Bx5fvZJffzzWAAc8XCPZPB0RorySZ3Y8iemCPfaBKzsnDwY9iekCvVsbYrxCiUG9gKvmu/GCObsY8tM8fMRZPGu0GDxcWxq9hm6MPEB50zwHFug8TjZxu97OoLx8vGI9K9Y2vRPb/LzxesI6oFRevLc3MzxXJGe97JusPLsmN7vM+is8IhiLPFNF0TwYCjk8T3YpO5dCgbx8zFA9MGEbuzVQHzzC5OI8vhU7vVhEw7zZl+28OMMePFhEw7xBPYe8wuRiPUVQ8jrjQSC9suwGvJpV7LqfXFU9d6EAuwcOcb2/FTs8hMK9vB0ZmbvREQO6NFgWvfahB72Sf1s9m5UkPLfTkzzUoPK8oZyNPCrOv73exqm7sVgdPR7xRTz+X7M8mmVavd2WXzyF4hm90n2ZuoCz3bxzqoW7SiOGvPlgQTw0jOu7C02bPEFpZT3ibf48Gercu65ZKz32iaI8uv5ju3LWYzzR0cq8reUdvXwMCbxhEt06tidFPNZsHT1FeEW9K+4bPW4nmLyXdlY81ughvJwZIDs0tL47rf0CPaAoAL2TvxO9x/s5O80Co7x8vOI81viPu4ZmlbyFouE9WPiIvB2lC71zFpw9PaorvFSNgD040wy91mwdPXPeWr2B46c7FDsRPVwr0DutGfM8GeLlu5M7mLwYCjm6ILD/O/Fq1LyRj0k8LPYSvAzJH71dUyO8nIW2PKCcDb04Vwi9l35NPTC1zDqSxwq6zLJ8O08Kkzo0zCM7L90fPcLk4rx/q+Y68ZoePGAqQjzjhWM7rv2CvMMcJLuNcPu66Jy6vC9pEj0I6om8n3yxO8zqvbsZOoM8Aj/JPCfnsrySpy66ajAdPE9OVryAs907zLrzPOON2rs1YA08uu51vZaWMrrIA7E850ASPeeMzDyfEBs9J+8pPDTUmryXfs28FQPQPJKfNzw0vLU8/R97vfVpRr0CH+28J9fEOmAiS7xGcM67rnmHvdm3Sb1z5lG9pXsjvQ8E3jvNAiO9kksGvJJ3ZDzvWma8pENivUFZd72GZpU8wDUXPHSaFz1YAIC8L6VevGXVgrzVmPs8j1wCPWVBmTwYCrm8m30/vP1fM71lMau7pFtHPVACHL00WJY8T2Y7PEKZL7yPyJg8zAoaOizmpDzse1C9hbpGPfaZEDzAHTI9YDK5u6hSwjwZIh48u9IFvUpvwDr+Z6q79GFPvOe0H72JmVy9C9GWvEFp5bz9L+m8sdyYPC+dZz0n57I81ughvHgVDrytYaK9o0PiPN+mzTzFuAQ9DB3RvBoap7xKG488+UDlOiLQW7t71Mc8w6gWvFMJBb3jpb88M4R0vOtb9LonkwG92bdJvdDhuLwvpV68v/VePV1jETzR+R07pEtZPHy8YryFyjS8w9xrPTi7J71PRt88tjezOzN8/bznQBK9qFq5PPpwLz0dEaI8C1USOgY+OzqJ2RS9zpYMPE8agTxFUHK83p5Wuwv1fT2Tz4G8GeJlOjlHGj3wJpE8Bw7xvLr+47yXfk08xBwkPDiDZr3RueU87HvQvFNdtry1J0U9jqBFPb/Bibza5xO9oGxDvLYP4DwCXyU8PUYMPUpH7bplSRC9fLxivVhcqLw9cuq8yKcIvczyNL36cC+9d+XDO7s+nLplOaI8SldbvWkIyrnRsW69kn/bPP77E748Yvw8gOMnux0RIjxpGDi9J++pPLseQL3D/Me8D/Tvu7Y/KrweKYc8U20kO0ZY6TwiGIu8L5XwPL/BCT0dESK9nzz5vGoQwbs4k9Q8OINmvDmby7yfTGc9ZSE9PJ9sQz3kvSS90QEVvUpH7TtGNIK7Sjd/vWEKZrsseo68EBzDu4rBLz3I41S8fBSAPY6ws7vNGgg8L+2NPOKlPzzirbY81sBOPBn6yjsK9X08PTYevKRzrD0v7Q29kqcuva0Z87xY6Jq8XUO1vMgjjT2cGaA8xCQbPdGp97wL2Q09qf6QOU+WhbwMZQC9hJJzvICjb7kUM5o8sUgvvLIgXL26Li69n0xnPawxWLyFusY8c6IOPNa417yF0qs7GbYHPXeZCTwMHdE8A0dAPaVrtTxmSZA9HREivBULxzx4kZK8tlcPvD16Yb00nNm8aghKPIRenjylcyw8oGTMPHfturxzDiW9U32SO0Zo17w1zKO8L73DvO9i3TzZr9K8aghKupO3nLz5YME81vAYvN6O6Lwd8cU8WCTnOalisDygZEy8PbqZvLFILzukk4i7isEvu6STiDzg3o68yOPUPM3ixry7Jje937Y7vb8NRL3ndGc8f6Nvvd+mzTsH2ps70emvPEFZ97znQBK9COKSvImhU7ygjJ861ahpPcMEvz1u5188RoA8PQNXrrytKWE84m1+vbLcGLtBmS87wxStO3P2vzxmMau8Uz3aPJJ3ZL2WljK9isGvvBgSMLxzmpe8/ifyvCOchjzrg0e90ekvPUGpnTtzFpy8w/TQvD1Ogzwlv1+8uub+vGo4FD2Fqti8uub+PBT72Lwe6U49MHkAPUtvwDyAy0I6QbEUveOFYzzI02Y78XLLvG6jHD1KIwa8Sp8KPC/FOr2Fwj07QYFKPDnLFT3jpb+8S2/AvLZfBj3etrs89pkQvHOalzyyaIs8arQYvUeYIbw03JE8uw5SPYiJ7rztJ5+7ItBbuYZmFbw11Bo98CaRupaWsjwvxbq7jZjOvAI/yTwvnee8e+ysPMjb3TxKR+07OLMwPfCSpzwH2hs9uy4uvFszx7hl6Xu88XJLPFxbGr2fRPA8Ahf2vISyT7od8cW8FkMIPXP2P72hIIm6L9UoOnPeWjqsQUY9OMsVvJGXwDz1ebQ8fRQAPN/WF70qrmM8YRLdPLEId7xcWxq9m0X+vD2Sxrwn57K8m60Ju61horzRyVO90OG4PGFCJ70dESK9HimHPJ9EcD1Y+Ig7d6EAvOicujySv5M9QpkvvRQjLD1u/8S89R2MPE9eRLx55yy9Vj5iu90Q8rwcOxa9xkVCvcL4JT38ENs7kdwuvPj1MTvwB1W7g1QZO3y7+Tz26Ok8MrEIPdbvCD2jxsk85ZroPLyeQTvUsE09THQXvRZFGDy85R29W62vO1mg5zzFoYc9oI4WPMHjPL3A1vQ758Q6PZbaTTynC8U8NUWBO4ZFcD3sXvO7jQl7vTN/Fb3Rx5e6iTUuvPWTLL0ungA991kYOYiZFLwp4DU8wn9WvLGVuzy5PDy9ZhocvRivPr2Q+bg6BLhbvLKNmjw8Zuq7KVkFPUV+Gb1Nl2E88QdVPDPc87xV/g28RX6ZvQNjHr3qbRy95SihPKMij7vCxjK859mjO8wJTT212jY8zGUSPLwXEb2yeDG7hozMvMkDDTxGGjO80XiavIiZFL3UDBM8Sny4PAdhPT2q0bC7aFLPPD7leTy7dG88oMCJvJsfybyNlzO9XpAlPZe9Q7xEmyM9NAbGPHd9Br3oYFS7hPCyu51X/LywskW9wEeju/Qi/jmCKke9FhMlPD7leT0TsZ88S18uPQsfiDzuzyE9PPSivL/W9LyfHei85EUrPVqD3TyUW768rXqSvOAVmTxoKH09PAmMO3rfizwdHoy8pKk/vFO/Ur0mk5m882lavICrNzzMZZI9jZczO6mnXj3AZC28VE0LPU2X4buRlVI8hMZguz8PzLtGTCY9kU52vFnnQz2EqVa9N2hLPBGk17zlmug7jawcPfDA+Dwq9R68YY5EvZVbPjz/uby7MKRAvRivvrzaHxs8s1unvAHHBD0p4LW7OxEtPChEnLz9Vze8NhOOPA6eFz0iq/y8CjySvJD5OD0iHKs6QMjvPMkDjb1qNcW7F8zIvCQUijy4L/Q3SLZMO2vuaDy3L/Q74n8/vN0Q8jxqkYq8YKtOvEO4rTxMQiS8zTMfPV0C7TvMlwU9YUdoPNofmz3WvZU8w/CEPMxQqbyQ+Ti8vOWdu+Mb2TynUqE83mSWPB5Jdz12hae8NUUBvZQU4rz2BfQ88LKXvJqtgTtBTgc9WJKGvEo1XD3i24Q89GnaPO0eH703IW87nuU0vcPGsrpYYBM8g1SZu1pDCT0Fcf+8zaVmu/LNwLxM+0e8htOoPayXnL2xlbs8DkJSPFhLqjwFFKE8GgT8PH+B5TpZBE48y9/6vI9yiDynoZ68PGbqPM2l5jzNwnC8S+5/vaqKVD18Zjy8aa6UOTpDID1TTYu8dtpkvWaMYzzu5Ao98/eSvEZhjzuOjxI9TBjSvL6BN73P+Qo9JpOZPG56wDydnli8WS6gPInEfzwEuNs8lmiGvKPj07zUsM27kPm4PFJqFb1gZHI8kEAVPS5Cu7y69d+811kvOWMqXjyPcgg8fMIBPbVTBrwAnTK82q7sPDYTDjvn2aO7jgn7O4DIQT0AFgI9ex/gvGGORL2/gTe8/az0PAq2+jwV6dK7UZyIvICrtzvnC5c8IhyrvEz7xzxHGjO9hkXwO1i9cT3wwPi8u3TvPOHjJbw16Ts7UflmvVutrzxI/Si9+ZHLu+lDyrzrUJI71PepvFDrhbwwpMC8GryGPcvf+rx8STK9zaXmOlqDXbxQXU2+MB2QvON/P7oKmfA7h29CurD5obk+LFa9cF02vYkL3LswXWQ9yO4jPfg8Dr2nC0W9bnrAvELVNzxQ64U8tM3uPD2QPL1mLwW8il8AvfExp7xzeF+8HdcvPVJAwzweSXe8PdeYPOsJNjyZg688KnzPPKwJZL0avIa8zaVmvFnnw7mgjhY9jxbDPMfEUby7dO88hMbgvNPqYTzva7s89UxQPOn8bT26PDw8XB/3vK7s2TygRzq9KP0/PLfSlTwSQHG8iAtcvUeMejzEYkw6XdcBPJFO9rwJ/da8kvEXu+UoIbx5dv48v6sJvUgSEjxJmUK7YfKqPPiuVTzvJF+8ZIajvN3lBryRTvY8w6movIoYJDzQ3IC8kLJcPZmDrzy62FU8eRkgurfvnzomk5m7FTAvvSknEr2GjEy8m3sOvrOiAzwl4pY8n2REO/7z0DzeOkS9hyjmuwxfXDxtJQO8et+LvEQqdT5S+Wa6S+7/vGjgB7352Kc77DMIPfg8jrzcnqo8z/mKvN8yI7xrXxe9TZdhPD1JYLs0TaK8OacGvSWbOj2OM029+3RBPK5diD2mjLU6kPm4vJwCP72VhRC9XUnJvLCyRb3CPwK81dqfPLu7Sz0YaGK8ggD1OnO/O7xKw5S8y+YCPUY3PTtdpY64mx9JOz+dhDwKJym9fJCOuzQj0LzvxwC9wvglPDFd5LzH4du87DOIu1X+jbx/gWW8SeAeOeJ/P72AZFu87eyrvHCHiLpNtOu8y58mPOhgVLz/ABm2feVLvFrKOT1b3yK9gB3/PDl1E7s34Ro9umYOu/vQhjvbLfw8wbnqPJqDrzv8nhO9IzEUPWlSz7pBOZ48/o/qOyhEHL3hcnc8ZFQwPWSbDLs/iJu3feVLvE46Az1EVMc8AoCovKQNJr15WfS7OudaO0961zySBoG8WaBnPLtJhDwYrz68YnE6PfGj7rrQB2w8KuA1vTdoy7zTMT68utjVu6kDJL3kt/I6CL0CvZxeBL3if7878ykGPH1emzu+gbc7533ePLcEib0CgKi8fg+eu92BoLxSh588VoU+veT+TjvOiFy8W60vPNqR4jxR+eY8girHO/ot5Tw3aMs8yO4jPRlL2Ls16bu8poy1O19WEb0e7Bi8RpMCvCjTbbs/iJu8pf78u+uCBT0Txog8O8rQvFH55ryVhZC8S+5/PcC56ruM3o+8t70sPacLRb38ENu7xGJMPOVaFL3lmmi8j3opPPdZGDzZUQ48zJcFvS+XeLw8g3S9yDUAO3BALD0mVN48UOuFvCS4RL2j41O8zFApvTrn2rqBjq08Cf3WPLHcl7wKtvq7yGDrvAwKnzz1qJU9BSmKPcinx7gbEcQ8WefDPACdMjzSjQM8ikoXvVWiyLy0zW68JzfUO+/HALkGxSM9EyNnvZo8U7y+lqC7zexCOxivPruzooO8xm+UPAymOD0LmXC8yUPhPBmSNDyKiuu8gaMWPXKV6bx9Xhu9cjgLPkgSkrzjG1m97uQKPRfMSLx6yqI8SsOUNwq2ejwwXWS8XQLtPOsJNj1Cq+U8uTw8Peylz7uVU527IQ9jPNvQnTsiHCu8S+7/vLfSlbo2zDG9NCPQPJYhqrsUlJW8JlTevN9HDD0mk5m8q23KO5e9Q7yYoLm78MD4PHBALD3I7iO9z2vSO2bTvzxPCJA898tfO3yQDjtd1wE9XnMbvIaMzDpEVEc9xkVCvUxfLjwP3ms8WGATPViSBj3T6mG8Nek7vHBALD0ZS9i8/U+Wu7Lq+DxM+8e7J2EmPehgVL1ecxs8z7IuPMwJTT3dEPI8bsGcPLZMfjwuJTG8hCImvI1Q1zwSh007DYkuu5d2Z7z4PI68Xiw/vc0znzzGb5S8oI4WPYRiejzcnqq9UziivDCkwLzUFDQ76Z+PvfWolbytl5w8oUe6vLt0b72KShe9ctzFPB0JozyKGCQ7GZK0O736Br3Wdjm9/7k8PVch2Dy3BIk8girHvNZ2Ob0LfGa8OUtBPBJAcT3TFDS93YGgPMjuo7zrwlm8yDWAPdyeqrzkd547bZdKvRrn8TxU6aS8tHAQPeRFK7yVU5082fXIvGDyKr1S3Ny3hyjmu/DA+LyZygu9bxbavHrKIr2qitS7Xw+1vJawe7txVZU8zs84PDFA2ryd5TQ83FdOvRYTJT2jf+08gipHPWCB/LzCOHq8GUvYPHmg0DugjhY85yCAPMAd0TzQJPa8diFBPUO4LTzXvRW8/BDbvNu7NL1lqW29DmykvKPGST1P1pw7ie7ROy4lsTzYEtO8bZdKvLaT2jzCf1a99ujpPHLcRTzKbbO8PdcYveinsLzyo+48zaVmOwxf3LyOM828zyR2vcAARzzi+A48nF6EvEz7Rz2AHf88KEScu84WFTykqT89c3hfPCABArzbuzS9VVvsPNPNVzzbuzS9f0GRPQ8IPrzJA428hRqFPXrnrDyr+4I8W/QLvSLVzjv1TFA9FWIivATVZTwfc8m84n8/vIwQg7yviHO7dT7LvLKNmry090C83tZdvbu7S7yYoLm6ctxFO8M4er2PXR+9fAJWvRfMyDyfqyC+wFwMPS37XrqLLQ27mcoLvVWiyDwBz6W9R0SFvbQUyzq/liC9sU7fO1X+DTts+zA9GryGvDaF1Tt/geU8nNhsvGGOxLy8nkG87B6fPBfMSLyl05G8f4FlPcxQKbzL5oK8NoVVuhz0ubz3bgE8Wb1xvNLqYb0UTbk7htOovIttYTzqJkA9VE0LPeLbhD0uQrs8GaedvMvmArwPCL473TpEOzgE5TyC1Ym8XnMbvK16kruuXQg9qkP4vKmn3rzPJHa8CP3WussmV70NQlI9ejxqPA7e6zw8WAm9yCAXPWV+Arwc9Lm8go6tO/LNwDxy3MW8zhYVPVevkLwlsKO8Z/0RvdwtfD3yo+47apEKu6eEFDz1k6y8bEKNvKnuOj0PCL65XuXiPMLGsjw2hVU95YwHPeFVbbyeOnK8xRtwvcAd0bsRXfu8bjPkvIJxozxVW+w8WEsqPNMxvjxFsIw7c3hfvPQi/jvinMm89MWfvK0J5LsMpjg80xS0vORiNb1MtGu9+3RBPZYhKryBoxa7mKA5PJb3V7yp7jo8ym2zvBivPr1xhwg9YGTyPDVFATuxlbs8RbAMvQlZnDreOkS9Ry8cvTfhmrytrAW9rezZO+LGG71rGLu8AFbWvH3lyzw3rye9moOvu6bTEbz9Oi28IFa/PEvRdT0EuNs9/jKMvEwY0ryNl7O8D0+avEhvcL2PM008MrEIvM1IiLy12jY7I47yPCO4xDzjG9m8FWIivTgE5bs2Pnk7GrwGvKqK1LyG6JE8njryvAfaDD0KPJI8bEKNPHByHzwcbYk9yYo9usRiTL2ZGYk9o1QCPJcEoDtJmUK7rPsCPHYhwbvxMSc7mx9JuxYTpbyXk3G8YQcUvLd20Dtz1CQ92q7sO4KOrTv1qBW8BjfrOt8yI7yNCXs9RxozvVVbbLyzW6c8uh+yu0LVtzzTKZ084sYbPchga7sGxaO8GGhiPbGVuzyMySa9oQDeOxoE/DwLw0K88AfVPNZ2Ob05dRM9zexCPJWw+7th1SA6umYOOzchbzxs+zA81ZPDPFRNiz1Uv9K6FTAvPV9WkTki8ti8RFTHvDouNzzovBm90JWkPOLGG71mqW28bsEcvSp8Tz1OOgM6fGY8PI7BhbxCHJQ71ZPDPAo8krzWdjk9CL0CPeLbBDtEmyO9ujw8vI7BBT3COPq861ASPEqZwrzRqg29GGjivLCyxTzYgwG9yYq9vEyJAD1QXU29mTzTvPvQhjwaLs48lFu+vDHOkrsu+1487yRfPacLRbw8WIk9uwKovNiLIrw3r6e8zL8PvRre5rzeJiS9LHeJvFflDr01Ay88QEEnvLRMGjx4i0C86GScvIzfObzs0UU7EPnXPFEylzvEPYo6kaVMPFAUwLsT8Nw7LhUlPX35Bb1zbES8x9slvQR2LTybbaA93iYkPcCyiTznssm8qWeLuvE/Cz0JlSk9xvhgPECaED0YQEs9jTgjvAqzAL3aL5+8J7r6vAMACTsnRFa7017QO3iLQLzZ83C8UGMJPOUyBb1Kfx88OBfvvNv+rLzxl1i9jyUIvIzfOb33heK8k7CIu7BVFT3UQRW9zVMLPf2kXj3PDmK9s6RnvWx+urzNya+8OueYuo/WPjxUgWm8m22gvIUO6zpR4009ieg0vAwzxTyYCXu8WSrBvCNhiDvmPKW7o7STvA+0Jb28ifa81mkMPZoxcrxxRM08KIAEPATs0TzWaQy8v7HtPBkPWTxRbSm9DXj3O0LfwjwJlam7fGWKOn/Ik7vT1HQ8dQpgvLYIjbweuDC9IFbMvFZRE7wPKsq8FnG9vM8OYjysmSI98j8LPPa2VDxAmhA9wbypPC0LBb2OzJ68dIobvEQHujzqqc48t2p6vDt7lLxCVec84ZPNPKECQbxcIcY824gIvaZwhrycWem8RSURvZg7iTz2QDA8VVB3PTBaVzyCF2Y9ewyhvCP0ZztO7Ei82da1OqMqODxIdOO8sAbMPIiPy7tjD1A95DHpvLhrFjz38gK9klefvCZ1yDsd1es8UwtFuksTm71hyp27AmwNvAfj1rx4Mte8LhUlPSfOsTzy0wY9MQyqPD9e4juPJYg8Kfaou459VT1C/H08M1FcvRKrKr3o9/s7PGfdvCiABD0kMJa9U7LbuzKCTrzjCg69TE6tNyX1AztPRTI9veJfPKjTD72pZ4s9015Quw8qSrwkw/U8cOtjPBaOeDqOBzE8OeZ8PC7aEj0oJ5s9+a1ZPEQHujumIb28jTijvC6LSTxkaLk8OVOdPD/Lgjw0IGo9GfIdvW+mMbtGuQy8lfU6uvojfrykSI88PgX5PLvOn7tZDQY9M9s3O8gg2DzpvQW8o9FOPOQx6byvwRm8m22gOxKrKjw0jQq8idR9vfx9gzwO0WC9M1Fcvf9Cej1/yJO9k7AIPVm0nDxKfx89vCeJPG+S+jwE7FE9PEqiO5PNQ734VPA89w++vBPJgTyBK5083/WxvDA9HL1dei89O/E4uztAgjzxDX084DpkvNv+rLwnzrE7B20yPTL48jybbSC8VdrSOjehyrxEfV69ytKqPO0qLz2L1Zk89iz5vHdGDr2UJi09Ia+1PEAtcLxwHFa83+F6PPZAsLwPoG68VdpSvCidPzxIV6i81RAjvWoREbw7mE89olsqPBN6OD0E7NG8vIn2u66Gh7zWECM8TDr2O+BOmzw9GbA8hfEvPWmHNb21zF69bM0Duy6LSbvxDX081t8wu9EZHrtL9cM8UwvFu7OHLLzXOBo9NCDqvA8qyjslxBE9sAZMvYot5zwaaEK8k0NoO8pchryQLyg9mDsJvVBjibyN/RC97EdqPHAcVrz4aCc8xvjgvFapYD1XAso7CZWpvX3HdzzoZJy8KfYovva21DxsJVG8zY6du7IuwzyXk9Y8R/4+vZvjRL2wBsy85yhuPcLagDsGFMm8mzKOvF6YBr0EHcQ6+GinOwiLCTxTiwC84aeEPBkPWbwT8Fy4rzc+OlkNBj20TBo8zucGPAMdxDxgjm88+pCePC/kMrsrCmm9I9esvI7MHrzmxoC8AwAJPQwzxbukSI+8pnCGu+sCODzqUQG8jgcxPApktzysXpA9nmSlu/MYObz7Xyy5eKh7vdBnyzxxzii8qGbvvKLRzrv7JJq8t5wIPJ0LvLv/zNW8tFa6vD9eYjxUZK48+1+sPDkYi72smSI9ORiLvJ6y0jtPu9Y83iYkvU0AgLxn1eK8KsW2PQAJhLxHpdU8con/vIUO6zySdFo7P17iPDQ0obxSWfK7hXsLPOeVDrwQ+Ve8k0PouxkP2b07QAI9eDJXvCX/Izy7zp88V3juvJlFKTumq5g7PaMLvXdGjjvknok+gaFBPI04I73qMyq9q8oUPC4VpTwACYQ9n9pJPAjGm7xJzcy8dZS7umuvLD3mWWC8hkqZOdfLebw3K6Y8zL8PvWPyFD3CMk49XZdqPFI8t7wB9Uy9Za1rvLHVWTuailu9PaOLvJ1aBT35rVk9u7poOwlaF72l3Iq8VIFpvMnv5TyS6n69LHcJvbhrFrsOPoG6vwpXvaYhvTucWWm8HkKMvBWirzxeSb285sYAvZqK2zrhHSm9QRA1vJPNQzqyfYy8ffmFuUQk9boOPoE8WvlOvGpWQzvmPCW7U5UgPIDSs7wU0yE9d7yyvE52JDju+Tw9s6TnPEomNj2ChIa85wuzPE0dO7u0c3U8ypeYvBYYVD2o8Eo8egKBPam/2LpEBzq9roaHvPVdaz2uVHm8v7HtPARi9jo0NCG8CDzAu48lCL1UKZy8XCHGO/qQHrythes7AEQWvY59VbwACYQ9+cGQO4kGjDy4w+O8+iN+PKJbqrz1ygu9JE3ROwhZ+zx8gkU8mUUpufxL9byHwL08eBUcPCIIHz3YfUw8k83Du1HjzbuWTqS9qo7mvGHKHTxWqWC8Hi5VvELfwr3LoTg9Qi4MPOGTTTpOOxI9wwFcPSIIn7zttAo8xvhgPCHMcDwVoq+8U5WgvOI7AD3xPwu9zucGvdovn7uHGSe8eeQpvZ5kpTuChAY9Fo54uu3vHL1aSJi9s4csvOXjOz1/yJM8aaTwvCuxfzxXeO68Ne93O4pBHjxuw+y8879POm3XIz0H49Y8Ri8xPY04ozwH41a9g+ZzvQqzALxdBAs9JuvsPGrgHjrAsom9RH1evF0/Hb2OBzG8wYEXPBBvfLtQY4m7T7tWOvaZGbwU0yE8gaHBPIfelDyFDus7EKGKPFQpHDwE7NE6sAZMPD3AxrwvAe68GYV9vA8qSjwrHqA8lEQEPTPbt71wkvq7cicSvZlFKTxZDQa7LLKbO9b8a7wJC848Jf+jvGguTLwsd4m87aDTvEomNjyV9bq8BB1EvP90CD5wkxa7Sc3MvF5meD3J72W7NtI8PXWUO71LE5s6QEEnvWpWQzzT1HQ9uZJxu0eImjyvreK87vm8vM8O4jzZ1jW9XmZ4vLZ+sbr4aKe8vJ0tvTvxuLw+j9Q8vfYWvWeuB711sXY9n9rJvF+iprwj9Oe6RdZHvWr9WTzqM6o8elpOvLXM3rzNya88pVKvPBD5VzwWGNS6XmZ4vFtSuLu5knE5vsUkPLTgFb3+4Iw8nFlpvDZcmDy/se08qo7mvDUhBr1pERE9jTgjuix3CTxkaLk8b8SIu+lQ5bsefR696fgXvf7gDD3UQZU8j2AaPdc4mjyYYmQ84acEPBIhz7sH41a8KJ0/PMIVkzxfZ5S8fwOmvG303rzJ72W8Y4X0vF9nFDwAJj+9bk3IvOLsNr2zhyy9xp/3u4SYRr1jD9C8oXhlPFYWAbxEBzq9NI2KvdZVVbvT6Ku6qWcLPY/z+byY7L+8deMEvS7aEj3/dIi7vWw7PeUyBb3ug5i8HV/HvA+0JTzzv0895IrSu+HiljxZtBw6RAe6vNsbaD2fUO68TnakPBW/ar1lrWs9Ipt+PCWmujw1IYY7Kx4gPUh0Y7x6AgG978hKvI6RjLxSxhK9tczevMz6obxOYu28vGKbvBiZtLyzEQg8HV/HPGYG1TzOmD28zpi9OzxnXb2C+qo8E3o4PdWGxztTWo685eO7vFBjCT3CFZO8vk8AvYbd+Dwfh7477SovvA55kzyGZ9S8oQLBu8fHbr2pv9i8deMEvc+2FLzC2gA9jn3Vu6AffDwB9cw8CoFyvEoS/zs/6L08QEEnvXBYBD1+jQG5Ajp/vDnJQb1At8s7jN+5PO0qrzwSIc+7g+Zzu+A65Lwmdcg7du0kvKd6Jj0qO1u8ye9lPeeVjjvxDf07mmMAPb3i3zyKt8K8VGQuulYWAT3wqw89X6KmvVr5Tj2C+qq7d7wyvOYBEz29u4Q8rYXru8z6obythWu8JutsPExOrblOdiQ9qb/YOyIIH70JlSm9KjtbvKXI07zf4fq7vfYWvYfAPb1Jzcy7tOAVPftfLD0MqWm9qRjCO9QtXr2M3zk9kYgRvnPiaDwpuxY7hxknPMiqs7wSq6o8eNoJve5vYb2i0U47C4KOvIHwCrxgju88DeWXPZOwiLw3KyY9xHgcPe20irywBky9mjFyOeiBVz3efw06HriwvBb7mD1OdiQ89coLPVmg5TgaaMK7FElGPF7TmLtppHC9uaYovPMYOTzcHAQ8aLgnPP5z7DzD5KA9oKnXOzqsBrw0IOo8AdiRO6HlhTw+N4c8P+g9u8l5wTsDk2i74uy2PdwcBL0ARBa9/Ev1vLAGTLz/dAi95W2XPVap4DzMF10924gIvVOyWz3CMs48oSAYu1I8N7vWpB48H/3iu/AhNDwMjK68OucYvbfXGr0pbE09NSEGvGBxND2E5w89cp02vcl5wTzGgjw93esRPFyrITxKJrY88Q19PFh5ij3gxL+8si7DO6eX4bw9GbA7wGNAvZIcjbw8Z127OPozPIfAPTyf2sk81lVVvMBjQL3ogVe8fo0BPBwG3rw7exS9Ak42O91D37tjtwI7mc+EvACc4zy/lDK8S/XDvE+71jx/A6a7goSGPPvVUDyS6v68kYgRPEOuUDvsR2o8+FTwOxb7mLwGFEm9JMP1vAVFO71Bhlm8vx6OvEnNTDydCzy9qaIdvOofczxvxAg96VDlux59njw38JO7rfKLvDZIYbpaSBg9Pd6dPXoCgTwp9qg81ziavHluBTzsR2q8AH8oPNOtGbs1IYY89ix5PAJsjbxOYu08/LgVvTbSPL2E54+7olsqvIBcj7xxuvG8Jf8jPSIlWr3BRgU9ypeYPEh047xUZK67jf0QPYUO67yr58+8n1BuPVm0HLxJzUw8DaqFPHgyV7z7Xyy7f8gTPOUAdzw0IGq7xoI8Ov5Wsbu4a5a89I5dPbIuwzu6YX88gNIzvVAUwDyJ6DQ9hD9dPTnm/LyBocG8nVoFPJ4od7x4Mtc7HAbeu1H3hLnFn3e9nTyuOnDrYz1rdBo9Kk8Su6HlhTwrsf+81lVVu/XnRj3lMgU7bJt1PCKb/rxCaZ67UBTAvFCK5Dab40Q80TbZPJnPBDypZ4s9HJA5PLWvozyP1r68WoMqvBFSQbxQMXu8gSsdvX3H9zoARJa8pVIvO/GX2Ly7uug8879PvcIyzjuYdpu8/lYxPQiLiT2sQDm9j2AaPd3rkT1144S8hQ7ruzuYTzncHIQ8fcf3vOnawLzqUQG9Gt7mvOSK0rxQimQ8MoLOOdv+LL3j2P88KwppveYBkzvmPCU9I5yaOl16rzyrXfQ8TuzIvJlFKT0sdwm7fKCcPaJH87wAf6i6JDCWvMUUj7xsdGe9EA4Nvf5IYDtyaCK99qkAPCafVrvDnaY8/nSIPBdNCL0oLti8VzFTPNJj6DxsA+m7RSTbPH/gLjvcpVg7uisEvML2Cz1ygLu88OhsvBv3F716M6o8RGWnPZNTdT2t4yk7uisEPD8sljuqrQ09yDISPd4cwbtk8BU9ofoePOVArruS2IK9Vxm6vBG1p7ynpyO7fzyJvJBhGj3oRpi8mx79vItAIjz+GC69aQ6ZPC6TEb34UBu9V+mHvXKY1LwkmWy9j9IYvD5BujhShE49J28kva0/hDxJKsU8gMuKvQ5/i70kUSG9DgsYvd7sjjxcIhk9DsdWPCyQHLw/6FS8gMsKPVMT0LzwQVK8jf9VOUTBAb2/x+67W5aMu2y7nbzUwje81aoevRmALz2IIh+8fTmUPMh6XTyqxaY7qGZXvJqjCj1Ha5E6wp0mvD1Z0zschpk8LgcFvN4EqDwnh707s2d7PMtQFb0J6p+80P2ZvB4Vm7tcrqW8C8FsO6rdP70+KaE7ZJHGPFTLhLwnh705R8v1PPHQUz0XTYi8f/jHuk3vYrzLaC490/LpPHdF2Tu5c8+7hF0BPXDZoDp9mfi7n8QCPYpwVLySxPO8F/EtvR79Ab3G08I8mh59PBzOZD2Y0Ec8ncGNPSt1Dr0M8Ak8cj/vutv+PbxqEQ48UTkOvK9dBz0p1XK8WXgJPZp34rwqvVk7RH1AvYtw1LunpyM9MohhPZoefbzFdHO9yKYFPRyGGbwseAO9LtvcvPCFEz0QKZs8CRrSPL1JBz15Y1w80aS0POB7kLvcjT89XD2nPCe377xdmQE8qE6+O+L597zeHME8gLd7vXoKd7zYEG288bi6uqwTXDwM8Ik7i0CiO0IecbtiMve7vEmHPbXe4zyzN0m9rSv1PHKw7TsWesW6Z3+XPBApGz1oVuQ8fNrEPWG3hDyVssS7vdUTvSEbBb1sXM67pYwVPDh8HDwaP2M7SqGtPASxDr0oRvG8FvEtvK8BrbuAbzC9uXNPPJN/nbpk1Ye8K+kBPYtAorzN9688XbEavJ+Dtjzp7TK9Qu6+vHAJUzzkWMe67oIevJsGZL35g0I8+xLEvM3fFr1QDWY9ydksvbUKDD1sXM48W8Y+PCEbBT0hY1A7YhrePOFq9roEhWa9E+tDPNvmJL1l8JU6e6oSPOBqdrzGuym93gQoPWnNTLxvkuq6wPMWPE2/MDyYFIm8Nk1/PElC3jyNtwo966zmvAFPSjxGUAO9PA4TvSx4Az3FoBs9X+RBPIqxIL0JGlK9zSfiPBJ02zuaHn28L1JFvByGGTw0/0m8iiWUvFfYbbyoHgy848nFvHHBB70eXea76tgOPJx9zLhNB/w83kzzvPzlhrzIel28ofoevHobkTtEZSc9mLiuPDwOEz3aFle9OZQ1veheMbvoRpi8ktgCPcnxRbz49EA6i1i7PIznPLt68l28lbJEPMA+V70BT8o80ktPPQ6vPb3Ozny7zSfivG960btVolE8YkaGPDnEZ72bBuS8LqsqvC+Whjx0zvC8rBPcPAnqn7we/YE9yfHFuwupU71QDWY7IzaTvK5yK76Hk507F/GtOoU0zrthW6o8T37kPFyFcr2Hamq9Dd/vvGwUgz0Vkt47Tx4AvR79Ab3pHeW8pTC7u2JGBrwTXMI8ZKnfuzoLnjwuq6q8uPxmOmg+Szt5Y1w8uLSbOVKc57uwGca5cj/vuuxnED2FHDW8Y2EUveXPr7wYmMi8S0hIu7rqNz04ZIO7u+o3vHKAO7xgc0O8LtvcvEJKGT1IWvc8GMj6PBpX/LvuslC8dN+Ku+tMgr1oJjI9Ud2zO6kN8rywAa08jc+jud402jwe/YG6zSfivKvIG72PBcA8+DgCPentMj0BT0q9OMRnPD4RCDw/oAk8zm4YPZqPe72b1jG80HENvcQUjz0e/YG85f9hPO3zHL2nj4o8F9mUu8BW8DyXQUa8YTL3uNfgOrochhk8RmgcvH2Z+Lt/+Me91lE5PaIq0TtsoA882xbXPIUEHL1oPks8sDHfPCSZ7Lz1Zb86leJ2Pkt4erym7+688Ck5vdZRuTzZyxa7gi5kPe9Z6zqb7ko8Joc9vKH6Hrxf/Fo8+ZvbO0Luvrv4UBu9Hi00PQ8mJr1ftI88H+xnPVQraTwBN7G7n4O2vMWIgjvKNQc7RK1yvfHQ0zvyd248On8RPchKq7yV4na8A/bkvPyhxbvLgEc88bg6vSQ5CL0/oAk9Qu6+O8UsKL1EfUC8WU9WPIJaDL3Y+NM8ctwVvcWIgr172kQ8qcUmvVTLBDyQSQG7u+o3PLGoRzvg74O82MihPC9Sxbw/0Ds8qE4+uwZzNzx3XfK8Nl4ZPVoHi7wCxjI6S3h6PRjI+jw8ylE86HbKvKISuDytyxA8L4L3OwPGMr0vUkU9ySF4PE3XST2ryBu8P6CJvFfYbTuoZlc9y7B5u50MzrvBDiU81MK3PAkaUrxakxe9At7LuzWOSzxEfcA7RMGBPB4Vm7tsowQ70o+QPckh+DwJGtI8VbrqvCIKazurnHO8gJ/iOy8iE7xR9Uw9A64Zur5kFTx3cQG9yoDHPItAojw4xOc8ekvDvJqjirxy3BU9NaZkvY3Po7xZqLs8vvAhvB/sZ7z1wZm9p04+Pctorjk3NeY70bxNPbaF/jyoTj48jzXyPLZt5Tpn8wo98IUTu4UEnLy+IFQ9qiGBvN11Jr1xTZS88y8jO5vWMb31fVi8d4kaPZPzkDwPPj+9jUMXvZ9ThDtElVk9f+AuO9nLFr301r08FwlHvQhbHjpak5e8qd2/vJKUQbyIUlE9l0FGPGQ44Tx1bow8SPqSvD+4or0AT0o52DwVPXyZeDyHe4Q8vThtvYhSUbw5rM68ejOqPJPzELtMePq6wFZwvL4Iuzvf2/S8WZCiPFyF8jweXeY8RoMqup1NmjzGF4S780e8vItYOzu+IFQ8FpJevfmbW7xvelG8wPOWu5KsWj3uaoW9GLDhPGwUg7ym11U8Ito4PHX6mDwPggA82MihO/Nf1bywwOC85FjHvNMDhLzTM7Y8bKAPvOEiq7yXhQc+UMUavfCFE70LwWw9VaLRuyb4Oz0Orz277duDO6CbT70DIo08X/xaPUgSLDyXKa08qGZXPIfbaLz2qQA8r1qSu5I7XDrjDYe7YtKSvM7iC718Ua287crpPKohAb1MMC+9vvChPWrl5bsUL4U7C2EIvClyGb0+KSE8NP9JvGffe7xxTRS8+d8cPDdhjjulGCK8OVNpvL3VE7xqEY67raJdvH74xzxU+7a8StHfOi4HhbyLWLs8FpLePLGQLry1xsq8rnIrPT+gibytV507rBPcPEF31rygg7a55FhHvQt5Ib3WgWs9o4kgPahOvjt4vEE869gOPVvGvrw+Qbq8RH1APL7YiDzrrOY8Yc8dvRJ0W7wYsOG8ZfCVPOkFTLyPdr48uOTNvJ9Qj71++Me8T6oMvVmou7thW6q9W97XvOwLtjqVskS8nTWBvWU4Yb1ZH6Q7yEoru1xtWTxZqLu8n4M2vQky67xJiRQ9Yc8dvA8mJj2fUA+8JDmIvPApubz+SGA8pQCJPQ6vPbydNYE8Jfg7PLsCUby2JZo9kcTzOrcNAT0Hi1C9leL2PIqxILzaWhg94Wp2u6OhOT2OpvC7tcbKvJXKXTyoZte7wg6lvGPB+LzAJj68K2T0uraF/rlXGTq8q2zBOzAReT3IMhI8UCX/vCZvJDwWkl690zO2PPsSRD38iSy7sgeXvALeS7wL7ZQ8ZHktvatUKLyf3Js8UA3mPCFLtzs/uKI7toX+vLaZjTj0viS9GMj6vM6GMb0t8/W88Cm5PPlrqbusE1w8UjyDPNg8lTvr2I68FyFgPeNw4Lwvgvc8XxT0u86GMbzl50i9PywWPd54Gz0xyS099X1YvFd1FDw3HU2980e8O18ogzy9SYc8n7PovPG4Oj2BRn070BWzOkLWJT1JiRQ9LquqvEeDKrzY+NM8q7ACPRQvhb3TM7Y8LBwpPHM/77tptbM8BuS1PMajkLxIEiy8QXfWvJ0kZzyaHn28BD0bPb2p6zynjwq9vdUTvZLE87yoNiW9LBypvJ+z6LwsTFu9mi8XO+kFTD2dDE49C1BuvfZ92DsTXEK9fzwJPbMHF74PPr88Nb59uxYJRzwcnrK8LEzbPDHhRr203mO9SzAvPMnZrLx6M6o6VOaSPDzKUT2e9LS73XUmPQAECj1nr8m7lxEUvesjz7p8Nh88b3pRvIDLirx9mXg98y+jPM33Lz2njwq9/TDHvPy53jui4oW8NC98vb1hoLyHe4Q6aYKMPCM2Ez1UK2k7tfZ8PRGdjjtJ6Xi8dPejPDcFtDtTK+k8RMEBPWRQ+ryaX8m39iRzOcB/oz2FNM68bFxOvUSt8rxoJrK8gG8wvU6qjD0c+ow8JMUUPdJLz7y66jc9e8KruxHNwDt47HM7Lttcu2TBeDpiMvc85HBguJjoYL1BRyS9wD5XPW5iuDoD3ss8tpkNvI5epbwc+ow633uQPY9GDD3YPBU9lwD6PFo3vTvyF4o9BLEOvR+8NbwukxG9wrW/vI9GDL0eRc28CQI5PGUgyDy6WzY8LBypPJMjQ7zx0FM70NTmvNPy6byWWV+8IWNQvTK0iTyrhNq8fuCuvMhKK7z1fdg8JlQWvGfH4rx3LUA94KvCvBv3Fz3lzy88Ag7+vAQlAj2SfCi7u0aSPK37wjk057C82+akvPOjlrzaFle9A97LvANVNLw84uo8jf9Vvc3fFjzjcOA8VzHTO3HBB7wJMus73Y0/O1yupbx1tle8Jvg7PUmGnz0TuBw7P+jUPPWV8bwQggA77As2vQkCuTxWSew7pYyVPKvIGzxSVBw8m74YPRG1J72Pjle986YLvJovF7y9SYe7C6nTvI6O1zwQKZu9mnfiPNgQ7TwvOiy9V+kHvXp79Tx8Ua28NM8XvURlpz3WIQe9OMRnPFI8A7wDrpk8N9WBOtzRADzi+fc8DDhVvYSNs7uH2+g7R2sRvP7vej0mENW8BvzOu32BX71XGTo869gOPQE3MT2EdRq9rwEtvEebQzz7EsS6mo97PEebQzuDveU8Z8divSt1jrydZTM9ZSDIPPxxk7tsu508Vbrqu6HiBTzV2tA8vEkHuuXnSDzsC7a8xaCbvFvGPju4i+i8oirROxpX/DtAuxc8Nx1NPcnZrDsZ3Ak9h5MdPIRdgbxBu5e8K+mBvHDxubwjwp88ZHmtvIy0FTyrbEG8qH7wPC8iE71v8Tm5ouKFvHZFWT2nj4o9glqMvKuc8zxFUIM98YgIOlln77tRrQE8jaZwPBViLDveeBu9RVCDvWSRxrzvWeu8X7SPu+X/Ybz2TSa9GMh6PAajab0Lkbq8qcWmPMA+1zwWIWA8GifKPB4ttDzOnko92VejvA8mJj3l58i8uwLRu74g1DxWSfq8nWQ9vJI5IL0+utS8O7gSve8ZyDvCs6K8gD/UPJuIqjzX5e+7yYDGvPt8Lz2GsSq8Sh08vEku7TzoAoi8zCc7PCEVkDtbcTS80RhMvTbHgTuBLiO9EcI4PTLpYz1ZFFw9YlGUPMy5MTxOMrq8HJIIPVmm0jwKGQI8Glo+PcpvlTzDjzW9PIFpvYYftLw2xwG9sV+qvN3pvLz2i548hLCJu5NeLrzSYug7sUxuvWJRlDw8Xfy8C9CGvEd2R72ALQK9FFbxvH/RSjyjH488JbwEPWad8rystxQ8fvU3PUQHnb2ZGQC9WfBuvYvGKLwW17a5D+WEPc4DzrzgoeK8mocJO//sej3PKX08XZdjvAYEBLzfxc+5ijMRvIPmSDxZAgq8Tw7NvO8ZSL18z4g8ILlYPPzqOD3mE7k8pPshPMs4bLr9xss8D2XgO+fvS7sGu4i8ec19PYAtgrtvNfg7qBAgPDIgjTvnXVW8A8uYvCrSo7y700K9tBdQvE8yOjzBjhS9+td8O68C0jwEAnm82dQ+PYPmyDzDjzU9c6UMvfXma7uB9/m7FR+RPeooNz2cZL28WwOrvC3mAD2r2wE8sqnGOlDYDT3PO5i8aLAuvXpOw7ximo+8iiH2PF0FbbtHiYM9mE8/PTsmnD3p3pq8mnVuumrW3Tq3vsS8KfaQPEWatLzUUTc9NEY8vKX8Qj3CoGa8Qz3cPKHnRLzde7O79C7GPLThED12XbI86ig3vf0iAz1KHby8fYeuvP8jJL1ePJY8QBaMvOD9GT2AifA83A2qvNKGVTzM3Z68/5AMvA6JTT3dMZe9qn9KPKc0jbzGkfe72PgrOkmvsr1JQak7D2VgvBWNGryc9jO7rwLSPNNQljvuzys8AwL5PJrQhD1BhbY6BykSvUAXLTxPDk09ChmCu7/oQD0iFrE8eyrWPBwAkj2vcNs74WujPAMUFL2q7dO7sUxuvA2tujxxtj27Uf2bu9uMZDxr6Zm8EOYlvORbk7sdJSC8vB1fvA8uALs3o5S66LkMvYPmSD0cAJK84KHiPBxJjbxiCJk8sUxuvAQCebuMIwE9z/KcPDtdfDxalSG9hrEqPL5ne70sikm8Yoh0PbqJJr0xn8c8YSyGPKrt0zzhIqg8qJB7PPjVOj3J7s88HSUgvX2HrrrFR9u8ClDiPDWQ2Dxw2iq9qKIWvY1IDz2vJr+8ZviIuo6k/bp4TaI7ayB6vUmcdjzO3+A85STqObqtEzzmE7k8N0h+vH5jQbxjLac8o59qPemn8Tx3ugq6XnP2vLzTwjydZD08QXL6vK03cLwYNI88fRklu3TvqLxrIHo8eIPhPMuUI70rG5+8gD/UOQcpEj2FjBy5l3OsPPQuxrxFmrS79vknvdDOL7zoS4M8vK/VPGMa6zzmpS89bn1SvV0XiLolvAS9/A4mPBhr7zxXOMm8DT+xOktn2DvvYSK8VJFUvPjVujxB87+8uvcvu9lmNT1ZAoq8GOuTOTwCL71VyR48D+WEu3yGDT2otGi9QDsavTu4Er0tZty7MtcRvXDHbjss+FK9JoZ8PZqZW7yXTp68Jr2lO24iBbwEgz6+zJXEvEYIvjvWLUq8k14uPCrSozybGiG9AdxJvVxNx7u+niQ99ArZvAYEBL3JgEa8ArjcvBnZeDuO2ya8OTfNPJqHiTuJ6pU8Wt4cvH+t3bsqZBo8gXcePfkfVzzg/Rm8AwL5PB3u9rvhD+w8+3yvvGBiRb1OoMO7LVSKPOAhB7yVBAI9rya/PNL03jvoOeg82dQ+vVGPErzTYug8NdiyPKMNdD35H1e85CRqvM1xV7v7Dqa9ye5PPPmN4LwQQXM6fXRyvDRqqTxvfVK6rwLSPGavDb1uWWW8OyYcu07EMDy+DC49ek5DvbV0KDw02DI6SS7tvDW0RT0sHEC95+/LuxiiGLxV23A99ArZvHM3Az2Pt7m82IoiPSUYc7yCeL88Kpv6u4HAGT2NSA89Kpv6vIIKNr1ZgmW8EwzVvUM9XDxxJEe8+umXvHZdMj1iv528mplbPO2FDzskzlY6PO9yPAcXdz60hdk6uuTzvMYRnLxCz9K8dhVYPHgolDxnQiW8D5yJvAKmirxyANq8hh+0POkVe7vmpa88AUpTvZ7lgjy/Z/u8kV0NPOY3pj0AbR88Kb9nvCTOVrwLvuu80vTePOmncb148eq8d0yBvE7EsDyuJr87W3E0vDpKCby34rG8lmBwPMB6N7xssvC7HBLkO8oBDLsHTiC8fmNBPLnk87snvaW8hR6TOm/Hbr1r6Rm9HpOpPMmARrzyv5s7PrrUuyPyw7zBIIu7EVSvvOD9GT3nE7m4UUYXvL6eJL2Xcyw9YT7YO7r3LzzKb5W84I8QPCk/jDzU4608jtsmPadqzLxni6A8eQSnvO49NT2oECC9wTLdPGfB3zv+EOg8tQafO/1YQrxhrOG7bmsAPUGFtruIDgO87JZAOyyutjxEh3i6Bl9RvTNqKb3xP3e8fvU3PNd3ZrzY+Ku6DRvEuyuuNj2ONvQ87s+rPJHvA70GzVo8XvMavWlo1LswMT48ggq2PFmC5Tv5Q0Q8OqVWvbRh7DxacBM8IYMZPXanTryWlxm7dbj/PCUqjr02fgY8Sh28PKX8QrzPKf27bMUsvUMrijxcTcc8RSwrPK6UyDq9VAg93lfGPKLD1zz9ot68fKsbPaOfarzS9F68/v4VPeq6Lb3bww29vp6ku8RryDtkCTq9oJ2ou+YTuTy4iIW79FKzvJvj97z613w8ZJuwPSGDmTwGO+S8Bs3aPOwXhjsiqCc688C8O8VHW7zkknO8j0mwPG+Qjrst1OU8/A4mvK6USDtojMG9Q70AvXRKdj2oRl+8Y/b9vLRhbL0/BPE61+VvvKbYVTv7afO8n/j1vOCPkLyVFtQ8PJSlvLI7vTy65HM9x5F3PC7Ck7sAbkA9WQIKPcwnuzvBoOa7E/oCOUmc9rxW7iw7lDrBOyAnYrwlmJc9PrpUvRTo5zx2OUW9NUY8PWmwrroIKjM88YdRPD/NkDxDPVy9vVSIu8y5MTwI4Ba8qaO3PMc2qrw5ycO8jdoFPohp0LwT+gK99a+LPVdcNjwo41Q92x5bvH+tXTz7fK+8WbkOvV2XYz35xAk8EC+hPHsYhLs7Jpw7WRTcvLjRAL1MehQ8NbTFvFonmLzJymK9fRmlOsL8nTw12DK9XjwWu5dzLD1AqSM8rLcUPCHMlLxdKVq9jH5OuyBLzztni6C85+/LvMy5MTuKj/87SovFu05WJzxJr7I57JbAu4T5hLwrLXE8N8iivF4FbTzfoWI87oWPO6+nhDwlmBe7Da26vL6eJD0hFZA7OO0wO41a4TzSK4i87Sr5u9R1JLzoAoi70M4vPO1O5jzKSoc7azIVPA/lBLx0gZ+85KQOvdxod7y+Cw08DGOePIuiO7zPO5i78eMIvYsQRTyOkQq89kIjPFimUrwNmn69aAt8u3wYBL02bOu87xnIvTql1rweATM8S2dYvR/dRb0UVnG9mRmAPITCW7sV+6O8Sa4RvRl+K704fye9Pd7BPJ6ch7v41To97Sp5vPLkqbzslkA7fKsbu1oDKz2CnKy8jUgPPTbHAb2i+oC8Xc6MPYIKtryVBII7TsQwvdKGVT05yUO7xiPuPIlF4zpsxSw8OH+nvJo+jrwLrJm8Pt5BOS3U5bzeV0a9G8hHPNlmtbxNH/661+VvvQeXGzxQ6t+7GzZRPJuIqrpOVqc8Sh28vInX2Tv1ZpA87OBcPOL+urvbVQS89C5GPUFyer1M+c68Ucbyu8JpBjw2bOu8mxqhO5/BlbuoECC8D1MOvQUVtbxfhrK8atbdOe+rvjwHcg09A+8FPQp0Tzyi+gA8xlqXvAdyDTzcnyC9Z0KlPH2GDTwdpNq8TENrvVHG8juT8CQ90arCPGSbMLyMI4G8rLeUvKjrkTtdBe28ua0TPZAlwztb3pw9PijevDLFdjxmnXI95hO5O3PcbLsZ6xO8sju9PIYMeDyd0sa83nuzPGpE57t7TkO8M0WbPflWAD3Ocde8n3gaveAPbLscSY08Qs9SvcU1CTpnQiU8cDV4O/9sH71rsvC8zhYKvcyVRLxmnfK8y90evR/dRTxb3z09hgx4PUDynr1acJM7kxQSvbkIYTxfGCm+a0TnPIAtgjtUkVQ8L0LvvBTWlTxU/129uQjhvE3oHbp2XTK8GGtvPS2dBTxVSXo9zoSTPEWaND2lILA8vQuNvIqP/7wvwzS8VP/dPFfKv7tb3728qu1TPe0q+buJMxE7cEi0vEcIPr08AQ48JwfCvHanTr0I4JY7limQPKT7oTzgffU8AibmPD+W5zyN2oW60nQDPdjTnbwMGqM8ylxZPJ4cYzwq0iO8ChmCvNRRtzzFfoQ9DD4QvTtvF70V+6O8TNXhvOUAfb04SH49jH5OPbKpRj0zRRu9TegdPWBiRTzTUBY8uommPFaAIzzg/Zm8H288PMMhLLxbXvi82dQ+vbrkcz1N6B29jshqPPnEiTy/6MC8blnlvEFyej3xCBc9/rWaPF7zGj1S/Rs9ym8VPdtVhLwpPwy9kCVDvQBuwLzkpI47NuyPu02fIr2GDHg8sUzuOxhrbzxMehQ88j93vZ7lAr1TtcE7fOJ7vIgOA73QqSG8LIrJu85x17xEdAW8c+4HvER0hbzSYmi7sBUOPVm5DruoxyQ91HUkvMajkrwebps8uokmPdlT+ToSnss84P2ZvFoDK72PSTC9geSGvS7CE71XOMm8Y3YiPSVzib0VaS29FOjnPGSbsDypo7c7b/6XPBBB8zyjaAq8ksuWu+0qeT39NNU9J5k4vOfvyzxVyR693DGXPC/nIb0fb7w8NSLPu7/oQLzOFgo5rLcUPU4f/jwJmDy9pmpMvV3OjLyjn2q7fmPBO4429Lx43xg9QBctvTxd/DxHiYM8AybmuyCnhrxXXDY9I3F+vLcsTr1I0589JbyEvBLCuDxpsK674ZAxPOi5jDtRIQm8LIrJPLlS/byfwZU7biKFvMgSPTxuawA9iaEaOyuuNjvMJzu9U7XBPMwnuzwD74U927DRvJWoSrzOFoo8+LHNvMtKBz1XXLY8r6eEO5cFo7wwMb67j7e5PPLkqTuh58S8EOYlPBZFwDyDCja7l875PL6eJLufwZU8XWADvayleTzMFP86Bxf3vLkbHT2MI4G76RV7PJqZWz3g6/66fYeuPITC27zmpa+8JeESvSHMlLvRPDm8e05DvP5HkbxQIYk86Dnou+incbq2Pf+8bQ9JPC0cQLxAqSM8QBctPfD12ru0cwc86rotPURQmLspv+e7ZvgIPTyUpTzfaoK8tOGQvJQ6Qb0wMT678uQpvQHcybuulEi8XWCDvCW8hLwA7fq8OO2wu5GmCD1JnHY8N/5hvJ+K7Dwg8IE8BjtkPW59Ur3vGUg9y5QjvRSNGrsbyMe7yFR9O2Rec7zRCxi9f6CqvF+KfLxqo3c7lqUDvQMHnTyyOVo7QKL0vCyXEr3jaZc8+M+8OqQ+RLyBmRg9ppkHPWeFh7ygxZC8EVXbuttvFb1Jhqw8np8FvWPt5TxdqGE9zj9HPRxfHj0NY/87+c88O+ljGT2WLNs82UHvPPd1gjvPsFQ95sv3vMpVhr3tzRQ8Ol1wvRM3drxDyYi8k6wVPQZTs7zDl9m8KHgZPfpXHb2yquc7Zm60vOLwbryQ51a9tBTju98sOb35sVe8FhoaO3XxqjwaORO9UY/mPGUbDD0DB529iov/u0TJCL3vCeo6OmWLPO/zHz0hwge9ZldhvCU7u7u7Wec8rPRVvHXa17zkeM+8jAxOvFfUarwxJ5k8J45jvMJbhLx0y5+8spSdPKJcqTyCThY9tDJIPLRJmzwSVds7PrEhPILdCLueEJO8nmpNvFd6MD2fEBO9KyaFPM2/AT1I6IE75WKFvBkiwLqgvXW82HanvM3snrzrGJe8ymQ+vRNOyTws8Uw9tpzDvHTLHzzE8hw9UhdHPejMAL3W9Vg80RpQvJDnVj1n/SY8PG2xvP4UwbypMCA9sOYxPBT0jrxxNAc9h08qvcqCo7w1oEy82NDhu+g9Dj1ZvqA7SVF0PXfTRT0J1IE9xHl0vLYrtjtcKBw8fKe8vJXwBTzApga8wS3ePLrSDzyarSk9nogyvGvvAj3q8ou8GEAlPPrIqjzcUTA9laUDO4ubQL2Q51Y9qikOuvFzZbrRC5i8h94cPQ6RJb03Csg8CEwhPZfSILsh2FE8d+oYvHk9QTwoNKk8yONvvUNBqDwxxcM7c1J3vMbrCjwNr4q9AHCEO6Y3MrwxJxm8yjchvI0jITxfiwU9rE8ZvImLf7s4e1U93OCiPE+eE73q8os8hM5bO/nmDzwWuEQ9QrK1POmuGz1LYbU97q+vPFJ5nDslDp68Z9CJvN4zSzxx/847z1Yau4TlLru66Nk8GXx6vD71EbwlDp68MT3jvDWJebxruso7BNJkPWKxkLyYJUk9AeGRvAyYtzzzbNO7UY/mu1OIVL3OP0c9HBsuvHDo+7pQxJ47qoNIvUFIurvUojC9aFDPvCNZID28Qx29OmWLO67P3jybANI8LfFMPKXGpDyQWGQ9qWx1u1BTEb3Zupc7cqWUvJ6fhTzM7J67Kp6kvWf9Jr2r9FU97vOfPMigiLthmj28yOPvu5Fvt7wP61+8bzsZPaTNtjzG64q8VicIPV6/NLxdN9S882xTPOy2wTxiC0s9N4JnvFkCEb0pnqQ7Mk0kPPxQi7wr+F68Q339uv4rlLwAaOm8ZeZTO4jXCjw6Ggm9JCyDvC6QADy70o88a0k9u9ED/TxfRxW85st3u5glybxDDPC7PoQEvLNnAD2d4uw8gQqmPJ1xX70ADq+8s2cAvWGD6ryagIw7ZdcbvcigCDxNQ9A8ymS+vNrntLxSAPQ8TMMKvPmxVzw+hAQ9CDXOuUx4CLzjB8K8Q0GoO/T0szzcUTA9pSBfvX1NArw0GOy8i7klPCcHjLrk6Vw9IcIHvVEeWT3N7J68CpCRvfd1AjyBCqa8Q7I1vj/XrDqyUK26VgmjO3tUlDz+dhY9lkMuvTaCZ72FP+m8a7pKPdE4tTrX7sa81W14vEekkbzq8gu8aWciO3PLHz0xxUO7cH8JPPZlwbuQWGS8/hTBO67P3joJAZ+8BjzgvA8gGD0e9jY8pjcyPctNa7uJolK9T56Tu5CNHDtoUM+8jmcRPV2o4TzsRTS7XzDCPI2UrryGbY+8Wz5mPONh/DzuEYU9C0UPvAqQkbuZy447D1xtve96dzzfHQE82kFvvElZD7xx6Hu8CgEfPOljGT0Qzfq8l0OuvCpxh7whYLI8u9IPPdzgIr0do448qL+SOrKqZ7xzyx89i4yIvUvZ1LukVRe9fqAqPdP8arxpUE88/aMzvfZ8FD3GNo28Sg6NPJPgxLwPetI7/KpFPNQTPjtDDHC8wkQxuwPpt71SF8c8u0Odu2ffQTtw6Ps8YbEQvcQfOrx0aUo8jAzOvNq6F7w/OYI+D3rSvKJF1rw+wNm88qELPCUk6LuERwQ9E07JvBsEW7pRNaw7jn3bvFjU6jwt0+c79d1gvHbEDb22KzY8GXz6vKsLKTwIpls9nVuVu9yVIDzp27i8RKujOxTduzuRyXG9UY/mO+3NlDzfuys9wbW+u/F7AL2XQy68lizbvPW/e7ollfW81G34u6aRbLt36pi8gfNSvY0jITxb5Ku7lDsIPLacwzxkkyu9x4k1vQLwSTtQ4gO9PPwjvOvUprwhMxW8qRI7vMncXTtgEl08np8FvAc8YDybNYq8kFjkPE603TqaeHE7X4r8vBbWqTyHTyo9oIEgPebLdz3IibW8tBRjPKSY/rwph1E8RQVevdN1kzxQ4oO8dIAdPW/wlrwiYDK8TEpiO3lbJj3GAdW7MLYLvBsbLrs1t588X4r8O5fSoLxoZyK9DPqMOJkH5LvlWmo8HKMOvFi+IDrk6Vw97ZjcPNWEyzz27SG9cRaiO6mhrbzprhs7DfJxPBPdOz1O6RU6NNUEPO+vL70U9I67fAF3PLtwOj3OKHS8jmcRPKn75zuwyEy9oQmBvFT54TzniBC8yGvQvH0CgL2Ik5o8SVH0PLv/rDzKTWs8neqHPSkWxLmrC6k8pVWXPMpVBjwNCcW50xO+O8pkvjvepNi8piDfvGky6jw+wNk7EmwuvW0kxrsSbC49EmwuvJZhE70AUh+9eNNFO+96dz3uPqI8/YzgvAHZdjzjYfy8NyituzUR2rrjB0K9+6pFun6JVz0+T8w6nRelPaHUyDt+L528Weu9vdrntLteMEI9jfaDO+OWNDsEAIu9lxaRvKq4AL3if+G6+zm4vGkyarzKN6G8EAKzPGyc5byGKZ+8u3A6PTUR2juXWgG5qmz1PPkpdzyTaKW8RXZrvJLJcbxiIp68tpxDOvF7AL3UorC3cKwmPeG0mb2DRns8cHduvUWrozzW34480QP9OwF/PDwxxUM9rAspvZkH5Du4ft48I0LNvOWPojwRVdu8LUyQvEdv2T1MLP28boabvNbXcz1bPmY7CUyhPO+CkrzB06O7okVWvLzKdLyeiLI882xTPJFvtzwUv1Y8Mk0kvKmhLb2IwLe8AGjpu/T0M7qnqD+8V2NdvQHZ9jumNzI9WE2TvcJEMbwjQs08AkuNvHdiuDwbdWg8KYdRvTfzdDyMDM48v9q1vO+vL70kyi08bQ1zPJ3qB7vvIL2769SmO+J/4btwf4m8tKPVPLp3zLw1oMw8Gxuuubv/rDyCezM8TiXrOf0yprxKDg09dUvlu4NdTrwt0+c81tfzvIip5Dny5HK7NhFaO7I5WjxeMEI9GEAlPB/JGTzm4kq8kf6pOw9kCL06ZQs9TlqjOYEKpjypbPW79N1guf0b07xXTZO84SWnvOOWtDyarSm9WXOevZTCX7xcKBy94n/hvOElp71EyQi9wKYGOANLDb2+PIu9Bx57vcYYqDzjrQe90JoKPGhQz7t18Sq9ldkyvY6rAT2yOVo9ZeZTPc2hnLxZ6728JTs7vb40cDwVRzc9f/pkPOnE5TxV4xe8JwcMO6TkCT1nOfy8yFT9PM23Zr2xUC09pKAZO63twzwPetK7ywoEPWeFh7zljyK7c4cvvA2B5DsZfPq89E7uvDJriTzLCgS9s2eAvIW4Eb2i1Mg81t8OPNlJCj31Cwe8n/ItPMYYqLwc5nU7Ypo9PSRCTT02gmc61KKwvPRO7jwxPeO8oPKtvIBrcjzPsNS8qaEtPGUEubteGW+8+wybvJZDLr3xewC91KKwvJRoJb1Q4gM8JZ2QO2lnIjsPXG285dMSPOwQ/DsU9I4969QmvXqX+zwZyIU8BnEYPCSdkLxvBuE8FUc3PTSRFD0e32M7fQIAvOuf7rxIFR87psYkvZRoJToTsB69v/GIPRLOg7z2R9w8iNeKPTqSqDtJUXS6afYUvEfn+Dxbr/M875FKvZcWET3RGtA7bEKruzagTD0aqiA99PSzvBmEFbyqbHU8NRFaPI0jobzlFwM5lDPtOwAlAr0KiHa92zrdvBuTzbw7zn27/cEYveg1c70t02c8fqAqPUaNPj1oUE+9cY7BvKv0Vb1xNAc9ppkHvoCCxTzgFeY8RhyxO/xQC71WgUI9bJzlvC5bSL3uPiI8wKaGvOEOVDwzTaQ7TyXrPJ6IMjxDDPA8d7zyPNzCvbzqvdO8+5PyPGILyzyXnei6v/EIveljmT2OlK47zTAPPUDXrLy9h428x4m1u6n757sADi+8S9lUPCMr+jt9vo88rXw2PXo9wbzyijg9mQdkOdrJT7zXfbk8XFW5OqSY/jy9UtU8AX+8vCotl7tvBmG8ht6cPbQySL0nwxu9i5tAu7z4Gr0llXW9c1J3PYLVbTsfhSk9FhoavXynvDzasnw6nogyvCPRPzxvOxk8WQKRvAF/vDxDQSi8HDKBvVXb/Lzx5HI9M76xvMZyYj2d4uw8nlP6vI8cD7z5KoA9LCYFPXGlFD2aePE854gQPdYMrD10y5+8tvb9u8JbBL104em7JlKOvGXmU7x6l3u8z1aaPCANirvsRTQ8xnLivDnWGL2Rb7e8cRaivAbiJb2PBTy9G+6QPBhApTlB0Bq9NyituU7plTxN0sK88ewNvTzPBj229v27RKsjPSi8Cbz6yCq9McXDPKWZh7w1L7+7tBTjOwZTs7tqYBC9BHgqvb2Hjb118Sq9GEClvC3bAj0sgD+9UjWsvAEOrzqT95c8OLANvLRJm7zTE7488AJYvKK24zwKiPY8NEaSPaA2HrwhYLI8l53ovCPokjvi+Im9kf4pPXXxKrz0g6a8POVQOiYHDDyMQQY92zpdvVtVOb2Aa/K4yoKjPKSgGbyenwW96WOZOnCsJr3zVgk9yFR9PImiUrxMu2871vVYPD7AWb2Rbze9gnuzPefiyryEA5Q8yvOwO+4RhbvECOc8quUdPedqKz2BCqa8dICdvE+W+LzRwJW897hpPRcpUjx9AgC8d9NFvUng5rtiQAM9UFORPdTmIL1A1yy9c/i8Oa/9BLzaWEI8FL/WPA960rpZAhG9GSJAvAkXaT1lBDk9bwbhuTOn3jzc4KI7WNTqvEMUCz2Yy448jl/2O0SU0LyUO4i87j6iO+EO1LwXKVI8oIGgPLh+3jzPxyc9zyHiud4zyzzcUbC8ativvJedaLxjkys7Iiv6vJ5qzbp0ngK8yjehvC/MVb1AGx08jX1bveGdRrsjQk086r3TPGu6Sj1XY12851PYPKRVlz0t0+e7GLGyvMvGEz38qkW7m+l+OmxCK70AcIS9w66sOz7A2bxVn6e7uR2Su3H/zrxzUnc8FL9WvcIXlLz4MRI9jLITPSBnxLu1jYs8BHiqPNpYwj3Nv4G8wrU+PQ9c7bz27SG87ZhcujLD2LwEFRu7AKY+vf3CmrzFMJK8oi3GPEYgnju/VN88jjfFPMqu97x7iyy931OfPO3UMTw6oxe8MX38PFDu/Ty5bS88J68cvcEFjDwCy7K8NlWjPPIBPryIUBU9iAo5PXna/zw3ehc9J0jYuX7VFDsaDaI8mvwtPX74gjxm2QE5doEOPWBDK7o8Plm98iKmu+Y8Vb3hND280q+evM0+PD2OFt26zaeGvFDu/TyYskW9dl4gvJI/3bzaSYG6oudpvQuKCb19SVy9KNSQuy4BnTvcB7E87RoOvc2nBj14qIg8YYuNvX1J3LtrnUO9jVgtvLZnHbyDdug8MqJwvMJ9X7udmXU88mgCPX+0rLzAM/e8rA+LvBjmp7xLTaq6LVR8PD9n2byXjdG7inUJvYp1CT0A6pS7EnO/PIUnlTsyovA8ielQu/18vjyWF4S8uEi7vBh/4zt2gY486Ia9vECtNT2eSJw8F6DLu4VKA707pZ28L3lwu/MBvrxvX3+8UO59vG7nK71a0EI7bVvzPGMmz7yOoI88qugQPYgKOT3U+Qa9xey7PFUMAb3kxIE94A9JPAf4vrvI8Ee8TroAPRzuvzzyu2E7nkgcPUtNqrya/K25Z5WrvBsPqLzSjLA8OBVZOkBG8TyIcwM97dQxPUsHzrzsr727uW0vvDedBb0byUu8niWuvIszuTxyqWc7Xj8fPODJ7DsmI2Q8y4CMvB5bljvS0gw99OBVPTAFqbxIJCq9ZbSNPQm27rtg/U67ILB7vByo4zy1Hzu8bAYOPd8wsTzsjlU83KDsunR9AjwkZbQ87Y7VPCqSQL2PopU8EtwJPMylgLxtoU+4s2GLvcB507ou4LS8d9bzu2eVKzzcoGw8ienQPHeDFLsZg288vZYvPbqzCzwUd8u8jBLRPJhsabwh1W87h+XEPCE8ND1iAds8wL+vPfMBvjweWRC8GcW/vC958Lu+dcc70iXsu+aCMTr9wpq6hgatOy27QDsWBYq7j1y5vHVcGr1Qm568WBITu7MbLz0cqOO8JGU0PdvB1LyPXDk9myGiuwrbYrpe2Fq9hkwJPU1RNryJ6dA7bMI3vLxxO70DE5W7TJUMvXxqRLx5qg49DrEDvRvJyzz+oTI8S5GAPJj4oTu9L2u6mZFdPU6Xkjtd+UK9P2dZu2Dc5rz8V8o7K/2QvC95cL0vefC80mtIPbxxuzoOSr+6GoPvO3Drt7v3T7K8kMeJu5q2UT3UkDw9KbOovAU6Dz37vo68Xx63vJEa6btAFgA9tYiFPeyO1btO6vG7nQC6PACmPrwAP/q8ukzHvBIMezoq+wq9MqLwvBtVhLwobcw7ILD7vF+38rwXBxA98B6aPK7NujuMnAM9NMdkvLKPdrtQmx69hUqDvO3UsbzeCz098LfVPBvJyzzVtTC9O1/BvOF4k7ws3Ki84XoZuzIsI71ArbW700pgPJwhoryLdw+9xIHrPKha0rse8ks81yCBPQyMD7xxM5o7mvwtvSixojzKrnc8yq53PdTWmLys7By9cITzvAANgzuShbk65jxVPa42Bb2fBEY9CfzKu9Crkr1w67c8anhPvBzuP74Frla8pRBquNPUkrt3Pbg8lkf1POHuYL2rDYW9NHSFvEFrZT2LMzm7UTTavA+zCb2Z17m8nt/Ru6fkhDxekv48+74OPAkdszzNPry7NTI1POiGPTzdLCU8a1fnvDWm/Lx0fQI9XNROPGcu5zwA6hS8qKAuvRbBM7vGhXe8koW5vC11ZD1gZpk8Mgm1vNe5vDxOME68AxOVupcZijzinQc9zKWAPR0TtLyb28W7oQjSOx/RY73SJew8rKhGPC6aWL0mI+S8Assyu+dhSbviE1U8TJUMvaOWkLyDAJu8XfnCPBrqMz3yIia9XNROPIdOD70WwbO81v0SPR9+hL1zWI68ar4rveHuYD2M8Wi895MIPCZpQL2OfSE9JtAEvUMckjzs9Rm9mx8cvGZPT7pWyCo8jVitO3ioiDr2T7K9V4baPM+IJLxzWA48URNyugf4vrx/15q8mGzpPApCp7xH/zU8hEqDPnpmuLxzztu8S3AYvbVllzxmT887WTcHPUOQ2bw2y3C7MAUpvCvaIrwa6jM9e/9zPG0IlDw3nQW9yVmSPF5iDbxdPRk8X7dyPfh0Jrz5uoI7VKO2vON8nzxRE3I8m9tFvaFOrrxsNn87LprYPLP6xrrwcfm8qBT2vF+3crx08088TupxvJTwibzs9Rk6qFrSvFbIKr2U8g+88Zbtu+aCMTvCfV88aLqfvNKMML1g/U68rajGvH1JXLwWNfu80owwvEXaQTtj4HK7nLpdPM6pDLwtIgU8SEeYvLltLzyDvMS7eaqOPAYZJ7yeJa48aVNbPbVlFz1YEhM9UXo2vLwvazz5DWK8DABXPFjMNr0x5MA8auGZvOQ4ST28cTs7oU6uvPD9sTy9uR09DylXPPRJoLzloxk73lGZOz0dcbxHmPG80QD4vFLlhjpYzDY6oi3GO5r8LTwTu6E6GQucPdCrEj1LTSo8WtBCvQDqFDsMjI+8yluYPGrhGbx0fYI9WormOxY1ezsGje68z0JIu6SYljz2TzI9aHRDvOXGB7z84wI9lPAJvdTWmLxswrc8cxS4u7hIu7zf6lS94MnsPHuLrDx1OSw8WjkNPXR9gj2lEOo7GcU/Pf02YrsEFZu7c1gOvdm9SLuwi2o80q+evPkN4rziE1W7AzaDO0twGL00U528vnVHPZb0FTwfOCi92FJ4vcJ93ztltI09MEuFO8Az97vpzBk8zIISvRzuvzyg4128+5sgvfYqPjzSa0g9/qGyu8MJmD1U54w7Mgk1vNOxpL1HaIC77dQxPQg+GzyM8Wg8yFeMvdJryLsP43q87dSxvLpMR73EC568bwygvAYZJzzxlu28doEOvH7VFD2aHRY885p5PDsZ5TwOsYM8TjDOvOrOnzs+7wW8+ZcUvZhsabyUQ+m8EAhvvI2eCT29uZ29wuQjPOnvh71GIJ48F6DLPPIipjzLOjA8iAo5PRsPKL09ypE7zIKSPPJogrzkfqU8s/rGvLUfO7wRLeM9qX/GvKPrdbz5uoI9IoQWO+dhST1A0KM5EbeVPF35Qr3V2B690iXsPJMedTwJYw89aQICPPkN4ry7kiO9sBcjvDmhETws3Ci8XfnCvFHjAL35dCa6iaP0PKa/kL3QIeC8SEcYPbu1kTzLXR49kRrpvAuKCb0CEQ+8e6yUOwA/erx1GMS88rvhPHv/czwTmLO7KI60vJhsabsK2+K7iAq5vAEPCT2sYuq8GCyEPOuKSbyFwFA8Kit8PCFforwtVHy8inUJPbI8l7zqqzG62SQNPRgsBL3oQGE8UeMAvYMAm7tC9x09xew7Pcam37v+5Qg9CyE/vPBBCL3A4h29re4iPapeXjzzmnk8t93qvDEqnbvraeG8wuSjPB0TNLsuAR09lWhdvYhzg71NxX28dz24vEsHzrzPQsi9P/ELvaKUCjrTsaS84ZuBvYgKOb1eP588RD8AvZnXOT2ne7o8+lM+vQf4Pr1PmZg8e4ssPEBGcT0slky8zYQYve6zSb3w/TG7Xx43PXBUAjzoQOE8ccpPvBw0HDyzYQs9zT48vPxXSj2KDkW9R5jxPA3f7jqxOpE7kWDFu9KMMD1V6ZK8fo84uzvIi7y8L2s875LhvFN+Qr2tqMY8cu/DvLxxuztvDCC9M+hMO4af6DwZCxw9f27QvGPg8jtaFh+9LuC0PGG7fj282gU9Ps6du9kkDb0EaPo8mZFdvdCrkrxJSR49t93qvCcC/DwXB5A7MCiXu7gC37tc1E69dVyavOR+Jbx4Yiy7qKCuPB9+BDv/Om473AexuyWKqDxLB048fviCPQdfg7zOHVQ8MqLwPDHkwLskZbS8a53DPBfkIT3Bnkc9R0WSvIafaLxNC9q8EAjvO+DJbLyuZvY7n0oivZCBLT1GIB676R/5PK/yrj1rBIg8Nab8O4af6Lxft/I8J9IKPBTgFb3+oTI8aQICPE92qrwEzz4975LhPMl8AL1M5mW8WopmuzIJNbxLcBi9Sm6SPARo+jzhNL28KUxkvdFGVLsvA6O81pRIvMJ937yzGy+9WopmPPVuFD2W9JU8zacGvUS1TbxqeE+9Dd/uPIZMCb6FwNA8xC6MPOvzE7y3I8e8g7xEPYp1Cb24SDu9ZnC3PEdoAL0yT5E8xxEwPDBLhTwoJ3A7xqZfPeWjGT1nlau8YEMru6MM3jy9li89DWsnPNl37LzL02s9SQPCPCD21zzfMLG8wsM7u39NaLyzGy+8ZraTvHCl2zzxIKA8ppyiPOenJT3qzh+8g7xEPcTorzuOfSG9WTcHPYXhODyqpLo81JC8O9P3AL18asS8mh0WvK8VnT1DkNm8sz4dvWPgcrxBGAa9f7QsvY/1dD2xsF67tyNHPb67I72/mrs7s/pGunuLrLzOqQw8vNqFOu+S4bxkS8M8G1UEvJcZCr1WyKq8qz12PWi6H73F7Ds9yPBHPIhzA7yjlhA7S3CYPbzaBT152v88z/zrPHOI/zzL02s9X4cBvdZO7LwwBSm9+3gyPNQp+LyzYQu9Xj8fPEKxQTzXubw8J0jYO2SyB70s/xa9WMw2vYhzA7346O289UsmvVC+jDw7GWW8BfQyvU3Ffbq6TEe8rjaFvGnfk7y7tRE9W/U2PMGeRz0ZLoo7CmUVvS958DxXEI273gu9PFjMNjzV2J688wE+vUMcEr0JQKG9E1LXvM/OAL0FOg89zmMwvXtFUDqA2SA67K89PBLcibzMXyS9FgUKPQuKibxJbIw8/+cOPaUQaj0QCG88S8FxPM5jsLxtK4K8r6xSvdqcYD3oyhO89pECvZPugzxTxB68OfRwPNhSeL24Al+98dxJvOlE7TubHxw8nCEiva84izoKQie97m1tPbCLart4qAi9908yvDAolzz+Ffq8VmFmvQ1rpz33w/m81bUwPMYymDw7X8E8rs26PI2eCT180Yg8PPj8vKZWxryi52m7niWuvBnFPz3vP4K7UcASO6HCdb3VtbA7cRAsPSdIWD0WNfu8GV77vCSrkDpRera78kUUPOvzEz1A8xE8/cIavWw2/7pXhlo9WhafPKV3rjtxMxo9Y0vDui11ZLw4NkE98B6aPNomk7sX5CG9vLcXPB8XQDpdPRm9fo84PA6xAz1+j7g8RZTlPFdA/jwBhdY8S3AYvd4wMbyblek7TJMGPPD9Mb3bKJk817k8PBJzPzvU1pi8AmTuOxJzP73HNB68N/BkPNX7DD3UKfg8BfQyOuShk7qIo3Q9S3AYvGiZN7wxffw8zh1UO9/qVDuEJQ+9nwRGvXioCDySZNG7UlnOu/NHmjzE6C+9AzYDu7LVUr1g3Oa6ukzHus/OAD0rtzQ6jhbdO6d7ujsq2Jw9f7QsvdsoGT1e2Nq87Ej5vH1JXLxm/BI6wocTPCOUXr2EASq79qCjvFBKWTyEAaq8hxbxPHIn9ztYAbE75D8yvX7AmTx3msQ7QxI3ugxGHz0w4wI9i+73O8Of1LxIDEM9HKoKvX15FT0LF9y741ptPeyKBj266Pw8DbIiPbg/ubwKJJq8u7UAPQYqDj3y49c8yuoovaVaAzxQDRm9BZmLvT6sp7wn2Oi8GqDGvMV327ysjlU9tMzrPJxP6bzmYTc9LfR5vBkcgrxP3lW8CiQavN30Xb1IhYS8quWRvXG7czz5teo8BEXJPB6nEL3zN5o8DbIiPZSKFL12LsG8CiQavWRGEb2vlZ+7TsYUPQxrnjt8nhS98oGYPK+6Hj2tcxo8qi8QPMQLWLx3mkS9VERlvBSEtbwKYdq8BC2IvDF0Bb37ULE8yTSnvM14MT2fVjM8PqwnvOuvhbvraAG8nH6svEU0vDvgzOS5BHcGPLOPK71SCh89PIqiPAgClbwV8Li8siOoubphPjuIRbS86IO8vKubkzy3HbS8p5RJPI31QT3WIsu8Y9qNO+8YDz1eBYE9IKQWvGrp4LuDlSa9q1GVPcI9FT0zu4k8g5UmvROfcDwZfsE8iIL0O1YpKruwASO8e1eQu55xbrxmHhi9ZEaRPI7/Bb31NCA9nE9pPGzB5zwN/KC8g5Umu3a1f7wixpu78zcaPD8YqzvnF7k83xbjO1xFuzzHXKC6JQBiPK8cXr28g8M8Xx3Cu4QBqjxlOVO8OtcavSQNoD2nfAg9zf/vvA7vYrwOaCQ9YmFMvbBLIT0e5FC8VxxsOjDjAjwAlbs7GRyCPexACD1Bd3C9O1tfPP28tDyapiU6R88CPVX6Zr019c+7Mx1JPJ7qr7x4yYe8YfVIPWDdh7xuLWs8CInTOxyFCz2/EUw8QM4svPSjnTxb2be8eVqKvJE5TD2sBxc98MFSPCOUXj1H3f880fl7uxyFi7xQDRm8rb2YvBQL9Lk1uA+9LiO9uqJr+jzBfU890I34vCOU3rwS6W68OTnavLRFrbyf3XE8sAEjvNyVGD2mKEa8Sl0LPe0zSru+Qwm8xMHZvB9QVD2RjQ44lMdUvKfex7wIiVO9RQX5Oqm2zrpdsT683IhaPTW4j71ZPvE8V5UtPftQMT2sRNc7d+4GvOgKez1IhYQ8d+TCvIBRHLyQzUi9LiO9u1PYYTyLZ7m8y5NsvVJs3jwGBQ+9kqVPuftQMT1pG5485BBvvfR+njt2zIE9rmZcO/Mt1ruad+K7dqeCu8U6G70a6kQ7KAesO5otZD2MP8A8IVoYPCIoWz2fVrM7wECPvRzCS7yZ8CM9+bXqPKTJAL2kyQC9FfC4vHX/fby3WvS8PEAkPfBfk7tyJ/c81mzJO/kuLLysjlU8tbEwvJRlFTz8jfG7SfEHPWcRWjzNtfE8k9QSvKLku7ykyYC8GTTDu4ePsjuwiGG9I5RePKpsULw9M2Y8yTQnvVojtjx1//2849OuPB6nkD3Bfc+7r7oeu3rGDb1Aziw72ZgSPQzN3TxYSy+7+iHuvD0z5jv26iE9/ii4vNH5+zz9vDS8mi1kPU7rk7xQnpu8KI5qPfwGs7ybEim+1OgEvXAF8rtfHUK8+mvsO9N8gTwTVfK8PMdivU5aEb1wBXI9kh6RPK4EHb0Hu5A8wfYQvULj87uVfdY8bi3rO0W7ers4Rpi8GE/+utIov7x7lFA8HuTQPG06KTyH2bC8qXmOvGjHWzx86BI849OuvKVyxLx5vMk83IhavO49jrwZ0gM9rU6buXc4Bbo9fWS8xXdbPFvZN71gJwY98MFSPa8cXj3O5DS8i+73O9n60TxOxhS9buNsPQm4Fj2LZzm9wunSvO4zyrtFfjo7lz2cPEALbbzBfc+8kM1IvGU50zwyKgc9nqAxveerNT2Vfda73m0fvedU+TwELYi9Dfygu2XXE70Z0oM8oUn1usYtXbkZNEO9pusFPYU+ar1uLWs8Q5n1vCIo2zxjF848tx20u6lUD7xj2o08VrDovWWyFDtWKSq8pihGPIaqbTwECAm9wIoNvRSEtbvwwdK6PxgrPRV3dz42q9G8NT9Ovc9QOL00Ag498MHSO+sRxTxQV5e8Ly0BPdV5hzwFTw28c914PZ277DxoZZy8BmfOvDb/E7yljX+87qyLOj32pT35tWo8lqyZOz6sp7x2pwK7MfvDO9fYTL1IwkS8CqvYusk0pz3B9hA84qRrvMwMLr1IqgM9S5pLPOnvv7wXEr48cXF1PMLpUr2LHbu8zXgxu2aNlTy5fHk85fUzuzyKIrw71CC9OCGZPAS+irxJ8Qc8ibG3vL5Dibxrn2K8WIjvPOqlwTx9ttU8gt+kvNRKxDv33eM8tqRyPGDdh7x0wr28YInFPBQL9DytsNo8Ou9buyyIdrwS6e67jIm+u8/XdjqPF8e8tMxrPOPTLryPF8c8MbFFPC23uTvxOpQ7QqYzPfkurDswCII8yTSnOz8YqzxEyDg8yH4lvWJJi7tGu3q8I1eevGFuijwCwQS82QcQPNPeQD0AS708qgqRvEfqPb3cSxo7BU+NORdcPDzkP7K80w0EPYhFtDxJFge8aqwgvMUL2Do/GCs98AvRO1xFuzv4DCc8vbIGPSPe3Ly3HTQ8Rj6APJbp2TyXzh67ZGuQvSZsZT1ReRy8nuovvIyJPjxtOik9I3ydO9CNeD0cwss7UADbu66YGb3YLI87UADbPKjeR7yDHOW8LfR5PCCkljzAQA+9omv6uxcSvj0lLyU8xqaevKNQP70CPv+6PjNmPd5g4TtAwe487xiPPLX7rjy+pUg9V5Utu9FyvbwrlTS7XEW7PHuUULyv0l89D1vmvJGyjbuo6Iu9G/SIPOJnqzyi5Ds8TqGVPPgMJ711eL88U5shvXCZbrw6pV295xe5u65m3Lyx9GQ7rOIXvf5l+LwrlbQ89TQgvHHIMTzIBeS6tmcyPXm8ybrEC1i8ziF1vNIov7wr0vS8S+4NvSdRqrxb2Tc9ve9GvfYn4rkVOre8ZqXWuqhKSzxRVJ08eXLLu0fd/zshNZm8xF+auzql3byv0l+8bMFnO3zeTrxYiG+90XK9PW8SsLxZ9HK84funPQ8R6Dt5cks9umE+vCn67TzgjyS9TloRvYQBKj2cyCo7IbzXPEHwsbxIYAW9aECdvC30+TzMDC46Am1COo1uA7yiIXy7J9hovJNb0TyLZzm9UmzevLE+Yz11FgA7Sl0LPYYjr7wQx2m9Lm27OgTjCTzkHS26EIqpvE8yGD0sSzY8iMzyvGCJxbssHHO85fWzObkye7z+KLg8zuQ0vcEzUTzEwVm8rCwWPUE6sDxOxpS8ZteTugmTlzwhfxc8rfpYuWqsoDzX2My84fsnPJx+rDvXmww8WiM2PZXRGD1bYPY7pw2Luy4+eDyoSku8pw2LO0tQTTzVVIi8Fi15PGG4CD2Xn9u8nE/pvMEz0TzvzhC7PIqiPLzNQb3IT+K8fsCZvD5iqbwEj0e7FfC4vbxGg7zr+YO8o5q9vMYVnL0ZrYS8df/9PF/Tw7xGoL88wmIUPW8SMLxH6r28NkmSPD32JbmecW49cXH1umMXzrz9vLS8zuS0vEa7+ju/1Au9CfVWPI6rw7vqpUG8CiSaPReZ/LwdOw09tEWtvQgnFD01uA+813YNPEf0Abys4he6YZMJvZxPaToNsqK8FsH1u8cSIr2C+t+851T5POoeA70n2Gg8Vt8rvZXRmDucT2k8qmzQPGNJC7xFNDw8rERXvcDHzTw8iiI9x5ngPJIeEbwMa568s9kpu3V4P72VGxe8tMxrPN6q3zvlMnQ8nuqvO2piojp1FgA7kdcMvdAGOr12p4K8wmIUvOCCZj3rrwW9VXOoOt23Hb1lOVO8/AYzOzGxxT2h/3a8jIk+PK4EnbqHFnE63xZjvAMjRD0jVx49siMoPdAGuryFt6u8Kt8yvV4qADzbHFe9MmfHPP8beryqLxA8wGUOvYb06zwpcy896IO8O9/ZIjw8x+K8jD/APHCZbjw99iW7sAGjPNdRjrwLkJ28x1ygPIpnObsgXRK99AXduo+QCDzwhBK9UbbcvGn2HrycBes8YAIHvWn2Hr0w44I6p97Hu738hDxLOAy8pAZBvR/ulDwojmo8aungPPBfE72qChE5BEVJvQILAz0gpBa+dqcCO/Yn4roiKFu9xF+avF2xPj0jlF69vTlFvXST+rrHEiK9W485PMh+pbym6wU9xqYeuz6sJz32J+I8Rj4AvYdgbzyn3sc8mAvfPM4h9TwEj0c7PunnPOdU+TjF8Jy6zbXxOT9Va7vdkp46lGWVuyYiZzuGbS09fuWYvDU/zjueoDE9YqtKvHTCPTvLk2w8PmKpvCAG1jxp9h48UEpZPBNVcjzT3kC8J9hovCUvpTtmpVY9l1Vdvf6v9rxNNZK8AEu9vKIuurwXEj49q1GVvWAnBjwxTwa9gFGcPBamOrvj0668ibE3vOiDvLocYAy91uUKPS23Ob1TUSO9bISnvSBdEj042hS9yTQnPTzH4jyQIYs81EpEu/rkrT2wAaM8RX66vIzG/jwsHHM87GWHPbiJN72L7ne8L207veQ/MjznVHm8qbbOu+oeg7yDHOU8CkmZu8YtXTs71KC8/bw0va/S37wltuO8aMfbvMugKrzLVqy71VSIvdBDer0nUSq8DIPfO+TG8LzZsNO8SGAFPcvd6jxeKoA8ZdeTO3rrDL39+fQ88zcaPL/5ijyG9Gs8irG3ugBLPb2lWoM7wMdNvSm9rbzOa3O9uIm3PNW2R72ROcy8FM4zvUiFhL0ojuo7z9f2u+pogbz/3rm8Zh6YO23wqjxGcfw8rfrYvNPewLxlOdO6j7WHvMU6G73WbMk8i9M8POsRxbyQawm8WfTyvAr/Gj1Kggo803yBvcYVHL3l9bM8bTqpPCQNIL3U6IQ8VfrmvMTBWT0L2pu8A3eGvCdRKryHjzI8VmbqvKcNi73C6VI9cE/wvBXwuDpLE428OfwZPXcThjx3UEY9imc5uozdAL2zYOi8cX4zuzmyGzxYiO88cbvzu2yEp7zgzGS9jbiBPL5DCT2T1BI9mfCjvBhPfjwFj0e8hberu0agv7slLyU9HqcQurZnMjwzu4k7G/QIPVbfKzu3HTS7DbIiPN5g4TwECAk7b1wuPSNXHj3VVIi6oMI2vdKv/bsuI707/AYzvZx+LD3Z+lG8jfXBPOzHxjzNtfE8zuQ0PdNlf7yja3q80bw7vRvPCbwuPni8+MIoPHE0NT2sLJa82xxXvGiKm7zGph69RqC/O9xLGj2lEAU97MdGPbMW6jtPMpg8M9PKPfegI7w0Ao68OCGZPBLp7jxKLsg727oXvdYiS70gBla8z2vzu4jM8roDnAW9ufW6vG6mLLx/wBm8U5uhu3V4P7xB8DE9IzIfvEMStzxIhQQ8WiO2PZtcJ715vEk9PIoivUouSL12zAG7/aXqu7kg8bwPS3W9zGdKvDlIcTyTlx471OyLPGfIRzvd54S7i7SrPCO1EL2n+vI7a1hsPD4cMztEfjI97wJHO5BPjLxHaBO9goDRPTrJZL37UA65JsRBPRq6Fzwda5c8aesJPckU/DyTRre8Dl+GvFaxej380YE8birHvHW8Ur0k8ua63q4jvTY5QL0KloC7dl6hvFwni7xiIJ28KaVNPcllYzz3Hhu9tO79PIni0LvXTKQ7jZ4MvQGbB72oKn+958Eiu/M0ur0LXR+9R95KO2nriT2pHTW8unFYPVwnCz2Dc4e88IM6PAFX6ryqTcG6llXoOg8+Kz0R/HQ8r4x+va2ICbtZJaQ8ER3QO39xID3e/wo89QYVvUsQPrz2BpU8sCEDvPlmLbxnJvm8kcXDPGbpIj3QSFY8SOkGvOcSijgB+Tg7Efx0vKdL2rz+6Yc8POymPGR1+TzV2Pq8RTiHPTmMjrysHxy9QHzLvDRamzu24bO8iZHpuv7VdjwcsUI7te59vEc8fDzwDYM9RTiHvEi9bzzkECM9+J+OPHLmAjw8Sti8eBxrvM8YSj1HgBk90xqxPOOPL73BJD+8smkVPZDFQzvjj687PctLvL/0sruVMBi95sEivDdpzDwRbre7o5paPNnNF70zuEw8ri5NvB7A87x5vrm8Dr23u2nriTwUrXS7nefzPG7Z3zuuT6g8NLhMO6nMzTvmwaK9kRYrPYYx0TtlIgQ82dphu3hIgr1BK2Q9gf/dPAncq7yhmHM8TLIMPRfQtrzkblQ9UtDuu7yUGj19/XY9RC3LvAQ0AT2J1QY9q54ovcNfB7w4XAI97oHTOyUicz3dlp29wXUmPMSPkzxz6ve8htMfvVmDVbvOiow8TcoSPQ9LdbwshPI8OUhxOxqBtrqTdsM8GABDOoYx0bnvUy49j5U3PfXCdzzPGEo9JmaQOzk7J7x/caC8lkgevYH/3TzOOSW7vwH9O/oggjuq/Fk8agMQvHkPIb0TWBi9wILwPNuLYb0UcB48FHCeOg29Nz0nfhY9WmL6vDfzlDx4SAK9HpDnO+8CR7zkHe08ix0ZvP1HObwiE8K8OaQUvZF0XDwaME+84px5vIw1Hz0eYsK9mQboPORNeTwjZCk9wJYBPI8fgDySpOg80slJPOxRx7wa3+c7LHcovfS+grzkvzs9cX0VvMwWY72hGWc8RH4yO1MsEj1z6vc8E+8qPR2DHb0r9jS8DI0rPasHFjwt4JU7a8ouvYaCODwupzS9ueMaPapNQTzG5G88pyYKvCx3qLxTwyQ9xWN8u/Fi37uujH48Yee7ukU4h7zu0jq7F3KFvJAjdbp5vjm8tjIbvaecwTzD1T49ep1euhRwHjxmUpC8F3KFPESL/LyiGee8pr2cPJKkaLvRJ/s8t29xPbQCjztxLK67HuFOve4wbDs87CY7aXlHvBowz7pE3GM8Q4t8PeEOvLz+Rzk9PD0OvFqz4TzzBK49ep3evLoTpzzL8ZI7NwubPLmSszwNvTc9/xkUvR4ytrxLMZm8qfzZPDfH/bwENAE9qXtmvb39hz1K7fu8ZvbsvPs4CD1zFo+8X4cjvqzb/rsMmvW8ZlKQPB7UhDzL8RI79rUtvbRgQL2MNZ+9W74dPaecQT290XC8hQyBPNYcmLxp+FO8bJwJu0NOpjvXhQW8G4G2vPeUUryY4Re95BAjPV4GsDz7Fy28RH6yvPFi37vLxfs8l7ELOhvSnby4NIK8KCRavKJqzjt/caC82aw8PF6HI7w22468gVDFvEKHhzpLggC9TkDKvF61SD1uzJU9uEFMPHOtoTx4SII6r9CbvOG9VD3du205J/8JvErte7tRk5i80Zk9PWTGYL1zFo87kE8MvWooYLtVxQu8D5xcPSf0Tb0ObNC7y4glvJTUdL1xC9O85BAjvW3ZX70eMra8P9aHPJj5nTuujP66JOWcvFsPBT2CgNG8SAENvKpNwTuOthI9o3UKPRcJmLyn7ai8OhpMOoSjE74xqZs8dpt3vIc8DTxE3OM8hxD2vIbTH70e1AS9LkmDPKZsNTzDX4c+U6JJvGHnu7ujSXO85BCjPGtLIryJkek89L4CvFekMD1dE3q7B6yfOdl8sDxJj0q7Zpg7u04zALyoVhY6LNVZvCd+Fj2MNZ890xqxPObO7DxWAuK8htMfPKFqTrxzFo+9q54ovXF9lbzWyzA9F9A2uOGwCrxVxYu8smmVPL9SZDzPx2K9Fn9PPREQhjskof+8sCGDvOpanDzLiKU8NjnAPPvnoLpLggA90XhivZTUdDrIQJO8OZlYuXVra7zNcga9V/UXvTzsJj1PYww9+vRqPe0LHL1Uosm8ITQdvX/P0buNZau8MxZ+vK5/tDzMxXs8BXwTPE/Bvbw0qwI9LCZBvFf1lzspVOa7Onj9vJ0TizxBbwE74EedPBG/HrzSeOI7IZLOPNSbpDyuuBW9vy0UPX+qgTwupzS7gS9qu74Bfb3Um6S8FMGFuzNClTvMxXs8xVYyvAyNq7tMYaU7Ep7DuuZwuzxchTy9BnwTPaZstTwuVk28K/Y0vAIpxTyhmPO8InFzvX9xIDoesym86n/sPDLm8bw38xQ7kXTcPLoTJzzSUxK9K7AJPH5OXrxvWlO7fG+5O8YFy72UdkM8UU97uxxTEb3/AY48KgN/PakdtTvTmyQ9JEPOvENOJry6TIg8w0eBOshlYz0h8H88nefzvGZ34LySf5i7YQgXvRN9aDxgZkg9uSDxPNObJL25kjO9XrXIvFqOET3L8RI9rIgJPJZIHj3ZrDw8yubWPEo+47uYqDa9n2hnOsHTV7z0NLq7qtcJPZBPDD3LiCU9UU97vfwk9zwBSqA8ZxkvPQSquDzZK0m9fkEUPZOXnrxS/IW8k+iFvASquLvu0rq811nuu+fO7LrvjI87o7u1PBm6Fzl495o7i5NQPI1lqzwzZ2W8izUfO5d4Kr0REIa82gruvLEAKDu4n/28NZfxO2p5x7290fA7cuaCve6B07wOX4a7+xctPXVra7wFiV28f3EgvJfhFzyWpk+92StJvOFsbTzsUce8DmxQvbFe2T0Yigu8qb8DvUo+4zz2E188UvyFPQncKzupvwO9rM40vTRn5byUJVw9N2nMPFGTGDyz6oi83q4jvd6uozwX0DY7lTCYvMIDZD39R7m6rn80PPXC97zc3Eg9pI2QvJ7aqbz7OAg95GEKukL9vjyeOFu8m5IXvfc2oTxpmiI9s9KCPFGgYrx5vjm3g3OHuwyNq7z5t5S8dl4hvZZInrtuKse8kWeSPJEjdb2pe+Y8XuVUunzN6jxqAxA9Va0FvbsTJzse4U6744+vvNEnez32E988FyEevecfVD0v10C9aZqiPPQ0Oj2juzU9DUeAu1GgYjxpp+w8EcxouwsMuDtnyEe7uXFYvIzktzuias67394vvbbhs7tdE3o8y9kMuyZz2jtgZsi8kRYrvYNzh7yIvYC8Ep5DOhXZi71x28a83v+KuwKzDb1qece8BDSBvL8B/bqKY8Q88eFrO5aF9Lu24bM8kcVDPe9g+DxvWtO8HtQEPTNn5TskNgS9FK30u0jphrz6RdK7Oeo/vDfHfTwUcJ48TGGlvFklpD3B09e8zpfWPLUalb1Lmoa8S7/Wu6LI/zzb3Ei8Ep7DvGszHL1MYaW7pmw1vXF9Fb288ku85E35vOG9VD1Grr66KHVBPHs/rbxPSwY94V8jPfdDa7yIvQA7UUIxPI83Br1as+E8FHCePAWJXTzxgzq971OuvLg0Ajy/LZS8Aod2u6qrcjvPabE8agMQvQflAD0XCRi7wbL8utMasbyufzS9xbTju7lx2LsODh89uxOnOfqWuTwBmwe9IYUEvcwWY7w0CbQ9lve2uy4FZjwB+bi8NjlAvI8fgDvuIyI9huBpPJt6ET0ppc28nPsEvQjpdbzmH1Q8BnwTvU6RsbsAg4E8YUXtO6FqTjzYtZE7AajRPNNrmLxaBEk8fBGIvfvnoLxqeUc9WlUwvQncKzw4XAK9idUGvadL2jzn+gO781WVuhs7i7zsUce8mVfPvCKdCry2kMw7qk3BOrkgcb2M5Le7/wEOPGko4LzUSr07MyqPvFFP+7xkF8g4tpBMPKO7NT1PSwa93gzVvAgVDb2aNnQ98LwbvkUMcLw22468nThbvb+jSzy6Eyc8FyEevV0TerwrmAO7vSJYO/ANgzwrsAm9jvPoPLGvQLuDsN07nAhPPfdD67wpVGY8585sO0cvMjwIi8Q8xDPwvA1HAD3xEXg8HLHCO0xu77uEUqy5rM60PGOhELxy5oI8ER3QPOWRFrzG5G889mRGPetyorxNypI8B1s4u8eGPjz/yKw8+ucgPAesHz2LhgY8tLGnvGAV4TicCM88InFzPYe9gL3Ol1a9HZBnvPzGxTyL5Dc8Ww+FPLJpFb1pSbu7wXWmvHffFD23m4i8D3eMPAPLk7u/LZS84V+jvMKy/DzpQpa9s9KCvH7wrL3AlgE9BWQNvOPgFj0+TD887QscPRlRqrwBqFE89hNfvIKAUb1v/KE8pktaO+ohOz1hty+9w6WyvO8CR72UdkM83l08vCFx87l6nd48lTAYPCZmkLvhXyM8NjnAvO+klTw2iqe8FMEFvZj5nbzkHe27bEuiPE9jDL1Dnw28f8IHvF61yDuh6Vq7vJSavApq6bthRe08pg6EOyuwCTw9KX28DfYYvN48YT3KNz47lqZPPDslCLw3ujM8vFD9u0tu77zwDQO90lMSvUOfjTx/IDm9YnEEvJQYkr1bVbC8yje+PHW80jxrnAm9qvzZu6EZZzyi9Ja8e81qPTaKJ7xjOKO7FdkLPGUiBDyyaZW8d5v3uyd+ljw3acy8X/CQuwuuhr1Zdgs9ep3ePDe6M71yC1M8MakbPE7vYrtMv1a9SxC+PDSX8bxvNQM9zsdiu0mwpbqWSJ48Z3dgvOqrAzyDcwe9RQxwPObBIr1mmDs9JnNaPC4FZjxFXdc8aafsPKDEirxZ1Ly87POVvEX/pbxkF8g8zXIGuwzrXDweMra73zxhvP7pBz2OZSs9wSS/PM6X1rxpSbs7Atjduz165Lz8xsU8fSmOvIniUDxUrQW8h7LEPDmZWDxy5gI9vPLLvAFKoDwE+5+84+AWPDISCT0OS/U8GyOFO7uhZLz+9tE576QVuuqrA713x449U6JJPNl8MDwttP483xcRO/zGRT3Wesk7ZHV5PJMAjLvjHe06Q06mvPAlibtJXz49dQ06vFf1F72eK5G8/ukHvYnVhjxxLK48GV70PHY9Rj3zbRu8Rf+lPA4Onz0D4xk7mTb0vDybPzzG5G88ekz3vEQty7zlkRa8XT8RvRQft7vxs0a85BAjvZNGt7zBJD899e4OvJN2w7z5xF67KNNyvP/ILDwRzGi8d46tPHj3Gj1Ezxm9Se17PeZwu7xMbu+7tj/lu9E3b7voTCG8gHdBvXALqry7MbS7QgE3u1IOAT2eBCM97xOnOs3soTxA1FS9uBVMPNgP7zuqBXy7rZIuPaZaXjyXLCM8F8TVvPgYiT3TxCG9FffDPDyJhzzAKyg89usmPRN5iDxdAWY8lt1MvQCAvrzvQ4899uumPOuo6LxhDFS98ZFiOh8bFL2EM1m9rKMovOkqLb3rCDm9MrSNvPmnPj1VOuA7aTOqvPO+xDxGPA28VilmPCnfE73cK9e87eZEveTQ6Lz81KC9TgOTu8JphLxRL3I9EsrhvNfgCT33aWI9mikdvSzLkzzdmZu8J6G3vEPwPLyTITU9cUkGPVRcVL2v0Iq7542DPJOBhbvNjNE8uVMovHWlTb2FEWU81yBpPP7Rmrzpytw6VLwkvQXagjyHT0E9W8QMPMjyrbrdyQM7NAJhvB4sDruZCq+8CbUIvJ0VnTzcqpU8nGZ2PCxM1TwXZQg7WVZIvHsNhrwXZYg8ex19vNnteryhwLq6gQb3Owkl0LyFoZ282syJPYxJtbuZCi88w4fvPDOjEz2f86g8tpeQu96nD72kLXw90ib1PBCdfzztNRu9SzaBPJ40Cz1CMR88jsdwPMz9G7mAd0E7JlLhvMVl+7zDCTQ9SXlmug4fxDwSWhq9w/g5PWEM1DjTZFG6XWE2PKQt/LwcXnk8pcuou327KT0ZouE83BpdPfgYiTum6pa6+ac+vWQ5Nj1+2pe58ZHiPKzTkLxKyDy9F8RVPavkijvYbz+9oAEdvO9DjzwSOyy9ib0FPYxJtbyBBvc8uVMoPN3JA71kmYY9LKylPOt5A71wWgA9PvZIPDC3kzyUX5E9JmNbvRX3w7tE38K8p6k0vaBxZL23hha8aiIwPCfRnzvAy9e8nUWFPJBUo7sINkq8glVNPOhMITuUn3A8m3dwPc2MUT0cb3M8dhOSPV1htjxHm1o8cek1vIDXEbyC5QU9B6eUvFfYDL0NkI677lQJPXoudzx+CoC9EtvbvGV3kjwCTVC97sTQOazTkDwwtxM8UBEHPcofEL2b10A85/3Ku1DhHryCVc28lY72PCHJt7t1pc277XV6vKEgi731LAk8PpZ4PH85ZbqLWi89WbaYvc3sIT0mY1s8Z1UePTBXwzxCAbc4aEQkPc3sITxVS9q8ZmaYvCpuSb0NkA48aEQkPT2ncjohaWe9EUwmPTE1T7zAK6g7swrePF5QvDvrqGi9z+mbvCbDKz0KpA482a2bvI8Wx7yp55A8UKA8vGtxBj0cvkm7marePIHGF7xFzki8+pZEPGugaztoRKS8vo37u+8TJzzIgWM8g6SjvBzPQ7wM4Wc7zeyhvP3DJr0smys9F3X/O1CgPLsn0Z88ex19vBqR5ztNhNS8L2i9vDhtHzvhdCE7cAuqPAZ6Mj3LDhY56EwhvUrIvLt5sDu7qXZGvO8TJ728gIq724snvKtU0jxlKLy6G4BtPTe+eLuQhAs81FPXPcKpY7xI6jA9mLvYu+Ph4jxGXf47FAg+PaDRtLx/iLu8V9iMvLri3TyAd8G8QgG3PKrFHL3bu489zvqVvAbJCL1LV3I9T8KwvM7KLb4JhSC8iqwLvSG4PTvZrRs8DFIyPFU6YL2UXxG9g9SLvWaWAD1mlgA7f5k1vUw1/jzKvz+9ChTWO0crkzxDUI27ukKuPEk5B7xIiuC8DOHnvEu3QjwJtQg999osvLnzV70hKQg9Dn+UPBZ2grsUaI68MFfDupRwC7zwotw7g0TTu+GkiTwdPQi9mkgLu7Xoaby1qIq8PadyvEVegTtqIjA9taiKPeNxmztGHR88DIIaPP3zDr2qZUw9cPqvuodPwbz5R+68JXRVvFsjWj1y2Du9iS3NO50VHb3LrsU7QjGfO2DOdz1wKhi9n/OoPC7ZBzyg0TS9PafyOeUfP70drc+8PvbIO3rul7yla9i76hmzu5FzEb3LTnU9BaoavW5t/bttfve744IVPehrDz3pKi29Y6qAvHBaADxW6Qa+FySmPB/rq7tgLkg8jEk1ujZAPb1Wyhi9iJ6XvMlw6TvGRAo8EoqCPqZa3rtrALw6+UduvU/CsDwnAQi946GDPOYOxbo4bZ88HvwlPPuFyjyF0YU9542DPLMbWDzwoty7Zcjru6r1hLwXxNU8aESkPa4h5DwN0O07MUbJvNE3b7v7NvS7c8dBvUXOSL1k2eU67VcPPRkymjz4KYO8rTLevM7bJz0Pbho8X9/xvLpyFj2MeZ08xzOQvA4fRDpfnxK9ep/BPPVNejyBZse7zYxRPBligr3thvS8sryKvBd1fzjYD2+8ebC7vBzPw7yPFkc97xOnPMkwCj2V7ka9XvDrvG9MjDtR7xK8pNwivOAly7zHAyg9cFqAPJi7WDxQoDw7ePGdPBzPwzs0wgE7I5bJu/QNG73qeYM8/gEDOy7Zhzy5lAo8mLtYPAg2yjxmZpg8Vom2vMVVhD2PlQU81sEbu/farLynCYW9K+0HvRpRCLxUXNQ8lt1MPLOrkLxgfR483WkzPfcKlTsgeuE8B0dEvZi72DwMUjK6/WPWu/+QOLwBIG48LbqZvGoiML3ceq083ke/vBhDFD2TweS8Uw3+O70PwDy4dRw9bX73vAJeSrxT/Qa7FKjtuvjJMjbDR5C9uVMoPcTWRbwCraC8HG9zPQp0Jj2b18A7jidBPcXFS7wMYyy82G+/ujNzKzsw93I9haEdPCxM1bzTxKG8yOGzuy4Z57wS29s7e90dPXaDWTwcb/O8dLZHvavkCr38dFA9Rr3OPIQi3zxvTIw81OMPvK7hBD2MSbW8Q5Bsvd82xbx1BR48iJ4XPA4fRDxQEYe8m3fwOxSobb1pMyo9PIkHPeuo6Dx/mbU87Pc+vU/CsDyJvQW9p6m0vPStyry2N8C7Meb4vIprKbuJLc27P+XOvGKLkjzanCE8unIWPImNHbw0YjE9N774u/mnPjuYGym9AIA+vCtdz7yMeZ2843EbvErIPDx0RoC9fqqvPGyP8br81KC7ufPXO0YMJT27kQS9+vaUvKzTkDqDpCM74IUbvbilBLzAK6g8fPwLvMR2db0wtxM+v02cvIx5Hb381CA9VFxUPJJilz2cxsY7mkiLPBN5iL1kOTa9q7QiPGJbqjzFJRw9sO71vJfMUr3CaYQ8vICKPBBdoDxgrQa7dSQMPEHDWju5ZCK9zmrdPC8IbbzOyq28PHiNPO2G9Dt0Fhg95q50vE2E1Lof66s8G+C9Ow+eAjtMJYc89wqVPI+29rlOc9q8wmkEvYzpZL15sDu7HB4avcR2dT3DWIq8lF8RPc76lbvAWxA9n+KuPAHPFL09p3I8adPZuwKtoDxcEmA96kkbPeV/D71bgyo9e90dvWUoPDscb/M8HvwlPdhexbxCMR88IqfDPIdPwTgX1U+841KtPPgYCTvhFFG6w/g5u4oc07xhDFS702TRPJHjWDvt5kS86hkzvRRoDr2PZR08b0yMvJFzETtI6rC93zZFO3ruF7wXNSC909WbvZ4Eo7y8wGk83WmzPKoFfDzjQTM9TtOqvBtADjwTeQg9QgG3vE0UDT1s78E6v9xRveOClbvMLQS97XV6PEFyAbz75Zo85R+/POLy3LxQ4Z49RV4BvcP4OTyyvIq9WVbIPINE07vCORw9xHZ1OlRcVLykHQW9v02cvNqcIb0zcyu80fcPvaTcorwk5R89sZ0cvBkCsjxs78G8xHZ1uhc1ID0oMG28+PmaO1vEjLnt5kS9vW8QPV1htrv+AQM9CcV/vFvEjLtQQOw8gvV8vBckpjwR7NW8US9yPEtX8rsn4hk9rnC6PKTtHLtuLZ68BdqCvJXuRrt+2pe8m9dAPa0y3ryb10A7ej9xvSG4PbyT0l68GQKyPdImdbwyJNU6wjmcvNP0ibztdfo7ihzTPGNKMD0JtYg8YWwkvU7TqrwEiyy9PHiNPOOClb1GrNS8MeZ4uyl/wzwPDsq74+FiPA0wvjwSymG7h68RPKr1hL1ccrA7cCoYPaABHb1e8Ou8F1QOvQKtIL2+fYQ8u2GcPLvRY7tgLsi8uzE0vDaPk7wLY6y8Ns/yO+NxG7zTZFG94gPXvOjs0DzP6Ru9IqdDu/hY6LxOc9q8BRpivENQjThwKhg8l8xSvYOko7s/RR+9h68RPVPNHr4Cvpq7Lwjtu1bpBr0TGTg8UOGePLBORr2ZOhe9dQUeu7GdnDuFcbU8TtMqvZqI6jx5EIy8fzllPCZjWz1+qq+8j3aXPIprKTysQ9g8fqovPU3kJL1D8Dw9LJurOyl/wzs3vni7Dh/EO/3zDjz1/KC8sixSO33rET0A4I66lywjvP7RGj1Rj0K82d0DvIYAazsCvpo8qSfwPAm1CD39Y9Y7uuJdPHPHQTs1UTe8F3X/PAbJiD1965G9b7xTvUoojbxVOmC7inwju3RW9zv7Jfq8Wfb3OxuA7bqkHQU9e90dvB8bFLvdCWO83Wmzu+Ly3LxqEbY85R8/vfzUILwl1CW9oSALPYXRBb2la9g8dfSjPFMNfjz5p767FzUgPbLde7xCAbe8S0b4PAyygjxzZ/E8NJIZvWAuyLyoOGq9Bmk4vC2KMTueFR28FzWgumxPEj1WKWa8Bmk4vHfSr7wZArI8t8b1vHD6r7yze6i8CwNcvBweGjvo7NC8M3OrvK6BNDtMNf66tyZGu8EaLrwsyxO7CbWIPF5QPDoBb0Q8yXDpvJOBBTztNZs8VdsSPAPMjjwF2oK6CcV/vE5zWjwINkq9xrTRvIypBb1Lt8I8BnqyvJs3EbxzZ/G8xhSivCfimTzKv788eo7HvG5tfbyWfXw7vSC6ur/cUTw9p3K7CSXQO6mHwDuV/0C8GQKyvEooDTrcGt08RN/CvKiYOr2IPke9Km5JPXVFfbzOat28VasqOztqGTzzvkS8CcX/vAOcpjz266a8SzaBPdPEoTvtRpW8F3V/PKQtfDyy3fs7alIYvR0NID1qIjC9pC38PAuTFD2Pdhc7pAwLPV6wDD381CA8HF55vW+807xe8Gu82e36PAklUDwX1c+6tApevBRoDr0PngI9AIA+Pf5BYj1DkOy8rcIWO7gVzLoSaxS9WbaYPMydS7tKyLw8eh6AuyybqzyhIAs9TeQkPVbphrynqbQ8lywjvHPHwTzk0Gg8ZgZIPMFKFjxWiTa8SXlmu91ps7yk7Ry9MaaZPQinlLsSioI8QDQlPSvth7r0DRs9vzyiOrE9TLxuXQa9n5NYu3zMI73QqLm8EJ1/PdTjj7wcTgK8J+KZuujbVr1PwjA7Ut6YPGyPcTx5EAw9xzMQvFWrKj0DPFY9qgV8uwmFIL3D5z89fbspPacJBb1odAy92L4VvVARh7thbKQ5zJ1LvC26Gb2RQ6m8WyPaPMG63bsI1vm8OzoxOvNe9Dtqwl+6mBspvZ4EIzxwWgA93CtXvIEGdz1CAbe8V3i8vM7bpzwRpVG8NgPMOhPsZr0OuFq8AOr4uwn9IDzZF9q8nLB0PUtrAzyvWMS8cH06vREepDwmSHO8BsTmOICSMT1ajtU8Bj05PHVXKLrX/VM9Gh8bvc8olDxQzB69S/KwOy5bGz2CrLc8nIPlPOhrkbyhimI6Um1SPUpegD3u2a88jEHfvKp+Vjzgkvu8WqCGvZBNCryMFFC9TWbVvOT4xLz04Cw9yahEPCFgqjrTT508aInGvGcQ9Lu1E/68K0GVvNbQRL2Xqfe8Cf2gvWcQdDvLAQs8NtY8Pc4277rCtFA7KNvLPJfIq71O3ye8HP+Ovfzie7yfvJ+8WqAGPR1U/7z3cwW996CUPIpzHD0oNeq6ozBEvBryi7vsZQu9bxYZu+NSYzoJ3uy8ol1TPMzv2bzEGpo8BFBCPIR6ejyfFr48Y84MPD5+bbxZR0C8gqy3vFVaybzPVSM7+scdPTJIkry0ud88XXvMOwwXpzzJ54S86aUjPO4GvzpjKCu95J6mvIcN07tNk+S83/FHPMR0uDzJezW82HamPeE4XT3WV/I8eJ69u+M3BT3CWjK9Q3cPPR5GpDx+WJ88t3nHvH14qzxrwgA9JQCGvM7cUD13Uvo7GMbUu8HGAb37Lr+8zjZvPbHMaDvUXCA95ESIPEJqDD3wjJS8QD5Vu3jLTDxxMJ+8QljbPG290rnuM049ZUKxu0uYkj2FbJ883KoyPKO2Gb0VBu08JAHeupJnED1v6Ym8paRovT1jjz32J8I8XLoMvTUDTL2UdBM8U4yGvaXwKz3UXKC8atDbOyY6GD3JezW9rGtNPYJg9DyHszS9AJDaPLem1rukSso7p90iPctJeL0jTSG8GyyeO8l7tbzwXwU8xM7WPFSZiTzRbym8dYQ3PME7/jwwDgA9fdLJvHJqsTyrqg08qX7WPGUVIj2SZxA9KDVqPJoPwT0+fm08PSTPPJfIK70zNQm9jedAu7cAdbwAkNq893MFuzM1CTz6x528h+BDvRCl0bxTrBK9KNvLvGDhlTssFIY8bBfxuz4kTz20jNC87EbXPDs32DwYmUU8ZW9Avb8TnT3x8zU7bBfxvC87j7w1A0y9KVSeOys0Er0+Q4O7UJ+PPedeDr3gdx09GT8nPYVfHD38AbC7FeuOu9mQLD0F1pe8HyaYvOSeJrvB4V+9GAWVPHQ49Dz7tWy8Vi06vbWrBD1vFhm9QmqMu8YnHT1SmmE860ZXvVvamDslSHM9LBQGPT9QhjnjUmO7FlIwPA0SeTmEeno8BsTmPB0MEj2tigG81Fygu6bQnzxgtIa8CSowvaIDNbwr9dG6qb0WvHkkk7yvhdO8EUuzPNzXQbyFPxC95j/aPJ6CDT3zwfi7jm0WPSD5CL3TPWy7A7yRvJviMbxQU8y8DuXpPPZUUTxazRU9puv9vG29Ur1Jfoy8GWy2u2scnzx+pTq9TcBzuiv1UTwBY8s6uRr7ucdhLz28rdO8XajbPF17zD2iXVM8OEphu6RKyryAkjE9EsSFO+XLtTyiXdO8NqktvFUAq7xT5qQ80hWLvP511Dq5/xy9DRJ5ParKmbrHYS+9t0y4PKqr5TtdIS6+bTalvIgsh7uXyKs6f+zPPHpeJTtG6zO8sXJKvbyARLm3xYo9xuhcu9S2Pr1rwoC6BakIvTD8zrpBEUY816M1PZGiersVBu07ilRovPaub7yd/Le8M+nFPHf427tHnpi8skW7PMwcabwxG4M8cH26vLP4H72ACwS8YZVSPDapLbyclRY9JsFFvM+vQTr+ouM7lHSTvGoq+rxrHJ+8E2U5PSVIcz0H4xq8GMZUOxssnjsdJ/C8UK3qPHUL5Tys8vq8MCneuwE2PLx+pTo8YoJJvC0hiby38hm9cz2ivEBrZDtRcoA8j9S3vAkqMD1HuXY8xkL7vKr3qDxtNqW94ioCvfHGprtaoAY9scxovHgXkDwe7AW9p2RQPVJ/A72MQV86eBcQvCknjzworjw935epvEERRrzRnDg660bXvX0eDTy3ecc7WweoPDp2mLwmOpi8Z+PkO/+UiDz4yPW8DotLPKi+bj7W0ES9UIDbOgO8Eb0rmzM9RmQGPNsWArxtY7S86D6CPACiizweRqQ8QLcnPQN90TyHszQ8G1ktvOpLhbrpeJS8SkzPO1YAqz3O3NA8IWAqu3AjnLt4F5C8ReuzPIcNU70jp7+8ZruDvDdcEj15JBO72ZAsvTMW1bytES+8iIYlPO9SgrwGECq6mjzQOxaszrsGaki91tDEvHKXQDzMlbs8n53rOiEzm7tNZlW9+Mj1vK/RFrzcqrI7KBoMvR7fAr32VNG8OPDCPKWk6DyPiPS7hw1TvNxDEbzxmZe7yvSHPJppX7xAt6e8iyfZPAixXTxNOcY8KSePO1ro87tYGrE7n3DcO++NbLwF8XW92UTpOrnA3Lr+SMU7Bj05PfegFLwNygu8Exn2PM4277olLZU8AWNLvOJXkTwbDeq6aqNMvUCKmDvs7Li8f3N9O9gpCz3Hu808/u4mOzIohj3B85A8qiS4O74GGr3gd508ZUKxvGhctzxSbdI7Cf0gPRsNajy/msq8XQJ6vFs0N7yX9bo8K8jCPME7/rxLuB682epKPfuaDr3ULxG9IOdXPXJqMbyZqJ87TPIwvF1OPT1yarE8yy4aPH3/2DzuM0495mxpvPm6Gj3fPYs8RpGVO3sxFro99788w+CHPIqgqzyHs7S8jboxO7dMuDuaD8G8wi2jOz1jDz1ntlU8Pn7tvGTbD723uIe8Rr4kPZRHBLseGZU8QmoMPBZ/PzzOY348f3N9ujhKYb0+Q4O8ojBEPV2o2ztBXYk9b9fYu9YPBbxxI5y9d8vMOo0zhD1bByg8LU6YPOmlI729zIc8zBxpO4AZX7wxdaG8Um1SO8RHKb37W068ztxQvXIe7rxdTr08bwRovG1jtLxEdw+8hw1TPTEp3rw1inm8v8dZvHIe7rxAa+S8UvT/vGXoEr1fwmE9LU6YvduLfjt//gC9RHcPPMb6DT304Cw8l8irvMgUlDxu6mG8R56YPGJVOjxFV4O8S8WhPGCV0rysPj69zu4BPtA1F72s8vq8/FtOPY1ubruCM2U9c8RPvKTR9ztmu4O9aIlGvacKsjzB85C72b07PTVd6rzvUoK8MCneOytPcDwjLu28yQLjvIWZrrpq0Ns7ksGuvIwmAT3zphq90z3svC4ujDxIBbq7CVc/PW/piby8Jia9WwcoPKGK4jvnuKw7tOZuvMr0B7w2Qow6x46+uxO/17w4lqS8/YeFOwv48rx/v8A88WwIvP7uJj04pP85dVeoPN+XqTwwg/y8+1tOvHcl6zs1A0w8mlsEO9S2Pj2dzyi95EQIu3LWgDvJ5wS9UxM0Pc427zzs7Di6vtkKPNejtTx4nr282xYCvYXzzDwU3gs6aFy3u9RcoDto1Ym9IPkIOzCD/DwlAIY8lHQTPIdncb1IX1i9l3zouh4ZFb0DUMK7OPDCvQmjgrw0vDa842QUvX9zfb0iEw+9BuOaPJZhirxD0a08MKKwPIv6Sb1NZlW9tAUjPf/BFzsJ/SA9oYrivMxoLL23Hym85PjEPA7l6TxvFpm8E5JIPFO5FbyBOBM8C/hyPRz/jrxCsvk8vcyHvXc3HD3cQxE87BnIPJABRzqXqXc8jm0WvE05RrxFcuG8nINlvJLuvbx13tW8noINPVAmPb3rWIg7SAU6vWa7AzsaHxs9A6rgPKp+VrzcfSM9vNpivYCSMT048EK754udOxFLszsYxtS8xPtlPIv6Sb32zSM6is26POZsabyFmS68bZBDPD1+7TpYod676GuRPD99lTsU3ou843/yvK+FUz2YT9m87ga/u6WkaL3QCAg8oMp6vFYAqz2nCjK8M4+nPHQ4dLtbByg7PArJu4JSGT35m+Y8jG7uPBlstryvsuK824v+vNTjzTsZEpi9YZVSvJpbhLzRnDg9W45VvJF16zzKqEQ9sXJKOx5zsztEhBK9j1tlO10C+jzzwfi8SnlevIqgK7v7W868CaMCPYR6ejz55ym53ATRvKajELoGECq9MKIwvWfjZLuvWMQ7q9ccvaXwK71tvVI8uRr7vGCV0rz4rZe8+y6/vJyVlrpVLTo810kXPYIGVr0qB4O88U1UvV3Vaj1b2hi+QRHGu/kUubuXIsq8PsqwvOug9TynZFC9UFNMvZ6vnDwmwUW88U3UPIxu7rxQreq7BqkIvIIz5Tw7Ckk9ZAifvHw+GbyFxr2635epPOGEoDy0uV+9XXtMPdYPhTyfQ827FRgeOu9SArzEoce7+bqavP4btrxBXYm7XXvMu2290jysxWs9SF/Yu33/WLt//gA6/NQgvNGcuDx/v8A8aBB0PE05xjw997+8I3owuoXzzDumdoE9vVM1vW1jNL1YdE+8oI+Qu+Gxr7wYxtQ8zhuRO4WZLjzUia+8DjEtPXqLNDwT7Oa7XdVqvL3a4ruUj/G8yvSHPBjz47yYmxy98fM1vbJFOz1A5Da9UCY9PUgySTwgukg86YbvOg7Xjj3LAQs863PmvCgIWz3Bh0E9YLQGPc2VO7w+Yw+8QytMvS61OTx6izS9ZAgfvfsuv7wYmcW7LEEVvKuqDb1iwYm8LQ9YvJUIRL2z+B88iTkKva8rtbyr15y8ywGLvQrdFL0Gaki8NV3qu8E7frwDj4K7ToUJPR8ZFTzEdLg8f+zPO21jNL0T7GY9lDVTPBjGVDzZF9o85CXUO4IzZbzKTqY6AJBavdHJx7xiVTq9ILpIPTvdOTwLRLa8Ygn3O8Lh37u8gMQ6DMtjPCwUBj3e8ce87Ow4PSubMz2v/qU8QLcnPMl7NbuFma47ELcCOpd8aL0DvBE9tRP+PNFQ9bzeXRe9BCMzvCPUTj3PgjK9HkYkvY26MTwIC3y87XKOOt4eV7wLsAU97L8pvUvFIT1aoAY97JKavLXYE70O1448Ilv8uxFLs7wBCa09pwoyvfvHHTx4nj08IOdXPA29CDyKVOg8Exn2PIWZLr3HNCC8oZyTvMovcjzvuns8O1aMuYE4E7zrc+a8cPYMuzvdOT108AY9efcDvZABR7x1HZa7jy7WvEuYkjykiQo9IkCePJmW7ryaPNC7HQwSPa+y4jwhM5u8wuHfOw4xrTxk24+8StP8O5o8UDyaD0E8UMyevLTmbrzs7Di8vcwHvd+XKT2liYq71OPNPFLH8DzBDu+8PWMPPSvIwrzvUoI8zGisvBbZ3TvBDu+6WO2hO+pLBT0iEw+9X+9wvPzUoLzWV3K9QljbO1vamDy0X0E9CMMOPZZhCjo+yjA8nxY+PZppXzxlFSK8KNtLPbnt6zy+Bpq83H0jvRz/jr0OMa08TWbVu5F16zlrwgC9tF/BvBvg2jsAvWk8EtEIve1yDjv9egI9BpdXPLtmvjtigsk7dD2iPcdhr7xbNLc816O1u0/a+bw1ivm6Wnydu4VDK7za9jq9ghorPEaGnLxq+6k8am6SvLUORT1VUZc8FMrsvAKVSL3nfgY8m6HPvGpjzTvZEOo8ZtKpPJUqWzs2B5C6DKglPaVzg7zI6BA9GkymOT227jzsNiQ9+wGfPRnZPT1fdWS8iJEfPIo8cj2/bZA8vO1cO2ZqhrquSdy8qZyDvC7aA70RrLE61mUXvZ/VFL29O1G8fKO2PGhHGDwrsYO7ApXIOysZJ70damE8aX18vFbgtLwrsYO9Qbp6vPIKd72lqee78FRfO4GnQj0xAwS8TqjjOwydYDxzA8K9uUKKu5fgcr3v7Lu8h4ZavEqKKD3a9jq8IJPhvJuhzzyt4Tg9/YV3O4yVK7t8MM48s8BQveilALxP2iI89jP3uzAdM7zUFyO92KjGPMy6XTxYLqm7VVGXPG5nWTvnfga9G/f4PBA5Sb3v4fY6S1pvPBuP1TyVwre8nBQ4OyJu7bsr9DI9kjMavUoXwDzwx8e7F4vJvKh1CTw0Fvq7H1CyvJ36CD1w2kE8VIf7vCAGSj1QdIU9aK21PE6zKL2RmTc9uMRcvckedT014BU9Qbr6u5uhz7zITq48DuvUPDNGs7yGhlo9QIIQvGf5I72NVIK7ER8avLt69Dy2gS28sAo5PcsPCzz1Ioc905l1vIzhmTxoFVm8bnIevcT1dDuYU9s8ch1xPRFriDujNv88bmdZO/OIpLzDSiK9uM+hvGdFkjxJpFc9GnOgO8xSOr2qIFw9NCyEu6EjCT38HVS95kzHPF3KEb3JBMY8BNj3u8iRXTzLwxw8hqvOO/WvnjwIdOA8cEJlvTNGszxECO+8ReN6PGc6TT1m0qm9CMuTPGKeZLwb9/i8xHEcPBpMJrzlfIA8JBOVvFp8nTxjEU09aCAeO3lKfbymhHM8Abo8O9M8Fzwpm3k9l+DyPAKgjTzzFbw9Sn/jPGxJnjywCjm9k3TDvGeRgLzMUro8kmn+vLZR9LwAnge7GxztvKzFA73rpwY5taYhvMXkBL1Dxb86TGU0vK3huLw5smI9elXCvAF5Ez2Fj5k8zRERO72ShL0mfb47LcR5PGbH5Dulqee7L7WPvXCZGLzisF69sU1ou3pKfT2ZXiC96KUAvHIotjx8ME48b898u+a/L7xquoA9kTGUPIa2E72H+cI8SDFvvWZqhjqOcDc9pbQsvELFv7zoAt88cZBZur/x6DW/Fl0814yRPNfNOr2c5H48TrMoPSUvSjwo8Ka8aWPNPO2eRzwHmVS79SKHPM6VaTx6VUI9sKIVu2MRTb0T+iW8rXkVvP4Dpby/Fl08aroAPSArPjwpyzK9OEo/vB0NAz3g1dK8/LWwvE4bzDxdyhE9L6pKvBNiyTzAicW8wEgcOkOrELzSvuk8OzIWvYjufTx+8ao8JmEJPSGepr2Vwje9gKdCvHbEHr0zRjM98xW8vG/PfLzV52k8lZL+Otr2OrxdJ3A9fQvavLxgRTw2lKc9fDDOPMBInDyboU+96oCMu8HMdDwav448fj0ZvQ5TeLzTiIW87DakPM44izkx7Xm8mi7nvHtghz1L8ku8bKb8vM97urvGvxC8TUBAviArPr1Q9le71fIuOh/DmjzSvuk6q1IbvSdyeb34jLC8A9j3POw2pLt7FBm93NyLvPrapLzM31E5T4NvPNr2Ojvii+q7j1YIvVbV77p4EpM62rURvN0qAD1Q9le8nsrPvPj/mLrxhp47Jn0+PGf5I71hW7W8T440vStlFbyaOSy8LPSyO/XWGLwpPpu8mwlzPDNGM722GQq95dneu4O0jTzpAl89GGbVvPtCSDvTPBc714wROykXoTzpWRI9Q18ivBhxmjuquDg8yegQPAgXgjzA8ei8X8wXvea06jrp6C88I+HVPKp3j7zhPfa7QqkKPTQWeryd+gg9pbQsvdteXrsNzx88j0tDPRPVsTreH7s8BpnUvJ6uGj0J8g29J4iDPK8kaLt9Fp88mLt+PIfdjbz7Qsi8AJ4HvF0ytb1mx+Q8idROPDzbYjttGWU8+tokvca/kDyMIsM857RqvIpHNz3XwnU+45YvvZo5LLxegCm8U7e0uvDHxzybCfM8+IywvJO3cjwmfT68aCCePA2DsTyNCBQ957+vOxsc7bxayAs93KzSOVVRFztDxb89os5bPEAPqDwFViU7L6rKvP4DJTxdJ3C9YOjMvGCno7sHAfg7RHtXvC434rv8tbC87+y7PPn00zw0BQq9TUDAuobdDTx+PRk8Wf7vO/GiU7w6MJC7lZL+O19Q8DrWWtI7Y6kpvTtXijwgK768RHtXO5v4grxMZTS8iwYOvU6zqLv5Swc9F0qgu9teXrxu9PA6I+FVvJSmgjq1m9w8ERRVvN4fOzzItlE8RAjvPDUhvzyWNSC8w0oiuABH1LzoWZK6x9tFvTXglTztXR48VQUpPPOIpDyhI4k8OY3uO94fuzyK3xM8QYKQPIJmGbxNQMA8T4Pvu+5507yprfO8yw+LvHEMgbwhnqY8YOjMvNq1kTwKzRk9FiMmPbodFryAPx+9sXLcvO4RsLyO2Fo83NyLPLhcOT0vtY88qri4O0+ONL1pY828zwhSvHIoNj2F24e7l1yauzDcCT1hzh29j0tDvEwkizvajhe9febluzWJ4jowhdY81edpPNQXIzx5OY08Wgm1PN6H3rvDSiI9UgOjvB8PCT1QaUA8AggxPThKPzxy+Hw8FUgavHgSk7vH20U8nHzbvC2ziTzguR09qiDcPB6cIL0Clci8GP6xPMH8LT3Lwxw5sP9zPLFy3LtPJhE9bozNPA5evbsxA4S9JaKyvMmRXT2h15o8pAAbPRGssbx1RnG8dGtlvbWb3LvteVM8sxcEPW5nWTwZmBS9HkXttyWisjw4P3o8Rzw0vRa7AjxmonC88F+kPDjim7zTDN68aCAePT4pVzzf1dI64rBePG0ZZTwGAfi8cZBZvAUm7DtUkkC9cAwBvIVDq7sYzni8cig2PdV/xr1mkYA93wUMvf8qHztacdg8AJ4HPSXuIL1hw1i7VVEXva8k6LxKIoU8GHEavNFhCz3C1zm95TASvQfwBz5khDW9gDTavKq4OD1cVym77MM7PcgNBbxJr5w8nj04vL8horxEe9c7V7vAOatSGz39hfe6PwTjvODV0jt+fkK7zZXpvLk3Rb26hTm9YvUXvSSX7bwaTCY9/94wvVJETL2IBIg8/LWwuqaPODvwOjC7MBLuuyTHpju/bZA85idTvGl9/LyLBg68QFsWPYlsq7wkvOG8QFuWvMFvlrqsxQO93odeO6dqxLr1YzA722mjPL3IaDztnsc7XoApvApaMbwI50g8/94wvFrkQDzLD4s9M5IhvA9pgrwhnqa8CzW9vIrfEz0XSiA9thkKu7KkG7xQ0WM8JS9KveypDL09tu66kI7yu6h1iTx0RnG7zOqWvHVG8bxXSFi8u4U5u6Fb87o7AFe9P6eEveRm9rzYEGq89jN3vHEMgb3wOrA7qNLnu1JPEb2F24e9e2CHvP2bAT0l7qC8/ZC8PPOIpLyltCy9HkXtuz4p1zsYzvg7/B3UPNBwdbzk/lK9YKejvPraJLtf8xE95P5SvUn7ijzeFPY7JRUbvJleoD0E47w7HJqaPMhOLr3iU4A8y1I6vDQFCj3SpLq7NYliPFGs77wWGGG84ovqvGVfwbxW1W+8v20QvYDMNj0T1TE7Zsfku4yVK73DSiI8rrH/uzSuVjzSvmk8kmn+PMG7hL3jI8c661uYPGggHj1LWm+8eUr9vOVxOz1F0oq9eOLZvIfdDT0qpr68UGnAuGyxQTxPjrS8gadCvcDx6LyvLy27X4CpvLKkG71eDcE8Me15vEZW47qIBIi64NXSPArNGb3LbGk9Gdk9u2VqBjz/3rA87M4AvSnAbbypnAM98Qr3PKNmOD2Wkv68LIHKvF4NQb1a5MA8msZDvZGZN7tAd0u8hqtOPXFNKr0QOUm7IJNhPendarvv94A7Ux/YvGIRTTzdKgA9Y2iAvUHfbjyYU9u86KWAPOPiHTy/SBw8BL5IPDrkobtSA6O8eJ8qvPb9kry59ps7BjGxPLqFOb1OG0y9eOLZO4VDK702lCe7wte5vFvkQL1RKBc8ts0bPep1Rz0cAj69toGtPMhOrr2rngk9vPghvikz1jwKWjG7mjmsuyYVm7x5OQ084Ug7vfx0h7y/IaK8ts2bvIIP5jxmOs28TUuFPVa7QDx4XoE8KcBtPVO3tLwIf6W8jybPutZaUrywyQ88K+ltuyYKVjzjLoy8l1yaPC+qyrv4JI286Jo7vJB9grwkl+28hgKCunFNqjzziKQ8nNOOPVoJtbz1Prw8QHdLPH1z/bzfkiM6oSOJPCTHJj03uyE8Hw+JvHDlBjxnOk05b76MPW++DL2eV2e994HrvFvvhbxacVi9R8lLPSFu7bqMIkM9Z6JwvTkJFj2NZfI7B6SZvHP4/LwJT2y6hNDCvPjYnrsU1bG8BL5IvO4RML3Vigs9EDlJvU/aIj35z9885gseO7HlxDvzFTw92wGAPfKtGLxmHhg9g9kBPfcZSD0bJ7I5ZIQ1vOunBr3SyS48Qrr6vMdD6byiztu85AkYPP4DJbyLF/67J3J5vECCELyprfO8ts2bvOiP9ryVwre83t6RO3a5Wb1eDUG8oLCgPCzpbTxr1jW71mUXvczf0TxU+mM8AS0lPJuhz7vITi685kxHPel1R7uD9TY83pIjPK3huDyzWC08Q4SWu6LO27zoj/a8dd5NvUFSVz0HmdQ6bf+1u2IrfDwE7gG85dlePCeIAzyEaB89JgrWvOzOALxMJIs9qa1zPWSENbzPCNI6g7QNvT+nBDuqIFy9Rzy0OztXijwBujy9MQMEvIDMtjxUkkA9BVYlvZo5LL2erpq8HWphPDjimzw8c7+804gFPeiaO72EXdo72uv1PF7MF7yD2YG9mi7nusi2Ubw5jW68xCWuPShYyrzP4927JZdtvC1nGz1Ee1e76t3qPAnyDT1+fkK90zHSvDowkDwmFZu8fn7CPF8YBrqTt/K7UNFjvXVRtrthWzU8ekp9PXtgB70PxuA8/yofOj1ZkLy0M7k8f7CBPLDugz1Uh/u8HrhVPPEK9zya0Qg9ApXIvA7rVDtdMjU9M94PvYGyBz3uedM82uv1O+yeRzkyYGK8IsUgPaogXL1ZCTU91BejPGFbtTw9tu48Bww9vEiIIj2eys+8kTEUvEn7ijxF0gq8mFNbvGR58DzlMJI8Im7tvCd9vrxtcBg85kxHvXpK/bsavw49rlShPMUAOj0GJmy7Q9CEOwAiYDwts4k8V1OdvCzEeT1fzBc9w7JFvV/MF71J+4q914yRuvZJAb0wHTM7U7e0vLWBrTonPBU8ICs+u6YnlbxV+uM8bSSqPGHOnbsKwlQ96Jo7u9/6Rj0hBkq8KcsyPRuP1bwZmJS7qVCVPO1zXLxCyeq4/d8bvdG7lrz6DIW8c4CQOV5uo7vroJo9YKFqPJyRtLsP/ze9jmWUuw5/zbxN4v66md6tPDCK6bzZ4YM7ZwfNO8j12TyVK1K8zkgFPQuMJrrozQM90g5uPTrjcj2R+Ao9HUvovDtjMjzWAWo92zQwPRSyE7xxzQm7H0sSvEAWOb28nHu9OyO9PBC/F72zQ8e8wo+hvL6cJT0WJaU8E5KDvFk7MjxJb+28U1WPucNCfrtJb+28+QxbvQnZH732GYm9QFauOkRJqrzfJyw9Nf2kvOYNerwjXh49oASbvX05dbzk2oe9TE+HuR/rDLy6KT896UDrvHiTHL1A1pg7DEwxPV3ujTsXpbq7rhBWPFubDL0q5BA7KKRxPLIDJ7x0QBs8FFIOveGa6Dz2mZ48o/dBO6M3N7tUyPY7Wfs8vOatnjwivs68nBHKvDujfTxL7yw9gLkJPAeZKrwBM8g7oYQFPWJBD7yBLHE8d9ORvPpMJb04EIa8wQ83O4pSs7x3k8c86wAgPCH+w7w5sCs9z9tRPdu08Dx3Uye9Ir5OPW7t77xCyWo9AlMCPXSgS7x7RqO8tCMMPX45H7kz/fq85FodPQJTArua/pK89ZlJvG9t2rwt1zc91e6Huz5WWT2vUKC7Iz6OPbpptLuukEC87/ObPNu0xbxwraQ8ihI+PH15aj1o5xG84GchPYXfzLuQeHa6HQtIvW0aA7sdC/M7zCggPTxjXTx0oCC9MoqTPeYNerzfB5y68eYXvWw6Ez2qnW+9+Mw6PVBCAzyZHiM8rB0vvObNWbx0oCA92eEDPTmwgL0pJFw71e4HPGmHDD3Ggh073yesvYPspbv9vwu8E/LevHoG2byU6zE7tfbNOvYZNLxu7W88aSeHPe1zsTtAdpO8iBLpPGaUEDvY4YM8ql1PPaI34jwPH508M33lPUe85jznzS49/X9BvZqeDb2S+Io7yrWOu0QJtbxxbQS9yPXZO15OE73MqDW89Fn/uy7XDLwAM0i8eFMnPG7tbzx7RqO8Su9XPXvGY73+fxY9AXO9O3izATzV7oe8w68GPTT9TzzWgf87Xm4jvPZZKb3J9QM821SVvbeWHbsVJXs91I6tvE+iCLy29s07aOeRPBOyPjxkVMa7aceBPdtUlbsRMn+9AXOSPN7nNr3ZYRk8/l8GPbmp1LzmTcS8TSLJPLKD57wxCqm7yyh2PYPspbwsF1i9CFmKvNv0Oj3VzqI8TmI+vIvygj39HxE8jMXvuw3sAD1SFUU8n0RmPbAQgLyH/wa9lOuxuiWxyrsCU4K8ObCrPF0ugzyAWYQ7qCqzvBRyHrtLL6I8kHhLvdjBnru3dg08//L9PEBWLjycEco8F6U6vD4W5LxHPNG8LVfNPKX3lryWC5c8QVYDPCxXTTxmNIu9jYXPvAxMMbwXpbq8xELTPHwmk7x0QJu80buWPLtpCbvGYo28tjZDPR2L3by29qI8cC26Pbmp1Lu6CQQ7ws9BvaU3jDzr4I+8CJnVPI3FRL0Tsr680JsGvb+8Cj3gZyG9Z4fiu4vSnb3Az2w91e6HvCtX+LyDzBU84Gchu68QK76qHVq8dcCFPG3ajTys/Z48FaVlO9hBNL1DCWC9azq+vAOmWT2ckV+8mj4Ivb5cW7zZoY67ZvQVuxpYQTyrHa88qCqzPBflLzzV7ge8wg83vIffITrxJrg7EF8SvV5OE73pQMA8WVsXuznwoDw38Pa8E3LJvB1LPb19eeo7YaE/vKbq6Dw7o308GKWPOzcwwTtRVeW8F+XavNs0sDxBVgM8kHh2PU2iXjsauBu7mF5DvDnwoLxj1Ns7BOYjPI0FjzwW5Vq8pHcsu0d8xrssl2080w5DvUOphLwFJpk8Q8m/PMrVnjy2Nu68xMLoPCik8TwmUZo8Sa/iPDmwgL0FJhm8KuSQO/MmDT1ViKu8nJG0PHtmCL13k8c8uOn0vBNSjjxN4tM8l95YvNt0+zy/vAq9cW0Eu+CnFrswCtS9tbZYvLNjAbx+eWo8A2bkPMTCvbyKkig9ArMHPLED/bwg/u47gWxmPiRx1bzmjTm8NT0aPMJPLDwI2co8D/83Pdv0ZbzTDm68oISwO3zGjTzKFRQ9ET+CPLf2Irw+1u68eDOXPIUfwrxCSdU7kTirPfkMMLiZXpg7s0Ocu395P7zxJrg8WftnvbZ2OL3IdcS7T2ITPUf8MDtESSq9YSGqvBzLfTsT8rM7JlGavMYCs7izQ0c55q0evGOUZrz1GbS8DQwRvGnHAbwqRBY83qdsvDfwdr2/fJW8Vki2vDO9Wjt6Bq67jcVEvN+nFr1R1c873ycsPfnMurwoZHy8NX06vajqvbz22T68xQKzPKgqs7rFQqg7E1KOPDnwID0QXxI9QklVOzJqAz2WqxG8/3JovMCPTL39P8w8G5g2u7/cmjwyipM8iJJ+vNeBVDzHNfo8uSnqO+atHrpo5xG9mN4tPAOmWTxMTwe9f3kUO0IJYLyI0vO7bLrTPLe2rTwqJLG8bLqoPBSyEz32WSk86iCFvW7t7zvFQlO9eYbuOnoGWTzHdW89UZVaOxQyKbdoJ4e8JHHVPI3FRDz4zGU9lesxPCRx1bq/HBA921SVvVKVWrwwSkk8d5NHvfKmzbyfxFC9JvEUPZMr/Tt2U1I8fMYNPfpsij0FBgm9Xi4uPcJPrDuo6r08CNnKvDlwNj2DTIA87TM8PZm+nbz+/4A8WrscPG/txLwqJAY92/Q6PCOeE7nhGv684lpIvTmwqzwD5vk8CkxcO0MJijws17c7FPKIO+IaUzzP23y7VQhsvSyX7bxurfo8bRqDPMaiAj1vLbq8cC06vWBhSr058KC8+Mw6PR7LUjzUjq08//JSvb2ce7yR+OC7RxyWvGIBGryCbDs8XS6Du8FPrDyGXze9OPDLvKeqHTyit3c79lmpvMIPjLt+ud88Xm4jvDyDF7x04JW8ihI+vUj8hbx1YIC8ybU5vFm7xzygBMa9aIeMO61Q9ryZHiM78eaXPHQgtjys/Z68mB5OPIffIb23ti09ZBTRPELJ6rv2eY48s8MxvTmwK70i3gg+gWxmve7zxrxLb0I9bPrIOmRUGz239qI7b60kPUecADzQ+ws80dumPAzMxjrpwFU9e+YdvJjeLbwYBRW8z1tnvGt6Xrta+5G9gywbvT2DF70Q/4y8n8T7PH65NL219k29JbH1PA4/WLwLTLE8V2gbvcYCiLzkOg08FDKpPGIBGrzy5sK8XW7OPP9yaDz935u8lgsXvW0ag7w1vS83jAXlvHFNHz3CjyE7bHozPFFVurxVSOE7QklVuhUlezzrIIW8mb6du9Cbhj3/sl08+MxlPRUl+7zUTri8ihK+vNUOmLwH2Uo9ekb5PLZ2uLwi/kM7EnJ0PL98lbyqHVq9syMMPDfwy7nfp8G7VogrPEJJVbzGQqi8Sa/ivLAQAD1PIh48qOo9vZC4QL2yQ5y8NzBsvCH+w7wj/pi9uanUvKK3dzvmjTm9ylWJvb7cxbxph7c8HosHvAHTlzyBLMa7wo+hvLJDHL3mzdk88Sa4PLipfz0KTNy8Xu44vfGmoryX3tg7ndEpPaGEBb0qRBa8lguXvF1Ok7q1tlg9h/+GvECWTjyGX+K8WXtSPSpkJrzCjyE9puroupwRyjxyIOG8nBFKOgkZFb1a+xG8s2MBvE4inrsmMTU9t7YtvGy6qDyMBeW85s2uOl1uzrw13ZQ8LvccvDS9Lz2fRGa9tfb4PLd2OLxohzc9skPyuiWxyrzUjq08M31lvRdlxbynatM84OcLvC1XzbxyIOE8oeQKvZce+bsbGCG968AqPHmGbryyQxy9xzV6vNNO47uORS88jmUUvMc1+jy/XAW9MEpJPS8Kf7s+1u48ZwfNOmdH7bzUDkO8V+iFPN7n4TzcdCU9Rry7vOZN77xklLu88eZtPN7nYb3WgX+8md6CvIYf7TxNYum8ybU5vK9QSz2bUWo6RIkfPCpkJr0WJaU8TeLTPCZxKr2jNzc8AbOyOFdIi7tz4Gs949qyOn85Sjw5sKu8bDo+PDlwtjwm8RS90JuxvP+yXTyw8Bq9ffl/vVHVerzozQO9egauuyVRGr2yw9y8JbFKvBE/Aj0vimk9i7KNvaXXBjsey1K9JrFKPZZLDL4rxAC8MMozPG26KLxebiO8cqD2utPOzbxNYum8Hks9OVOVr7y2tgI9mv4SvYPMFTyVK9I7Z0ftO+Eafj11U328kpiFvPEmODvrAKA8TK+MPJXrMb0+FuQ8ZJQ7vFxu+Txgoeq70Fu8uwSmLrsYRYq8tGOBvadqfjy8nPs6RCmaPDT9Tz2L8gK8YoGEPGSUuzsQnwe9REmqPL6cpTy3Fgg9ihK+PE2i3rwTsmm8pHesu5ce+Tw0fbq8YaFqveZNGbtrel68rhBWvdnhgz0qZCY8QFauPCM+Dr1eThM97TO8OwAzyLxYO928JtEEPO1z3LzEgsi8TG+XvLZ2OL3XgVQ8/b82PWChP73s83E9GZhhPL4cO7yQePa8lOtcPUQpGj01PZo7Xm4jPW+tzztv7UQ9lkuMvGt6s7xbO4e7E3JJu3YTXbpnR+287hMBvbCQFbzHNXq8E5KDvJB49jw48Mu8QknVvOlAa7zNyBq9ozc3vSzX4jyfRGa9jkUvvEccFrx7RiO8Xm6ju236Hb36zI88aUfCPCZxqjzZoY67LfecvMIvHD1SlVo8G1jBOmw6Pjzhmmi7OqP9uUb827tZ+zy9txaIu2QU0by4qf88HYtdu+oAy7znzS49itJIu7tpibxnB3g7UdVPPfhM0LxmdIA7sUNyPf1/QT0ppEY7lGtHO99nTL12k0c81Q4YvYKs2zxX6AU9KkSWvJQr0rwhPjk8ylUJPUb8W73MKKC87TM8vMYimDpHvOY8nTEEvRJydD3+/wC9gazbO5D4YD1jlGa8ocQlvfJmgjxxzQk7KqQbvdWukj2DLBu9LBfYuyrkO7uOJZ+7skPyO/y/YTzJNSQ9AXMSvQpM3Lwa2Cu8tzaYvBkYzDxX6IW7nBF1u9CbsbxmNIs70g7uPDBKST0AM/O8FDKpuCwX2Dujt8y8ZnSAPIYfFzxb2wE9CsxxvPQZXzl6hkM9XG75PP1fBrx3Uyc9ArOHPaeqnbwdC0g9UpVaPFOVrzyWa5y8QFYuPI2FT7qkd1e90RucPB6LhzxYu/I8lSsnPU6iM7xR1U89hl9ivBqYNrx1U/27xUIovDqj/bwj3gg8/P+ru1ZI4bzBL5y8ssNcPIIsRr2ldwE87rMmPGjnET07Iz09RXxxu7V2Y7smsUo9OZAbPDHKszvINU89tfb4PN6nbL0LTDE7bHpevU3iUztVyEu8VUi2O+tAFb0oZPw7ZFSbvGnHLDucUeq7fIYYPbcWCD0qJDG8xcISPROyPjxXyKA9oSSAvKN31zyd0Sm99dk+OwuMpjwDa+28BL6ku3WaGL0g0Lq7hWeAOfVtxDyK9eO7SruaPaZgojx9vJe8jncsvQA83Ltohau8/tyJPDZs6jyS7ZI8Q4FXPGHUUTwRUBk9k+ehvKy40zycgLe8mF2IPBxO8jwKIrg8CxbWPMNa9Lt4w7g70EsCPdyQMD0qsCU7jnesvOmfrDysxLW8xKFJvSG+57qnSF69aIWrvMoFXbzNQNA8sijJO/Qgfrrfv0E8z4G0vDM9WbylDWu81d/Wu0OBV73FcYi89j2DvVSbhbzqk0o8CbESPTbLA7vZWy48sS66PNG8p70I2+K8VvpXvWLC/rzLXoW7vAg0PZqSCrw6+hS837/BPJyANz1aiII8bKJpO+vmATxaghG9/BitO34nzDt88km9amf2uxCMvLyfr8g8COHTu2ZKuDvWJiw9mFEmu8gpA72Oa8o8R6r3u12xory8CLQ8VQyrPH3g9rzzApA8mFeXuq2IEj2zFva8+uMquz0pprwJ1fG8T0n+u/MCkLxbdi+9ADZrPJTbvzwCd0+8QpMqPYkBRj3naqo8uOUEvV23Ez3DuY29kppbPQKDMT3Y6oi6n6nXvNs9+Tyh6js8HZu4vJlLNT3yPjO76+aBvI9l2bsV9sC8/00vPSh1srsf3Bw9UKKmvEXOnT2T4TC8SetbO214mTyGzMO7h7rwPHv+qztnMnQ9SPe9vJx6Rj1hzmA7w1r0u/ZbcbyDoyM8rYgSu+68aj2XBOC8VLlzvdnklz12jra85SPVu897Q70hFxA9YdRRvQooKT0coam7nW5kPCukwzw1fj06OK1OPezanzyZRUS9wmzHOwftNbzi+jQ8zEwyPdXf1r01fr07NDfovJ1o87ylZpM7DAr0uSRMEj1sAYO8pmCiPOvmAT0aYMU7DkVnvDJVHTzguVA7AELNOyxuET3pKBY9JM+KPPMs4D1iwv474vq0PANr7bzPgTS9Yw9Fu0eMCbvnXsi8KTmPu3RHYTw9IzW9nrsqvKp377s76MG7SybPvDAOSLrrgfe62x+LvBHTET0UCBS9QhwUO/FKFT3646o8+yqAvSd7Iz1UGI082WEfvAaa/rvRPyC9AYkiOklEhL0Dyga94zuZPZ+vyLxQlkQ8RcisPJ+j5jwGpuA72eSXPIkHNz2tiJK7y/9rvGlz2Dy4Ygy9fOxYPP0SPDxAXqg7fidMvay+RD3gDAi9tF1LPAk0iz245YS82GeQvcoRv7vTnnI9OafdPBgf4byItP88wmZWPFoj+Lw57jI8TfAcPc007jwGggG7aIWrvNgI9zvW03S8VMXVvCyS8DuScAs9EsE+vLaqEb2i3tm8IReQPEBGZLxlVhq7YsjvPOUpxjxNZzM8NJCQPVr/mLxohau8O+jBvAvsBT2NfZ28y//rPDy4gDwmh4U8rY6DvQWsUb1+My67eocVvZcKUbzKET+9bKjauiuYYTxqSQg8sS66vOL0wzy6u229gGiwPLnZoj0GpmA7mhUDvOCtbr2ZM/E89H+XuwNxXrz8Hh69glbdu9yKv7xI/a48wmBlPBXwT7wBiSK971CGPcABk7sYJVK9+ZDzPGKeH7yG0jS+GCvDvHjPmjtPMYG8FfbAPBFWijsrpMO8RHV1vSxukTvYDmg9e/6rvPR/F71ZKem70GnwvCd7ozvWJiw9r/NGPPD3XbsZ+wG89j0DvP0G2rv+3Am9W3C+PMmgmbxHCZG81iYsuzviULyJAUY8xu4PvVxk3LroTPW8am3nO1+N/Lsk8+k8GmY2vBX8MbzoWNc85C+3vJcK0bwW3ny8WogCPQEMmz3RPyC8izy5PEa22buSjnm4ZdmSPMJsxzw8L5e8g52yuvwYLTwa7x+8qY+zu9OAhLydSgW97rb5u+dqqjx6BJ07j74Buxn7AT35bJQ7UuOKu9BLAj2kE1y9IMRYvPsqgLyF3hY90GlwvAfzJrlbas28YqQQPcF4Kb3nZLk8jX0du1/yhjxJ5eo8LOsYvOhS5js83N+75DWovdG2NjxAWLc8aXNYPHNfpbzXILu8UYriPHJrBzx0IwK9RwmRPPDxbD4MaY28kFl3vIpODL0hFxA9htilPIIsDT0ZGfC8TCBeuYJW3bsBiSI8pmAiPTwvlzzG4i08gyacvNE/IDvuFRO89mHiufrjqj0fXxW8rv8ovOPoYbs4sz+8sTSrPDzcX72z8ha9ZP1xvGcy9Dw9rJ671iYsvcxGQb2lDes6QUDzPLNjvLw/aoq7lwRgvP0GWrzecvu8BbLCvLnTMbxgaZ28lCgGvAjhU7xBTNW8DGmNvHzmZ7z9Blo8474RPANr7Ts0ih+9A3HePGu0vDyU27+7tqQgO2yuyzoUAiO4FuRtvGlz2DtMGu28R6p3uFr/mDs9I7U8dEFwPFojeLxzX6W7+ZBzOwvshTsneyO9WEGtPIB0kjw5oew7WS/aPJCsLjs/4SA7HKcaPcoRvzsnBI08P+EgvAGJorwWQ4e8pBlNvUOHyLu6wd68wH4avGeRDT2BXM48t4zcvHJlFj2aOeI86aWdvKHwLL31bcQ8HKGpvHm9R7xrui288jhCPU9Pbzy/MdS8AoMxvdpVvTq0XUs8q8omPdTlx7vyPjM6+8vmPAsWVr0Jt4O8XDoMPYbStLybD5K764dovBLBPj3/R7484+hhPDJJOzot2UU9GfuBvEKZmzwhCy68itEEPWQDY7yT5yE97rxqPHqHlTzZW668q9CXOoJK+zzzLOC7BqZgPDfFEj3r5gG7puMavUBeKL27l448tp4vPZCsrjwvGqo8XF5rPKOuGD1AXqi73JahvOmrjr0saCA7GB9hPBwwBD09IzU90EsCvZPnIb3utnm9SevbuzizPz00MXc8MtiVPMShybyjJa88T0l+PHzmZ7zCZta8+8X1OEBeqLzbGRo8A3FevJj+br1PJZ88z3tDPBQCo7zppR28PNB9PcFyuLybhqi7xmsXvCuY4bxcXuu8aIWrOgk0i7xyawc9Pu2CvU8rkDzpnyy9XFh6OiqqtDuWEMI8+ekbvUBeqDtiG6e8HZXHOwS4s7svIJu81yA7PFLXKL2wQA29QhwUPlxk3LxdsaK82A5oPTQxdzqsxDU98UQkuji5sDyFYQ+9VBiNuxc3JTx31Qu8oH+HPdBj/7wFssK8AY8TvL5JGDt8RQG96+YBvQxpDb2+Qye9hsxDvTbLAz0Tu828V9CHvRwqEzzyMtG8W3avPIiWkbzszr28kpRqvOPEgjvT95o87piLvPIy0bqeuyo7dCOCPFCWxLyHuvC7sxZ2O7nTMbxt+5E8RHvmu5CsrjwvGio8RwOgPG7vrzvj6GG8vU8JvLRdy7tGhhg9I/laPDSWAT2kGc284K3uuf0My7ysvsS8Ibh2PYww1zyyKEk8VLnzOsAlcjzbPXm8u5GdvLIc57rtwls8buk+PLVL+LuDnTK9VMVVuwnVcTpMeQY9wXipPOGJj73ErSu9FfbAvGDmpLxk3wO8MA5IvbWwAr243xM8wAcEvcvbjL1dqzG9hJdBvCY0zrvuDyI90bwnvbhiDL09rB69z3tDPWVQqTxJ5eo81d/WvLeMXL3utvm7JO34O+hM9TyoGB29QUZkurDDhbyYVxe8FfwxPVqCETvuFZM8xuItvedeSD1GvEq7IMrJOyhpULtYOzw9ozERvLsOpbzvCbG8w7kNvRyhqbwTr+u8oHkWPRgf4bx4UpM7K5hhvePo4btAXqg6f3oDPTh9DbzG6B49oPadvYpODD1g4LM6yMR4PJPhMDnMRkG9gHQSPWQJVL3PddK8sOfkPN547Lu5zcC8fbwXPXNfJb2zdY+8gGiwOrz8UTwW5O28w7mNvPwkDz0s65i8jnE7PGTfg7xPMQE9FuTtvNYyjj39Ery6a7otPZ+jZjsSzaC8tbACvRn1ED1bak08GmBFPTzQ/bzqk8q75nCbu6dI3jyIkCC9urvtO5+vyLtXU4A9SruavPRztTul6Ys9SrsaPNhnELs0N+i8s28ePPic1Tyg9h29urttPLq77ToGpuC7OaFsPTi5MDxbcL48qYnCvMStq7xl2RK9LtPUvJXJbDp4w7g8y9Ubve4bBL0XN6U68yzgvL8xVLyfr8i89qg3vfwYLTuMNsg80bY2PYrvcr3WMo68rYiSvf9TID24XBu+xZvYus6Thzz5bBS8GCVSvMAr4zxARuS8nW7kvFCcNTzs2h+9JjROPdOABL0x/HQ88yZvvCILLj23jFw9lhykvG/Xa7xCkyq8HonlPN5UDT0Zchi9s/gHPdDICbyY+P26LtPUvAxjnLybhqi5A2ttvKiVJL1SYBK8515IPBbq3jzU8ak91yA7vPFKFT2etTk8hJFQvN7RlDuCrwU84YOePBgl0jw81u68qKEGvNP9CzrOk4c9kvMDvbNjPL15vce8wH6avJC4EL3aT0w9zUBQPNN6Ez0bWlS9Kqo0PQ4hiDzppZ284+Jwu897w7tiyO+8raxxO8ShSbzOhyW9z3XSvNG8Jz04rU69BEeOPZjaDzy1Uek7N8WSO81AUD0qMx49oyUvvONBCj13fGM8tieZPY++gbyQrC687F0YvR9fFT0UCBS9FAgUvTQTCbxnFAY740EKvL3w7zohCy682knbvLiA+rxDgde6iQc3vctYFL0Ong87EXppvV/yBr3MUqO7EdmCPD0pJryJyxO9t5LNPNjqiDzMUiM8wzaVvNgI97zrh2g9eo0GPDWErjyqfWA80MiJO1dTgDsyVZ28Kqo0vc6Th7ybCaG9rMQ1PXaOtrvjQYq8CxDlPPiiRrxt+5G83Io/PBCMvDx1mhi9IR0BPfcxoT32PQM9LGigu8Al8rh3fOO8mUs1PKtTEL0qMx48YqSQPOPcf7wSzSC8/gDpu6zENT3EoUm97hsEveL6tLrG7g87/0c+PJYcpLzEp7o8T09vvVhBrTxAWLc8Fz2WvOM7Gb27DiU82Ah3vG7jzbzWLJ09JEySvCqqtLq7FJY8bfWgOiqqtDvkNSg9jYOOPFt2r7woadC8YdRRO1k1S73nXkg8517Iu1QYjTwXup28tS2KOwam4DspPwA9+9HXvDJPrDrkNSi66o3ZvFw6jDwkTBI9BqZgPX3CCL08Lxe6qY8zPehM9TuolaS8AYkiPErf+Txqbee8icsTPXAqozwGfBA6qJWkvIJW3bvG6J48oAIAvducEj03SIs69WfTPHfVCz3KEb+6fOZnPfiixrwBDJu7ivVjuwKDsbuuBZq8UKImPCP5WjycgDe9VMXVvIi0/zuQWXe9GmwnO3EY0DsRVoo9W2pNPQPKhjp9OZ+7jmtKPYfAYTuv7VU8EXppPSyM/zy7FBa9cCSyvPVtRL3AK2M7Wv8YvXJlFrsmNE68jQaHvCP/yzwcoam7O+jBu5oVgzuVKAY9X438OjvoQT188km7RcisPWyi6bzbHws9HZVHvSYu3TqNBoe7mux1vI/kG7wS9mC90KZJPL7LP7wy5A09Vdg0u16lET2Jmxg8IdSAOxS4Tb0sBZE8vciCPBXkQDxEAOg8ULukPJZZkrs1qbe8kaaIPWrNEb0gcwo8AbFQvDH56jzu0gk9yMQPPZpW/DwtctS8+2dNvF4SVT3iCwA9JpNXPcrzv7y/9zI8qNbivNvLjL0Kv/28vTXGvF5wjrzTKqO8EMcwPbvd3zswY3E8/+IWPD52FLxRspS7yx8zvAJzPbyYUz+9zxDQvM5Clr1rmA46sOHSPBE0dDx2Xxi9LDqUPHWdqzykeIK9uwaWvJCyVb3MtSy9z24JvFYEKD1C0bc8MuQNvZyiFT0CcIA9fmqIu7Ro6TubGGk7zk5jvRFdqrvA+u87eSTCvEgau7w4+A29iKSoPNjdrLxpoZ48p6rvPFZxazx2oOi8uII8PPgMqrw5wwq8Ym14PDR9xDuK01i9JZCaPAGx0Dw5mlQ8IXbHvO9ogzSD9Ns76GDQvNlzJrybGOm7j3oVvRO1EDzN4R89VEK7vKzwNT1AbQQ9zaycPKKNX7yrx388ePhOvQdkWj3d+jw9Sj2euzR9xLziF8087zOAPHon/7uXhQU9SUauux/dkLu6RCm8r6mSvHUzJT22Kla8lWIiPWxmSLw/DA49pz2svIppUjtLdV67hRSCut+8qTx6vXi8WMlRPbfsQrymfvw8ckXFO3KvSzsSVJq8ss+yPElGrjyyOTk9TTfLvEgaO73UwJw90WtzPGXxUbwVTke9ooESPfTy1rz6ZBA9QG0EvKfTpTkCcz09IqK6vKcU9jzC5ZI8g4cYvVSsQT1D1PQ828sMusy1LD1EAGi9IEpUPADvYzyxDUa9IgxBvLDhUjyfn/87rRypPHGDWDz9v7M80wHtu45ab7yfyLU8E+oTO8iPjDvbAJA8S54UPe48EDznXZM9/JPAPMy1LLz7Z8289BuNvMSqvDtIsDS8yJtZvQEPijsJUjo8ILTavLbAT70s3Nq8IEpUvA5vSr3fvKk7fgM/PHagaLyK01g9ipIIvUNqbjzBJuM82gkgPJxtEr0SjFo9YD5IPGoOYrwxj2S8l1CCvYbiu7o9i3G80dI8vORGfT0eiOe8EfMjPSmBNz04BFs8xa35PBFdqru73V89tf5ivFgzWL3Libm7kXRCvYtdBT2vS1k8Pk3eO4Fbpb1Xnd48MY/kvDxf/rrD3II7463GPICZOL2Zf7K77p2GPdzOyTzBkGk7m4LvvIk93zx86Ws7l7oIPEvTFzxYydE8vJwPO6vEwrvBJuM8ZfFRvINeYr186eu7xwIjPcD67zsNQ9e88ppwu/kDGjx4IQW9dHG4vEueFD0SiZ084etZPCHgTT2P8Oi8RSzbvJHeSDxKSes82nbju91kwzw5+I08YpYuPX0JErxUrEG93GEGvbGjP7xkxd48Nj8xvWOZa7tSgM474etZOv0pOr2qwYU8u9ESvWPCITzEqrw9Tvm3vMjHTLwk+qC8CCbHPI7tqzzDEQY8Lzf+vKeqbztKcqG7EcrtPKfTJTsjOLQ8/1jqus7Yjz1c46S68S2tvPh57Tw/QZG8VW4uvpoVrLz9lv28CJBNvK+13zy62qI8gZx1vOi+Cbwe8u287tKJPSA+h7kPBUS94YHTu5oVrLyUo3I7qvYIPYNeYrmSdMK7ju0rvOc03bxqbBu8Izg0u4r8Dj0sOpQ8Tvx0Oly67jnaapa7KRcxO1GylLy5hfm8HMM9PPovjbxjjZ67R4TBPPtnzbza4Gm8RADoOy0xBL3xLS29BAz0u8D6bz3IxI896FSDO115HjzlBa084VVgvDfY5zxcTSs8PnYUvSbxkLw3buG7TTfLPGh1K7z0UJC8rn0fvfBrQLxvtZ44b7WePKBer7syGRE96POMPA+bPb0AhV09tlOMvf0pujuZ6bi8dyoVPeF+ljujTI88kBAPvVSsQT11MyW9GNKgvKGKoryBxas8BsITPM0icLsGwhO8G5dKPOmMw70kO3E8sKCCu8guFj26RCm8ClX3vIJbpbxWcWs8QaXEvJE8gjxulXg+GdXdvFAcG73Vggm9CISAPccCI7x6ujs8/b8zO6rBBT3oiQa8cO1eurraoj1YM9g8gvRbvK2GL7147IE7AkfKvJSjcrpEv5c99UeAPJ3OiDtR6lS8iaflvF0PmDzVTYa9dTOlvCRkJ7zgFBA9u0fmuxZ9d7w9Ieu88S2tPInQm7t/bUW9jCu/PMj5Ej0rb5e8cts+vCWQmrwXPKc8i5VFO8fNn7w7XEG8Zh1FvRnVXbvW78y7VKzBO+tOsLxuKLW8mhWsvBzDvTyHT/88BsITO/d2sLylETk9UqkEPR8e4btRVNs7Y8IhvIppUjx6uju8Lzf+O9sAEDthADU8XebhvNKUqTyBxSu8rhOZvGnibjzVggk8XjsLvCMPfjwiDME8q8d/vCmBtzwHjZC8YD5IPO2mljtJ3Cc8nzK8vEiwNL1NzUQ6gcUru6fTpTtJs/E8tPslPKqYT7vlBS09WF9LPL/3sjuithW9BDWqO0tpkbx4jsg8VgSovBidHT0058o80dK8vGoOYr2CW6U7lcOYPKfTpTyUzCg8P0GRvCxmhz2BxSu91u9MvA2hkDxLC1g8hbbIu/Sxhr0bLUQ99XwDPXUK7zo78ro8zLUsPc9uCTx6ujs9Cqqgu9L+rzwMC5e8SBo7PXlQNT2n06W80KbJvALdQ7w78jo9h3g1vaBer7u8c1k9oiAcPF8GCL32Sj29b1Qou2rQTj11dPU69+A2uwSfMDy1vRI9+HltPHdiVb3jrUa9Yy/lO003Sz0KqqC7BDUqPS38AL23Vkm8GNKgvdSLmTs21ao8OcOKPEz/irkV5MC8TyUrPcy1LL3e/fm7iscLveXc9rwgcwq8RSAOu1XYtLsvYLS8KYG3PLjvfzzoVAM87X1gvPh5bT0WEDS8p9MlvHRxOLwNQ1e8zawcvScpUbz34Da9XhJVPfa0Q72woAI91YIJvWqkW7pvK/I8RSxbu1G+4bxS6tQ6DdlQvDbVKr1WcWu8TMqHvLDh0jy73d+8dskevW6V+D0yJd68Cn4tvQiQTT1g1ME7Gy1EPfkP57uyOTk8kNuLvWOZ67uAmbg89R7KO8JGCT0nKdG8mlZ8vK9L2Tv2Sr08FCLUO88Eg7v/WGq83fq8Ouu787z9ln08+8UGvdMBbb2c1xg9agKVvMnwgjz9KTq8VpqhvKBeL7u1J5m8OARbuqkrjLx1dPW7v40sO2o3mLxIGju8S3Xeuzz197k6ME693fq8PN36PLwrpBo8vsu/POWbpjzo9kk8JpNXvamVEjw3ayS8cawOOicpUbuP8Gg89+A2vXfAjjxXB+U6PbSnvAsUpzz0XN08Ydf+PO/Vxrt3jsg7lA35vLSRnzvbDN070/WfO/fgNj16J/+7JSaUvajKlbwgSlQ8JryNPLKmfDyIpKi93pA2vX41hbxEKZ68R4RBPOUxoL14Vgi6FCJUvMy1LL1c46S9wuUSvRAxN7zJWgm8OMwaPdFoNjwyTpS8F333vI/kmzwo6727zzmGPH41hbz4oiO99UcAui6ex7qs8LU8y/b8vKg0nDwQym28agKVvL/OfD1qAhU8EfOjPEpyob1mHUU979VGvNs1Ezz8k8A7E4ANPfRcXbzGbCm9uzsZva8/DLy47/+82zUTvX7Xyzy8Zwy9MY/ku9SXZrwUFoe8sNUFPY3BuDwU4QO7AbHQPHw+lb186es8IErUPPPG4zkx+eq8Fno6va6yIjyqLkm9R4RBuhjJED0BG1c8zuRcvI+G4jwOmIC8lMyoumUaiDurWry8ndpVvVm9BLq6R2Y9W477vJi9RTmBxSu9TWCBO2XlhLwmKdE9X6hOvB7y7TwqQ6S8idCbvIEG/LygXi891u/MPJuC7zyESQW9e39lvGFqO7xe2pS7x9nsvIIy77yigZK7/xcaPWEAtbzT9R+8HhukPac9rDw6JAG8vsu/vAVhHbsL6/A85Eb9vMD6bzzHb2a83v35u2TuFD3yWSA8djbiubKm/LzbDN28nZkFvT9BEb0s0A094evZPE1gAb3XG0C9br6uu5AcXLxyRcW8cRnSvNQtYL3tfWC7d2JVPBQiVDzBkGm9OjDOO1zjpL1x4ZE8/0wdvoUUgjz5D+c7oF4vvAbOYLzoYNA8PUqhvMfZ7LyE6I46yl1GvcJSVj3+LPe8QHlRPEfux7yBxSs98AG6PF15nrxcUGg7OjBOuW38QTy5hXk89R5KvFZxaz0LFCc8lS2fPEtpkbsXpq27Vdg0POtOMLzjrca88lkgPIrTWDtFLNs8z6OMPZ0DjLw4BNs80pQpvF0PGLzovgk9EJ76OZurJbzULWA8hUxCOxxZN7t75q657FFtPUE7Pr02Fvu86GBQvQ3Wk7wApQO9Zh1FPVmIATwkO/E8XnxbvMuJuTxuKLU63CwDvMAjprtGWM68GioHvFf7Fzx8EiK93fo8vZX4m70V5EA9P0GRvP2/Mz3JWgk8RVWROj8MDjsLF2Q9K6QaPNsAkLwmhwo9+1uAPIgRbD3gKe28QDgBvehg0Lxibfg8ofQovWTulLxZX8u8utqiPCcdhLvekLa7FxPxvCaTV7wFYR29RljOvHt8KL19PpW8RPSavACFXb0NrV28wVLWu2nibjwUIlQ7XQ+Yu4rT2Dy7Bha7ay6IPH7XyzsYP+S8Y8KhPd9SozyqmM87iHtyPBuXyjzfvKk8AIVdO2OZa70BsdC8ILRavbI5OT2gNfm8l5FSO22SuztP/HS7yx8zPE8lKzwbLUS8aLb7vHAWlTwB2oY967tzPZJ0wjtCZ7G8SId+vAxAmjxh1346xa15PPtbgDwOb8q8ZO4Uvf2/s7zDfkk9fKgbvWs6Vb2dOI+8dskevJcnzDys8LW7LjRBPJOgtbyToDU9aEz1O659H70FYR29QtG3PG4otbyyOTm9/uumPdrgab06WQQ98jDqOynu+jyvP4w8w35JPXeOyDszRQS9UecXvLbAzzwuNMG7RraHO/5VLTxxGVK8SUYuvV+ozjyqLsk8P0GRPGmhnry2U4y79PLWOz7gGr0nVUQ8bGZIPTokAT2uE5m8CwsXPMeYHD2i9+U7BsKTu3diVbwZ/pM8dZ2rvLT7JTziC4A80Wi2O/gMqrzqIr283CwDPXUK77wHZFo9x9nsPJurpTwl/V09YNTBumSEDj1S6lS9DdYTvCHgzbxxDQW8m67ivElGrrkQnvo81JdmvNrUnLyhy/I7fRVfvWRbWLwUuM08cts+PXBLGD2bGOk7/b+zPJe6CD0oVcQ82N2svISzCz0OAgc9br6uvFxQaLwCR0q9G8CAPPgMqruKaVI8SR34vPqlYLxtkru7ovdlvLxzWb3unYa8mek4PZnpOLyEfgg8yvM/PI7EdT3vaIO83CyDPC2birxrYwu9IgzBPHoAkLwdOTM8bss7vfc16LtuUMC8AtyuPLKtdDvR7wQ9VhHXPJpdGjzWnC29j84APekNuDzFP7U7HkO8PPC9AT0NqhO8IE3FvLoUaj0lG6S8M0NUuyaqsbx/9gw913SPPPPbHLqeUxc8uhRqvPLRkzzMAPA8HRh9PfZCDD3I2Eu9yPkBPT7pGr2GCqW9iCjAu2cKAb3Xpja8PWSWvLEeZz2sxBu7ViiEPAi0FjzxdK28J4ITvF1uw7wKlgG92T9NvdacLbxNMoG9OGQQvR20rjzjNVC7VoxSvdUNoDxwAAQ9YTyivZDiErxOwY68CRhlPAIlg7zVce48EH/au2GtFL1twbI8zJyhPIjsjzyCRk88dYx2u2TLL71uUEC8Xem+PFBQnLzwznK8bpkUvdzYYzzfDaw8riGCPPJ+tjx/exE7Cix3vE9QnLpf/VA7QHiovD7pGruP3/E8onEyvKE/Cz3rnEW7g1BYuwk5m7w31YK5JiWtvOhWjLxEoMy820nWvJj2qrx7ZN47GGtUPW9aybxIyHA9MS/CPLWwFTuAABY7FIyEPF6Zgr3azto8S4xGPQvIKLyFhSC9iKM7PLE/nTz55au8xYgJPeji+LofyEA8YxQEvaSFRLzNdIM74Be1O/kuAD3CAOQ8SMhwPbGt9LyG8/c6et9ZPMQ1rLxLB0K7A2GzvLoUaj0SGHE8LGFjPE/Llzx2wT48fG7nO/v5vTyTSYK6Cr6fPW/VxLxPqmG9mFp5PWOZCLxp/Vy84Be1vG1Gtzw6JUW9GHVdPYLL0zzZA508upnuPCaqsbsTOSc9JqoxPBGJ47xao4U9fPPrOi/piLw6L049kuybvdh+mLyH4gY7JW6BvNgrO71RWiU7P/MjPaWPTTzj0QG6CxsGPSt4kLq9zra8oboGPQRDHjwDYbM8tWfBPA1hPz2p2Kc8OvOdPTXzlzwoOT88DmvIvBslIb0KQyQ8rwrVu4AyPby3kgA8J7S6PKLEj7tQ1SC9EBsMvcBx1jsk+m28Zm7PuNtqDDzDsCe9BGs8PWQeDb2dP4U8Ji82PAaghDydo1O9PDlXPTG+TzwIL5K8ho+pvMpnWb1n6cq76IizvCb9Dry4AFg9bIWCvAUbAD1hEeM8EweAPDolxTy/Z025YRFjPcB737pSMge96ZI8POVqGL2oSZo8UzyQu6fElbyFhSC97T9lPVu+/7z6ajA8nJnKPIget7u5j2W92mADvWutID1pguE8o84YvOZ0IbqXUHA8OqrJOzDzkTxiPKK7/ANHPWwUELzMnKE8AqoHPYjsD7xgowu9bBv4vABDmDzJ4lQ8TTIBvTXc6rtHWpk8CJNgvIjsD72jAEA9jwAoPam38bv7+b08KumCvPrvtLsJGOW8bAqHOzb9oLwQloc6naPTPNfvijwgV868Sng0vZZG57vw76i75n6qO3399Lzp25A8Qoy6vLs/qbzPNTi9KukCPEr9uLwGJYk7536qPXT2ALx7hZS8dXsFvUIRPz0KQ6Q8h5myPIs80rwQf9q7ensLvROn/jxnCoE8/zgPvMZJvrp7hZQ9xAMFO2jz07x2wT49ZJkIvY+FLL5PqmG770nuutJ0ibzWnK08PDnXPFLpMr0KQ6S8zQr5vHbBPj0Bse+7KUNIvQ9/2rigXSC9KIycu7se8zzDj3E7l0kIPLse8zoloKi8XGS6vOAXtbwHqo07irfNOo1xGr1mZMY8KUPIOzmgQD0Uvqu8f/aMvM+IFbx/rbi83V3ou+bvHD0flhm9ho8pvIAyPTzazlq8LP0UvbEeZ7wIDtw8S9WaPXKPEbzDCu08Qoy6PLmZbrxUB048nB5PPP0NUL2PU4W8j86AvGUoljwoOb+79ivfO2CW57wvf347luIYvESgzDzu25a97bBXPWI8IrwKQyS9rysLPWERY72nzh48j9/xu5hxpjzVe3e8uZnuu1WCSb1QOW89PLRSvdHOzjtXG+C7x87CPNxT3zsaf2a7+3Q5PEQl0TxDlsO9RCVRvJqPQbxB1Q49IE3FO0rLEb3axFG86AMvO0a+57yRFDq8HA50PqN7u7xzeOS6tuxFvZMoTD3tsFc8pRRSPHuFFLlmZEY8Ji82PG0UkDxjFAQ9TZZPO3P9aLoPddG83OLsPG2PC7xQWqU6fgd+PcMK7bwGiVe8qbfxuyPw5Dtbvn88bAqHvU6g2LyEe5e8TsEOPX6jLzyOe6O8hgolvF3pvjyQ4pI7OBGzvF6ZAryJrUQ8OekUO3p7i7zbSdY74zVQPBdhyzyrZ7W7vVM7vbGtdL1jFAS8U/O7vLGj6zxhEWO8L3/+u5Qy1byxxCE9UrcLu95WALtKeLS8HkO8OyNr4DxVgsm7I4wWvC/pCL0HJYk6euliPLXivDyIo7s8dCgoPE9QHLx+oy+8/pJUPLs/qbwPEQM9cN/Nu/xMGzzFDQ48I2vguaDiJLxR36k8Qoy6u0p4tDzB9tq8e+liu5rYlbtNt4W9DWG/vPewYzzazlq85nShPFGtgrmL2AO9CpaBPRz9gjw7L047BvpJvdCSHjzX7wq9PFqNPHlQzLoyOUs9Ji+2vJh7r7yGbnO8vVO7PEhkIj3e7PU85n4qu1jLIzwMJY89vc62vdTsabyIozs8Xem+PIdni7xDlkO9aBQKPQEs6zy6FOo7CC8SPYaPKT2Yey881pwtPX+tuLxv1UQ8RtUUvDEvwjy7HnM8EzmnuwI29LyH4oY8p8QVPRslIb06JcW6FZYNPRSMhLuvsI+8AU0hvQwlj7ykhUQ92brIPAkY5TyQ4pI81yEyPPlgp7slboG8Cr6fvVT9RDzoAy89EH/aPGy3qT2upga8p6NfvOZ0ob2Yey88/i6GPX4eKzys9kK7KAcYvKWPzTxDG8i8chSWvLHEIb2HFK48RarVvEhN9Tty81+6xH4AvWK3nbuuhdA8s86qvC0HnrtBgrE9NOmOvK6mBr0RieO8af3cuwUbAL2MUGS8WBvgvKMAQD36zn69s6aMPH97Eb24hdy7RKBMvOM1ULxR36m8EaCQPPnE9bs3jK67wHHWvKaZVrwcBww9hvP3vCH9iL3xxwo+CA5cvST67bwZ8Fg9njJhuwS+GT1UB848ZVo9OWVkRr0BTSG9tbCVPA7wzDvOKy89iB43vAq+n7xBBza7hm5zPJy6gDy1NRq9kF2OvN9gibx4y0e9TbeFPGatmrxVgkm92brIO3LzX7tfHgc95u+cu0NkHL2LwVa6NfMXu3nV0LzNdAO8Jon7O5pTEbyQCjG75eUTvWsRb7x+Hqu6EzknvaMAwDwCJYO8tbCVPPD5MbwTB4A8F9zGPFPBFLzXKzs8LxuwOzzViDwF8MA8UWQuPPMNxLzkahg8A7SQvNvlhzkyvs88KdJVPaxxPjzNhXQ8NE3duqu6krw25vO7IoINPfNWmDrx2Hs8U/M7u5EUurxOJV28AKfmPHc8OjwJIu662TXEva6mhr2LXYi8HKolvWiPBTxlWr293gMjvLMy+bvChei8QP2svQclCb3vxGm7oOKkvDEvQj1AywU9elpVvcKFaL1jRiu8ImFXPLPOKj0s5ue8zYV0vXAABL1ky6888L2BPLghjrzmTIO7Y0aru+iIMzxITfU8N1oHPGCWZzzoAy+9XLcXPTG0RjzxdK08p6NfOxyqpTwZEQ+9jvYeORMHAL0CJQM8DKAKvZTOBr1BB7a7ACLivEwRSzx4y8e8gDK9u77YPz1zeOQ85GAPvDb9ID0UInq93OJsPJjf/Tpvo508A7SQvL/iSL1FtF49foJ5vQi0lryI7A89K3iQvK4K1byN7JU8DWG/vJBu/7yWweK7xBT2vFaM0ry14ry8ON8LPXz99LtmZMa7RbTevPWcUTw9Q+C8BUOePUdambwejBA8u6P3unJu27wyOcu8V7cRPVQHzjzCIZo8+r0NvZtdGrqGXYK88gM7uyVugb0jEZu8ZB6NvOxMiT26NSA7CA7cPFovcj0lG6S5CZ1pvDnpFL04lrc73oinPCWgKL2LwVY8pR5bvIYKpbzZNUQ9FiWbPMwhJrxG1ZS8YTIZvLs/Kbwxgh+9oGepO1A5bzzzDUS9RMECvfxMm7zI+YG8d4+XvB6MELyCZwW9rgpVvJW32Tzc2GM8Wzl7vfx+wryQXY69FU05PZpTEb4X3MY68gO7u00bVLwja2C75/mlPADIHL0fyEC9S1CWPNf5k7xOJd08xZl6vcEA5DtTbje8BHVFPWQeDT1zeOS87dENuy2WKzz+LgY96IizPAgOXL3FDY49LpYrPVPzuzuE9pK8tnHKPGyFAjwr5me8jlrtvHQoqDy3koA8h+KGPEAHNj3cU9+8xhcXPWjzU7urupK8UkP4PPdMFbzwznI8fI8dPByJ77yoSRq8NoIlO+pqnj0TtCK9WcsjvdZqhrxQ1aC7hQCcvMIAZD3LceI7YCgQPU+06jj1IdY7Y6r5O5bsobrh7xa5V5ZbvGERY7xRyHw8YRvsvKnYJ72uCtW8NdxqPWWjEbzjVoY8KIycOW5QwLz8fsI8ZB6NPfbHED3FiAk8EQTfPDsvzjsfyEA9BHXFvOtCAL2YSQi9Pd+RvAygCrwsYeO8woVoPNtJ1jxpmY679zVovC9/frwNqpO85D9ZvQq+Hzzx+TG9Ua2Cvbujd7wxtMa7UmSuu/BqJDp+Hqu73fkZu2PBprzeAyM9MKq9ucld0Dy8xC07hm7zvApDJD1iqnk8/APHPKUU0jxXMo08lK1QPP6c3bumHlu9Yqp5vJ5Tl73z2xw9mc6Mu5qFOLz/vRM9qVMjPJfsIbyupoY6FU05vAqn8rwJOZs88FN3PZMozDzvSe48bKB8O5haebzA9to6MHgWvfjE9TwTGPE8szL5vN9gCbxw3029HbQuPdemNr3QP0G8pRTSu2oonDwfyMA8HC+qvNRn5TvNpio8wXtfPYAyvTtkUDS9Pk3puizm5zxjmQi8sJnivH0Uoj04ZBC9zJyhO4hxlDvv5R89woVoPIcULrs5G7w8eVBMvROn/jukhcQ78UKGOYoySTyrZ7U7HbQuPPOIP7y4nAk9wpwVPUpGDT13FBy9bh4Zuy8bsDxmMh+9VHjAOnlQTD0mqjE9wIiDvEpGDbtqoxc841YGPVvfNbx9/fQ8jEZbPAq+H7vt0Y072LC/Ox2T+DugXSC9fAqZu2qM6rvGST6922oMPV7zRz0bL6o72TVEPQHSJTycHk89H5YZvYfiBjwmJS29+Lrsu4koQLtoj4U7dpb/PPi6bLxLgr28JW4BvD3fkb1/KLQ7Zq2aPHBkUj000mE77+UfPB20rjxbKIo8jlptPG4eGb0TOSc9dQAKPYZu87wj8OS8t/ZOvQBDGDzRaoC7qbfxO0luq7x7hRS9T6rhPAq+nzus9kK8RtWUu+2wVz3426K87+Wfu+kXwTrSdIk9Wzn7vGduzzttj4u86Q24vBYlmzztNa+77mkMO/WnM72bx6a7A303vClYijxmblw7PJ3pPBjEPzxhqnC8SEoZvfQwdLtDIJy8Po5kPImZ7bp6Sq48ofbIu7pTJDzuJio9SdUCvI19DD34eiS9relWPf+pxjyvl+88P3/fPNpZ3bwoE/87YD+6PFBqNj3FRjI9Z1/XvEIeczvUGza9UjiCvb2+2rzKCh69PUiGvOsQ17vUpPY8Ij2SuvGRYDss5m88a0HNvHCO+bt92ry8/ZWcvKH2SL138Xi8v6BQvUZZHr0sTio8pf0WPXJh6rtFAGk7kHOsPBQlLL2tCYq8gLwyvdYMsbxCUtC8TwL8PAvgtrww3ji9dUPgPFUuIj1Xmdg8r5dvPNNtHbsI25G9jX0MvFqKU7zHeg+9k/4VvX4Omry7RJ887M10O65gFjsoE3+8512ZO7LwpLwdRck8dbofvFQ9J7vNqbE8FABUPOswirzIKCg92d8hu1xsyTxx5y69oXyNPH3aPLyQc6y8pro0vGAwNb2Yos68rCy5PFygJj3lr4C8f4hVPWqELz3/ZuQ6A26yvKgl6zzDQY29H3mmPKRh/zz+7Ci8474FvY3jHTxMpso7RlkevHZouDzdbzA6Vus/vE10ljsVaI687US0PIUajbxmsT49UGq2PECzvD1C2BS8yVyFPMgoqDwGkwq8WM01vD/2nrzDMF89O2YQvbguTD0Vrmw7MbuJvDyd6bxdOhU7I/ovvGAwNT1cXUS9RRGXvSMJNT2EKZI7mgqJvBS9cb3fow09m2GVvYE27jxLgfK7M0nvPOswCj379gi9VxAYPfKijjyLJgC9NpMfPak2mbtlwEM7E3eTPZP+lb15B0y8KinSvAeEBb31Ie+7nKkcPKmNpTwES4O8blcgO6aIAD2Dj6M7C+C2vHVDYDyQTtQ7F9PEPB8nvzzsUzk9uR/HPPYS6j3o6II8iKhyOsjRG73bagu8va9VvJwyXbt0UmW9CP5AORafZzxbOOy8Z+UbvQj+wLydmpe6osLrvFXIkLvpLuE6Lj8lvJYoEz2OoLu8GJKLPKEqpjyQxZM8aFBSvTU8Ez3wF6U8SjuUuUGVsrymujS91slOO2HtUr2WNxi9aceRPTQ6ar32Vcw87IcWPelivjsWsBU8udxkO+GFgz090ca8i75FvBN3kzwJIxm9NX3MO+ThNDtDuoq8PzmBvZr7Az04LQ69Q8mPvHwdHz1x5647NPSLvZvHJrsWrmw9LzAgu8H5Bb2V0QY9kiFFPAu9B73vwBg8PJ1pPObDKj3v40e5BehtOR1FyTy2CXS8aFBSvXlZM7zMhNk8PRQpPA2Oz7zygtu8dFLlO59XNbzCp568c5VHPdBXSjz9CjM86h9cPbXSGr3V59i8LJEMvQkyHj138Xi7bvGOPGwySDxiEis8d5wVvRafZ70+OYG8sjMHvToyMzvkanW92e4mPZvHprsHymM8VbfivG0AFD3KCh69vN4NPcYD0D14jZC72avEOVHz9rypNhk9PzkBvP9m5Dy9e3i88z95ulTGZ7xdTj89K12vvLSevbzf6eu8ZTeDPUPJD7wA3iO9TkXePADPnjuFgB6+Zn+Kve0SgDwXkOK77TWvO2wjwzyOXVm9B9novMPt/DsuyGU9o7PmvFuvK72SMEq8udzkvAi7XjxIFjw9DlybPFfcOjxT1Wy8FL3xu1/IerwG+Ru98ONHPXW6H73pP4+8QHDavFXXFboVaA49qZyqvGhQ0rvogMi88QigvOLLYbulybk7u4cBvdnfITw8Vws9n0iwvJBzLL3D7Xy8h/rZPE9WjD3zP3k8G6a1PH63DTw779C61umBPHD2szwBaQ29s2rgOzTALrx71Rc7TKZKvJjlML2qSsO8iwGoOdTnWLsevAi8HIirvOaPTT2ei5K3VT0nPNjupjzuaQy9vSaVvKbJuTrcwRc9hQlfPKMboTyei5K8GfgcPWqEL71m5Rs7gXlQumV94TxG4t48WUfxvJducbwGX627pKThveTwuTuGLjc7hUzBPBnpF7ww7b28G6Y1PFYuIjycuKG8jHvjPCs6gD73Rke9qHfSOh95Jr253GQ98z95PPrl2jwrXS+8+fTfO4BF87oSD9k7m0FiPbelizyvDi+86WK+vKQMnLtrZiW86U6UO3wdnz0HUKi8Ou/QuXSGQrxrQc28oCUBPQCbQb06u3O8SrXPvAfZ6DwI25E72WhivbncZLzw1MI8uHGuPH3aPL1lnZQ7qDRwPORqdTsroJG8l+UwOytdr7ws12o8/cdQuwq9B7wBzx69WKqGO6wsubxcoKY8WnvOPFtJGjyZcBq9ufwXPVa5izytCYq8WnvOuzY8kzuDW0a6KXs5PJ5mujx4FtG8UidUPJYoE7wIdQA9p+4RPPkoPTzA1C08IVscOxjEv7xU+sS8YwMmPSQujTx/Dhq7TVTjPN9Rpjsu2ZO8oCUBPeuWG7w+jmQ8pKaKvNtqC7yWwNi8J1ZhvYhiFLx5B8y8ZYxmvAfK4zzMuLY7UEeHvFaoXT38x1A8+WufvMFO6bx0Y5O8KIq+uylYCjzmj828hcOAPVt7TroLvQe9C53UvB0iGrtU+sQ81KT2PEgHNzuiwmu8ZX3hPHmNkL2u2tG5MgORO1kBkzxOy6K8dbqfvNuNOj3s3Pk8rAmKu20jwzu9zwg9x/TKPDaiJD2oNPA70nwiPeXhNLyTZKc8DI5Pu/Uhbzw4Ddu8ukQfPKQMHD35KL07WpsBPRehED1M6aw7oSqmvGRGCL3Xl5q5l27xPNL2XTxC2JQ8iZntPBQA1DxcOGy6VbdivCPGUr1BgYi8e7XkPOThtDxjAyY9WFb2uz0FpLzqP4+9Z+UbPJ9IMD0L4LY8tl2EPFp7zrw1K2U8wlCSvCdlZrw3HOC8c9ipPIBF87xbOGw8L3MCveAOxLx4JVY82pw/PGU3A71Qebu8iopoPXRSZbzYMQm9N1A9vG0AFL2UVSK9dUPgO8US1bxfPzo9RjRGvfEIoDzW/Su9be/lvIubljwLndQ6WJlYvDvgSzw1Sxi99wNlPJWM+7wIQSO7c9gpPX6oCL0FHEu95VvwPW7xDr0Nwiy8AKpGPZphlTybdT89h/yCu/oovTp50+68dkWJPFqbAT0j+q86F5BiPRGGmLweE5W8ofbIPLJ5ZTtmOv+68z/5vCpJBb00Omq7xO18vVB5uzxQebu8GXJYvT45gTw32f280vbdO1p7Trwh1de8NW5HvBUlrDzJs5E8vmxzvFQJSryoJeu8iNzPO5OYBL0dRUk8UTbZOlcfnbwKrNk8QyCcvBcWJzxFEZc7v11uPBjEvzymujS68FqHvPkovbzLx7s8hCkSvDdQPT0H2ei8xs9yO7jr6bxrMsg7igEoPe01Lz253OQ8L8jlPHkW0TsQHl483fhwu+N5ejxunX45x3oPPDKMUbuLJgC9RWijvIlTjzpjz8g8QS14u43jnb0HhIW9xRJVu8kZI71lnRS8relWvUJh1bxZvrA75K3XvN5Mgb12RYm8PQWkPKa6tDwlH4g83/oZvB0imrw2oiS9KEdcPPGRYLsu/EI9s3uOvNfJTr1e1/+7GoOGPEqB8jwtC8i8fWP9u7MkAjycQeI7TA6FPWdfV7uOXVk6iNxPvWKsmT2znj2614ZsPHrknLsJzIw7wzDfvBov9rp1hkK9H62DPJ6LkrwiCTW6Ms+zPPg3wrwGX627RasFvX//FLyKAag8hT28PN1+NbtxKhE9ABKBvbrtEj01fUw8T7wdvA48aLy5Yim9qtCHu9ReGL0nZ4+8OjIzPU5FXjw5/tW8ikSKPD0FJLyjXoM7IuYFu+kuYTzTKru8MZvWvA5/yjxrD5m8K6ARPF8LXbxox5E8vmzzvCbcpT0YxL+8IpL1O8UyCLzjzQq9e/jGvJXgCz39uEs83x3JPBnpF7wIu967PODLvK0Jijy/XW697EQ0vLguTLyi50M9D7OnO6Oz5jygOas9ldGGO2upB7z5sX29s+EfPeofXD0HQSO9dyXWPNQbNrwu/EI717rJPCKS9Twtggc89hLquwT3cjoRUju9liiTvJUDuzrUGzY7iPwCvdYMMb25U6Q8RXeovDgN27w0fcy8EZUdvZ2alzy3+m48gkccPUEteL2MbF68n4uSvb01Gj1n5Ru+yDetO0R3KLz8x9C8zposO5KnCT3Dpx69yLFovd8dyTvCUBK91U+TPPKTCb0tC8g8L9kTvORqdTxn5Rs9nuB1vNf9K7wkt008aFBSPCMJNT1UPSe9x3qPPTQ6ajtiEqu8UVsxvMVGMrwF6O28XKCmvFtsSb0ciKu86WK+O6fukTyvl289B1CovF6CHDzE3nc8hcZ8O2Y6/zx8HR886OiCPOLL4Twk+q+7pJXcO1W3YjvZq0Q9Iwk1vfwKM710UuW8Of7VvLkfx7xPVgw9KkmFPO8XJT2URp28cNMEPYC8MjxOVgy8YD+6vHHnLr1br6u8yNEbPAT38rz2mK68FtNEvcHFKD1l9CC8iGKUPfeJqTw2X0I8GnJYPM9XyjzLUHw84svhvNiXGj19Y/07L3OCPZnWq7yR/Gy82e4mvXwdnzzNqbG7i77FvGhQUrwzjFE8nSPYvJ40hrx7bwa8F9PEvH1gAb1SnpM8qZwqvToyM73anD88Y1WNvGtmpbzseJE8/ZUcvOqloLvRvwS9x/TKPOUVEjw+wsE8CP7AvNL2XbxKLI88QOcZPOjogjwnmcM8yCgoPAHAGTy2gDO8gWpLvQHPnrzEmJm9mBmOPCOD8Dm/Xe68d6uaPKOk4bxoUFI7jPKiO0wdijzTbR29ycKWPF1OPz0xm9Y81ZVxvAtpd7wfaqG5Xz+6u+BRJr2m/RY8snnlPEacAL2QC3K8LeiYvAudVD1guXW8RlkevUIec7swdv66E3cTPXV3vbwndpQ8qZyqvLK8xzzYiBU8VS6ivI19DL1smgI76HFDO1FbMb3dfrU9tY84vXRSZTtI09k7805+PHB/9LvSOUA9KXu5PM2VB72LjBG6hrd3Ow8+EbvntCW7TmURvFtsSTvLxzu9izUFO9tqCz3w40c98KBlvN070zxuBTk7cXBvvZKYBDw2X0I9TmWRPeZb8LwdiCs7yaJjPW6d/jr3iSm9mLHTPGAwtTzogEi8nlc1PUo7FD3VT5M8++VavKjfDLynujQ7tFtbvTaTHz0VJSw8yDetPE68HT0faiG8cNOEPRumNbwwqlu8b8LWvBVZibxrZqW8O1eLOiZ2FD2QTtS8pNi+vCfNILydQwu9P8JBu2Sbazx8HZ89DX9KPUZZnru2gLM8NqIkPePNijygSDA8fOlBPYU9vDxfHAu9q8ECvXlKLr2bhMQ6EYYYvRNDtjpCHnO8iNzPvOBRpjxSnpM8EzSxO4j8gjyiwus8MHb+u1Q9Jz39+6083mCrPaPYPr2XbnE85ltwvJA/z7tdGuI8HSfuvED1v7w75ta8lpWKPNPNibx+5rs8ybBovFd7ej1FS6w8Qh8FPOni+7y7Hru73cN4vOPSYTxzXJs8CBMtutMW77hjC8Y8rdOQPFBqr7zbTx08GUJKvZUl8zyMDBs9+4JhPXENCz3AdKe8lCMRvHpIGzwOI0c9U5ZWPVFrYDyxTZc8MBSCvNtPnb2ZwuK7q/H/vPnrHLxD/Ju83cN4PfoQ6Dy3yf+7T7GyPJsPkbw9Ec07XrSovNez3rqk3wO91YjovLPjqr001Yu8USMsvIDKLj2xcbG8UyoIPIYgGz3oKX+9DLHNvFoXubwVpKm8jemxu0bgDj3Lb5A8uqzBvORDqjzUhoY9EsC2PEd2ojxaFgg8XUNgvQO9wLletKi8/mWjvKtiyLunC6u8RgSpPJjkGrm1VtU8gstfPC4O1zvVQDS82pagPK5FCr2pftW8wQkKPb4CLj0Bk/u5R3YiPYkFvzuN6mI8ofxBvU+xMruYwIC8Kbe5vEFmiLzsfYm7O3oIvW4pmDwLP9Q8inYHu1imcD3/1xw9ofuQO178XL2+Ai49Z6eEvUcLhT1gJ9M8l5dsvNHqx7sWOYw8nV6hPCPKiLw1j7k8fS0/vO+FFrsJYQw8zncdvVuIgTzxHNu8mQlmPVoWiLsF6LY9CBOtOqd9pLvwGyq5ir47PHANCzxaX228ZHwOPUa9pbxjC0Y9CWEMveiZljmb7Ke8pOA0PDdJZzzGzPU8Zu84ve1/a72M6IA9pwsrvFLcqLw3ui+9X25WPIM9Wb32K8Q8DSKWPG8qST1TlSW7R1KIvPhViTxTlSU49nP4vFxCLzyHIv05q/H/PEtc9zzwG6q9EAaJO5vsJ73de0S92bmJunQ5srz7gbA8pXUXPMvarTygQ0U9AgMTPLD/t7xoqeY7gzyoO7yPAz324w89wHQnPTxY0DzqVPU9KZOfPORE27m+JRe90DFLvAbp5zv24487HSfuvDRl9LvIr7c8c8jpvPidvbwsd5K8QUMfvfKOVLzMTKc78mkJPBJ65Lrnb1E920+dvE2FCzwaQ/s87TjoPJaVCr1qrxE9IsoIPLnzRLxLE5K6KXA2vcc+77vJaWW9UGovPNxRfz1HUoi9dIHmuwmFpjz35fE8oEIUvVoXubuIk0U97e8CvS2cXb2/lxA9I8qIvEPZMj1d/Fy8snLivA4jR72sHPY8ntAavVyJsjuerIA9LONgO8yUW73BLtW6xFlLPU/4NTx8c5G8wLzbO8NYmjwgnxK7m+ynPHOAtTyofSQ9kKmKvGn2FLyxcIA8s+OqvNpyhrzWQeW6ux0KPSybrLzcwRa9i3c4vCAL4TxHCwW91T8DvBu0wzxD/Bs7goRcPI9cXD1bGOq8TYY8vbJy4ryi/fI7t4CavFCy4zxrjVk7Cj4jPFYyFb3mtlS8KiiCuloWCL1NPog8pwsrvdJbkDygi3k7gxiOO3sCybxoqeY83jOQvWAmIj3jiq09LHeSPOEXg7timn29YlLJPI3psTs9Ec08UiTdvJ7zA71xDYu8w1gaPTNkw7yXToc5cVU/vdAyfD2Cy9+8Z6g1vVyK4zw+g0a7Xfsrvg9NDLzN4Qk7gxiOvAbp5zyVJfM7VzPGvEgwUL2bDxG88o5UPYSKB706niK96Cn/vOX8Jr1a8548kWIHPRMOljxUT9O7cg9tvI3Fl7w/hHc6KiiCvIt3OD3I9+u8OuUlvNhrKr2PXNw6qMVYPE6HbbwBk3u7QyFnu4Wv0jtgdAG6xctEPMxMpzyXToe7k7LIPOKtlrwSwDa9BcScO36ehztDtRg9HZcFPEtc9zt8c5G8pLwavNf6YTyooI27rKp8O7g6SDzFgxA86VR1PGaEGzwY0NC8AUqWvPMATryZwbE8IX1aOibSlbyzK189l06HuyeMQzvde0Q97H46vTkID71aFog8YAIIPYARMrxdHpU7qTYhvU/4tTwRv4W8plPfPPS5yjvUhzc7hIoHPDMcj7wrKuQ69ADOOybTxr1a8545AgTEPBMysLuv/ga8tHiNvBiJzTz5DgY9q6gavf5lIz0HomQ+dTrjvA6VQLzaCBq9iJNFPRG/hTx0OTI9ZMRCOcivN7uOW6u8BS86vZEbBD1a8548XdcRPIfZF71cZRg80erHvA1qSrxgJqI9f1eEvHaHkTw1j7m75EMqvGY3bTxOh229GGSCvNVANDxOQGo644otOw1qyrzu8DO8pLyaPBJ4Aj2lmTG9DIwCPQ1qyju2o4O8wHQnvREHujs2a5+7gz3ZuT0RzTvMTKe7EzIwvYzoADzt74K8GUJKvEgw0DvCn507SHdTu00+iDyDPVk9O3oIvLIGlLk2kOq8a0Wluy9/H7svxiI7G21Au/kPNzz8O947XEKvPLk7eTzDWBq6t4HLuVjswjsPlA+9KP68vG/jxTyhtI06vZC0PLRVpDszrPe7+4EwPGtFJT20nKc8tJwnvSsFmbyUs3m7FhajvOFgaL0iNle8U3GLvNpyBrxA9b88IMMsPLFxsbygikg9aoyoPAoaiTyvju+8PFjQugdb4bwGobO8NNULvVCyYz02SDY8ewP6vB7gar1ZXjw97e8CO2V9Pz2Cy187mAi1ukFDHz1v4hS9iJR2vDE5zTxzyGm8wS0kOmAn07wi7iI9ha9SPaigDT2/u6o8f1eEPZnCYrysY/k8011yvLfJfzulmAC9Qa/tPKfEpzsVpCk86JkWvfecjDvX+uE8B6JkvNVjnTyA7Rc9pwzcux9S5LzpUhO9eWsEPWkbYD2pNqE8jaNfvJ4Yzzw2AAI936WJPEVM3TqwR2y9ZMTCu9SHNzwMsn488dXXPNPNibzIZwO9s7+QvecoTrtBZgg9+qSZPMC8WzznA4O8Zja8u0Mh5ztkxMK8eNahvKBDxTtuKZi80et4PMXLRL02RwW8z3jOPFFrYDuaMyu82GxbO7ajAz1B9vC8d/kKvLUOobzi0bC83zVyvL+XkLwCBMS8TYa8PPGwjL0HW2E8MTp+vTgC5LtFS6w8NpBqPK0bRTu4Osg8a41Zvcmw6DzViOi7O59TvISKhzzIrga9Q/wbvYkG8D1J6cy8atTcvKWZMT1CZzm8KZMfPao30rxZXrw8+zotvXOAtbtrIYs8lpWKPAnN2jyoWQq77RMdvJ/RyzspuGq53cJHPDAUgrzyRiC92GzbvLG55bxBQx89JWJ+vd16k71pG+A8vWyaOxr897tMFMO8W9HmvDrlJbzhX7c8y9otO9IUjbx8vPY6feUKvMLnUbu1DiG8kIahPESSr7pjwxG94vQZPbbHHbxYpI48ZjftvKthlzwFxJw8yK4GvaQnuLoHWjC8L6IIPbPk2zss4+A880dRvftdFruk34O8jxXZOo8UKD3YRxA9K3HnPHN/hDyYUGm6X7XZvFEjLL1cHhU8KigCPClwtjzB5qC8BL7xvGGYG70wFIK8RwuFPHJW8DtyD229+FY6vcEu1bxgJiK9zQUkO9AyfL3rxIy8Uf+RPCspM71BQx+9csYHvYZoTzwjp5+6+escPB8tmbwrBRm7x/UJvV9JCz3acoY7T7EyPS4NprxUT1O9lSTCvLIGlLxoqWY9zEwnvNMVPrzPDAC5B1owuyUaSj3+rde7KG+FOwGSSr09gpU9CYUmvAdasDudX9K7FYAPPesMwbucgYq8bnFMvQUvurw2ax+7BL5xvcb2Oj0rKmS8dDmyvLsdCr0lYU07EnkzPZvsJz1rRaW8ULLjOxSkqb3Yayo9ux0KPeiZFjyJBb+8HCUMvdKkdbsVpCm9yPdrucF7gz3VHJq8NY85vO8bKjyWlru82t5UPJgHhLxxDjy8CBMtO1g097xxVb87JRmZPMtvkDy2yE48NwEzPSI1pru92Gg9XIpjvKwaFD2n55A70OkWvQFLx7wOJHg84q2WPKkSBz1dtKg68iKGPCVifrwELok8X0mLvHPIabwTMjC8kKmKPb+7qjvIr7c7R3aiPUsTEjrdw/i8CYUmve3vgjxDIec8z3hOvXnXUjzomRY85JEJPChFQD0EvvG7X0mLuop2h7weUIK7UGqvvHsCSbyMeOm7SenMPPKNo7wF6La8Ws8EvFCy47w97AE8Op4ivZ4YT72k4DQ7EsFnPPzPDz2mmmK97vFkvMRafL1cQq880aITvjHxGDz9rCY8GUJKvB7g6rzx1dc8tg/SvI03Eb2jbjs7lpUKvQlhDD0IEy29EQc6PH57HjzUhgY9MTr+PAahs7zIr7e8YAIIPPw7XjwRT248cQ0LvZ+Jlz37Oi08LVSpOooGcLwOlUA7S1tGu1levLy4OZe9ySAAOo3qYjz4nu48Xm5WPUdSiLzW1RY91vkwO+oLkLz8O1487e+CPPBjXjyujT48clbwvJdQabzYa6o6S8wOPTfdGL3G9jq9v5eQvKh9pLzmbiC9TodtPecnHT2byA09ntAavY3pMT2PFCi81M66vL4CrryVJEK8V3v6vAGTezzqC5C8C/hQvaxiSL3+ZSM9eZBPvUdSiD0i7qI84q2WPJaX7DrcwRY9gFg1PVEjrLplfT89/kGJPBzeiD1kDPe8lyuevD+DRr17Sv083cN4vPQATr3OvqC8c8c4PAMFdbwRCOu7y5MqvGuN2bwRvwW91UA0vMB0J705dF29H1EzunpJTLxbrJu8hPZVu0Jo6jvnJx27nqyAvK3UwTwCAxM8QmjqPEVM3by5rMG7FV0mPTvmVjydXqE8qTahOx2XBbxP+LW8S1vGvPZzeL03ui+8J9R3vYfZFz3PDAC9wS0kvHsCSTzpVPW7gDQbO75KYrxZXQs9wHQnvUVLrDyhRHY95ERbPXXyrrzhO528yGeDu6Mmhzu4Oki921BOPEgvHzu0nKe8rBx2vNf6Ybwyq8Y8ArwPvd0K/LyPFKi8HN6Iu4KDqzu7Hru8NiQcPQGSSr2aMys917PePG/jxbz/HiC9adOru2ipZrvR6ke9oEKUPQv3H72oWQo72t7UPOsN8jwOI8c8VOMEPaQnuDxd/Fy8f6BpvMEuVTxqaA69rwDpPH+fOLwbJQw8YCYivX7mOzwU7F07GIgcPTHzeryErqG8LVQpvMlpZb3WQeU7RgVaPaMmhz1FSyy9Rr0lu71sGj1ZpT+7jekxvH3lCj3u8eQ8VjKVvAqGVz17Akk9hiCbuxlBGb3l/de7WKSOO89Tg73uqbA7VcFMPGkarzyrqUs9LQ5XPLR4jT2H2Rc8jemxvLG55bwJqA+8/x4gvZaWOzuKBnC8eWsEvauomrwlYU08igbwvKNvbLxsRtY7lt5vPYWvUj2cgYo7OJaVPAdb4TwL95+7YlGYPHN/hD2Fr9I8gaYUvT+E97vR6se8cg68u958db2htT471YhoPLVW1bvgXgY7WDR3u/2sprvdehM891UJPTTXbTzdepM8WDT3O2z/0j1RIyy9rkUKPF9Ji7xTlSU7xcqTvFcmDDtrfAo79clRvJeIgbzWAae8qRUfPfGJmbyY32k9qTUOObBeQ7ynDDO9mWg/OzIsGryUH5u7DYm2PMZdhrwc7Us8q5W1PD0HgDy+i4y8l1/TPMO0FL3LJsE7bnw3PYWy8zwaJGs8PoeWvFO0Zrvtt8w8qEw+PdR40Tx2Tt68EjuUO8CLOb1VPTy9mvGUvEdZPb3lXP27c86avCC/GD3c06A8c86auxpttTzEFDy9AW6YvO03Y7wNSVi8Ob4IvR22rLzDi2a9/2RZvNZBsjt+4Ew9hFuLvKwVTLtCx/s8u/lKvRik1LyZ6Ki8saeNvIh7VLztN+M8Pb7ivBLSWry28LE7FptoPRztSzyZ6Kg7KUh1vFS9Jb1YffQ7q5U1PNgB1LzuoJy7do48vfoSdjwdre08fukLPSjIXjx5l9U8r55OvLzCqzwcVgW9FgQiutiqGDzb8w89hbJzvLBewzyo9YI7dc5HO4HSCL1Qa2+86u5rvCtaIL1svJW83MrhvNmKqbzPL607dw5TPfzb1rrAQm89YthwPQtpmjzrNza9xpRSPboCir1vpRI96G4oPYZy6Lrst8y7HW3iPJJN+7tRq3q8yV1gPOu3n7zx6ZO7JzGYu4kEKr3ACyM85Fx9vPmSXz238N46WobgPQc307s2bNK8mOiouhPbmbyGu7I7ZCHoOhokaz1XJoy8M6NxPRCST7wYzYK7RFBRvPKA2jtNKzc6SqI0PdP4urwOspG9TxQHPZCNWbq6OVa6lp8xvf1EED1I2VO952XpPK+eTjwjfzo8FeSFO45NIbz3ewI91CEWPe6gnLxok408JIgmu3YO0zx2zsc8u/nKvV2PzDw39Se9SVnqu6csorlWBh28X0/uPB/fh7phwZM7HJaQPZvo1Ttpqmq9RhDzOwpAvzxi2PA8Ay7nPNZ4/jxjIbs8KxHWPemXgzyjQyU8MWM5vZ7xbryLxEs8kpZFO5cfyLwN0gA8mmi/PPMA8bxo6ki9GKRUvC3aNry48F68aDOTvCV/ZzwlyLG7sR5lPQWXIL09Psy7DsluPIISlDyuXha9XxgiPX4g2Du8wiu7JYimvB82Q704bH87eyCrvT6+Yrpg4YI9IF8evVT9sDy8wqs5nHGrPEUZsjwVG9I7lF8mPbFHE7ycaGy9DclBPLOnOr1kIeg81OEKPFW9Ur0VxBa9fiBYPVpvg7yBac+8SBlfPbXncrx8ICu9sd7Zu298ZD3UgZA8/qS3vAsA4TwwGm883jwHvEWQ3DxDGQU9gWnPPKTDO7w3bP+8MqNxPCL/I7wkaAq9mJ/eO4/NNz16oJS8YtjwvBUkETtI2dM8aur1vGKYZbxRtDk884lGPXNuoDz2SWg9aur1vH5pIr2qTOu8h7syPCkRKbwMQGw8C8DVOy2aqzuwB4i9xdTdvAjAqLz9G+K7IB+TuxNS8byRzeQ8uLBTPA/J7jp3DlO8pLr8PB/2N73yCbA8RTmhPbbZATvxSY67SysKvWMhuzzdU7e8w5QlPVL9A70lf+e8bny3vHygwTxF2Sa8hjucvB0t17ye2pE9pANHvFQ9vLxioaQ8y+a1vG18N759SYa8ogOaPP1bbbxIQo08GGTJPMZdhrzT73u9rdXtu0eiBz3tt0y9WIYzvVBrb7sXpCe9ZSqnPHxXdzzdSvg8UnRbPC5jDDzBS668KUh1vLv5SrwYpNQ8WQZKvU9Ukry0MBC9bPNhvPEJAz0OyW68pAPHvLDe2bwe7fg6w1QavLuCoDyBqdq61OGKu3HFrjzI3cm8MuwOvbJecLy7YgQ8mR/1PExrlbypNQ49Xs/Xu4LSiLyYH/U6BC7nOmwcEDwcrUA8KtqJu2eh/jpzbqA8I8gEvV5YrbwFNya8oXpEPK4eODyunqG8JX9nPVpG1Tvst0y8Gy0qPbPwhL2Bco68M2ylO/oS9jw955C8mqjKOsML/bwVW9086K4zvbXn8jxg2MM8jxYCOylRtDyGu7I7ZmFzOfXJ0TkkP9y9ikS1u0DHzronSEg8yqYqPEPQOrxdT8E8rL6QPB7t+LyUH5s8vLlsPgX3x7yiuk+7t1kYvIytGz3NZsw8eJeoPEeZyLzLxpm8o8M7uk4rt7xwPNk8DdKAPG88WbvWOPO8CwDhu2Oh0bzASy68nfHBPWaqvbyQ1qM7js23vMX9i7zD1DA94mWPvQQ3przixYk6DlKXPByWkDsH4Be9Ha1tvJJN+zlCUCQ8IfZkvTUsxzuKO/Y7jc2KvOrXDr1F2aY8q1UqvM8vLbtK4r+6Or6IvA3SAL1FGbI8txkNvZDWIzz30j28pLr8O52xtryz8AQ9M6PxPM4m7ryR1qO6w4vmvEUZsjwQCXo7jxYCPfuby7wtGsI8tBChu7AHCD2SFi88EJJPPBbksjzh3Lk86a6zu+73V71BR+U8dEVyvH7gTDy6ub88FyQ+O4/NtzuMDRY9SysKOoWy87zKpqq8SZn1vK4V+bwLAGG9NSzHvAd33rtcD7a8n3oXPJXW/Ttv/M28vMIrPTv+QDwskew8nrFjvSPIhDt5wAO9xhTpu88vrby/wlg9ITbwO9eBPbtn6si8eZdVPO73Vzz+5EI9yuYIvMkmlDyZKDQ9lBZcvX2pgLzNb4s8FqSnvL6LjLyKRDW9+PsYPVwPNj2nDLM8UTTQPOCcLj1tvBW8A7cPPT3+bby+gk08IN8HvV34hbsFd7G6gOD5uxE7lLzHHSg53MrhPAvJFL11DqY8OfXUOwAOnrxj4a+8IH8NvATuWzsxYzk9C2maPMQLfbuynvs7rBVMPFeGszu1sKa8DUlYvXdO3jjgU2Q8yybBOzgegzwCd4S74sUJvbAHiL2Je9S7LVpNPWQKizwHN1M8MEMdvWZqMjxVhoa7q5W1vMT0n7ukwzs8fmmivK1+BTyp1RO9yuYIva3+mztMCxs8Z6F+u6iViDym7BY9cfz6OmEYT7yw3tm85g6BvJwxoLz/ZNm7+BLJvA0SDD1Iooe9FRtSO/bSPb2rlTU8LmMMPfbSvTzASy681yqCPGGhJL1nqj09j1aNvDTsO7xVhgY9I386vYokGb2EGwA++6QKvdGvcLxahmA9BmCBuwWu/TwHd147f6DuPKPDu7z9m3i8JYimPE4rtzw2rN08/RvivADlb7tggYi8NON8u3pAmrvWASe8Z1MCvX/puLzsLne9qYxJPeDcDL2XH0i9Gu0ePQxAbLs11Qs97sCLvJ+6Ir2Bspm8visSPZENcLzcymG7MiNbut+8nToPkqK6YqGkvPjSajyienE6qRUfvSW/cj1/oG68OjXgPNC4ArxsvJU81yqCPF44kbrRWIi8ozrmvPMAcT1Rq/q7dI6PPEXQ57y+AmS8QQfavAYAh7wk/9A8jK0bPUdZvTwgPwI9mlGPuhJ7n7sskey8sN7ZPN8T2blOK7c8PT5MvP3kFb1BEJm8J4jTvMmGjjzziUY78YmZvQ+JY72qjHa852VpvXdXnbpFkFy9Yxj8vKy+kLuuXha9+9tWvebl0rxlaoU8cu6Juwi3aTze0027zabXvCE28Lx51zM9ttkBPXPOmj3XKoK7+tspvdgBVDtd+IU8KBEpPdwzm7zACyO8sUeTvFG0uTu1cJs9XxgivRabaDtJ4r+81QGnPX9gY7ymjJw8bPPhOehuKD0vQ504gRIUOx22LL3o7j68wYu5uxutwLytniE8d870vPgbCLyJO3a9f6DuOwuAdzyMzQo9pwN0u0ZQ/jxZBkq9BmABPeluVTz20j09A27FuxVb3bxdj8y7BqCMvfybSzodtiw940UgvDs+n7xfT+48S4sEvQnpAzyMRGK7fiBYPO034ztxxa68665gvDi1yTsiv8U8ogOavDe1HD1g2EO9RFBRPTbsaLwdbeI8ySaUPEmZ9bx2NwG9tjC9PKuVtTwMgPc8fWA2ucsmQTyHuzK89NKQPBWb6LyVX6a7ZWqFOmmqaj0ere26WcY+PJfIjD1uPCw7UjRQvCXIMb1StOY8BzfTPMcdqLxfmLg70K/DuzNsJbyZaD890LiCPG68wjvzSbu8rL6QO3G877xIIh69v8JYvFvG6zw1LMe8kRYvvY2EbboFbvK8SeK/vPGJGb2ccSu96i5KOTLsjrppal89liiHvTu+tboXG3+9o0MlPcmGDr5aRtU7t3mHPIfy/rvSb2W87YAAPSfRHb0lqBW9m5EaPMFLrrw9Jxw993sCvdO4rzvayjQ7EVLEPACuIz0iv8W8d870vOmus7sqkT88iOSNPH9gY70skWw9A7ePOxIS5rntd8G8PwctvVKdiTzF/Yu8h3snvW/FgbpTvaU73tPNO2Lhrz0jCJC8JagVPS6jFzt6oJS8oXrEOxw2FryCMjA8PH7XPEqiNLwDV5W8U72lOx0tVz2mg129IN8Hva3V7bq6ub+8hTJdvd4TWT2b6NU8XlitPIn76rzkHHI9rv4bvOsXGjwtI4G8jg1DvCZISL3R+I0z7C53vK7eLL2vns68uXk0PQCl5LzYao09L5rYPKasi7w+R7i7orpPPaSDMD1iAR88On4qPUXQZzrygFo9L+Mivbg5qbthoSS9qJWIPGiqarsc9gq9qYzJvIk79jzmrga9MiyaOf0bYrmBKUS8powcvcidvrnROBm9EJJPvUHQDbzPL628YphlvOv3qjsApWS8voLNOl34Bb0h/yM9majKO9vzDz248N685u4RvFK0Zj04dT49ttmBup/6rTqtfgW8d1cdvQopD726YoS9jc0KvJ6ahr3GPRc9eldKu2Phr7wGtzw9ComJOoj7vbzrN7a8zu8hPT3+7bye2pE8nKh3PYstBT3TeNE7xPQfvPWyIb2wHmU8cGWHvS+aWDz2Uqc8cDzZvFrGa7tsvJW8qTUOPfOJRr02rN28/pv4O61+BTzKpqo7pLp8vJeIAT2LhMC8jA0WPX2gQTxOFIe8ZAoLvZxobDs5dWu7XA82vf3klT228DG97TfjvL5CQjxNIng72grAPBUbUj2YKDQ884nGvKiViLzgk++6D4nju5RW5zyguiK5AxeKPAWXILxUNP07JzEYPS3Rdz1hGM+8xhRpvLXncjtYvf+85AUVPDas3TyKJBk9nnoXvd98krux3lk9ogOaPLcZjbx+6Qs8MEOdPNL4ujvh3Lk8w3QJPS3RdzwzbCW9C0krO8lGA7xwPFm9pgwGPXxgtjzMLwA9VH0aPavVQDwIwCg9LFHhux2WkLyb6NW8aapqvMZdBr31sqE7urk/unxX97xF+ZW8NqzdPLdwSL3fHBi7ACX7PO23TD3xKR89iKSCOjn+Ez35mx497jdju0DQjbzGXQY9LwOSPMILUL32sqG8L9rjvBpkdjsm/328txmNPDfs6Lsc7cu6qAyzO2Sh0To3NbM7r96sPCcxGD2CMrA8LyOuPIFpzzwlCL09RBBGvRUkETwR+4i80G+4PAO3jzwa3/u7KJ/rOmZHKL1yJ5s7MXdhvIqbgTxrHyO9Zm8oPRbXfjwXD368McfhvD6nVDxxP5y8T6fAPE/nwTtjPys8iMuDPIIzijxHf8o8Z8+nvEEP0Twh53O9PA9WPFJfPT0+p9Q8GL99PH2Dj7wzN+A7Wt81PVvHND1Df089IpdzPIWvBj1A59C8Qi9PvYTvh7xM30S9apcjvGi3prxsByI9Ho/2u4KTiTgef3c8McdhvFPXvbkx3+K8gkMJvGTXKb1Mj8S8iI+DvUy3RLxCv1C8XNczPYiPg7wq/+o8RedLPYOLh70yr+C8TddCvYqHAb1Mx0M5cRudPDFPYb0s3+e8d6+VPEK3Tj0rB2g8Ho/2PC5P5rt8wxC9SI/JOz9n0zuDUwi9VX+7vHhLFb1BR9A8I9/xun+3DTxyO5s8gh8KPWnHpbw219s8d4OUvIJribxsfyI8JW9uPB0v97xpJyU9HOd4Ox2ndzxCV8+8XQcxPIfjBL1/Zw29HG94vC6H5bwyN2C9YwcsPDU/XT16BxM6ODdbPUQ/Tj2Cgwo8IP/0vHD3HT03D1u9fEsQPSnv6zwc//k7ePuUvHVTlzxvWx46Yy8svGSvqTwWJ/+7eOeUvIB3jDtX17i8hTsHPWtvo7kun2Y9cOMdPHPnmT1yA5y8YR+tO1nftTskP/G7Zg+pO3IPGrxGv0s9aAenvHuLkT1/F428eaeTuycH7bxPH0E6dUMYPHsXEj1crzO8ccucvYhnAz1wux28XxewvGfPJ71/Zw09Q2dOvXfTlDx/F408ha8GPGx/ojx4qxS9LLfnPFdPuTx6G5O8dLsYO23rnzx2oxe8ZNcpPUa/y71x3xw8KLfsvC9HZLxjVyy8JIdvu367Dj01L168cjcaPDC3Yj14kxM8bAcivXtLEDxsB6K7Z98mPSD/9DxzHxk9bAeiPEWvzD1I38k8I2dxO4JbCr1g/668gSMLO4N7iLt175a8LidmO26vHz1nVye9hUsGvWSvqbxMf0W8de+WvGQXqzs4H9o7NH9ePCOPcT02/9u8eF8VPE4Pwjt/Kw09XA8zvTW33TxYbzc7a0ejvIDnirthNy69OndXPHuLkb1SD728iBOCPRuv+byBhws9dVcYPYDrCz0sZ2c8ZD8ru4lPAj154xO9UH9AvUN/zzwXx3+8Yz+rPIeThLwz12C8GM98vYgrgzyHB4S8J1dtvDg3Wz2KNwE8LRdnvXWzlrwqD2o9Rs/KPF2nMbwwV+M8OW9aPDcn3LwgJ/U8bZ8gPYbThTwmp228Ilfyu4cbhDwgn3W8Z1envDlvWrpxTxs9WUc3vXkLFL1P58G8Kh/pO0tHxrxAT1K8Fyd/PIKnCT0Zj3s8eX+TPX/vDL2Hu4S8eCOVu0o3xzyJYwK7QZfQPFznsjw3J9w7JJ9wvTPX4Lwun+Y5HJd4O1pXNjwt72a9Ii/yPFyvszsx3+I6K9/nu3tfED0bh3m9IA/0PEL3zz0xL2O8Lf/luzmP2Lwf7/U8RkfLvICzDDwaF/u8itcBvWpfJL05f9k8cAsevIL3ibgtd+a8NA9gPXirlLwrR2m9NafePD0vVDti9yy+T8/AvGrno7t1sxY8Ghd7PFgfNzxgJ6+8bY8hvRuHebwcb3g9adckvGgHJ71XJ7m8e3cRvXtjkTxb7zQ9IA90PFP/Pbwip3I8eeMTvE4Pwrxh5628QYdRPSjH67xET028cp8bvVdPObxHH0s8dhcXvDf/27tdv7K6RJ/NPDyHVrxvl548ZucoO1QfPLwXr348Tv/CvCxX6LwsB2i5SU/IPF2XMj2FIwY8iGMCPIZbBbyBI4u8Yy8sPEb3Sjx7FxK9NG9fOIIbibwoL+07a0cjOnpnEr2GMwW9GJd9vGL3LDsyT+E7ZBervFIXPz0Y93w7fi8OOnTPGD07r1a9OY/YvEJv0LxdlzI9QgfPu0ZfzDyKNwG9bY8hPU6HQr1sB6I8hGOHu2J/rDx5W5Q8de+WvGTvKjw4l9q7ZjepvVHfPzsnV+07guMJPEnvSDqAY4y8JV/vPBkvfDxPX0K9fz+NOybnbj5H30m9Hj92O2tvo7w5R1o9RP/MO4U7Bz1ZZzW8O+/Xu3wLD7xZB7a8SufGPIY3hjx59xO8NEffvHPXmjt3+xS9IK90O4rngD1+kw68g4+IvCZHbrxv0x69dKsZPTeHW71rv6O8VQc7ulYXujw6F1g7Qa9RvXALHr0531g8ZqcnPUD/Ub2JN4E8Rr9LPF8XMDxoZya9XB8yvEtHxrtUl7w7Vo+6Oz6n1LxTNz28Mk9hOze/2rwhb/O8OrfYPBiHfrx/24y8c/uZPGWvKT1bXzO8hCeHu18/sLx1o5c8aq8ku2O3qzxD3868iCsDPB/f9rohz/I8KXdrPE1nxLxPN0I8gMOLuSOn8rwgJ/W8e2ORPDUH3jt4b5Q8SI/JPGO3K7wyd+G7La9lPTyHVjx9q4+8Ul+9OkGH0btajzW9XW8yvUIHz7s3T1y7b/sevVsntDxdpzE8Lp/mvDhfWz1RL8A7JIdvO2a/KL1wL508ZQ8pvYQDCL2Clwq8ITd0PW5PIDtcrzO9IrdxvXMPGj19+488eX8TPU2fQ7tgJ6+8Y7erO4Yzhb0yN2C8hCsIPVSnO7wjt3G8YwcsvUVvSz1sByI9P99TPE3HQzw6t9g8Lq/lvIjLAz2Jx4I6fUePPDgPW7pil608KtdqvB0feDsjj/G8S29GukDX0TxY97a8Q2dOPVpXtjwep/e8XacxvUPHzbyAY4w8Rr/LPBuv+Tx5o5K8KBfsPIFzi7uB04o8Uoc9vGAnL71VLzu7WQe2PG3HoDxcNzM9RI/OvCAn9bxYvze9Rl9MPIuDAD1dDzM8iHsDPW1zH70dz3c8eDcVu1A/v7w+j1M7PCfXPH3Tj7xqr6Q7L1/lvHWzFr11V5g8Vc87PCof6TtO10I8YMcvPTfH3LwwV+O8PqfUvHC7Hb1IL8q8iq+BOltfM7xLH0Y9iAeEvXlHFDw8l1W9eacTvDivWzwsV+g8Sl9HvDW3XTx+9468hCsIPU9HQbx1B5i8bXOfPE3HQ70jf/K8Iy/yPYuXALsoL+28Vrc6PX+3Dbwlv+48Ul+9vHGzmzuJY4K9e0uQOj/fUzx8I5A5WL+3PF2nsbx2Kxe8XW+yPH6TDrxLB8W7a8+iOi3v5ryDiwc8OQdZvRc3/jx4MxS9h+OEvUGH0TxJD8e7IIf0PBcn/7w9l9W8H7f2ulPXPbsgN3S6NmfdvIFHirtBl9C8a7+juxzn+LyEPwg8G4f5OkiPybxhDy49Mk/hvBj3fDyLWwC8bAciPYO3iDxMt8S8gasKO2wHorwj7/A8gb+KvC6H5Tx6LxO9M79fvGtvo7xXdzk6al8kPSTH8DxAn9I8gMMLPVovNjxXNzi4O1/WvGVPKjxK18c8YkctPEBP0ro5V1m9XaexvIbjBLwkJ3A8Tm9BPG3HoL1kd6q8Rr9LvEUnTb10C5k6S0dGvSM/8bxizyw8ZYcpvX/LDb13Jxa9gauKuoRjhzxwL508XxewvDmnWbxlhym9g9sHPSu/6Twtx2Y9OxfYvCIv8rxrvyO8Y1esPC5P5jxIJ8i8Mbfiu3pDk7wZV3y8dEeZPUSfzbmK+4A6WJc3vXW7mD15H5S7XIczuYN/iTpNT0M8Gc/8u14/MLw9f1S9YqesvDZP3Ls9b9W8fyuNO1g3OL1k/6m8Q49OvTvvVzx9Lw49Hqf3PGT/Kbwhb/M8bZ+gvSgnaz2LC4A7JV/vO0An0rtrbyO9SQ/Hu4PfCL2Dt4i8VRc6PXAfnjtk16m8OA9bPIEPC71dpzE4fvMNu3z/kDs+H1W8Gnd6uEK/0DxW77k7fxcNPWLPLLxhN648XQ+zvFkfNz1RT768aSclPT6nVLtQR8G8fOsQvWffJj08N1Y7Mv/gPGc/Jjxlh6m7dk8WvIUThzxvl568X48wO3RvmbxpJyU9M5ffO3gPlTwWT389ZU8qPFf/uLsjt/G8i28APXOvGj1Sn768Nd/dPGUnKrxMx8O7OVdZPRrf+ztkP6u6g9+IvDxf1jmDQwm9Sr/GvHTjmDtI70g7cH8dvWGHLr0wZ+K7aockvSQn8Lwnp+28Lf9lvUb3yrtk76q7Wlc2PYfjhL2LlwA8iAODvUIvTz18Rw++btMePIJvijxmVyc8TO/DvIGrCj03D9u8egcTvWknJTpk1ym9dqMXPR+39rx4k5M8VVc7vE2vwjxrzyI9YL+tvGf3J71Uv7y8MB/kPHBrnTxXJzm9a8+iPX5/jjtfn6+7Nhddu24noLyKm4G7Nk/cvH5Xjr1UR7y7P+/Su0vPxTyCM4o9hkOEvIZvBT1sfyI7TYfCOEt/xTw1L148V/+4O4ljAj1tj6G8WIe4O3ETm7wiR3M9bBchvVs/Nb1od6W8b+cevHALHr1Gv0s9fs8OPUQ/zjxgvy29gpOJPXi/lDyJY4K8NG9fvDDP47wV73+8b/ueO3Qzmbwan3q9VOc8vXHLHD2FX4a8bFeiPW4nIDw4D9s7dxMWOnFTHD13cxU8gIuMvBlX/Dxzhxo8XG+yPSlP67xTRzy7chccvXErnDwXn/+8OffZvDJP4btlTyo8Yh8tum1nITlbJzS8iScCvXETG70ZV3y7ZF8pvVG3P716ixG8eF8VvYQ/CLwYb/27Zn+nPFL/PTtGR8u8MyfhPGT/qbx0kxg9Qa/RvHEbHb0/B1Q9eCOVPCtvaTyLM4A8TcdDPIsLgLwkF3G8VOc8vUAn0jsbr3m9hxsEPR9P9TtCl9C7hjOFPErnxrsmH268eF8VPHaPFz1zNxq9hO+HPIrTgD0z/2A9XvcxO37LDbx0k5i8gUeKPGynIr0pJ2u7IefzPIRTiDuLR4C7ZYcpu3rfEj1Bh1G9eVMSvRfHfztB51A8O2fYPDUHXrw539g8V684vXfrFT2GD4Y8S5fGvH8rDb1yi5s8hm+FvHoHE72C44k9Q9/OvFvvtDqIx4I8iAODPH4/jTx7nxE9L7/kPCN/8rxMV8W7XlcxvCT/77wW1/48Gt97vD4vVDxP58G8V/+4O2bnKD00l189c5uavFXHubsyN+C6Kg9qvXzDEDwej/Y8hRMHPTXf3bxP58G6WL83PTe/2jxbh7O8iq+BPIBLCzxXN7i8J4/sPBcnfzxM78M8gMMLvTmnWbuBIwu7L6djvWx/ojxmL6c8OK/bPHFTnD0zN+C7Nw/bPIQnhztPp0C8ZHcqvGZvKLyJdwK9Vme6OS6X5Dxyhxq9cT+cvIMviTwa3/u8cM8dPC2fZjyDV4k9ffuPPWDHL7xKX8c8TH9FPVQfPLwuX+U7goMKPYYzhTyHGwS9LFfovD2X1bx1f5g7LufkvBlHfTtR3z+8iAODu0FfUTxYNzg5Fw9+uz2X1TxyFxw9d3eWO1AvQD1W17i6LU/mPXM3Gr1rvyM9h5MEvRevfjs+H1W8zOwJvXWUPLsZ/v281MYhvKzR2Lt24k+7GogjvLyjUbyw9yQ8bIQ2vIRr9LzhbQ+8aY8ZuzvTHjzm5i08ajYju3zlEzxhtYE73danPCY0UL0CF0A8l6SKu6k1sjw26H89WPjNPKSeyjykvBO93+mNO6k1sjz/VxE9AhKBPCegLLyKUG89FDINvbInbzswkum85A51vCD8Ar1kwsO8asWHOxZi17zbaks6YLrAPEy9vLztqCA8UcU/vMWz1zzBOjm9S28pO5v/X71kUSi8IKMMvHPVDT3EKhe84W2PPG4mAT1JkjG9R0ndvHJpsbwnEUg9BNGvvJrPFT0Iu2k7I5ipvOp9lTyK31M95zTBu+HA4bspfSS8Ow7MvIHPzbyG0hE9Fz/PvDVHmjs860O9VVwnPbYv8roNpgg98iG/ujJv4Tx24k88KQwJvSo807wNpoi8YLpAOxQURD1IJlW8PFxfPVlMhTwFAfq88j+IvMoPkjuKUG+8yg+SvHt5N7wbR1I8Qu6HvVlp6Twv07o8biYBvJ3cVz1Huvg8PFzfPFq3/LwrkAo9U2eKvUi1OT31ER09tVJ6vA+bpbul8gE5PFzfPCcvEb2hAiS8XzEAvWmsfbzu3g69U4RuvE2f8zzyktq8EjdMPT45Vz053oE9b69BuyyKZrsjCcW7YEmlu24mAb11lDw8bPVRPXvq0ryWIIk9453ZvE/QIj2nydW8bPXRvOwBl7xOfOs8OaJvvcq7Wr3hT0Y90x8YOsNNnzyIAly97AEXvNTGob0E0a88zASvPEFk4jvHH7Q7jLcMvZDETrxLbym8pgonvZQ97bwOTRK9O2IDvREHgj2+8eS8DOZ0PJJmGb3Ow108kmaZvLWOjLz1oAE9g3EYvJeGwTzYJxs9G0dSvFq3/LzwteI81/EsvKnElrt+FV48GmraPGGXuDySfr49rGC9PNUUNTt9wou8y5hSOW6XHDzJ2SM8sEp3u+8sIjyiVfY8CErOvHi/x7uhAqS8fFavvG90lLyuAoi82bDbvHgw4zvq0Oc8Xk5kO7VwQ7v5xei7+xN8OpoFBL1ebK08kYP9OzIcD70x5qC808tgvU6aNLuhcz+9bWEuvH4VXj2yJ++83L6CPKNuALysQnQ9YEklO2F57ztwjDk9stQcPG8+prvjndk80X3NvMeQzzwxdQW9vDK2PERyib2BlCA9uxqRvHgw47w4VFw9yyc3vW3wkr1OC9C858MlPfzw8zwv07q8kTCrPN3WJzsg/AK7m/9fPaxgPT2lYx0922pLPLBowDutPbU8WtVFvAoJ/brMBC+9tOeCPHs+Cr2hkQi8/noZPOQJNj0aatq8TKWXPBgEIj1mLiA9OKgTPKPB0jx6lwC9dzaHvFuyPb2aQLG6tf8nO0gm1TtOfOs86oLUPHl+9ryWbhy9M2oiPZpAsbswPxc8829SvR5y3TzIi5A8jCioO4d5G70Q0RM8C3VZvGqnvjzgcs498Njqu3ZT6zuF19C8ZMJDPQL5drzzHAA92T9AOxg6kL0V2Ra9aax9u8uY0rvnpdy89b1lvaqhjj3H5Ia6pgonvVFUpDt/Y3G8JOY8vnZxNL02Bsm8JsM0vbJjATt+Fd46xdEgvVVcJ719GwK9pA9mPVeqOr0g3jm90x+YOskyGr0UhV88F7BqPcH/izzBOjm8uzf1PCeCY7w8zfq8fowdvDWabD1ZaWk86MMlPLD3pDyG0hE8VBNTukAREL0H3nE8F7BqvIgC3Lsyb2G8+hkgPZNg9bsCEgG9yWiIPCN6YL0CEgG9/us0PB6QJjpKVwQ9IbuxuyN64DxXqro7yix2vdLpqTydTXO6hIk9PHVZD73DTZ+8c7fEvPP+trrsrd+8oCWsvAuToruNmcO8D/SbPPYRnb0/NBg9emESPPKwIzxSwAA9ilYTvfZHC72bHSm8rCWQPKPfG73UVYY8UVQkvUOVkTyG0hG9Xt3Iu++FmDzI/Cs85JiaOrpzB72fDQc9/1eRvPx/2L0tZ168NpUtPNeAkbskBIY7e3k3vBDudzxvIF27LBnLvAU9DD0EloI+Vj7eu2EmHTt8Vi+9lOoaOicvET2aQLG7QfNGO7CGibybrA28sPekvM3m5Tx+Fd67yPyrPE9fB72p+gQ8u+SivML55zybrI095OvsvBpqWjppWas8jBADvfx/2Dwthae9ABx/vD6q8jy6cwc977uGvFRhZrwFrqc7jLeMPM7D3TyRMKu72CebPLla/buU6ho8IZ1oPEylFzxzRim8MuB8vOByTrxhlzi9gxgivSOYqTxCQVq9DOZ0vPC14jx5uog7F9NyvPiVnjuBlCA9fjMnPHNGKbxYFhe9x5DPPFsj2bx+Fd47Vq95vEi1ublYFhc8wTq5PGQzXzwRfdw7ZOCMPHBucLu5eMa84hQZu21D5btTZ4q88+DtPAht1ruYgQK9vg8uvYwoKD3juyI82ER/vB4BQjxMvTw7bUNlvMKITL0sbQK9CifGO8IXMTy/7KU8whexu7zBGr0igAQ9KlocuphjObw2Bsm8whcxPCTI87ydiQW7GM4zvPsxRTsSVRU822pLvLK2U73V/I88htKRPMT0qDyl8gG9Wb2gO4KsxTwhnWi9vDI2vZEwqzwa+T69aqe+O23SSbzDgw09eN0QPcRHezzR7mg76S+CPVRh5jxt8BI9AP8aO7Etkzz+zWu8ZMLDPA/0G7rZsNu8mrFMvKxCdDzHAeu6Klqcu6dYOjwFric9byDdvKgdDb37wCm9fob5O9o6gT0EBx49rT21upGhRjz64zG8cVEMvAzJELvNyYG9IZ1ouzNqIjqNmcM87t4OPTx6KDn64zG86PmTvYXXULz3R4s7IUqWPLJjgbydazy9pfIBvIRr9DxSipK8UxNTPKVjHTycUxe9oJZHPNhdCb2diYW8yTIaPHLazLtclPS8XY+1PPZHiz0+jY68sPekvHs+Cr3nFni8ci6EuwRCSz0G5JU80ZsWPS0UjL0i8R87QYIrvV5srTyuAoi8AhdAPfwxRT1A2yE8DaaIvOCQl7syHI+73Sn6vEGCqzxtYa68R0ldvXBu8D2w2Vs874WYvIeWfzzD3AO9mGM5PNdiSLwNUtE4QrJ1vaCWR7yUzFE9RYouPFequjzIixC8jXt6vG1D5TtnfLO8bUNlOXc2h7wqWhy9oCWsuwf8ujtsExs95c6IvZ2JBb22awQ8mEuUPV0emjt8Vi+8NUeau6+pEbzrX0w82o1TvfTDCTuwhgm9/6pjvAIXQLy56eG8CLtpu4iRQLuWGmW8dnG0vB5y3buvbf87gjuqvPVqEz0jemA8vZ6SO9qN0zySZpk8ilBvPJ36ID0SeB088j+IO6xgvTsHbVa58NOrPHsInDzy5pE9asUHPXYAmTytH+y5D5slu2lZK73UVYY8c7dEPYDtFjxkUSi81RS1OzNqIr1fohs8xGVEvEvgxDzC+We9/6pjvHIuhLw4AYq9kImhvBu+Eb1prH08bEmJPMIXsbzYXYm8ckvovBI3TD1OfOu8uGAhPM7DXTzpoJ281fwPvY6UBDw4VNw8xdGgPI4FoLxG9gq9voDJvCrLt7tTZwo9byDdvJQ97bzGB4+8MCHOO0Znpj1dANG8S28pvMu2m70RWtQ8p+eevNuIFDyX91y8JqVrPMODjbxZaWm8YlwLvRvWtrz9f9g6kRJivaI4Ej2Ne/q8LG0CvBfOM71xUQy9rxotPW1JCbzVFDW8/6pjPJjUVL1CsnU8UsAAOuXOCD0/pTO8HgHCvNbZhztRVCS9B/y6vJA16jwekCY9HLjtvJ2JhbzB/wu9nw2HOsL5Z7xV64u9TKUXPKr04Dzz4G08jQrfPI52uzyOmcM4aqc+PHZxtDyIrwk979jqvK0f7Dzlzgg9L0TWvGiyIb3RDLK8UTbbPFTwyjw+qnK6oJZHPCjWGr1qifU7ZmSOvafnnroy/kU6XmytPeMsvrxg2Ik8YJx3PdWjGT2mXXk8r23/vBSF3zwElgI9L9M6Ow5NEj2geP47T3esvNgnGzwPoOS7+cVou/WgAb0TiwM84U9GO9GbFr0U9vo8sgoLvUzbBb2Mt4w8ndxXvPqoBL22L3I8WvMOunihfr0ekKY7fDjmvAQHnjwR7ne9+cXoPEmSsbyZKAw9IUoWvlfIAz2Cjvw79rgmvESttrwp0PY8s5PLvD3mBL3ju6I8IvGfvBZi1zwOL8m8PxbPPAWQ3joCEgE9RB5SPYszC7zHkM+8bdLJu1TwSj0qrW48CwS+vOkvgj1t8JI8KV/bPPsxRTyHln+8DcNsOiDeubxXjHG9hWa1unkrJLyRocY8sEp3PS+18TpgnPc8kb8PPEjTArx+pEI9DcPsO3LazDzp8+889G/SO39jcTte3ci6y5hSPVHFv7wISk69c7fEvP7rtLzaOgG8rxotPY2ZQzzcvgI95shku55IND2vGi2872dPvO03BTvaHLi62uGKvDaVrTwz27288QmavOOdWb2nyVU9uJvOuyOYKT0LCX08rT21vMcB6zwXk4Y967ODPBHpOLwPmyU94ONpPCQEhj3SQiC9M9s9u6aZC70AHH88BEJLvEpXBL0Uo6g8im44PVfIA7xYh7K8W9AGPKnElrzjSoe81fwPvF+//7zBOrm8wf+LvEjTgrykLS+9xCqXPPv2lzwjmKk8IE9VPItLMLp8Vq88c0YpPefDJb2l8oG84OPpPEZPgTxpykY8dzYHvDudsDr5VE29UeOIvC2FJ72sfga9L9M6vS/Tujy1Uvo6GogjvfNv0jxZvaA8eKH+OzYGyTyOlAQ87TcFva4CCDyIICU90e5oPbU1Fr0LCf284HLOPAwiBzyjUDe9v13BPEVsZbskV1i8biYBvAIXQLz90w89yyc3vT4517zO4aa8uGChPD3mhLxLUeC6jZnDvK8aLb11lDw9CUpOPNtqSzzsAZe8jXv6PGJcizv1oAG9POtDPdfxrLxvr8G8tTUWPceQzzwYq6s86tBnPNgnmzxSoje9fFYvvGyENrwGkN67JMhzvAbklbwsN5Q8J/P+vAhtVjz/OUg9XY81PTNqIr22TTs8cVEMu15OZL3/XFA7jnY7PbJjgT3YRH+88CZ+PC32Qj1dHho90kIgvSwZS7uzIrC8RB7SvGM5Az2iVXY6KdB2PKFzvzspsxI6ElpUPOABM708eig9hGt0PAsJfTwNyZA9aaz9O0gm1TwtZ966R0ndO3R8F71n7U68qRfpu5oi6LqNe/o6b69Bu1CtGr1Y+M07l4bBOjjF97t9wos7TEyhPWArXD1qNiM6S/6NOQYaBD2QxM68vfeIvDIcDz1Rp/Y8PlegvAt12bwEBx69vvHkvM8XlbxQ6Mc7kTAru0y9vLwa+T48CNkyvA1S0Tyeuc88izMLPeFtj7wwIU48yrtavGMDlT02Bkm9Ee53PfBEx7uBz80867MDvLdZx7xDd688CbAJvT1Aq7vximQ7Oj6APNGfirwi7/Q7b/iHPK+VgrxUkSa9IeKRO2UgCLvCUmU8USd0PSRvUrtblXw8TMSZPNp3Cj1xr668QwJFPCcmebylHjI8+JWSPYLJpTwI/f08dvzdvLoQ7rstxQQ9t/gXPZ5RJTy+PH+88yvgPAlcvbyNYRS9QxaAOpzRx7zaIz688f/OvJECED3XDVi9CtEnPP6MhTwM3Bq97OnoPBPTjbwbl1K8Df04vZ1n0LoyCWy9F0ojvFZIzTueiO48AKXbvKsBajsrkCs9mNx/vRiM37wk7QS9FWDOO8dSILxuDjM9i9juuxCeNLyva5y6xt01PeNlNTzIiWk7Vl74urY4qbwetoC84c8sPY9YTL2kiKm7nnuLvSTDHj1+X3O5VMjvPPp2H7qCySU9sIy6O88qoLtkbfy86z01vYvY7jxM2kQ9mNx/vMjHCj2T45w8CHLou0eNlbzwUxs8yqiXvA1yo7yaXF28/VcsPNBUhr1DI2M8Ss9RPaT9E7xSp1E9SAIAvLdvcjy478+84K4OuyxQGr3adwo9acGDPQ39uLzdT0+8VLJEO4ffCz3AhZO8nxGUPHqHLrz/14m7ri17vEyG+LzMFLo8Sa6zvHszYj3DPLo8TE+vPWbMu7vIH/I76shKu9vCjryP95y8/9cJO4ffCz29WYK55RxcPWSrnbwW1bg8+nYfvTIJbLp08Wq7KSSJPAue+bypa2G9WXRePfjteTxZ3lW60zUTvXoSRLtuDrO9GIzfPJvncjxXvTc8SuOMOs8JAr0/1jO7RqNAPb0FNr3LaIa86CdPt1SRprzovdc8289xvXNFNzv3zFu9Ii2Wu/vBo7wj+me8Ka+ePP/XiTyw4AY96z01Pa1gKTsiuCu9OhQaPRE9BTuFC+I8ARrGPAvyxTxvGaY8ORSaPUz7YjwIOx88oKccvVDwqrznnDk7E9MNO1L7nTyJIUg74Ab2PCu6kbxoYsS76b3Xu/8O07z+eMq8iHWUvH4+VbyYRIc7ohM/PRM0vbwK0Sc8zlZ2PDw1uDwXSiM71HfPPM4frTusl/K7JMMevYcqkL0eF7A75ZFGvd0uMburAWo9LAUWvQueeTwhuCs8jTcuPSVZp7zjEek6HzhOPVrpSDoCjzC9z5SXPE9aIr0JXD09vybUvGZrjLycZ1C9dVAqPbzklzrTVjG9aQ74PHcd/Lu1F4u9HAw9vDGHHj3YLvY8ZNWDvCVZpzx1ZlW8mlxdPACEPT1Ypww9BjCsPBRV27wadjS8cI4QPfvBo7uQt4u7PgAavdchkzzIH/K7APmnOxTKxby5A4s8BjAsvKUesjuObnc91PUBPSOigLo6n688o7IPvbh6Zbzl5RK9u4VYPKDnLbyaXF07tmKPPMBH8jzwyAW99PQWvQalFj384sG8xWjLPCItFr17M2I8L6aRPMV+9ryRD/O8xxR/PC9o8Ly1oqA8ARrGPabKZTyP9xy8l4SYvEmYiDzR6g69uAV7PJ1nULwnm2O9waYxvd2jGzyJzfu8hF+uvCn6Ir1NOYQ9DFEFPCuQq7zXIRM9x1Kgu+HPLL4Tqae8yx2CvBV2+byFSYM8qJ4PO85JE729G2G8l4SYvFJwiD3qZxu9ypRcvSOF/bxcf9G8EzS9OwIaRj2e3Lo8t20CvKvKID3UAuW7/I71u7pkuroLZzA93mOKPKx2VDvHc748mrCpOyXkPD18kqG8rD+LvLfOsbyJIUi761NgvPOpkjxtmUi8nojuuyKiADwLE2S9J5tjvYI+EDyZxlQ86BEkPZH5x7sPk0E853ubPNHqjr11h/M7dC8Mu4OJFLxVURW9fl9zvFdciDpy0My8UhFJvW4v0bwkOIm6T1qivLhDnDzrkYG98SBtPVMGETxtOBk8Otb4PFU92rxkNjO98XQ5vAEaxjwXv428vu+KPB/XHr2wK4s8d4UDvSj6ojsadjQ8kQ9zPDTdFTsfOE69LtJnPCZ6RbzVAuW92TlpvN0usbvRwCi8e/wYPBKICb2NN6461ALlO5slFL1WSM07kqV7PndxyLxMhvg6E9MNvW/4Bz0h4pE86lPgPFAakTw36Ai8KPoiu8YxAr0ohbg8tLjLPBV2+TwiZF+9PwAaO4yhpbwTqac8erGUPTBzY7tTp1G89T+bPEDhpryYzxw88XQ5vYSATLtqDAg9H075PEZPdLwjeBq9ZVdRPCiFuDyDAO88FMrFvFuImTxHjZU7obT/O8qoF7zF0kK82iM+uz61lbysP4u6hzdzvUZPdL11ehA8avhMvQbc3ztA99G832MKPNNWsbyu9rE8QlYRPb0FtjuJIUi7uhDuvCn6Ij35K5u7r6LlPDrAzbv76wm97mnGO0WsCD1zb508+ky5u41hFDtKWmc7ZNWDvOzcBb1UssQ74vDKvLdvcjuxdg+9vRvhvKBcGL3wfQE9iiw7u/m2sLw74Wu7zMBtPISJlLxBGHC9SDnJvH+dFDvkcKi7Q6GVPLDghjwfOE696CdPPY7jYbtYU8A8w+htvYIAbzsXgey8APmnu1zTHTpB4SY9by/RO8qolzngBna9iAAqPY5udztoYkQ9+0y5vLA47jo61vg8QY3avcoJR722w7487/TbvAlcvbuDdVm8HowaPcwUOj3u0z09vnqgPPkrmz0Lnvm68IpkPfF0ubxJrrM8W4iZvLh65TzT4ca63ETcu7ND4byP9xy8+JWSPEajwDtbiBk8e4cuPYqAB71tRfy8ENV9vYDUXTzB0Bc9S2VaPPhBxjtXXIg8TYZ4vEkjHrvmHNy8nGdQvR4XMDwLZ7A8KjHsO9Gfij1daSa73blGvVv9g72ee4u8gEnIPNBUBrzCUuW7GuuevDgqRTwd9hE9+Mzbu47NNjw0kpE70Z+KvOkyQjxShjO97nKOO3b83bveT0+79iCovHsz4jtsr3M9YL+dOpQEu7w6ny+9gt/QvHA6RLz+jAU9xbwXunfmMj2CPpC9Q3cvPGnBA73wFfo8OJS8vHoSxDwom2M86hyXPOPaH70oEM68NVKAPIUL4rxKRLw8nHAYvcyzCr1XXAg+mVHqvKnpE73w3jA6iSFIvPIg7Tw1UoC8WKeMPMqol70FRte76CdPPbyQS7qX+QI9dLqhvOYc3LyZUeo7VV54vJ/9WDzd2uS8lg+uvGbt2bwxsQQ7MPEVPRoiaL1lIAi9/hebu4lCZj0TND27WFPAvBlVFru6+kI8quDLvOYc3LxShrO7B9zfvLxvLTpFDbi8NN2VvB8BhTz7bdc6g3XZvNkshjzinH68hWohPL0FtrxvUG88ypTcPIo1A7zaAiA87kgoPDb+szosXf07x/5TPT7Ws7ynUws8O+HruhgKEj0LBgE9ERMfPeMEhjzI/lM8xdLCu32SITuyIkO9C575u2yv8zyzDBg8QwJFvG5FfLuryiC9agyIOyw83zsHUco84xFpvYu3ULy3zjG8rvaxvT61lbz1TP68FdU4u29QbzwQP3W8DR7XvMdSILwkhf07axnrvI03rjyTj1C8ZmsMvfXBaL15KO88acEDPZOP0Dx0uqG8G+sevQnn0ry7pvY8eNAHPbA47rw2nQS8uAV7vPNpAbyyDJg93+XXvP4kfrzTVjG9FSmFPalKQ7skhX08nxGUvIVJg7tVUZW8r4y6vBwt27xOBta6Wj0VOvyOdb13W508fQcMvQmwiTzdLjG9wUUCvWVX0TzDPDo9tjipvA99ljydffu8vrHpPHKvLjxIxN47SUS8unA6xLyY3H+8kflHvXgH0bxbXjM9Wf/zPPUVNb2STZQ6cDrEvJ0wh7w81Ag76TLCvDm12rzzqZK6V703PBV2+bkHUco8EdX9O82JJDyaOz+89D8bPUBsPL3lcCg9fygqPXuHLr0xZgC9nlGlPM4fLTye3Lo80/dxvP5BATx7/Bi9OkvjO9QCZb3UAmW8v4WTuy+8vD31oMo7qn+cO6ZVez1RhjM8hmqhu+s9tbweF7A8OX4RPfQVtbw/YUk9SSOevEb3jLxENx498iBtPCAio7x7M2K9YKtiuj7s3jvovde8H055OyT657xcCue8RYKiO2ZrjLwOCKy8SkQ8OyYF27wiuCu9q1W2uymvnru9BTY8tC02vUzaRD1joCq9s5ctPTnJFb4xx687WPKQPK4te7qvF9C8tuTcPEpEvLzUyxu99qu9PFWcGTv7wSM9fQcMvUTsmTzH3TW7W14zPTpLYz2yzva7jm53vAtnMDuuLXs9zh8tPKp/HLwUaZY9pyklPHVQqju8b628eXy7u38oKryintS8+EFGvSsbwTxqDIg70/dxPGTiZj3RYWm7/hcbPaY/ULstXf28MN3aPHaH8zzoOwo9VkjNPHDF2Txglbe6E1VbvD7sXj1plx28cTpEvdON+ryccBi7Fd6AvBMeEj2k/RM9TXBNPT1AK7ww3do8rIoPvMYU/7yKQua6LjEnvP4kfrwhztY8gd9Qu4mWMr0f1x69GiJoPcFFgryifTY9le6PPD61lbyrjH88Zu1ZPfrXzjzPQEu80mzcPEsuET0NnAk9mRohvXVmVbyfEZS8fAcMPG4Os7zj2h+9pggHPEfYGTzjhlO8hwAqvNchkzw7X56796s9vbetE7zFfva8OhQavZ9cGDxLLhG8KNkEvIPqw7ppTBk8JnrFPO99Abu8b608265TPLKt2Dxs7RS9KBDOvFdITT3tJ4o8n/1YPKT9EzsIZYW7mju/vJU5FL39eEq94vDKvGOgKr2g5y09+zYOvLLOdrxgq+I8XykVPZhEBztTHDw8xdLCu//XCb1GT3Q76t51Pax2VD3eT0+6eRuMPKJnizyqf5w8U6fRvOecOTxw2RS87xX6upwwB7wzaKu8VbJEPZzyZb0vvLy8OEBwPO69kryTbrI8I2RfO1CcXjyNYRS9WDIiPYxNWTxbXrO86dESvehIbTuTbrI7P3UEveOcfj1dkwy90Z+KvCuQKzxTyO+7vG+tPMI8OjskTjQ9C/LFvPMKwrzHcz48F0qjvLhDHLzqHBe8VuedPA8ILL0uWw27oHJDPcPHTz3Uyxu9by/Ru3VQqjxBjVq9zh+tPMPo7Tw5tVo91HfPvPBTm7ndzQE91HfPPD7s3rvLFDo8U3CIPJxwmLzgrg493S6xO0cYqzzf5dc6yB9yPDL8CD1DoRW9DansPCeb4zxEYYQ8EoiJPcBH8jYHGoE8yxQ6vHpmkDzjBAa9ndw6vC9ocLytIJi8RA04vPGKZDv0aQG9c+SHPIWAzLxQnN47dnFIu0EYcD0sPF89d3HIvMUHHD0Z4Ku7CMa0vBOpp7kFZ3U86qcsPcqol7zy6aO8qEpDvSSDDbwfw+O83+VXPBPTDb0H3N+8sq3YOXxxA73/mWg8qb+tPBQ/MDz9zJa80Z8KPTKHnjvTVrE963T+vBXrYz1bXrO8iZayPAbc3zurQyy7Zwa8u9vnJr1Xv+C7nE8EvREw1jzbxHE728viPPMXiDujFVW6FJ40vbt8Jbzi3g68dfQLu/aLvjysgQy89DmkPBhDgjwGsOQ828vivPaSrzrKkwK9MrebOyz+kz1aH1096KRfPVx5Ab0A8QS8+eTJPDwbyTxKAqg8I7vpPDreATz1cJO8Nk1uvScwubsTgwm9aUsNvOirULxSDco8qiD3u6s8O7zGA4g86J3uvCmCUzs9Nw29086ivOZnGL0IAn+8uBypvXu0BL3xy8U6ansLPZZfDb0fLAg97ocNPePddb0hVHy8y5navBk7eDskwlq8bKQYPSh1irwjrqC81QUSPMN5ZT0O18q6f0Nmu06ghLsvST29TWKkuknZmjwvUK688LbyOicpSL32b3o8hR8jPU1wBj2S40y7itG5PGWtsLsXBSI9QuIyvV/Y5Lzb5yY9eoNtPQNJd7zCcvQ8lVGrPHqRT7yjOAq92r4ZPF2iDr2lbuC8Dt47O7NVvzuQg1C996eCPMySaT19+Dy8UfkPPVfNQj2VNWc8E3t/vAbFtzwP7J28JzA5PTd+BT14Ria9UhusvHXmqTyFEcE85AccvNhk9TuQikE6YAKLvDwiujsUswe9UQbZO875VrxX2yQ9j3zfO+6AnD1SFLu8P3tFOzwUWLunwZO8nVzNPH9RyLug0Rw9KqWIu3J4Sz1PwiC906vtu5+vAL32maC7NlRfvJQvDz2o8ZG8pGiIvUxUQj3b5ya8A1EBPYUYsryYo0U7V8ZRvV2NuzzRdRc8OHAjPfZ9XLvEowu8w5WpPHqmIj3x4Bi9aUp0vAkQ4Tp19Iu8UQbZPE+0vr3RbiY8MaJIvSzU7bxMTVG8gri1vMljBD2L5gw8zhWbuwgKiT2QkTK8sPVCvJPxLj22yg48uA7HPCzizzxso/88pYOzPL7VsD1kkWw8f0pXO+U3Gr2QnxS9grFEPCYUdbuyOfs7w464PBSzBz1ENM28zfLlvMqTgrxUWHO8FJdDvEw/77uiCIw8pW5gvCl0cT0JHsO8mud9PNBntbjLoMs86cAjvcu1njy7bkO7/FKoOt4y0DspglO9s3EDvE6ZE73x0rY79ECVPbf6jL3H58M8oMqrPGa0IT25Kou8ETDWOpePiz33oJG706ttvd5VBT1Bxu68/quzPFo0sDweCdO8UiIdvdvL4jyg0Ry9NkcWvF/0KD0mDp2708cxvRN7f7z58is9V9ukPJePC7vgfXk8DIWwPHqKXrw7AB49FJDSPDm02zyldVG8PBtJveZL1DxxawK88LCavEQ7PryORgk9pXzCvKjjL7w+ZnK8X9HzPFEG2bx96lq88L1jvBzFGj3U3AQ8L1AuPSTeHr3Dowu9IX4ivYKq0zzq95K8VHS3PH89DjxycVo8PBRYvXqD7bxmtCG8Ly15vF/0qDy9uey8E4lhOm8YzzyQg9C3w3nlvG3GND1Wsf68vtyhPEnmYz2Yqra8PBRYvLWZd7ylbuA7A0n3vNO5Tz1kkgW9bb9DvUr0Rb1Pu688YAKLvGSR7LvG7jS9A0qQPU1ipLzFy/+8JhUOPVV7qDpiTTS+yDneu6aYBrtf5kY4f1FIPHckijyw7lG96wTcuzrXkLxn8oE9y64tvQWjG73Zh6o7wmycvDrJLjz58is9ffHLPOv2+Ts1Hgk9SgKovBf+sDnx0ra8h2rMPH42HbzJTrG7wUqAu90dfbzuZNg708BAvCTXrbwRRSm9q0OsO2pmOLxMP+87MaJIPMqFILy6Un88mxiVvOZLVL1LQIg7mud9PDwUWD0A8Os67nmruWJGQ7ysgQy9vc4/PIT1/LsMfr+8bdQWvNmVjDmS1Wo8y5Jpu+nAI71C6SO9pmB+vCF3sTt3OMQ8sAMlvV7LGz15RqY4M+4KPAx+Pz2o6iC9CSwlvQ7J6LzJVSI9xKMLvLf6jDws4s+8wnL0PF7SDL2HTyE8tJMfPRSsljyKykg8ET64vFWJirr7L3O8ohXVvUHN3zzk+Tk8vbnsO7Du0TvtVva8dh0ZPIKc8TxHlMm8ET44O+wugj45rgO9c5uAu+GZPbyE9hU9cDQTPDTtcT1OmZO8sjl7vADxBLwRMNa8WjshPZLjTDt9Bh88VrIXvW2/wzxOmRO9t/oMPP6rsz1KAqg7mLGnOzwUWLxEH/q8XZudPKtRjr1Wspe8UfKePGcNLTydXE07u2fSvKVnb7xHjdg8Qc3fPIURQb38Szc8E3yYO9O5T7vLmVq7fNagPJeIGrtvCwY8Z/KBPKjO3Lz7NmS9R5TJPJT4H73hoK68eoNtOlotvzocqVa8PmZyPF7SDD0GzKi6mgNCvGWmv7wO18o81gtqu7a8LD0O3ru8HL6pPLpg4Tw3aTI9vuqDuhFFqTxSFDs84aAuvF2ijrw1Hgm9mLEnPYUfI7z+q7M85meYPE/CoLvc9Qi8WOkGPRFMmjxhKxg8jSpFvF7Lm7o8Irq8P5eJvXXR1rygvEm8fepavHKGLTzkDo28zge5vMuZWj3+luA8XHjoPFkRe738Szc78x3gvJicVLzF2eG8XIZKPesSvjs61xC8itgqvWEyCT2dR3o7gGabPDZN7jvx2ac8qOMvPOG1gb2nwPq86/3qO0xbM7xey5u60XyIvTm7TD19/y09qOogPRSXQz2ef4I9bc2lO5U15zzgffk5BGW7O+iXlrlsseE82GvmOveSLzxvJjG9ulOYvGcGPLm9wF28ypMCPc4AyDxRBlm8JiLXvIwPGr0Fqow8h1YSPfRHhjxkkoU7RVeCu/MrQjzdJQc7HyUXu+GukL2NOCe8RDTNPIBfqjwqpQg95AccPBbpXb39iZe9aBuPu9YuHz2gvMk8t/MbuzreAb2iAZs7bx9AvPjJHrz7L/O7KpemOz+XibyYnNQ8A1EBvW8fQLwmDp088LeLugEMMDsRRSk8D+WsPIdV+btC8JS8g82IvB8XNb0LYns6sO7ROx70/7vBQw888cvFvTwNZ7qVSjq9cnjLO+mywTvj5OY8pWdvPFHyHj2Pbv28yVyTO4h/n7pchkq8aBsPPdYgPb2TBgK9rrEKPng/tbyCuLW8TqAEPU6Zk7zwsBo9C3DdvMXg0jz2duu8Qb99vLfzGzwJOoc82HnIPBk1ILyNMba85A6NuyKFE7xSIh08jTgnvSzwsbx/PHW84IWDvJU1Zz1yeEu9HglTvR778Dobm3Q7wBnpPCh1irxhK5i8WkmDOyTQvDyjI7e729nEvHA0k7wxlGY8ZbuSvHcqYrw3fgU86xmvuF/tt7x13zg9yU4xvL8agjwnNyq7/pZgPJePizyHY9u69EAVvNYnrrzmYCc9R6mcOm8fwDws4s+87nI6PJmjxbwacwC8DsloPWcGvDy9svs8w5yaObNxA7m7YGG8bwP8vJU82LtiRsM8fNYgPBk1ILz5+Ry828vivGJih7z2b/q7jTgnPPIQl700ECe9xu60vMb1Jb3zJFG8lUNJvYdVebzQTIo7T7S+vG3bB73j3XW9ZJ/Ou8ljhLx+Np084aCuvGpR5by6Uv+8cpQPPfxLtzyyOXs9QceHu01plb3yEBe9tafZu9q+GT3Do4u75lk2PDPnmbv2fdy75meYPb7VsLzRfAg8Dt47vcN5ZT1lrbC7l4gaPE1ipLu4Fbg8ffFLup5/grx6g228oyM3u7WnWbzj61e9nk7rPPs25LsnN6q8j3YHvc3lnDwX/jA97CAgPKRoCLxqe4s8AOl6vQ/lrDydcSA8rZVGPUZ/9rtkixS9hRgyPAH+Tb26WXA85TcaPd0kbjrzFu+7QcCWO9vE8bxkmN271QUSvdvZxLzr9vk7+M92vBODibsRN0c8xeDSPFEGWTz7L3M8Nkb9u73AXT2ox+u89ou+PNzulzwihRO9eoPtvFRmVTw3foU8k/+QPAkX0rqVSjq8JNetvPsv8zx81iC8ZJjduwa+Rrxf0XM9TWIkO3TDdDyHVpI9pYOzO/Q5pDv7REa96KtQPfaETT2lbmC9+zbkPOGnn7xC28G8CRdSPbt1tLscqVY8APEEvcgr/LpkkWw8Ot4BvdBL8brsJxE96/3qvMhOMb0MmoM8/rIkvZQoHjzWGcy8+eu6vMgr/Lv+iP63FKwWPXKUj72fr4A807lPvQEMMD1hKxi+6KtQvKfAejzua8k72ZWMvJi4mDyK0Tm9LNRtveQHHLsO3rs5T6ZcPR4CYryw9UI96ceUu1NSmzwJHsM88L1jvJQvD70wjg48s2MhPAyMoTvhoC69GmyPPfDEVDwLaoU83kCyOk1ipLxBv/06zfJlvLgAZb1MTdE8KXtiPMu1HjvOFRs97nK6vMgy7TxMWzO7L1AuvcqFID2T8S68Fvc/PCzUbTwLd065SzmXvOCE6rv+sqQ9y6BLvcXMGL3sLoK8h12DvFa5CL0hd7E9y64tPUeNWD2YsSe9itE5PTCOjrqrQ6y8MrAqvLtn0juPfN+8qzy7uU6ghLwk5Q+9dzhEvQkeQz3TziK9LjWDPcgy7TzG/Ba93kcjPKjHaz0vSb08LPCxu7NOTj0DUYE8skEFPZQvD72zVT+807JevR4CYjyo46+84wCrvKjjr7tnBjw8cn88uw7JaLyqIRA84IRqO3KGLb2a7m68gqPivCziT729sxQ8dzFTu0/CoLtoIgC8ozEZPHXRVjw8MBy9HLBHPcuurTudXE09tafZvKfIBL2/GgI9K838PDdpMjw/grY7DslovGD7mbxVeyi9DtdKvaohkLwabA+9OHAjPTwU2Lx85IK8dzhEuuZSxTxHm7o7HgLiu+sSPjxHjdi8EBycu/enAj0cvik906R8u8AuvDs5tFu8fz2OO0nmY71R8h47cmppPPnd2LxPn+s57l1nvOsZLz1ZGGy9/rIkvcgy7TqnyIQ8U1IbPAHperwDSfc8gr+mvOmywTwk5Q89nUd6vFkZBb1djbs7MrebOmcGPL3ALjw9enz8vLtuQ7uIhpA8OtcQvLWn2TuKysg8tsoOPSzpQL1iOOG8s3GDPMJsHLxtv8M8kc+SufegETwUkFK99XATuzT70zwczIs9vxMRvR4QxLzTwMC8Z/IBvZCYozzU3AQ8wBnpPJCDUL1PtD67mJxUPZCD0Dx0xI27X/QoPOB9ebuzVb+7JzC5PPnd2Dyv4Qg8ozEZvYURQbxaH928VF9kvfQyszuS6j09rrEKPZr1Xz0TiWE7hQPfPIBYubvj3fW7Yj/SvFo0MLx15im9C2qFPChumboLaey8ETfHvPVwEz0uNQO9WRmFPNO5Tzvgkkw92+cmPVfNwrwpdPE8NPvTPNBgxLx3I3G8byYxPfQ5JDyVLva8wmwcvGpmOLw5u8y7BqnzvPHSNrwRRam80qUVvFfNwjuMFXK7coYtu/jQDz1Hois8R5u6O9FuJj0Te388mLGnPZLWA71f5kY9ET64vFEAgTyaA0K81yX6u7NXG7vLJoG9wA0AvbZ1nTsk9G86hhIFPD8Bsjxw5eg8pkHDvHdfSb28NWm55dtevSA0pDzwE848wRLmPP8Hjzy3WOy33EBTPek0FL3j+I88/EgUvd46gTxhLUc9uBKBPbX55Dy2Vi+86JSHO2/G+jymYLE8kgwYPHJEcDyBlzi9HfQKvYxRMr1bEu48vpRwvLT3J7uA+tS80yGAPSDznrwdNRC8F1s8vCN2er3utEY8v48Kvf7JMrzgHVC9eRubvBdbPL2BV5+8NSjKPNij7zzb/RC99Q85PfWtCD259c+8R15hu9t+L7yYZ4q8Qp6VOwiGaTvutMa8qGJuvIOUD7uhZEY9ex1YPBtXJzxZELG81z8CvIrVebwl9O+6rDoFPErcVrznOma9lQssPWQpMj2pvA88x8qiu5FP2jsl9O+4JVG6PB2XwLzJrXE7n6j0O5YNaT1rZba74j57Ow2hQj3Iq7S879CLvNOGWTyehCC8vhApvWfGFTmigzS8nUntvIJ4yrsSX1E9t5QLvUKeFT3RRsA8ZWcOvCKTq7xRlBM8bWKNvN+7Hz3yzx89VlIivL4QqbwbGcs8MYkpPNxA0zoriwE9lM1PPCAXc7wPH7i85Rk7vMExVDv6DWE8Qr0DPS8qojy+EKk9TNaEvPsszzxGHsi7HzQkvPI0ebzn1Yy8qN4mPREh9TxlCsQ6Tnv3vEKeFbwk08S8ywcTPO8RkTqaxpE8a+l9PLmyjb1wYSE9nWhbvMGtjDxGmoC8N4dRPIsyRL2GkyM9r9zOPLtxiDz+yTI8b8EUvXe8kzyumQw9qKDKvOYWkjwfNKQ6b8EUvWJO8jzrk5u9Bgh0vCJVT71uxnq8bwKavS/N1zvdvsg87PMOvK7cTryGNlk9pgNnPA/C7bzBEmY9VlKivJyHyTtfDBw88DK8PJ6jjjzw1XE9VlKiPN2f2rvXwCC9UFa3vO12arxkKbK808S1vCAXczwMYSk9ixPWOzekgrx2An+8SvtEvKXfEr3v8iI72l0EPeJYgzvTYgU9s3aJvK/7vDxn5QO9I3b6O6w6hbt733u6omGdPOYbeLtg0Pw8K4sBvVOWULxXkju9IHKAO+8yPD3qFSa9xS2/PH34Fz1wwZQ8g7amu6LBEDsFRBM9gNYAPfxLPb3Higm8GHcBvcfKIjwtjT48wBJmvBib1bw8g7w857YevOx0LTubRzA9uBIBPQsE37xr6f270mKFO2/ggjxG2wU8LssaPdt+LzzIqzS9LaysPCZwKD2IdnI7xUwtvFkQMbxMO947XcwCPXQAQrsj0Qe94nzXPL4Qqb03aOO8v06Fu3ZdjDxDXZC8E9uJvCdOkTzcIeU89I6avL0wgzxOudO8C5+FO6BF2Lyv+7w8eIB0PA+eGT0cOvY8beOrO8dOar2tnDW8km7IvASKfjw4A4o8UPlsvEG9Azztduo8rCB9vBBdFL35CyQ90EQDOWCKET39Z4I9uHfavOUbeLw/gJO8EB84PMrM37xnK+88n+ZQvex0Lb0dtq69C8GcPG7jq7w0yUK8vXNFvT7ghj0JIZC87XbqvPSybjxa0lS7jy4vvssmgbvHKhY8I3b6PPmP6zttxD08CgRfvYTX0bx/vHi8/gcPPZQLLDuBlzi9+UmAO9PjI70MnwU9PwNvu0650zzsNlG89hH2PAkhEL1cMVy8X+0tu+2yCT2zV5u8+GsXvEFgObwGCPS82/2QOqy7IzulIBi8i4+OvZsoQrySDJi8auQXPRdbPLwJIRA9MQ3xu+6VWLzl2967VdZpumlEizwqbBM9marMO/I0+buXSJw8NUc4vR/2xzxF24U8LqkDvWflgzu0NQS8kuoAPPATzjsWPE69IVXPvFZzTTwtrKy7PwGyPIF2jb0aVyc93WH+OfEvkzsHhCw8IpMrvUrc1rzRRkC9Lgu0PMmJnbxZ74U8U7U+vPNOgT1XMAu9VTO0OuKZCDzXwCA9itCTPDimP7zWY1a8xO0lvBEh9b1f6oQ7CaVXO37ZqTwvKiI9bgIavdOlRzw4pj89+umMvYOUj7wFY4E+d19JvXPAKLobOLk7lIoNvPGPhrzsNlE9rbsjvHYCf7xmZ468Ep0tvNl/Gz3sNtE8l2xwPLG3jryBdg09C8GcvF3MAj1xgsw9ASt3uIS4YzxzoTq8dhwHvRFAYzx04VO9ZyvvvDTJwjtGHkg9R33Puqw/67yBFhq8pSCYPKQ/Bj0jkAK9lK7hPD8gID0elBc8lomhvFA1DDzsdK28D+HbvPrstTzWQiu9+c3HvACGhDrr8w69AohBvNOlR7wokdO7BQa3vP/qXbujw009rZy1OhibVbx0nhG9Q4HkO4K2JjxR9AY9xMuOvFyOJjyt2pE8s7lLPcMrArzSSP27pn+fPLYY07yQLq+8zwYnvUY9Nj1Dv8C7nyStPLT3Jz1ZlPi8wmyHPHBhoTzXgkQ8cGGhvHDlaDzLJgE9idM8veO6s7yAGUO7SJw9OmoGL72AtxI97DZRPCN2+rxTllA9KO4du+8yPD0u7EW9LI0+u4X2P73mOuY7ex1YOu7yIj3FDtG8tLnLvGFMNb0deFI9j9Hku+SYHD0AZ5Y8iTAHvXTh0zux+JO9JNPEvNEnUjzsNlG8TLeWu8irNL0uCzQ9Lwu0OjTJQjz1rQg9csCoPXKhuroXmRg9B6OavJ6jjjz9bOi7Qp6VPG8E17w+nwE8rZy1vOmZ7bsIZ3u7E/w0vJ1o2zwEpAY9N0QPvSNxlLwZ2TE8dn43PMJS/zxEHAs8oiGEPF7OPzyoPho8r3qeOy+u6Tw5woS8FJ9qvNjAoLsSfr88yK1xPSyNvjzlOCm9sBqrvQUlJbxohRA9GttuPLyxoTwOwDC9/YvWPCYTXrzu8iK8d19Ju2xlNjvyU+e8EhwPPVxQyrw5woS8ko22PJmqzDyhoqI8lQusPNcl+jymItU5GhlLvDwCHr3T4yO9AkrlvDYoSjyveh48OubYPJymt72sOgW8bwKavSjPr7u2lIu8JVE6PSJVz7vtdmo9gTUIvYIWmjwO4Vu8NAefvKr/0Tw2pAK9f9vmuitP4j1AIl288VGqvO/Qiz3XPwK9Q2L2PIjyKrwFBrc847qzvJERfjuvvWA8f9vmPDgDijzKzN+87/Iiu7S5yzyBV5+8E9uJPNdE6LyhB/y8yOkQvbnUpLvsdK08ijCHu9JDF73zsLE7uxGVvPJyVT2vGqu8g9UUvRh85zwdNZC8qlwcPNGjCr03hZS53902PJFPWrtwBNc77zK8OxF+v7oJxMW8SLsrPbe1trxsRki6b8b6OfFRqjx8WzQ93922uqhdCDxiqzy8/qrEPOJYA73TxDU9OKY/veI+e7slESE8YGujuj8BMj1MWkw9RT22u6xe2TwJpdc8oUVYPIwvG71QVjc8OubYPOTb3rzXIJS8i9CTO6di7rz5rtk7pf6AuyQwDz3/pxu9qF2IvTOLZrxCvYO9pmAxvIcSBb0BJhG9N2hjPH+8+LwIYhW9DILUvGJJjDzGTK06v48KPYxwIL0NP5K8OaMWvedZVDw4Awo9Wk6NPYd0NTyA1oC985HDvM2IMTw0ycI8/skyvK96nrqgRdi8XG+4vKGioj0Weiq7WxJuuM7ISr1P9y89YC1HvP2LVrv7iZm75beKOzTqbTyxFwK8MQiLvEicPbxUt/u7lktFvdDp9bx8eqK8LDD0uqOFcb3p18m7kRF+PMNNmTxHu6u8kTDsPB01EL3BUMI73jqBPLZ1nT3Q6fU7iZXgu1mzZj1xIBy9aIUQvAkCojzHyiI8GPgfvar/0bwG5B+9audAvM6FiLyhZMa87XEEvR6UF71FwX289jBkOykNjD38aqs8Qp4VvJ6jjrx3QNs8Kw/JvNAIZDxIfc+7kGwLvQOkhr2CWVy8ufXPu8ht2LvFa5u8E4D8vKGiory4lkg9hhKFvBY8zrrLJgG8Z+WDPZrq5To2R7g8gDgxPcOvSbuhJuo7jE4JvZwq/zy02Dk9hFMKvUAiXT3mFpK8wDHUu3xbtDxOuVO8gXYNvQdlvrwozy88AWcWvHFjXrwDyNo6ZWcOO7wWe7x+2Sm9zcaNvDTq7bw/P467ygo8vTPoML0UGyM8x0kEPO12aj24lki9NMaZPHv+ab1yoTo9Ka0YvqX+gDx/2+a5R15hO5iLXrzVBM88TZgovd57Br2VSQg7ED4mvAUGNzzXoTI82N8OPUm9aLxfDtk8UfQGPUO/QDsTe5a7KHLlu+v49DudRIe7PGTOvJbplD1HP3M8J7BBPGBrozufJK28e9qVu8rrTbyJ07y9YWsjO3n8LLyyVxs8wTFUPVPUrLz5CyQ9UBhbu4+tEL25FL48HtWcPIlxjDsEqew8jVNvu82Isbrdvsi8BWOBPZnq5bzLJgG9Zytvu/rKnrzRRkC9upOfPZ2mtzz8Sz09LI2+vBw6dj1kqJO8GvrcvF8rCjsVOpG8A6lsvJKsJLsU/DS9dV2MvQJp07y/8To9cCPFvAKnLz1op6c8OmIRvW2jEjsY+B8908S1PIS4Y7zzkUM9rDoFPS/NVz1Wc828B6MavB8VNr1BYLk70wKSvItRsrydxaW6DYJUPHIgnLoprRi7N0QPvONYg7wf9se8XcwCve60xrycpje9qbwPvNt+L7xyRPC80UbAvKo9rjx5G5s8CIEDvGmK9jydRIe8rZy1PEAi3bylQUO9BWMBPL6UcD0LBF88+QskPVE3STxHG5+8sxYWvRdbPL0U3ca7neQTvZ2HST3EDJS8YWsjvH84MbudaNu6qj2uvNo+FjsncKg7Pp+BvEYeSLxrRkg9wo6ePSTysjjhepq7xMsOvYIWmjw6JLW8aKnkvIRTCj0E50g74l1puzpDo7zg/mE9B6MavYmV4LxwgI8853hCPKXfEj2/8Tq8KFP3PAUnYry69U89TFrMO5APwbw06m28gNYAPY3PJ7wPPia9o4VxPcMMFL1K3Na7V7EpPCuLgTwm74k85jUAPcirtDxuIYi9SvvEO8iMxjua6mU6UPnsPNnhSzsnkVM7ncUlvU15OrqAtxI9ihGZPZTNT73XgkS8rHuKvBu3Gr1QGFs8YUy1vMBQQj2ov7i8dn43POO6szsJAiI8ulKaPKFkxjwyi+Y8B4SsO0O/QDtTd+K7C8EcPUZe4bwtbtC7GReOvMdOar0xars8/uggPZ1J7TyXajM9GtaIvJ2mtzzAEma8awhsO+2yCb2wWAe8ex3YvI1yXbzJzF+8peR4vPmuWb0LQjs9Pp8BvVE3yTz8SJQ8H7jrPAiG6TxxQrO7k4oNPSZwqDyLMsS7Sb1ovCwrDjxz35a7wo4evTxkzryDtia9BWMBvFH0hjt5Gxs8jrA5vaocA7zwMrw86dfJO3n8LLxRlBM9I3Z6PG/ggrwMYSk9aiWdPGcrbz2iZEa8mIveOzFqu7yvvWC8/aiHu9Hu5rzAaZQ8kx5yvV9UdzuccNs7rLmmvIQAwryVukw9Pm+iuwBGJLxLJy+9V/fxO3CdwrwncEg8SD1nPY51/TwH/LK8R3OeuYNkZzyccNu8mEsLvbbKPL0BO4g9yt/OPIr3Iz1n25g9tBasvCW8N7zGhMc82vLiPGUzIz3Scgs9YMyAPARIormdvki9/56tvEdznjsc0PG8ka0yvI2fGT2ueFO7yMaZOxNPGzwlCiW9+ADVPI1GkLz8W9y86+IkvR0GKTzBNFy9WskDvZdWJ7zKONg8TjRJuw1k1Dy8tYM88j+qvOaq77zKxxi9SItUu/yRkzwJCU08nyTsPBL1Er3E0LY8DKUnPRmrIbxTxgY8WzrDupJUKb107a27Y69+PMeERzyVCLq8aU1XvZtYpTygARq94jeyO/aOljyQEdg8x93QvEPt+zuYvMq8rh9KPHBc7zyaTAo96jsuvcE0XDsD+jQ9ROLfvBhdNL3ed4a8wMOcPC4x87wvtRc8GCd9ur4y3ruT+5+8GvkOPRZRGbxm8k89rdFcPfPmILsHPoW83SmZvOxISLzScos9LybXPH3xKbsNZNS8WNQfPPPmID0Zq6G8hw1cPFchjrxLP+W6OxQbOurWibsLsEM9JXvkPAf8Mj21LmI9Q3GgPXTtLbtX3zs8JLAcPHes2ryysAi74elEPLbKPD3Fdy09lGxfvLs9+rz8OAq6RpZwvKZpuzmuCBO82aT1PJWvsLuCC1699vM6PaR/8zx+mKA83OfGvE5M/zxgiq688dkGPZpjwTu1LmI7ySAiPKiBcTtFiVa6CKMpPS1bD7sd+ww9ItJvvDXELz3eTeo86+KkvHMuAbzVc4q8KS/1vCP9irxOgjY8WSINvINBFT0gE0O6jF1HPHS39rxSNkc7pc1gvFojDLzGbJE830JOPJv/GzzEEgk8PhaZPVf3cTxgiq48go4DvZUIuruwFC48/lDAvP/Bf70i0m+8r8ZAPWDMAL26JUS8l6SUvGOAEb2lG069rwiTvBJm0jxgzIA8MRu7O9eXW7xjVnW7NChVu1vhOTxfMaW8XNYdPZS6zDv+UMC6yscYO9VJ7rwdHt87eRJ+vY6rNLwoZaw9630AvewwkjqyIUg9hUIUPXtVzzqBQJY8nBdSPZ7WfjwDUz69ggveO8bFGr3Wovc7dEY3OCYiWzsH/LK8StnBPDxiCDpK8Xc7XMqCvNuZ2Tyrg++7cgPmvMcrPj1VIA89H2xMPImptjzZMzY8I27KvNXYrjxh2Js8LmeqPHhINTwZdWq9wY1lO4WnOLyrazm9p6sNvTHCMT3ZzhG9WzrDvAKsx7wxXQ28QSOzvGLwUT1P83U8adyXPB77jLyBpTo9cTkdvHCGi7unEDK8Ew1JPG8sgzyaTAo9VUPhO18xpTyyYxq8PdNHvatrOb0Rp6U7FFu2u7MKEbwkvLc8RDDNPM7Jlryj2Py8jUaQPWYoh7zeg6E8FKmjPb7Z1LxV6le7XMoCvY1GkLyRBrw8EWZSPLs9+rx/jYQ8OdFJvUkySzz3C/G8CfEWPIK98LzTPFQ9pgSXPGzpsbxEidY7DpoLPaxgHb7dpnO7hemKvBFx7rwvzc08fKM8PaCokL0pL/W85ERMvSQVwTzG3VA8zHspvaMm6rziLBa8/FtcPQxvcDwYXTQ7paqOPOOFnztOgja8hFnLu3HrrzyATLE9XzGlPDptpLr/nq28yRQHvR9VlbwBXto82Yy/vDY1b7uGTi88EHFuvMxvjjzr4iS77pY1OzIEBD3z5iA7Ntzlu2Uzo7uPuE49ATsIPcE/eDy8Pfo7KrOZuxRbNr0vXA49OsatPNmkdTwRZlK8Ae4ZvKMOtDxs6bE7EyX/vDGM+rz8tGW8eWDrPP6pyTsTtL+7xBKJuwNTvjvZjD+9K3LGPCYiW72Epzi5bOmxvBBCAT0WGmM9Pev9PO8H9bzqlDc9WFB7vSKvnTyiUIa8+w1vPC7Y6Twtiny8h1vJuvCjTzrF6Oy93k3qPDbELztj2Ro8nn31PIX1pbwH/LI8j6CYPJMT1rx5lqI8urSEPvLxvL0kFcG8oKgQPE93mrxnmUa8OHhAPYdDE7tm8k88g1lLuz85a7tDlHI9/OqcPL8QizyEjwK90X0nvI/5Ib1bOkM8XzGlPYXpCrz4smc8QIdYvKPY/LzbmVk8hw1cvXXtLb1GZ4O8OpB2PXwUfDykXKE7+w1vvJKiljy2sgY9KS/1vPwCUzzrMJI8YdgbvUBkhrzMnvu8yxWGPDc1bzxl/eu7+pAUvUw/ZbxIMsu6Er9bPPZMxLzZjL+8OpB2Ozve47yQamG85/hcPZW6zLp07a07iUSSPOGQOzwBOwi9xo9jPHDflLtJMss7JWOuvIZm5Tu85HA8Ae6ZO8QpwDsPyve8K8vPu5W6TL1h8FE87uQiPKutCz1d7lM844WfuzphiTzr4iQ90iSeuvIJ8zsZq6E8vYvnPJGtMrvr4iS9eO+rO3jjkDvzsOm8DZqLPOusbT1wLQK7r4XtPO/kojxbiLA7R2cDvd7cqrtPd5q84iyWPKmsDLtNw4m7rXhTvI2fmbxtkKi8QdXFPE7bPz1Ye5a6sBSuPKsSsLzGxZq7RL+NutqBI7zX8OQ8v3WvvKmsjDtCZYW9AzwHPS0ZPT08hdo8WXuWvPc1jT3rMJK8tL0iPfXbhLuKwWw8SItUvHujvDyIAkA8xo9ju1LdvbxWepe8/5KSvKHAxrzi3ig8wD94Pf85CbyCC168B1U8vbtnFjyG9aU9GqAFvUg9ZzxNwwk9gZoePKeBcTx/jQS9dlNRvCP9Cr254nI82oEjPD456zt5uXQ8KgwjOy4Oob38QyY80MoVPY7DaryIkYC8pVEFvXmKB7wSQ4C9o1whvEgalb333IO8pBtOvD8WmTzfm9e8HxPDvNlLbD16B+I8Y6/+PFs6wzxfJQo8NhIdvEsnrzn2mrG8snrRvEKU8rxHZwO8y8gXPMlujz3ZM7a94HgFu8rHmL0UAi29I/0KOiJWFLwY+I+8NR05PcmR4Ts+Fhm9QSMzvAWWj7w+yCs6kF9FvYeRADyWCLo9HF8yuqFPB73e9GA9iak2uqsSsDycphK9VsgEPfZker0pWRE8ZIysOebgJrmkG8485uAmveifU7z5Ngw9uxooPWaBELvMyJe8A8R9vBBZuLwcuLu7tQsQPMJqE71RxQe9HxPDPDKB3ry7Gig8iJEAvU40STsPAC+8ubSEvFPGBj27fk27mkwKPLNjGj3+khK8xt1QvcmR4TptkKi7/ALTvEfMpzuC8ye8CG1yvLQWrDs6CIC8twwPPTcSHb2dF1I8R+RdPHG1+Dzs14g8M4FePVl7Fr1vLIO75nsCvGF/Er0dd2g9jQQ+PZ0Mtjw8Yog7GlKYPKnPXryVr7C8whEKu/AyED1mgRA82Yy/vJtYJby0h2u6NtxlPPaOFrxjVvU8LYp8vZARWLzOIiC8qAWWOzbELzy0h2u987BpvKABGj1N5lu9/5KSvef4XLxgzIC8MgSEPPcL8TxGGZa8/Oocvd/RjryZ8gG8o1whPAShKz2zOf47nqcRvSLSbzwry0+8qq0LvBMNybsCrMc75UTMO4FMsTtxLYI9ZKRiPB2hhDwyaai9EU6cPVUgj7tzUVM8nKYSvGiOqjxs6bE73DW0vDNejL0lvLe7L1yOvB5Ulr0hCCc7LQIGvd8qGDycTYm9nKYSPOErl7q9aBU9A8T9u3g8GjyOw2q9B/AXOn2MBTzLLbw8P5J0PLbKvLzRGIM85jkwuhWeh7zBtwE9ilCtPJwXUr3kegM7ROLfuwfG+ztz+Mm825nZvBGnJb1tN588VNKhPL2L57zJeas8o9j8u/+eLbzEmv+7EWZSPNF9J7z+6xs9lkqMvHY7m7wexdW8b0S5PHG1+DxgMSW8ePpHvfJi/Lzh3qi86gX3OyoMo7xLJ688Iq8du7saqD3IQ3Q7X1R3Oy5nKj3InP07KVkRvcl5K72ngfG8Rn66PDOBXr1VOEW88dkGvW9EubxFZgQ9CKMpvLTg9Lun2vq8Lg6hu5z/m7vhkLu88DKQPOv62jwOmgu9ZP3rvDFdjbyyIci80OHMPDZfi7ySxWi9UyurPItoYzrv/Fg9+mZ4vY2fGT30pU29pxCyPEK+Dr6Ow2o8wmqTPCLSbztg++281nSJupIecrwvA4W85URMPGVLWb1vLAM9IyDdu2VLWT3uruu8vOTwPFrJAz0xtpa8HQapujptpDxN2788DUwePMsVBjtfii48LyZXvILzpzuxYhs8CKMpvFRDYbyhGdC7jUYQvY+4TjynELI5CKOpPJJIjj1jr/68840XPcyGRbvZzhG9ueJyPJBqYTyGGPg7JyLbPCATw7rymDM8gP7DO34JYD1TK6u83aZzvAM8B72RrbK7FAItvZ9aIz3fQk47S3WcPYLzp7w/byI9GF20vLM5/ru7JcQ8jXX9unXikbzJFIc8u35NvTKB3rz/kpK9KlqQPF9U97yQX0U90OHMO/gAVbtTnOq7Iq+dPb62Aj3b8mK8kUgOPAC34zxR6Nk8i54avb8Qi7w3g1y9H6IDPfiPFb0xXY28rLkmvXGHijtXLam6l/0dvEbADL0u2Ok8LmcqvUHVRb1U0iG9KBc/vLslxLxYRd+8K31ivHmKh7xu9ks8y99OvGmDjrzw2QY8W+G5u/mnSzxtkKi846jxvAUHTz0Zw1e8vOTwvNYmnDz46J48gEyxvEuY7rz+qUm9+ADVu7NvNb3knVU9go6DvT85a7vrfQA79kxEPJJ3e7mBTDG84d6ovH+NhLzmOTA8gr1wPU/EiD0NZNS8yy08vHzxqbx3rFo8g0GVu3WUJDz73oE8Eaelt35i6bxvRLm8jlIrPWyEjTy21Vi9Iq8dvcG3gbwD+rQ8S84lvfjoHrxc1h29G/qNPV+KLrsa+Q69IiDdvI51/btl/eu6842XvSEreT28c7G8NR25u7y1gzw6xi28zG8OPSqzGT3/ni092BsAvQtXursXD0c84dINvbji8jwhYbC8tC7ius+IQ70VwVk8TY3SuwTvGD1lMyO6FHPsutCgeTrj9t68uiXEu9mkdTyfs6w8P28ivZRJjTxfVHc9pcJEvDm6Ej0GPYa8XKDmPH7mjb1O2z89vD16O3g8mjtA4OG7/LRlvP85CT1s6TG8YvBRPTZfizwS9RI9Om2kPABe2rrriRs9+k7CvDnRSbw+OWu9ZoGQuySwHL16rti8kxNWvLWH67wMyHm8MAMFPXKHir3fKhg8InnmPJZ5ebueWiM8XzzBu8grvjykG8484TcyPGUzI720LuI8WuE5PQvylbwOQYK8Fg9HvVRDYTyYbl27MgSEvJ9ao73c58a8fbvyO+wwErzFHiS9SMELPXihPjs3Ep08g7LUOvdBKDuqxEI90MoVPLC7pDzGbBG9PrwQvGAxJTzi9rC7CwjDOwNOkL0jBsG8D4HvO69Ul7tVxlC8Ws8wPf9eYDzRjQA73lCTvXDcqbz7uEK9exeVPHKgPT2qWrI8tKDSu37IZ7w72xM9/nzWOz5Yhjy49Jm82kczPZ3ASj2NRFk9vwRpPXT0hLzXoRU8a8iUPBPGuzw9Z4E8QF/1PAQwmjtUxtC8D5BqvYL+ODpWmV+748k/vem0qbvY1XU9cKSDubZk5rwZky88CVMqvYxTVDz1vt28XVfYvKcGa73wcqK7/v0OvR7uZbwxSgy8jtSMPBLzrLzDOro8Y2A4PSp9GL0EO8+8b2rsvOhCbLwLCEM7GbElPa7TXjy7izy9kJggPXK+Mz1JDnO8/YtRO9kPjTsiFTy9c6A9PO8PYDxf2BA9ZuhfO5Dqdr2rSzc9kk25vBOZyjsocPI78VSsPAvQnLyIy6w7xO9SO5Jrr7t7Tzs8aMrpPBV7VLwNvVu8BvDnPOVvXbsQcvS8KaqJvLkZ/zthjSm9mIr5uzNkPDxchMk8udajvPFULD0vzRm8IgoHPYPgQj2eI408dihlu7TNQzxNJs68uRl/PbcDFT3dfYS7A3e7vJoarTyvNqE86LSpvMytyzzINB+86k+SvHYo5bvh3AC9EvOsPJhHHjuVEU09S1O/PEOKkT1IDvM6D4HvOxYLiDxtl129NFXBO2GcpDxn6F89i567PNfz6zzHUhW9aazzPCFgI73ow6S7hLPRO0Kohz3aODg8i4BFvfgwGz3hFKc7uritPAfh7Lxr8b88y+m3Ona4GD0SrIs85JxOOtXdgTwPge+8YO76PIErKj31vt28RjvkPHjseLwXP2g9rfHUPMIrv7vn4Rq8MlmHvOp4vby45R69wD6APA16ALvlftg8LKbDuy/rjzwq07S7GBJ3OkBQertueWe8oEjyOKGrtDw3XqE89etOPAz5xz26gIc83X0EPcgWKb0SVH68RtoSvIueO7x4U4G92xrCvG2m2Dx6FxW8TSbOu5d0D70Pge+87r0JvSMGQTytkAM8MoIyO7goejxiYLi8hKgcPb8EabzotCk6l6jvO9nVdTxHHe473V+OPICqcbtprPO83e1Qu9eDn71ueWe86XyDPW2mWL0ocPI8N16hPEOKkTz2oGc7u2KRPPDEeD2aGq08xI6BvYE6pTvDOjq9Ane7uvZdjDyvtWg7bZfdvFTVyzx8MUU8pULXul8McTwA0Z08qNn5vMbR3Ly/shI9caSDPK2BCDzDAhQ9s+s5PNHFpryJrTY9gdUNOqVgTTxS94e78VQsveptCDwcV0O6ip47vS1bXL2ntBQ9RviIvH+q8bxJ//e8gv64PKf3b7x8BNQ748m/PGNCwjzP1KG8Qe+oO3l8rLzv4m48/t+YvOGEc7udQYO8IVGoPOZRZzz/7hM9Bv/ivHGkA72vYxK9aQ+2O66BCL0ELNS8sRgrPFVWhDxPepU8febdvKtLNz1/Z5a8ySWkPCyXyD34kWy8KLmEvJymmrwtiE07L9wUPLdG8DxxpAO9leRbPEOzPL0cyQA8ygcuvfIYQDxNCNi8leRbPQsXPjx7F5W8X9iQPJJNuTyZOCO+upq3PNRCGbwzcze92MZ6PImtNj3IFqm99q9ivfnLg70Zky89LlvcPOb/EL3zJ7s8JjwSvE6nBrylUdI8p/fvPEZK3zoJNbQ8ekBAvChh97vNLoQ7jwhtPRLVtjydsU+80cWmuyT3Rbzi2Lo7hiUPPBWKT72l8AC9udajPIRDhbyqSzc8u3zBuq5jEjzBZys8ulMWuw5ciry5xyg7+HP2PDIsFj3X8+s77EtMvAEj9DpZ7Sa9AmhAPchDmjz3TpE8fpSHvBjAILwPPhQ9e087PDNVQTypQAK9aS2sPBpmPj3ZR7M8dQMAvUR3UD0jFTw84vYwvRbtkTsN6ky9xmEQvKVgzbwTnZA8+6nHPNVNTjzP1CG96cMkPb4iX70Txrs8+se9umfo3zwmrN4803q/vF/YEL1G+Ig8b4jivZ2iVD2inLm86ZazPJfV4DyWgwq91+RwPGrmCjyXqO+8RQeEvEBQej7SUZS9Q6RBvBmiKr0Uis87CwhDvLEJMD1gqx+8p/fvPE+9cLt95l08Wd4rPRBy9LqXqO87pVHSvOEUpzxtl928TqcGO9G2qz2RiaU7MlkHPeCi6bvWvws8kVy0PPghIL17MUW99s1YOy2IzTzJBy48u2KRvMye0Lxe2BA8/QwKPHsXlbweqwo9cdypO/K1fbyRiSU7HFfDvBJU/jsDdzs8T4mQPAXLAr1dBQK9s7OTO6pasrzfMp28idonveCiaTypWjK91GvEPJMvQz1HLOm7nMBKvIj4nbyZKai7NRnVvMr4MjwdDFy77/HpOs4BE7zgouk8aS2sPFm1AL3dz1o8qzy8u5B6qryFQ4W9DXoAPQx6ADx6RIa7mhqtPAoXvrzracI8wys/PchDmrwxEPU7BTtPPLpTFj0JNbQ4MYIyvXwxxTtuNgw8AMIivTvbkzzSmLU8XldYO06nBjzUa0S8dFmcO0pxNb119AQ7+AOqvPu4wjzMrUu8ECAePda/C7y/shK9f2cWvdHFJj1DpEG8MAF6PDU3y7oZsSW9P27wOjhAq7yp6HQ8IG8ePQGkrLweG1e8XipnvaG6Lz2qaa08u4s8PD2qXDz/MW89OxM6vDQ3Sz3Tibq8AMIiPIxXmrr+bds8qmmtPDzmyDzMntC8P5vhO7pxDDqae368pjPcPDGRLT1EbJu8ZBXRvDrqjr1G2hK7FguIPd6xZDwbSMg8DszWPNOJujt1Rts7u2KRvPHTc7xq5gq9MAH6PNawEDxfOWI8ycAMPILkiLxWR4m9i3HKu4naJz0hwfS75zPxO7A2Ib1Z7Sa8aZ34vPPvlLsBpKy8ulMWPJfV4Lz+35g80n4Fvc9EbrxHyxc9DdvRPKA59zy1oNI8jFeaOzm/crwk98W66m0IveL2sLz+DAq9YTcNvD3XzTzTXEk9CRsEvgzQHLwuPWa9MnO3vE96lTyKk4Y8xP7Nu4BYmzwK7pK8IG+evPV7Ar2Ct5e8ltXgu6DnIL2qSze8PpvhPal4qLwJRK+8/JpMPVTzwbshUag83X0EvW42DD3P8he9dfQEuxHKgbwi3ZU5BvDnPPByIr2paS28eJoiPEw1ybqXVhm7kjMJvdHFJryWgwq98ye7vOb/EDzYdCS7WT/9vI/FET2dk9m8a8iUPNJvCr0zVUG8JWkDPNfkcLuiZJM8CHGgO+HcgDoZoio9mrUVvCvEOb3h3AC9sQmwu2F+LrzDApQ8CGKlvFaK5Lvlftg7l2WUO8CFIT0jJLe87EvMuyPskDzw8ek852BiPJfV4Dzxtf283zIdPDUK2rsHj5a89V2MPYBYGz00N8s8V/yhPHKvOD091806BDAavcB2pjvWAmc80bYrvHwE1Ds3bRy8Fk7jvJkaLTy/haE8bnnnPM/UIb1jUT28cD37u3ndfTvVTU68AbMnvWy107z04Jk8kj4+vexLTL1MNcm8ockqvOO6xLoJYiU9r7Xou1hdc70nPBK9+HN2PM0uhLwClTE95JxOO9sLR71jGZc8KHByu8ERDzwPgW+8loMKPYdZ7zoaLhi5s6SYPQBBajtAUPo8pH5DvSIKhz3WL1i8SUiKPLHCDryQeqo88Ta2O2QVUbzCEQ+9KqoJvC9MYbyXt2q946AUPH+57LwzVcE82+Kbve3MhDsnf+27pWDNPCEzsrtSyha8EVR+vSEZgjujVZg7N3wXPU353DyZOKO8kXoqPX9nFr0ygrK7SP93O2QKHDw7BL+8T8xrO8glJLyxGCs838DfvFLKFrzBSTW9cNypvI4m4zwZhDS9Cia5PGbZZLuatZW7vTFavXptsTw4F4C8aaxzPFrAtbw4T6a8PPXDvBpbiTtFWdo8TDXJPFmXir3ljdO83yMivbcDlbx5UwG9eVOBPJ2iVLqPtpY9ILL5O9ewkLxfG2w9yuk3PC76irx+1+K8dAOAu8glJD1Typa90pg1vIj4Hb3K2jw7r7VoPIBJILr4MJu8CFOqvDoiNTvfwF+8Qf4jukX4CDx6NYs85h2HvVFNpLyGd+W7iDt5vAGVMTqsAFC72C2DveScTjtylYi8sBgrPcglpL3JwAw98hyGvbdG8DwK/Q2+mIp5u6D2mzvhdfg8EqyLu8LI/DykfsO8vG3GuxgS9zvraUK9FguIvKK6LzvwciI9yQeuvMrPhzw+SQs9AZUxuhLVtjyP+fE8s9y+PBJUfjzSej87ZniTPDfd6Lwv3BQ6YY2pPPqtjbxInqY77b2JvB05Tb1r8b88AMKiOhcwbTwoHhw9IFGou3RkUTwUik+53rHkvHX0BD3kukQ8UJ96PO6QGD0ZaoQ80hd9PJveQLwgsnk9vqOXvGGcJL1QrnW7LHlSvISzUb3VIN08ZRXRu1j8oT2m4YW8W4iPPQhxIL2Lccq8zmJkPFICvbvX8+u8uRn/OZ2xT73Ter+85W9dvfY/Fj1FWdq8EHJ0PTaajTznM3E8ys+HvKoxhz2Hd+U8969ivPMYwDyohyM9m97APE9cH72huq+88/pJvdGYtTuUoYC7KQCmuTapCL1KU787GZMvvPJFMbwl2U+8ZQbWPI4mY73SfoW9XITJvBfeFr0jJLe8CUQvvetpwrxSEbi8OLB3PMCFobtnyum7GBJ3PGZpmLzWzoa72lYuvTsTOr22A5U9CFOqPA3b0by/oxc9gfODO9fk8LwqtT68KaqJvTsEPzt+yGe9jTXePHl8LL1w+h87u1OWvDQo0LoVik88oEjyugeAm7zZdKS8cOskPAYOXj2cQYM94sm/uyjxqrxLNUm9c6A9PDGgqLyugYi7xY4BPR4bV7sAwqK7K4wTPPghID0mPJI7faMCvXsXlbz/XuC8GWoEPSqME71O2+Y8h4bgvKwPSz19o4I8qJaevDQo0LwDThC7W4TJOnndfb1OepU9U+TGu8Zwi7y3AxU93zKdPKR+wztyrzg8EsY7PSIkN71VVoS8IjOyPO6fE716bbE8OUArvFuIj7xXe2m9cAmbPKpasjwvvp49D65gvDFogjy3c2E8OECrvA+uYDsrxDm7pyThPHsxRb1ck0Q8uY+CPILkiLvlnM48lQLSvC/clDxInqa803q/PPyAnLqYqO86z/IXvK5yjbmGpFa8XQWCvJiKeT2bxBA8hiUPPZvEEDxRrnW8pEadPGhanbzTXEm9R7wcvZQCUjrracK8gQ20u0hmgLpEpMG7sDYhvN6x5DzqbYi9hZVbPGMoEj2edeM8I90VPcdDGr32XQw9D5BqPeqHOLwFO0+87DEcPSctFz2Z8YG84mb9u0FBf71OpwY8tpHXPIdZ77swaIK9TBdTPLnWozw4sPe6FXtUvcvLwTxFhks7oDn3PMh3+ru4jwK8QuAtPTAu67uJvDE9x5VwvU6nBr0aZj48gd31u5SXCbt/Ag+9L92BPEvZ+TqOOzC9+veYu/VGaTogY3U8V0jeO415Vr0KIJA74Fd2vWr0CDw2nnc9y8J7PfCkhjw3Blk7riM9Pbj9QzwARok7t3bPvNriDz2lvwA9o9CqPLQlHj01HYm8ZB+kPB8BmjphT2E70GIBPbrNBj0uwS+82g8MPB8BGr1NT8Q7BQ0FvELgX70iUku8dEcbPQrzE7x2A++8WvmNPM6/Or0WL3Y8wVDWvOoKB71YVke92SA2vCrE8LyLkAa8eS2qu0Asbzyj0Cq8SiuPPA0lsjuiaMm8Stn5vG5FOr26cw68gzStvBelQDz0MB29n3EQvUtg7jxacpk9xKcNPIKfz7u4KkA8gLB5vG6fsrzUdYw8H9QdPcNev7u2wl69VxviOzmbtryih1y6K5f0PIAK8jzNGbO8GVmxO8K4t7z4CEM8k4mgPAsocz2t9sC82g+MPAyC6zx2MOu7rlA5vfURiryBRdc3lLYcvXTtoju5sbS8WN07PM3eTbvrP2Y9V8/SvAIvWT12EVg9YnzdvOsxfbyAN+661vb6vPDRAj2ZnCs91fyAvHV8eruOaKw87JnePJmcKzwELJg8ZPKnvNYx4LxYKcu7i/LhOl8MGT2biwE87BLqPGSmGD34cKQ9jmisPORiHrtVOvU8IlJLvG80kLzN3k08jg40PY8cHT35naA6RWQTvW4mJzzZAaO8JLosvVai1rtssFw9P6X6PPW/dL1Nbtc8Kmp4PAPENj0OJTK9DzObPEHuSLxMjeo8JfWRO4vkeDxrVmQ93/39vCAPg7x1zg89lLYcuy7BLzz6qwm97adHvM7sNj3YEs28IOppPC/dAT1u2hc8mn2YvAMQxjw4Qb688KQGPSGQcTw6XZA8y5uFuyyl3bshROK7lszovAEhcLuENC08zQtKvBo6Hjxgm3A9dHSXPCBjdbnPJxy9VH6huwpNjLxZ6yS7SXcevRhLSLysNGc8OEE+vXZPfrwDar67osLBvDCDCb0t4MK7xMagPFUFFj2FnA49ZdOUvMHJ4TyCn8+6YxE7vJoxCb0gDwO8glPAPODWhzw+9488+tgFvY92lbxqbZS9gvlHvZgVtz2ko647eMXIOwCaezxiMM47us2GO4L5x7wrFoY9IUTiPDhBPr2vxgM8VTr1vDhBPrsfNvk7oJ6MuyOsw7x5WqY84r9XPEB4/rlXSN67V0jePKqljzyWRXS8QjrYPDcGWTwY0jy8GbOpPCzx7Dl2fHq8n3GQPC4bqDxDork8DBdJvAOXOr1LYG47zr+6unnTMb15LSq9bnI2PWFudLxlLQ29omjJvFDyCj1B7ki8LTo7PDdg0TzZp6o82BJNu8oUETzCqk47jaZSOwWzjLykVx88JBQlu+7iLDwgDwM9+cocPWIwzrxXddq8BHinvCLL1jy6zQa8oeHUu6tZAL0rl/Q8oPiEPDqKjLxiqVk8A2q+vCMGPD2EYak9DNzjO4H5R7ygTHe9t1e8vHrCB7tALO87n0QUvWtW5DwkIg69H6ehuXZr0Lx4TD28H1uSvI+jkT03YFE8Ko8RvRRzIr1j5L48mOg6vp4XGDz3gc68edMxvTrWGzu/DQ4967hxvaAfe70/eH68TU9EPa6qMTt/ISK9r14ivc+BlLwspV08Swb2PFiRLLx0oZM7mJyrunDoAL00PBy8eEw9PALjyT2/4JE8A/GyPM1lQjwOf6o6AuNJO3jFyDz69xi9DerMvMMSMDrsAcC8+wWCO3fkWzzv8BU9MLAFPdZQczs/ypM8w16/vEu65jw4Qb48tjtqOIXJijoK8xM8TmsWvff6WTwgY3U8uTipPC+inDpK0RY7JakCPTWWlDuBkea76z/mvLlGEjxt68E8+HCkPCC1irxMIkg8ayEFPcubhb0sWU67InFevDasYDxK/pK70GIBPcujaDsToJ48w14/vG6fMj2OtLu8jPLhPJXxAbxWOnU8JOeoPExu1zsNcUG85NspO3RHm72OOzA9RIMmvEu65jlq9Ag9+EOovKoeGzw0DyA9uNBHOcQBBj1gm3A+5byWvevG2jx/ISK9gto0vNq1k7xhT+E8SEoivLd2zzxK/pK88EqOPNBigTy6oIo8BB4vPU5rFr0ATmw83/39vD+dl7utfbU9V0hePM0ZMz0PM5u8y8iBvIxaQzxVXw699IqVvMvvdzyNLUc9y8gBPErZ+bziJ7m8ILWKPK3JRDz3gU487bUwPfhDqDsg4oa8wej0u1Dyirzq/B0868baPJet1btXddq7FIELvE6KqTuMH1686ov1OuIZ0Lyg8v67GKXAvKSjrjs2M1U993PlvKFM97zOv7o8WPxOPBilwLxKBnY9AEaJu/hDKDyCn8+6+NtGO0qkGj3EbKi85J0DPDQPoLyhTPe8q1mAvdmnqjwfD4O6Y+Q+O1uAAj3DMcO8L3UgPK19NT3CI9o6W1OGPHktqjwjuiw8w5mkvERWKrzDXr+8TJtTuxksNbxg5388eVomPdVIELwAbX88X2aRO+K/Vzxk8ie9ZEwgvM1zq7xPa5a8zRmzvCC1Cjzi7FM7uCrAvOVDC71ECps77oi0vGMROzxeDBk8omjJubk4KTzC9l297MZaPEGG5zxZNzS88KQGvE2b07yvPw89d11nPXa3Xzy7+oI7gLB5PenPITxCdb26bDfRvNhsRT2XB868gLB5PM1lwjz5vDM7pKMuvUD/8juN0068AE5sOH+oljwtWc48Dp49vJWXibzpz6G89uxwOgNqvj3QNYU7I9m/POQIJjxAq4A75NspPes3A703rOA6BEsrves/Zjx5hyK8bvmqO2zPbzigTHe8D0GEvcsqXbxV4Pw8481AvSvx7Lw3Uui8SoWHu3Z8erygLeS7znMrvSOsQ7ylC5C8DepMPBhZMbx0dBe8Vjp1PQJcVT3h7NM8ym4JPFYNebsAIfC77JlevGVaCbwOUi69zTjGvCNgtLuLa+08IstWPWPyp734jzc9BEsrvfokFby5kqE7mW+vO+W8lrvM/WA8OEG+vHfkW7zB9l28bRg+vNuWgLt774O9wGeGPOOBsT1qQBg7+HCkvGI+Nz0aOh64EG4APVnrpL1iqdk8OXyjvPYZbbyiO8267ls4PCFSyzyN0068getePDsRAbtu+ao791TSvM/NI71t+aq8hGEpvFAfB73NGTM8I6xDvVDFjrwsHuk8P52XvI7voLxJdx696zeDvC4bqLqQKoa81tdnvKxvTDwPBh89ANXgPJp9GDzl6RK9xGyovC6Us7vZpyq9QymuvNfGPTvkYp681vb6PFkYobvPJ5w8Yl1KOkQprrulkoQ8VH6hvPZG6Tx6Dhc9SUqivEAkjLwspd04ACHwvIJyUz2qJn49QYbnPMsq3TzrP+Y875Ydvfnpr7wtlDO72PM5ur9ZHTygefO8IiVPvGtW5LzutbA8GP+4vGw30Txtkcm9zWXCu9eZQTzZTTK7gC8LvXYRWL1Luua8S7rmPGyD4Lxgm/C8PvcPvY15Vjvi+rw8V/zOPEXrB70U+ha92SC2u5ZFdDw4QT68oADoPC3gwjxKhQe9uCrAPPoklTz6JJU7DZDUvC06Oz0reGG8zkYvvRRUjz2BzMs8Dss5PBpIh71As2M9lcxovKthYzzDxqC77g+pPDXDELz5UZG7BNIfvYu9Ar0LNly85RaPvdtphLzCuLe8IA+DOySbmb1s/Gs8kNANvLdJ0zxjt0K8lcSFvO7irL0jjTA8P52XPKGmbz0C48k7TBTfvLmSoTyZ9iO9AEYJu1gpy7zNZUK82oiXvICw+byCrbi8dal2PEKU0Lxucja7Tl2tvcMxwzu/WR08lT0RPM6/ujw2cfu7gtq0PBDnC71Dork87Gxiu8pBjTkBts06wcnhu5p9mLyv5RY7edMxvNbXZzyMxeW8lOOYvLkLrb3sAcC85GIevW9TozxYZDA8OI3NPUr+Erzt1EO8uFc8PS78lDsB1WA47dRDvTXL8zy4KkA97og0vaoeGzyt9kC8+HCkuwtV7zysB2u3ouFUvWnmn7zffI+8VcFpPAvOerwkuiw92XquPO3UQ70kyBW8DZ49vQAh8LxClFA8QmdUvRUIgL14TL08joc/O7/gET0WiW69jg40PaSxl72vi548ZB8kvjZxe7sAbX88rn21u4Jy07wv3QE9FPqWO9gSzbxFZJM8DepMvZteBT0Y0jw9epULPdA1hbywmYc7q1N6PUCrAL0t7is8+I+3PPg1PztjETs7NwZZO1DFDj3Wi1i87zylO0W+izx/IaK8K0tlvGCb8LzQ24y9GVmxO2GpWb27+oI8GKVAPVnrJDzq3Yo8gybEuhjxTzwXeMQ8dc4PPWFP4Tyu1608n70fPKN2MjtK2fm8gGTqPEI6WDviJ7m8F5dXvdrij7zq/J28bGTNPG80kDzZeq49dfsLvWMROz3B6PS8P3AbPXkArju4ds86SliLu/YZbbwZsym941S1uysWhr1Bs+M8gkXXvMXUCT2Bn0872U2yvG6fsrv4Nb89F2pbPcTGoLyOO7A84hlQPWMRuzzPVBi7TOdivANqPr0q6Yk8jJjpvArGl7wLVW+9akAYPS78lLuqLAS9rW/MvK8xJrtkHyS9NfhvvQp6CL121vK81HUMvUuyg7x2fHq8GQ0iu+NUtTwFWZS8IvhSu1Yb4jyQKga8FVQPPAT/G72NDjS81SN3PezlbTxfsiC8mn2YPTCDCT3ByWG94DCAvAJc1bxucjY7yhQRvbDGAz21tPW8y9DkOyDiBj3X5dC8RIOmu80LSjvNGbO8t4Q4vDSWlLyEFRo95emSPSDihryuqrE8Lmc3vdlNMj1qIYW8L1aNvKIO0TxkeZy8bLBcu1R+oTyTiaA8r8YDPJS2HL2rYWO8rcnEu3rCBzxM5+K8d+Rbu+61MDyCclM8HgEaPGEiZb0jBjy9w+WzvMxX2byXB069zkYvPT9wG734cKS89uzwPL+GGT04bro8/zcgPOCxbj3ByWG8QH6EvGFP4TyYNEq9C6eEPKB587zL73c8w7g3vdfX5zut9sA8oxw6PQxj2LxfZpG7GpQWPbDGg70spd076oOSPArzEz0QFIi91fwAuprXkDyj0Kq7bN1YOmobf7tAfoS7YpivvFiwPz3XbEU8NzPVu3ZrULx/qBa8JEEhPa32QLwkIo49IwY8utZ97zxqxww8T+QhPAJcVTu0+CG922mEvIMHMb1Fvos8mOg6vWWHhbzOoKc7AEYJvZhhxrzWUPM8AgJdvSsWhrvX5dA89pL4PB/Unbu4/cO7YU9hPfQDIT0tLFI7LKXdvBilQD3Di7s8Ck0MvQIQRrz4rsq8ZQCRu7VgAzz4j7c8CzZcvc5zKzu1Wv08lp/sO27Mrrxs3Vg94ye5OxaX1zwuwa88hOgdvVR+oTysNGe8mGFGPICJg73B9l28jpUovCNXB72wxd08rQ5OvIghlbszWPU7FlfPvL98pbzqlne8r92bPGLP3LwXT+W8CgUHvFqqLb0DDRU8MjsMPcahVD1CQG87X0n/O8W1HTz6VSm8wWxRPByUPL2IHSA9BrBbPXQtYDw13tI8yGg4vVnb3zuJSl27GqAbuzd0BD3NZJ88pVNtO7eMHT1zCA29lUYgPFY0pLxWNCS9Ick/vJENKDzzKJA5fnaIvJn5ujxR70y9lHtHPNHaKDuNl568uE8MvTbWaLxsSbe8xeLau5u4tLvD9iM9qyqBPEvKnbsU0XG8D1P+u7JTJb1HfVy9JhaBPJEVErzpnmE8dfRDOzaxFb0bzVg9sJyVPTzauTyAj/y8aYq9vKOkx7tVPI67uXDqPLJ87TsrQ5q8QFBDvVSmXDzlOCy8AINCPQXpd7sQU/48O+qNu6ca0TuwzUe8386BvAB72LrWULI8UTBTvI5WmLuo2co82AdCvLb6YL2rY528GeUWvCYGLb3C9iO6aPx1vGAQY7yu/vk7JE+dPSm1UjuD3D095u87PQT5S7w15jy9FV+5PFxpp7wbpBA9jlKjOqQumjv9w0i7WbIXPUIbHD2QGQc7ql8oPSql/rwStAi9EvEZvEeFxjzsLCk9yVB6PF0wCz0hlBg92s6lPRxflTu4sXC8WtN1PHwZc7uNjzS7wStLPNOhjD0WV087hA1wPAaDHr1fGE28VmXWvE2NDLxpkqc7EumvPPemAz2g7Te90BPFO5qHgrs5jfg8zyMZvRSQ6zxmDEq9SQ8ZPfiOxTx3fpY7jJsTPRuohbxWOJm8HxoaPapfKDw09hA7P5FJvYSnlrsvwQ09bscqvbX64DzUYIY8QVDDu4AxDb3RE0U7eHqhuzpM8jxKzpI8/4LCPA2kWLzCK8u8sb3zvNyFNbxExkw8gFZgPEPalTvzKJA8Yo5WPUdQnzwCCaA7gS0YvYkdoLwAUhC9yGBOPCAKRr3kPKG8SgM6PbG987zmA4W8OGQwPIdasbzZzqW8IZwCvdcTIT3w02Q9OxPWO73FlbuJJQo9y60Pu5AZB7vWSMi8dSV2u7fBxDxJCyS7CsQAvH3g1ry3iCi7voSPvdq+Ub0keOU9ezGxPPlhiDyD3L08nKD2PC4j8rrcjR+8ZFU6PZR7x7tRCwC93FQDPcMj4bw9yuU7Uu/MPGYUNDz2npm8UDg9PRAaYrxeILe8mrg0PXh6oTxUnvK7MLE5PD2pBz0M5d48jMDmu6wilzxGjTC8O0xyvRSQ6zyRNnA9FG+NPJxnWryTkwW9zWSfPEyRgbygvAW8JjdfvaUqpTyyfO28nKD2vLG987y6N847zaWlvAeo8TxE93489d8fPapfKDwE8eE8tdGYOoiD+TrK5qu86n0DPX6vpLo0H1k8ZE1QPVrb3zwaqAW9zaWlvE9pb7x+2Ow7WRT8vN8Lk7wcUza8Ns5+PKNjwTvisk67BocTPZuwSryK2CQ9pDaEPXlyN7vo51G8gDWCvfUQ0ryM0Do8FWcjvDhkML2EDfA8yhfevATAL7uEzOm8JEczvLpwarwo7m4909I+O7fBxLweErC8Y2GZPAd3P76zS7u8TLLfvFO2ML2dPhI8zM5tPFAw07y3wUS9feDWvBBb6DxongY8fa8kvaweIr1LwrO8HJS8PDI3Fz2RDai7wvYjOwv1Mjza9+28nH+YPCDZE7z4jsU9ihkrvPDL+jzRA3E6T3FZvETONrso7u47WbqBvNZ5erzpdZk74qJ6vNIDcTyinN08hmYQPdYbCz3Twmq70QvbO8rqoLy7/jE8B2frPMBDCb0DKn479qIOvKcK/bxsGAW8NB/Zu424/DxJCyS8Ufe2uxndrLzrZUU8nTaoO/+73rwa1cK7aoLTPH6f0DteIDe85vclPMP2Iz3hwqK90eYHPKnR4LyjpEc85ijYPEFQQzy5S5e4g9y9PH9mNLyEDfA85WF0vDQnwzwqfDY8t8muPG7PlDzHeIy6/1WFO7XydjzrMJ69pDYEPVPn4ryHUse8MYCHPVkUfLzAbNE8itikPP9VBbmn8Qg9EFN+PiK5a73CAoM7pxpRvXliY7xPcVm6DOXePKqYRDw7E9a6o3OVvPbXtbwwgIe6zx8kPEgXAz2Fpxa9My+tu8zO7bwISgK8ckmTPdr3bTw6TPI8AE4bveG6uLzhsk49NCfDvOtlxbxgEOO7e/wJPf962LuQEZ29FV+5vIvQujrorjU8sVcaPTwbQD2QGQc86a41OVjzHbz5WZ68xPIuuv+Wiz1u04m8lLRjPCm1Urzf+766h1JHPKnR4LzWgeS8d34WvdRgBjuLCde81MJqPQu8Fr0iiLm8QhcnPJLMoTxqgtO8HYToPG1BzbzvsoY8kEbEu5t3LjxzZnw98mGsvPamAzwRIky8OiOqvAdna72nGlE9hsT/PF00gDzm9yW75UAWvbsv5LoyOww9igHtOETGTDwAe9g8yC8cPEJI2Tm3iKi8+L93vM2pmrxmReY7LfqpPIrYpDz/etg7k5MFPRrdLD1tCLE8/o6hvFkc5rrK6qC8TJEBvWAQYzzY1o87Yo5WPHMMAr3prjW9Jv7COzQnw7xPQKe8wGzRPP+zdDyC7JG8mCptvX2vpDtinio9z4V9vKjZyjz2z0u7Kq3oO7v+MT0KJmW8bs8UvPmG2zxBH5E7AwkgvLe52jqTzKE9p7ACvYsB7btL6/s7qNlKvOQ8Ib1QOD09e/yJvBqoBbwymXs8zWQfPbby9rpDB1O8FKipvFK+GrtBUMM9abtvO769Kzz/s/Q8Lv6ePE6BrTwEzA69n+23uYPkJ73GcKK8f2Y0vFxpp7y3yS68GqAbvanRYL3jeTK9TLLfPKOkR7xDB1O9Ci5PvUMPvbxcmtm6t5CSPLfJrrzTwmq8QIlfvP6WCzwtM8a6OZXiu1qiQz1QMFM9Rb5iPf6OIbnDI2E8MIAHPDUX77oQGmI89eOUvGYE4LwxaMk6eTkbPUFIWT2klHO9g+QnPCwzRr1MjQw4ZRS0PD9glzxJAzo8jNC6PFLCD70fGho83I0fOjaxlbzQJ448empNvXeCC7yRDag9wSvLuqLV+bzAQ4k9+lWpvOHr6ruipEe9aJoRPapnEr2pawc8tQo1u42bkzp1JfY8drunvEEfETwAc+68eWrNu/scjbsDMmi9SQ+ZvOxd27sfAly9B29Vu6tXPr196EC8JIBPPajZSrvt9wE7bTljvVjrs7vwmki8YNfGPC/yv7xn0606B2drPbJbjzwHZ2s8Kq3ovH9uHryjpMe7haOhvVmyF73CAoM7hcxpu9HikjzAQwk8fnaIPJPEN7x1w5E8BbhFvD9glzvL1tc8dDXKPKjhtLy22QK7BPHhPJS8TbxK0gc9I5AjPSGUGDw3pTY9Q9qVO4TcPbs3tYq7DXcbPGq77zycb0Q8rB4ivaG4kLpJC6S8I08du21BzbvJ8oo7FJjVvQTQgzz5YYg88KIyvOGyzrydZ1q9k7zNvD7STz2+tUG9Bz4jvWtJN70VmFW8zyuDPLMWlDwFiwi9Q94KvJxnWjz5fvE8HwLcuxYuBz2VTgo8NrWKvDfO/rq0Q9E8zNbXO98scbwXLoc88Yr0urlHoryTzKE9NPYQPRxbIDx8u4O9LGxiPfFxAL0M3XQ8qdFgvOe+CT0iiLk7I4BPumKmlL3BbNE6N7EVvE9Mhr1fGE28E7SIvCNXhzwqS4S9NO6mulVAA7z3lq88fbeOvGwUEL15m3+9RpmPPBIS+DxeGE090COZvNEbr7zPXDU9lIMxvbfBxLzyZaG8GOGhvMgzEb3dPMW8t8FEvX7YbDxwihm9BNCDvKisjb2rVz68e/gUvFZtwDu7N848bBSQvAB7WDtUpty8qdFgPRqohbuzQ1E8kDZwPH9yk7vf+768jk6uu9RghjvINwa6lUqVvEEjhrwJNjm9xnCivECJX7zLrQ89QFitOifJmz2eLr68OY14u/fPSz3gygy8R33cO2DfML0IRo084fPUPMErS7x+dgg8GpymvEgTDrs5XEY9+k2/u33gVr0f3Yi8hsR/vKlrBzywxd288ZLePCDJv7o+wvu8ZRyevC7+Hr15m/+82AdCPAMBNr07THK9WeuzPK7+eby95nM9VyRQvSmtaD05L4m9Uufiu1nzHb4apJA7hmYQPABWBTwT4UW9fBlzPIWjIbyRDSi8laz5O2bfjL2h5U09cX66PAIJoDw0F++71nn6u+UDhT218na8DXebvNIDcTy4uVq8QJHJvJj5Orv+iiw8OiefvGAIebyXMtc8EBriu06BLby/fCW9f2a0vb+lbbp6MTG9kD7aORqgGz04cA+8YaoJPa/+eTssBok8NO6mPHwZ8zyeLj68+I7FPCHJvzwxfBK7VIGJPBOgvzwbjNK8eWLjvFuaWb3zUdi8gF7KvC7FAj0wsbm7xzeGPU9p77xCFyc9Bel3vON5Mj3OaBQ8YZ6qPFPfeLvwcQC7OXCPvBdPZTuorI29X++EPFR5H70JBQc93gcePMA7H71hppQ8JEezPRPZ2zwVX7m8/suyPBrdLD391xE9oneKvHspx7wL7Ui9n/2LO2j8dbt+dgi9FG8NvVua2Tz+iqy8Kq3ovObvO7w5jfi6J8UmvRgeM71GjbC8uU+MvAP5y7zrlve8EfUOO9q2ZzwkgM87StKHvOttr7tRMFO81lAyvYdSxzxm44G8sxaUvLeUhzyDFVo7AkI8vMMbdz2jcxU9mri0vIklirsHPiO9yCcyuosB7Tvm7zs9xLkSveN5MjwhnAI9SERAvHa/nLyv1bE8bscqvP6OoTuo4bS7Yd+wPIBykz3WgWS8Qg89PA8qNr2SBb483UwZvBqgm7yooK48SQ8ZvH3wqrt5ak08q1+oPGfXorwAe9i8Lv6evGwUkDv9w8i7slOlu2NdpLsTrJ67BPlLPdr3bTzrZUW9r/55vd5td7xEnYS8q1c+vUPeij23lAe9nEIHvVO2sDwTtIg8/ZqAPFSm3DwjU5I8R0yqvORp3rube6O7RY0wvTTuJj2GYpu8obSbOhSQa70M3fQ87DQTPaC8hT1yZvy8954ZPWtJNz2eJlS9veZzPLX64DzSC9s8t8FEvb69Kzzv47g8QJHJOiYv9btNkQG8jloNuxukkLxJC6Q8VWXWO0JI2Tvm96U6yVB6POGyTj25RyI8m4MNPU5IkbyVg7E8fPCqPLwn+rra9207G4zSvGKO1rueAYG9OGQwPflZHr1sFBC92r7RO911Yb19ryS9alWWPEIXJ71RC4C4+H7xu33g1jw4pTY8q4hwvJPtfz15QQU9DXsQPYJO9joMpFg9JjffPNn/17wE8eG7Icm/vMV8gTyMnwi9E6A/PNWROL2qZ5K72rbnOjwLbLvlYfS7MalPPew4CDwYHrM6iFJHPee6FL0rOzA9StKHvPJpljxiniq93jxFPKC8BbzXkz+95PrMO5PlA7058J67TWkMOxVlK7xxwLM7F/8avOKlsjzO6LO8ampCvZIpFbzxpi+9rkzKPDUR2jyBFss8cPO7PJco5DpSeWQ9Z4t9PKduNrzrUQK8BB9ZPQ9kVD1QJMo82NgUPZxdh7zb12O3wLQuulSLMbx+J8E8a2uGPMlv/7vz+8k7NlYvvWmdyrzT2IG8DELCvBruJLubkA89Y4yuuyhl97z+DT09Za5AvXieRzwYqU+8T88vvayyWr3NGzw6hMD/vLUq3rzCCcm80D1OPRPdCDziYSE78WKevELwRLzEK1u9+tldvVnPVTe8cAq9ShOuPJCPJbwCMRO9tdYHPQ9Ujz104wk7CIZAPDpFObuf0++7xYB1u1y+Xzxq8mQ89tqOvHaMer14FiU9lUsnvNhwfDniYaE8GSGtPDaZ/Lz22o4875RiPLOQ7rtvnqE82OjZPBSoeLzxHo084VCYPOYcX71b4SK9h59EvIYGmbxZV/i8jI8SvES+gLwsEbS8VJv2u3o4Nz2POgs6XRN6PSa8Bj1pjYW8uV49vY192Lu3xM28ixbxPNT5zzwxVdg8tviZuuALwzwLqZY8cdD4OmfADT2jB8+8WpzNvM2j3rt2BNi62raVPGglbTzDCg09TGjIPGavhD3Jb/87jNOjO3BrGbxlrkC8xKM4O103gTyMS4E96gtpPMAsDLwBZBu9KN4YPFw2vbyt96+8eWu/OoQoGD2IoIg8M+9HvfTIwTwiIVM8wcTzPJCPJb3acoQ87eotveO19zw1zow7E5izPB1Egz1CaKK8gUqXO8C0Lj2aw5e8lhgfPYJbILzuP0i7bMAgPXWwgbwjIdM80ZJou67EJ7u3PKu8MAGCPDgjJzz22o48R5wBPJp/hjxde5I5+5aQPCyJETzHkkK8E5izu0mb0Ltme7i7ZeKMPAvtpz0WMqM8pzsuPPGmL70C/ca8y/mpvFeuhzx94mu9xk3tvB5l0TxfWRO92JQDvYSwOju/b1m8tSrevEnO2LwChek8zMahPBC57jpiz3u74D8PPVvhIjx5sJQ7ZTbjvPEuUrxSNpc8Y0gdPIJboDzTLNi8UJwnvH/0uL0GMSa9HLucPcWAdbnpg8Y8m1xDPb9v2TvDTp67iW0APDirST06eYU8LBE0vKQIEzxKEy69hfWPPPSVuTtheuE76XMBvfsu+DxdjJu8UKzsu4Q43TuvGUI9M3dqPFZ6u7sPmCA9zMahPALtAbkQZRg9co0rvPrZXb0aZgI9yrRUPaI6VzyvoeS7Fw9gvdPYgTyugBY83z7LvNE+kr3ZLS89PJuXvHlrv7zjLhm9D2TUPELwRDxZjAg83j7LO5htuTzAtK45lUsnPE01QLw1Edo35ILvvBiIgTyZSvY7AjETPa8ZwjyZSvY8ZvMVvJmyDr1KEy696oQKO4p+ibqssx68GKlPvGCt6TyY9ds7VFgpvLdM8DzJX7q8V64HPZOxtz2voWQ8v+c2vZVLJ714FqW8tF1mPBpmAjwjmbC8uZKJu7GzMb1DNRo8XXsSvbs7ejtivza9ASCKPWK/NjxxSNa8BKd7O5JcnbnO6DO+BJe2vMPWQLxpnUq9/w6BPLUqXjwkIpe9ON+VvV7gcb1eWE89OayNPHZ8Nb0Mup+8kuS/u6LCeTy9PYI81T4lvAx2Djyh5by7AbjxvL8bg7uvGUK8mo/LPQDbND1S8oU8v7QuPG7hbjvGtYU7p6KCOEesxrwgdx69uV49PCdVMrxxnXA85nH5OwP+Cj0veBs9ShOuPI2gmzwyItC6Y5zzPOg+cT33t8u8rX9SvMjXl7vrUD698GHaO+wdtjziHRA84aUyPKrlYrz866q7feJrvGRpazz22g69lyhkuwYxpjwrvJk8hX2yvIIXDzw2mfw8E92IvQ4ff7xCaCK7yiyyvNbGRznagsk8d9FPu4DR9Ty01cO8C+0nPXDzO72JsZE8lUunvHWwgbzzg+w8c2rou9WB8rwDyr487wzAvVjQGT1uWpC8yBpluq8ZQj3NG7y8vYETPRe7CT0jqXU8O4qOPIDRdT5582G9BB9ZPFVYKb0gM428hUoqO+1zFD1bacU8cPO7PBjc17wq/+a7C+2nPBL/hzyzkO48C2UFvbAahjpeSAq9Ld4ru6J/rD2f0+87scN2PDfe0bwI/p288Nm3PMQr27waMXK8nX7VO7Z/eD0C/ca8v+c2veT6zLzqC2k8OXjBPFRobrnslZM8rG+NvEIkETt94mu6QvBEO6HC+TpbaUU9IyIXOu63pTtLWIM7LjNGPPz7bzpBI027zhwAvROYM7wNQwa8y3GHPHQnGz1fnaS8mn8GvREykDsXZHo8/GMIvcWA9TypCCY8f/Q4u2I3lDzOYJE8TPDqPKrl4rycsV08scN2vB+6a7oz70e9zKNePbwIcjzGTe08Kv9mPHxKBL3Wxke8jSi+PH/0ODyos4u7ouaAPAlTODwC/ca7o/eJvGcEH7s5eQW8zz1OvMVwsDyFBVU9F4iBu6qRDDwoIio9mhduPEBGkLy/b9m8mG25u72BE73XG+I78rZ0u0ZXLDxBEwi94qUyvdTpijy3+Bm9G3eLua+RnzzhYN26qyo4vC94G70diJS82grsPCwh+bsMQkI89PyNvJR+Lz2qXcA8BSCdu/seszxNvWI9zmARu029Yrvh2Dq8uNYaPXKNK7wtZs48AbhxPIPjwry8+Cy9K7yZO471NTtyFU68zz1OPAL9Rj2j9wk87relvAEgCr02zgw9E5izPR9mFTygTBE9vhq/OtMckzwV7c08Dg86vaKyNLuGSiq9exV0Oxv+6btzWiM87eotvB0g/LwOl1y9+tndvEIkkTy8+Cw78/vJO6yy2rxHJCS87rclvE/PrzkYiIG9AaisvDfeUbzr2GC5U765vKBtX7zM1mY9JCIXPWCtaTyLBqy78i7Su7UaGT3LcYe8b65mPPrZXb11BFi8OayNOwy6Hz1WJSE9QXjnvdRxLbsYmQq97aacu+n7Iz1fJcc8zugzPEUS1zxm85W87B02vdT5z7wQdiG8UjaXucjXF723PCs80V/gPRf/mrre6bC8/biiPfmEw7zB+QM9a0d/vaJ/LD1OEn29t7SIu7Rd5jxp0RY8quXiPNO0+rwSU966OCMnvDPfAjlzFhK9cUjWvN7psLyUfq+8y3EHvQDbNDz7HjO9PN+ovLyATz3ULZw7cHtevI0oPr1L4KU897dLu8MKjbqKSfm80MVwPGXiDD2/X5Q8PN8ovOoL6bwaMfI7Ef7Du22NGL1C8ES9wcRzvG5ZTLwWusU89MjBu7uz1zxbaUW7R+CSu2wEsrzxLlK8/g29PFXgSz0a7qS8DQ86O/BhWjxsfI+8in6JPVSbdj2ssto8D9yxPI0ovjycKTu9swmQvAlTuDuM0yM8zz1OPOJhIb0ZmQq8Pe9tvLqjkjyHF6K70ZLoOh7drr2VB5a83y6GvCp3xDw33tG8OxIxvQNSYbybXMM8nW4QvQlTOL2IbDy94mEhu4sGLDxvnqE8IlTbvCtEPL2M4+i70MXwu2LPe7wliDo8QRMIPXgmar3VPqU6esDZO6squDygkKK80yxYPcyTGbygTJG870CMPYpJeTwzZyU7hlpvvUZXLD1BE4i8QEaQuu4vA7wCdSQ9VIuxO+Pqh7xi84K9NDQdvf5BibwjVZ+9FXXwusjXl7xWrUM8jgV7vX3i6ztAzjI7sOa5PK7U7Dtmezi833KXvfBh2jujB888v+e2PMu1mLxxOBG9SUY2PQx2jrwgh+O8mgepPITAf7w9rKC86sibvB1VDL1YvxA73JSWvOIdELlBV5m9H2aVu6uiFT2vGUK8/GMIPRaHPbxPzy88MmclvaAYxTyKFnG81T4lPJyxXTx40hO92gpsvHiOgrpBEwg8Ku8hPMQrW70YVDW7t0xwvfbq07xpjYW8CqjSPAVkLrzp+6M9/g29vDnwHrwveJs9U87+O9oKbLsPZNS8vxuDPJbUDT3Ikwa9qEtzPF+dpLwgh+O7/HPNPAi6jDrZPXS98/vJu5JcHbrYlAM8orK0uwPKvjyeCIA8GFQ1vTUBFbqkTCS9wPf7vEDe9zueBvi8Wc9Vvbb31TtJvpO8V66HPdbGR73dpFs9GmaCvV2LV7v1HiC+ojpXPIsGrDyUfi+82GC3vK+hZDx+J0E8UxNUvHIVzjyRF0i9orK0PKAYxTzftqg8eJ7HvBy7HD3GtYU9xfjSvG8mRLw9aI88CcsVPDPfgjt6OLe62grsPHdZcrwh3P07hLC6PGuMVLyZOrE7dTfgvGWuwL0RMpA8j0pQvZXDhDyQ0vI87eotPMga5Txe0Cw8jEuBvLBu3Dzzg+w8VRSYPIYGmTwsZs46wglJvPrZXbxYvxA9chVOOre0CL1AzjK9+lE7vGOc87y4GWg9sjwYvKjD0D1lJh69vZIcPSxFgLzsYgs8p6ICvEGbKjxkWSa81bYCO0Crb7wreIi8feJrvVSLsTySbOK8lUsnPfrZXTwfuuu87WKLPE4CuD1EAhI9swkQvFy+3zyi5gA9ngb4PAF1JLzQtSs7TTYEvZg6MTygkCK9rfevvFoUK73FcLA83j5LvLbnEL1bnRG8K5lWvKIqEr1dAzW98Nm3vCa8Br3gk2W9LasjvShl97wP3LE7MlacPJ4IgLwmABi8kznaOvNQZLy2f3i71HEtvKCQIr2NsOA8Mc21PNMsWDrGTW09RmfxO3IVTr20XWa7rsQnvS94m7vHxg69/UBFPd/G7bx3WXI8m9SgPDRE4rtAI004kmxiOdqCSb2dflW8vIDPvKOPcT2155A9hMD/ugP+irzV+hO9k7G3PJqPS7yvTY68KCKqPEJoorzoLqw7I6n1uzABAj32YjG8K3gIvY4pAr2nbja89mKxPDCI4LwpqxC6lUunvKduNj3BPNE8dK89vYX1D71heuG6DHaOvH/0OL3E14Q9LjPGuq0H9bvbT8E8JCIXPUDe97vDCg0961ECPfi4D739uCK8WYyIPEYTG71w8zs99R1cvPbajjuZSna9kZ/qO+n7ozzwYp499y8pvPRAnzuHFyI8XL7fvPYeIDyAfR87bMAgPS3u8Lzp+yM8DYcXPQlTuLoSU947Au0BPUGbqjwRdqG8a7/cO/YeoDyGWm+8zhwAPHJJGrx+Ww098Ol8vO1zFD2b1CC7ZgPbPLqjkrxHNOk78/vJPKfmE70oZXe6D9wxvcC0rjuZOjG9KCKqvAGoLLzWG2K9ASCKvBPdiDw97+280yzYOVatwzyEsDo9oeU8vGcEn7xlrkA9T4sePdC1Kz1fJUe8GqoTPQDr+TypCCa7UWkfO6AYRbzKPPe7NRFavLdMcLx5az+9ECGHvFSLsTxxwDO6m9QgvK1/0jzpg0a82nKEPJn2Hz1Oitq8cxYSPSOZsLsMup88y3EHve3qLbyJbYA8gH/Xu9UfoTwgcB299Zf7vNpDKTzY+fy8pm0jPK6tdj1wHlQ85zOgvNXdMbuqkas8UZMnvQyeDTy+KQk8Qh9SO3wZ4DxCm3O87NNJPSh2vrrdJcK8fCEdvOPNKD1NqVE90DVLPFQEtDxwaAC9vd/cu/H/Dj0YT228QTIkPANzljwQizs9inAcPKuRK72JU4O8rQI4vPgYgrx+UDq8U4DVPEm0ZrwDymG8UIvqPP3y3bxTPuY8nzcXvOzTSb1m1kO9zHgIvVV1QL1VdcC8x2ncuwIfoz32I5e8MNEgvQHAGrqlbSO9v5LYvJHgWr3n8bC73JecvMzXkDyQiY+8be82vcxTsjyF5U49tJ8Jvb+S2Dyismq64JbOvEAVizk34lY9UnaOvXNCXLtLn4q9cGgAPfgYAr1L/pI8/d2BvCtrqTzPuam6irILPfXZajwH7um8afAEPZ1fxTyOLd87tF2aO3mo07uf0FG8FG3UvFL8djtuMSY8ZxgzvYVpLb266vG63NkLvddOvrvHq0s8d/2UOaG9/zw46hM9H3CdPG+adbzhngu9desQvajBFru5gSI9O4q9u0G2Ar0yOvA7ucMRPbImQDxkio08BmiBvPoFMDzvyLS88fdRvGzn+Tzl/EU8iVMDPcCSWD3vyLQ9T8OSu97rDzujsmo8Jv30u1yGdjyeVLC8b2BDPc5IHTwM/RU9dzdHvcUAjTwRgCa9FHWROteQLTxTPmY9mDu9OpqsybxRkyc97sD3OxnTy7wIcki9HrXkunf1V720XZo9QTKkvK+YGjy3N/Y7K+fKvLRAAT2tRCc9tzd2vS8LUz3O/vA6fUh9PJpyFz2I/w+9sxPuusKHQ7vz5H+83JccPA2W0LylbSM9s9m7POtXKDyyomE9dca6vDOEnLu3UgU9/62Wu/2bErvFXxU9he2LPMJF1DwsThA9/N0BPIGudDxw5KG8oIPNup/Q0TwGaIG8yBzYvHc/hDpOnjw9SXL3vLss4Tu6sL+5AsAavc4rBL1GVqy8cGBDvFmsGrlQUTg9vsoAvWq43DsVnHE74rAPPZYMIDx9SP08Va/yu6YOG7w1Nxi9kFx8vHjqQjsee7K9oYsKOw0/hT3uAme9NXFKPZGe6zzNQOA8wNyEvPYjlzwVnHE9ZRB2vN+MB73CrBk9Hy6uvJruuDwmRyE7tQhZuhxzdTrlgCS7G8g2vf6tFrwQzaq8FbcAPX7MW7wpuC087NPJPJXKMD17nb47JDUdO68x1bz4EMW8QXSTPDJCLT1V8eE8Hb0hPLsXBb3OSJ07UtWWPPhStLy+yoC944s5PA/NKry3sQ08XApVvWmJPzwmR6E6nOOjPOrmm7m7NB671R8hPNMqNj0HMNm8FK/DvHxjDL1rfqo7GkTYuv7nyLv7KoY88L0fPc5InbwU1Jm93PYkvM3+8LxwhZk8CDgWvJnm+7zGaVw7FuadvMeziDxee2E9QK7FvMftujqLxI89nxLBvGkNHjsDkC+93kqYPJ2EmzswjzE8Uz5mvGjDcbwQzSq9brUEPUFsVr2keDg9yxmAvZ5Mcz3AWCa8OIsLvc9vfT1QUTi75zMgvvOqzbwmP+Q7fMIUvaYjdzwhXUs7arhcvRWccb0uHiW9PXdrPVdi7jtNbx+9jECxvNoBujsfsgy9sWByvOuRWruaKOs8O0hOOyg0TzuMQDG8gzJTvRG62D1nnJE7iIV4O6Zl5jzCyTI7+kcfuwn2JjtDhpe8etfwvLlkCT3zcBu8xXyuPCMGgLmHmEo8GdNLO8R8Lrshl/27VEYjPC4W6DwGaAE9htJ8vLbOpjqmrxI8Dw+avdmFGLxF0k08yOIlO4rH57yknY68mPnNvCxOEL1iGYE8T2QKvVIXhjzUm8I8PjX8PIYUbLzppKw8/N0BPNrHhzgpuC08QdObuzfi1ry9Yzu8K++HPWPhWD1wYEO79l3JvO8KpDwuHqW9WtP6OjJ83zvCCyI8v1DpPDyKPb2Pdwu9k5uTO/PsvL0JtDc9Ci2BPDI6cLx3ngw80DXLu24UjTzodY88urC/vLNV3TyicHs+gzJTPN6pILxL/hK9Qh9SPOivQTwWh5U8XdCivCRKeTvHL6q8ydpoPProlj0JtLc82SYQPWt+qryHHCm7xLZgvSfomDuzG6s9AQIKvPD3UToDiPK72oUYvVP89jmj9Fm9NO1rvK+1szvKS/U8XbOJvL7KgLx5bqG8ET43PHCiMj3Hswi8dAgqPaggH72sPOq7Va9yvDRxyrwbRNg7QRULvEPlH7zyJu+7QyePu4x647xevdC8z/PbOwZogTyfjuK8BzBZvD8DBz2TWaS7O8wsvTzE77z/50i9VvmeOG/c5LvADvo7ABdmPIGudLzbckY9wkVUOh8urjxBtgK8VjPRumujAL2g6hI9xuV9vfw0zTwgcB09x2lcPKjeL7x3/RS9Oj4HvNk7bD2Kx2e8bjEmO2lPjTxy0c88qJzAvOXCE70gUwS9V+ZMO3DkIb3leOc6zHiIO60CuDtkig08B+5pPBRt1DsPSUy9GVcqOishfbyWrRc82YUYuqicQLwLqSI79eEnvOooi7wNXJ48NO1rPD9/KLyKERQ9RnuCPBPpdTySk1a98aAGvV1MRD0yvs471k4+PQ8HXb3HLyo9zoJPvIO2sTx6sJA8QWzWO1+9UL2/Frc87kTWu1b5Hj2yS5Y6u+rxPPYb2jwCH6M8meZ7vXAe1Lz4NRs9sksWOhtMlTuonMA8oUFeu2muFbyOLd+8R0PaPFb5nj1Oln+7UM3ZPIXtCz0qm5Q8brWEPD49Ob0zJRS9kFz8vJ6O4jsUdZG7meZ7PHzfLbyzl8y88iZvvccnbbzv7Qo9C+sRPZBcfDy1Ssi8F+adu9x6A72kNsk7QycPvToZMb0rIX283mexO+T8xbwTr0O8RZBePaM2yTwZFbu8cKIyPWoCCT15LLI8nV9FvKjWcru0XRq9FsmEvCCyjLq5BQG9lzs9PZj5zb0d91O7jIIgvf8puDzsT2u8izh0O09kCjzFoYQ6ibKLvPQRE71JejS8yV5HvEGuxTr0cJu8SnJ3vVBJ+z3wvR+9wzq/vHQtgD3/a6c7aMPxPNoBOr0518E8u9UVvUKb87x8BAQ9cIWZO37MWz24N/a8SAkovVoVar2twEg8zv7wuzDJ47zlPjW8d/0UvQECijxRk6c8VfHhvLqwv7wKJUQ8S0ACPaWvkrr+aye80Hc6PEF0k7yIXpg71ZtCPFmsGjxjI0g8qonuPKhaUbzZO2y8JM7Xu98ScLuRKge9ji3fO1L89rumbaM5GNuIPDlTYzvMlaE8+M5VvWL0Krz8mxK8DNg/PMgc2Du7FwU9EIu7vOS61rwt1Pi7hlbbulavcj1D5R89co/gOjmVUjxwaIA8DZ4Nvf4puL1quNw8d/0UO2c9CTzy5P+861eoO3ITP7zaATo8h5jKPAi0N7wspdu8MI+xvJruuDqpR3879htavIpwnL2ySxa9afAEPdNPDL2+iJG9CqHlu95KGL0SBAU9elGIPLJLlrw5EXS9EvzHvEl6NDyVRtK8zkgdPa85Ejpv3GS9wYfDPGBmhTrCCyI9wFimPCUYhDzEOr+7UFG4u5q0Bj0Oxe08n5afOn2SKb2R4No9NyRGu6M2yTzCyTK8MMnjOz49ubx4Dxm9WtN6vbQTbryTUWe88ffRvP5rJ71wYEO6uYGiPPYbWr3twHc7A3MWPat0EryHHKm8/LgrPKw8ar0EtQW6VvmePA39lTrXFIy84ou5u9pDqbykNkm94wfbvFwK1TzzERM8a34qvcAOejyhSRs76iDOPFM+5rye2I68cRM/uwwaLztkZbe3SENaO7h55Tw/f6g5tow3PGmuFbxpyy49Oj6HuTdmtTy9W/481R8hvSshfTtyOBU9+cPAO1IXhrv4UrS8acsuO/tHH70EDNE6YrI7vA9RCTyDMlO9OKgkPBH8R7zp3t48dYRLPeBcnDvFfK68744CvRtE2Dykuic9rSeOvDDRoDtHQ1q85zOgO5P6Gz3Cj4A84w+YuxRtVL1qdu05vCHMvDQvW7ysPOo7YhkBvISrHL0tHiW8ubvUu/Lk/7yqDc066d7evMdxGb0wj7G8y0t1vBxMFT2MvFK9q5ErPYWrnLyMvNI8elEIvq2GFrwm/XS6Zz0JO/C9H7yhxby8P8GXvIhemLtIhcm6/msnvP5jaj0RNnq8iVMDPajeL7wVnHE8sxurPS8L07yAf9e8tgjZvCXOVz2hxbw73DDXO1vbNz0mBTK8BAzRPNwwVzo1L9s8YIMePepivbx3P4S9QycPPOyR2rxy2Yw8i/5BPZTC87xLn4o8fMIUO7pu0Lwmw8I6KpuUPJP6m7wbRNg8gSgMOq086rwFxwm8toR6PfRwG71Zaiu9XArVvI3r77zjg/y59iOXPfrDwDzLGYA9EIs7vWnDcT3Qd7q7hWktvSQQxzykeDg98uy8OrvyLjwtWFe8FK/DvBQzorxQD0k9aYk/venJAj3lwpM8dC0AvRLCFb1ro4A9+ugWPRmR3Ly0G6s79htaPfZdyTwIcki8cOQhPPE5Qb3/Tg49Q4YXvfrDwLz2xA69xb6dPLdSBbrA3AS88V6XPFGTJ7zaAbq8FyDQvDkZMbwuWNe8NC/bO48Yg7t6UYg8kImPvOR45zvgEvC7Vyg8vAis+jtd0KI8EnjpPFRGozuRpii9WplIPcyVobuRnms8siZAPQrj1Dsspds8IwaAvCKXfb3vRNa8mL8bvU5cTT2u9yK9WWqrOyJdyzz6BTA8pmVmPJLdgjyaalq7elGIvJj5TbwW3uA8gjoQPXudvjsBHyO8qQMGO2NdersMGi+9PK8TPP4h+zyTFzW8qN4vPGL0qjuJUwM9aMNxvDlT47xxTfG7sWivvJ1fRTy2zia9wFBpPIdWW73Pb/08jCMYPYpwnLyAyYO8k9XFO6ZtI7xVM9G8LCH9PCY/ZDvA1Ec7UtWWPGSKjbzEOj+8P3+oO7HkUD22Ski9vikJvZ3jIzr+Ifu8ICbxPJM8Cz012I879BETvSZHoTxUBDQ9x1SAPctL9TqIXhi9fASEO8P4z7zuyDQ8Kyk6PVBRuDx6UQi9uvKuPIiFeD3vyLQ8+NaSu0XSTbuKCdc8W9u3vLmBojxl1sM8vZ1tugvrkbyXYJO88LViPOogTrzvhsU8L03COwX5/jw6GTE9bnOVvNXV9DyJU4O8anbtu6M2ybxM68C8JVI2vePNKL1J9lW8VOcaPGSKDbwyhJw8N+LWvBrINry7blC72kMpPSzvBz1M68C8YrK7PMILIj3begO8H6rPu5AiSj2f2A49GFcqPFqZyLx836288xGTu11UAb0NXJ68ZxgzvS4BjLy2zia8chM/uj136zsZFbs8lUbSPGCDHjxW+Z48/ZsSvTo+hz2aalq97BW5PW9gQ73+rRY7WY+BvBlM2bujWrE7nel4vSl+C72z4Sw7YckFvc9UCD0JQKY8vXI4PL8y0LwA9Gm8L058PA82Fr14AH47ktO1PDSE1Dw+FeA7JN3kvKp7hzsIBUa8buo6vSK4iTtmVCc9u+KOPcrDWz0O20E9hpIMvaNaMbxmdBs8wmgoPFj4kTyOnV28YcP6PAqLADxco6e8GfePvMzeRzxjeaO87iefvJoEBj11KwW8pJWRvP+OJj3YBQi92kpXPIyC8bzC7d+8qhA5vfcYh7yzPIG9e9ESvYo9orszL4s9Dfu1vEkBQDwxSXQ5ai8rvZyEtbt7+3W9Kk4du9rVmbzIA8Q8UNc7PPICo7yt67w8y3mEPKXaYLz8k648RwZIOggFxrwpfgu8nKSpPPBCi70QFqI7UbdHvUOwez00hNS8LgmtPDf6FL0tKSE9EhEavL1SRD3bKmM8duucPKoQuTyNvdE8WaivvBrHoTzncRc8XmM/vaDEfL3Tzy88z0SOPD4VYLw9VUi8EVvxO9xlQ72chDU7qbVkPIWygDyrsNw8hGcmPOdRo7vKPqS8FLE9vRTRMb1Ey+c7jGL9PPGHWrwvVAe91HTbO5AzEjrWCpA7u+IOPdwAAL1f4+68DYBtuociNrwOVgo9OvWMPFXtnzsU0TE9FJHJPdI5+zr4He48hgfKOmG5izpZDXM8P9uCup4kWT07Gui7Q8YAO5MuCr2RmNU6bSojugjlUTzWCpC89d0mPQXqWbr8syK9NN8oPbw3WD2plfA8HSfdvEtMGryIp229HEfRPOBAR7tVMm88R3GWPKwLMby/jSQ8BLWEPYVHsrzBbTA98YfaOw5WCj0HJTo9AYoevMKokDwBqhI8oR/RvGlvEz2LouW8XiPXPN4FZzy2YVw8DRsqPW5lA73ixgG8Y97mPNulq7yEzOk8w2ioPDVEbDsZbE086dHSPAIP1jtuZYM8QtBvvDsaaDzKPiS7ly5pu2xKl7xDtga8A2oqPQ1mBLshPUG7qGCbvJP+mzwlGEW9VXLXvADUdTx8Vko8prrsPH5xNjgypEi5wi1IvNQ08zw136g8q7DcPD3a/7zlVqs6dSsFu+zsvryUU2W8CWCavamVcLxRt0c9VJJLvTu1JD2mVSk9rCulO41IFLxhw3o8QauUPFcYBrxsWhG9WQ3zPHNFbrwy5LA80h8SPKW6bDxZqC88IV01O3YLEbw2KoM5Q0s4PK82Fz0SIRS9IqiPO8ItSD2jOj09ejteuogitrwbhzm8ICJVvU1nBj2QeGE9Ix1NPZr0Cz0L4Em9pjU1PJF44TvSHxK94lszvaaa+DzmNje9lHNZPMfI47wf3YU7QmusOwZFrjxreoW8erYmujS/NLzA0vM8mmnJvJ+foTv/jqa8/BhmPMxpijyG59W8Z7lqPBxH0Tuefy28ryadvdxlw7z9U0a8e5ayPJmpsby6t6g8AooePSTd5LsRUYK7P9V3PUJrLL3mm3q6AS9KPa7LSL06tSQ8yCM4vB2ipTxjeaM8aJ8BPRos5buYyaW8x6hvvTrVGDyLPSK954GRPekRO72mumw9wi1IvMeob7xEhhg9c+AqvOhRI76XCY687UcTvNeqM73hwHY8p5r4uwpbkr2+13u9VxL7vJB4YT2NvVG7zvkzvZETHr26l7Q851Gju/EykTyfnyG8YcP6PMo+pLywBik7a+/Cu+fW2rw5WtA960wbPCE9wTwuCa07JZ18PDlaULxS8ie8XKOnulvjj7yNvdE5LO5AvNfqmzwvVIe72sWfPHzhjDwIgA69yI4GvG81lbwXMe08YbkLPRQ8ALx4FoO8lHNZPAS1hL0IBcY8/44mPTXfqLw1KgO8PPAEvVeNw7tlGUe9coVWvIMsRr3NGSi8Y95mO6hQITvdwJe7N1/YPOzsPjxGJjy8qPVMPAZlIjxXrbe8ZDk7vSlOnT0BqhI9WE1bPIUnPr07taQ87HF2vbQsh7wIBca7GAeKvMFtsDzpjIO8tKFEvacVwTwdJ929xM1rPYMMUryz4ay5v80MPAbKZbwvZAE8A8/tPG0Kr7zc6vo8bmWDPopdlruNSJS7QYsgvcWzgrtJhve70CQaPeOmjbzyZ+Y81O8juxUMkryvi2A95VYrPYmNBD3lm3o8NITUPO/nNr3LHrA8ZjSzPfvTFr2tCzE7VXLXPK0LMb0b7Py7iuJNvVgIDLwZ1xs8T3znPJ7Pj7qkpYu8JRjFvDCJXLuNOJo8IsgDvbgXBT2QUwa95Zv6OwZFrrwtzsw8QDBMPW1v8rpDK0S8w4gcvH0W4jtCsPs7SnwIvWlvE71qL6u70DSUvDs63LwBTz48FzFtO36Rqrwmk428aU8fvWX5UjwjiBu9tCyHPLk84DzPZIK8bDqdPDdfWDgFhZY6rovgvB7ndLwNGyq9kLjJOgtbEr1IQag8iY0EPJ6vGz3ECMw838X+vAugYbxsOh09gLyQvE68z7uxUQM9RWYkPdkVgrzm9k68bQovve5Hk7yZDnW95HYfO8IN1DxM/Le65bvuumL+2jpfI1c8aw+3vDmauLzfYLu7GIxBuyqzYLyaBIY8ETt9O5jJJbxOVwy9ZZQPPfESnTwp88i8iY0EPHAFpzz/jia8q1uTvOkRO72B0fE8HmI9PN6ALz2wBim9uwIDPTXfKDw5mrg85PtWPAvgybxVcle9JnMZPdCZ1zkT8SU98EILvGxKFz1bSFO8dxaDO1bNK72z4Sy8oMT8PJYzcbz745C6ZlQnPYSsdTzMaQq9fbEevQNqqruGYp49MCSZu4SsdT1Y+JE6AE++PBPxpbu8siC9sOY0vf1Txry8siA7My8LvDi6rDw26po8QDDMvJwJbb3hmxs9UnffPHIwjT0hPcE8SuHLvGxKl7xDSzi8vffvOzmaOL1hyQW8My8Lvb1yOLw4H3C8jIJxOogiNj26/Hc8O5WwPNsqYzz/jqY8aI8HPfPCOjwR1rm88YdavZOzQbwYBwo8KtPUO/yzIj3aSte98gIjvGHD+rxeI9c8RIYYPKNaMTv8s6K6LUmVPLUcjbsyxDy9OLqsvLQcDbzWFP+79iL2vAeggrwOm9k9H72RuwtbEr2g2oE9a3T6u+nxRj1S8ie99xgHPTM/Bb1/vBA8ov/cPKtLmTzwx0I9FZFJvcWzgrwrDjW9IbgJupETnrxqlO67clCBPC1JFb1LXJQ80DSUPBxnRbxiqRG9nd8JvNsK77tKjAI8QmusO/348TwzPwU8QDBMO85e9zyKbRA9GwxxPP7ODj0qk2y8rQuxvL3dBry7N9g6Rov/vMHIhLwQ9i067wcrO2tqCzzGQ6y7CmsMPeM7v7xmdJs8952+vN6gozs9Vcg8ai+rPPl4Qrw61Ri83oAvvIkCQju4F4U905TPPCxZjzxXKAA9BXWcOxIhFL2oUKG9likCPO43mTxlVCc8SWwOvSCdHT0ujuS8lB6Qu/vTFjzxEh08gJwcvbLhLL3urFa8/fhxPDfqmrpr70K9hyI2vFQ9Aj3vjGK9u/KIvXLFvrxEhhi8hbIAOoLHgjygmhm91vqVvbviDrxPnFu8SYb3u2j0Sj1GRjA8xZOOvUtMmjtQXHO73bCdPDmauDyB0fE8R4v/O4pNnDyErHU9WmhHvH9Rwjzgywm94ZubPSAi1bxYbc88yePPvBcx7Tsp80g7ZzQzvPJnZr3Wb9O7JFitvAJqqrx1G4u9i/25vNfKpzwPFiK95pGLO6j1TLton4E8T9e7vAIP1rt55pS9L+k4vAlAJrz3CA09cwAfvESmjDufn6G6vu2AOoC8ELlLPCA8RwbIO4Hx5bzMWRA8+v35u2nU1rmsKyW8tCwHvWc0s7w5WlC7xmMgPAugYbzOfus8lP4bOxlMWbzW+hW9d9siPeosp7zIA8Q8VlLjPFeNw7yxxsC7bEoXPcIN1Lu6l7Q8qhC5vMxJFjtGJry8onolPLlcVLoWrLW8IJ2dvHfbojxhuYu7T3znPO4nHz3GY6A7wcgEvBIxDr3Fk467vu0APUmMAr1GRrA8U9KzvD1VyDwoM7E60fQrPJkOdbxjObu8wrJ/Ox8iVbw7Gug8FFbpu8y+0zzU7yO9PsAWvWHJBb18dj69r6tUO4RnJjsO20G9sVGDvPcYB70ZbE09oD9FvdYKED36eEK9+Zi2O9IvDL5u6ro8bm/yu8v+O7tOvE+8g6cOvHcAfryMeAK89kLqu9hqS7yzZmQ9FzHtvHHlMj0A9Gm8hUeyu6wrJT2i3+i8/LMivOpsjzvWT189W+1+O4bH4bzUzy895HafOgDaALwUVmm8nkRNuxbMKT0vTvy64ZsbvaCamTx0oEK74ZsbPICsFj1frhm9D0YQPVzDm7ql+tS8BerZPEmmazv5mLY8xM3rPPgdbjzTlM+7e5YyvLgHCz2uZgW9mamxvGe56rw+sBy8UDx/vNulKz3/jqY8yj6kPf3uAr32Quo8isLZu0LQb71F61s8le4hPeh2fjujOr08+8McvY6dXbwujmS9WNgdPbqXNL0p80g9qosBPGB+K7sPFiK9DttBPRbMqTzHyOO84uDqPHn2Dj3uJx897VeNvMy+U7xu6jq95IYZPdhqy7z3nb68FnFVu0GrlDyBjCI72C/ru3vxBr23nDw8LzSTvASFlr3vjOK8oaoTvR0H6bwjeKG85aEFPOSWk7z2Quo7p5AJvamV8LyxMQ88cUp2O7bcJD1FZiQ8tMG4vEqMgry6V0w86RG7PFM39zxPfOc7yCM4u1QdjrxdgzO9Lc7MvLYhdL3odn49lA4WvYyC8TxMHKy7kLhJPAeqcbs1v7Q7UTx/uhTRsbyBjKK80FnvPP8TXj2Ip+07iX0KO+7ntrz9czq8YcN6vb8y0Dtwit489A2VvD3gijzZFQK9v60YPbYhdLtRl1O926UrvMxZEL0uCa08A8/tvI8zEjynmni9gDFOPceI+zzReeO8ZflSu/XdJrsTdl281hR/vZfpGT2aBIY8+Zi2O+1nB7xDC1A8SSG0vC80Ez0tORs9klhtvZrkEb0sKSG8LUkVvHgWgz0sc/g8W0hTu/ICo70A2oA8sqZMPW3quj3OXne8Q0s4vVtIUzxgfis8SEEoPFvt/jy6l7Q87XeBvFbNqzxXKIA9cGrqPCTdZDtUPYI8I6iPPNNU57ysC7E7BIUWPc2e37xGq3O8T/cvvJgO9Tz13Sa8yj4kPZBThjyRE548E3bdPN0lW7zG6Nc8Pdp/vbyyoLu9cji9KX4LvbBr7LzMvtO8nKSpu9K0w7wXrDU7U1frO6WFl7xo9Eq8M2TgPFettzxvRY88vZKsvDf6lDygygc9xkMsvGvPTr28siA9ozq9PANqKj1ZDfO7erYmvacVwbuUc9m7ZDk7vXMAH705mri8Ve2fvI6dXbt8dj48xujXPOCrFbz8ky49rCulPCsOtbz13aY9rCulvPDHQj0ZLGW8upe0PPr9ebx1Cbw79iUSPahMW73QgUQ7EiFLPOyFCL2PsWS8Ne4ePawWIz2M2uq8Qb5JvGPJKDyWUia9R/6Quq05Ej3/NAA95TiPuxrCjLwptO47ZA8HPAggR72bBfk8qExbPKg/qTyZpbY8k0pTPdUnZb0LsWI8WyhnPAN6prz354Y8uTneO1ufnjuwvMM7vQOmvMEYKzzOO2Y6/uA3vTqHDbyPZic9A4fYvPjnhjsU8PE820S9vCorJry/lMG6BEnNvHF9/7wpabE8L6BtvWKYT72ttHC8nT6lPUWrAL0G2mg7JNBCPJd1Fbr17GW8mONBvRUpnrsJ4ru8z79PO2KLnbwDeia7WVlAPOyFiDwRUqS8ZaAivPjDX7tXyCS9VP5cvOreLz0z/Ai9ESIDPI7vb72eDcw8k4heva/tnDzpKe28bh29PEWrgLzJ6Y08juI9PA8ZeDwWTA08JyPTu0Mnl7wvhom8NxGOOyZUrLzPv8+8o7PsvKa7vzxOiRW9R18LvWA4DT3m+gO9J9gVvKFgXLzpro487rUpPWzX3jyQiRa8UmAPvaPx97xxcM28rBYjPfAIOj3lkP67N71FvbzThDx1Cbw8qdBEPCAqIryHSge8MqhAPI1RortEV7i8NhEOPcmVRTwlhQU8a1N1PcmVxT2crYm7PCVbOqIi0btgUvG7cj/0u3HElTzYPGo9/lzOPCyL6DwyqEC9n9xyvH23L73cBrK7Wa2IOzuhcT0ddhc8D2AOvdmzoTxO6g89X8HVPK5cAb22SAC805ZJvdXcJz26sJU55jgPPVzCjTmP72+73kyQu0PTTj2TPaG8grGYO6wj1bz+4Lc8vIxuPYGOKbwxFyU9tCWRPNqCyLpRq0y8il+MO87wKD0omgo9cX1/PBCQLz2udmW8q932vLNjHD24qMK8K7zBvMaAwLr35wY9hDUCPbEQjD2wvEM7ZzG+PAQ8G70U8PE86VrGPMZCNbxA/NS8K7xBPIdKBz2xyfW8XG7FPBrPvjuj+oK8r+0cvSBNEb2dfLA6quYBPVPxKj1Ht3q7121DPCRiFjyZpTY8CC35PFG4/rz6Cb47TqP5uulwg7s4Qa+89aGoOz1eh73GjfK8gF4IPdOje735eKI8ovF3PHhp/jzJlUW9GYlgPJK5Nz1zw907NbATvTgDJDxaG7W86a6OPOWZCT3Dv4O7dTqVPMChczsOnpm8v0mEPPCajbxztis9hXLVu5vrFD0YieA87vM0Pbi19LulN1Y7VP5cO6vddr0Dh1g8HGBaPbsREDyKwAY7+MNfvbosLD066Ic8pHVhvRiJYLscFZ08N0EvvZQMyLs/v4G9gY6puj/8VDw9tnY8vH88PDhBLzxqmos7U/GqPIrAhryxi+q8p300vS/Rxjx/eSQ8STtkvI0Tl7tY6xM9rysovN8Ohb3Psp07YQe0vL+UwbymyPG88BVsuzsYKT3yyi691dynvEnwpj0b3PC8AvY8u6g/qT0JNoS8dkdHvLvK+bw63/w8Nn+6PMHnUTyDLHe7Whu1vNXcJ73SUOs8TFBpvQK4MT2CUB69KPJ5PSWFBTzx1+C8u3+8PLXeerwAZSG+zWw/vLMCIjwSLv28FjZQPACwXjuMXlS9LH42vU8asbzB2h89E/BxO9EFLr36hdS83YobPH23rzw0LCq8BQvCvMJeCT2/lME83q0Kuro5XjzDazu9VxPiPbYkWTuoTFs8K06VO0WrADy2JNk7bVvIvM+/z7whrgu9dfyJPJLGaTjn1tw8DEL+uyzJ8zuSxmm8MpuOvLWTPTy/SYQ8f0jLPDZyCD0vAiC9qcMSu3L0tjyW2269sotqPIZlIz1Olsc8QoC+vHqiqjyZZ6u82IMAvX95pLuNExe9/x7DPMtk7DwFX4o8mbLovNDVDD0scYQ8DDXMvOJux7uttPC7s8SWvMR47bxIIYA9glAePR04jDw6Y2a92f7ePIZlo71PGjE89SrxOpvrlDv39Dg8tIYLu0UmX71urxA4B9roveFuRz3VGrM8GInguW2ZU71It3q8zXnxPJy6Oz12VPm6DOoOPd+kfz7HT+c7CeK7Omv7Bb2dPiU8LMnzPIC/Aj3ihAS7MdkZPGqai7xEVzi8MpuOPLCvET3/HkM9GA6CvH0CbTtLNoW9q2FgPMOclD0CuLG8DDXMPL7FGjoq7Rq885nVu5my6LxZTI47eeC1vJ9hFD0NrIO84J8gvDKowLwYieA8RFc4PdUas7xsyqw7ZgGdvHO2qzzqDwm8LwKgPJ8jiTxv7OO6yhkvvAh0jzwHspq8quaBPETpC73UDYG8fGSfPI0te7zZs6G8VcDRPLVVMjuH9j680lDru47iPb3iPe68JxahvDpj5jy1YuQ8cGObuqJ2GT3yThg7aQBlu2jzMrwEPJu8/+3pvIQfxTxgkHy9gZtbPCJ9sjxMEl68BDwbPKCe57yP72+8pCokPaCeZ7wcYNq7MjoUPWzKrDzZwNO8gY4pu8gnGb2Z48E7U/EqvWH6AT3nB7Y7N0GvO2CQ/LrDLbA859bcO6Mi0bydPqU7TVDpulaPeDxKspu4vNOEvPi2LTwk3XS87rUpvSsQirznyao7QxFavEf+ELx57We820S9PKCe57yO4j280Y72OyflRzw9a7k8jFEivSyL6Dx//Q09ENvsOwuJlDzL26M8kz0hvdUaMz0JNoS8xkI1PRoafLx5EQ89MRelPJopoDzd1Vi91SflvNGXAT2jIlG8OdJKu49mp7vLJuE5Ola0vKkBHr32JRI8+xZwPUHLe7w+OmA9NtOCPP8eQzyKwAY9axVqvX/9Db0ZGvy85INMPBueZby6+9I8DQTzOvtdhrx8QHi9vsUaPNDVDD0ZDUo96XCDPIC/Ar0PGXi8pfnKvGwIuDsLiRS99d8zPH55pLyXFJs8A3qmvB6zarzsJA49F60HPe+EUDvuAGc87Hz9PG6vELxPo3m8ECKDvK2ajL0ZDUo6Up6aO2wIODz+0wU9Zd6tvQ49HzzqDwm9jXQRPJM9oTqACsA8Sf3YPMaAQLxR/5Q8PNqdvIMSk7wz5su86t6vvJWeG70bhAG9C7HiPQysA7sT8PG7LyWPPUjAhTv3AWs9VwYwvEh57zyjIlG9pGgvvU8asTxe8q48/69ePTIkV72LC0S8GWESvarddjvpHDu7PNoduagBHjtPGjG9XjC6vAsomjw+/Qy8vEExvYQfxTyeS9c8cK5YvMAYq7vUDYE76VrGvOF7eTxMEl49/yv1O1TAUbn/HkM93BPkvDkmE73pWka95ZB+u/1cTrxe8i483kwQvX9IyzuKwAY9FJiCu8ydmDyqhQe9yYgTPHV4oLwNxuc6LsQUO4uPrTtoAOW8ROmLvAO4Mbz137M75bSlPYo8HT0iuz09Uy+2vNRYPjwDh1i9pflKvbk53rtWmAO8N0GvO815cbxYl8s8n8IOvYC/gjwq7Ro9yqJ3PLNN37yDH8W7onaZPIJdULtXRLu8uXfpvG2MIb1BgD497IWIvF60I71qtSe83ZdNvfWhqDv1rto88FwCvag/qb0DeiY77MOTvMz+Er2Sxuk70UM5ujQsKr1IeW88UsGJvK525Tyi5EW85dcUPX9Iyzvhe3k89CrxPM1fjTzPv0889Spxu+fWXD3S1FS89XGHPImdl7ySe6w8pfnKu7u9x7yghIO9MqhAvMVzDr33MsS8gl3QO2nC2bzq6+E8qoWHvY0TF7zmFOi7DcbnPAsoGr01Txk9GQ3KvRhLVbzwFWw7dXigPPXs5bw6VjS8yZXFPI7vb73m+gO9yNNQPbC8Q7ut8vu8c8NdO5lnq7yXX9g8Vo/4vCYWIb28jG68DwzGuyWFhbuENQK6uF0FPD1rOTyeAJq7dV0EvduYhT0Dh1g8vRDYu9GXAbtrFWq96XADvPTfs7wDxWO8/+3pu0k75LyMUaI8fIcOvRgOgjxH/pC8NTlcPFfIJL3DOuI88VP3O6dwAj15cgk8XvKuPGm1J71LjvS8wl6JPOkcOzxpdxy9GWGSPE3HoLyhYNw73ZfNPNRl8Lusd528HSJPvew+cjp4HsG8J3ebPPNofDxgOA08LwIgvVcTYr2j+gK9bZnTvMBj6DxRq8y7Ne4evVH/lLydPiW5E9aNPQBlIb3HEVw9hmUjvYBV/TwTdRO+5xRoPMgEKrxIt/o7lAzIvJ3Hbbz7Cb68eBEPPLiowrv9T5y8RzycPfFT97zyyi49eq/cunqv3DyEoy49psjxvOfWXLzyjKO8GQ1KPTsYqbujpjq83w4FPeugJLywTpc8MjqUOytOFT31oSg9KbTuu2jzMr0e+oA8pTfWvF4wujxfwdU8kvfCvPjD3zymBv05Uy+2vKnQRDyEH8U8oVMqPUk7ZDwz/Ig8EVIkO0xDt7z+XE49zSECvVlMDr0W+MS8QUKzuXCuWLwXx2s9xxHcO7GLaj1ZTA69JpI3PR76gLx+eSS9W+rbO3X8CT0KZiU7oIQDPb6HD72Bjqm89zJEvVEn4zw4AyS9WijnPDPzfTwFwAS9RSbfvGNndj215wU9663WvKCRtTxdPew86FrGO8dP57xpAGW8lSIFveP/4jxloCK9XSOIvUk75LzI09A8zSECPduYhTto8zK85ZmJvAYLwjqMUaK9c8NdvBV0W7zBO5q8z7KdvLSGizwv3vi8i9rqOxb4RLwBNMi8GA6CuzQsqjvVJ+U8VPEqPJCJlrxe8q488PuHPBM3iDvrYpk8w7Z4vDkmk7t3jSW9WaR9vXvFGb01sJO9IchvPaLxd70iyG88NfvQPPfElzvP/do8bipvPJjwczyfwo68Y02SvMjGHj07JVs9Ia4LPDa9RTsOPR+9vt9+PCv6TL3t87S7YpjPPNrWELuAv4I8HpkGPASdFT0PDEY6RIgRvbpPm7y6Od68FXTbPHbYYr1gOA08Wa0Ivc15cTyaKaA8Uf8UvTbTAr0AZSG9RKL1POyFCL0o8vk8jSDJO9b/lrxkcIE8Zm/Ju0RKhry+h488S4FCPd5ZwrzepP+8vQOmO4Q1groI1Qk9yMYeu4mdlzsfKqK9mWerPJg3Cj1NQ7c9onYZu3F9f7zcUW+7qdDEu5RgkDtqOZE8xXMOPZmlNr2ks2w86SltPbCvkTwrTpW8ujnePCu8QT1a3Sm9XGETO1//4DzB59G7BRj0u6qf6zt50wM9IQ+GvE7U0jw+OmC8f/2NPCWStzwIIEc74jA8PUoTlrwk0MI7LyUPvUUZrTsQkC+8+10Gve3mAr37FnC7G5Gzu7SGizw2yve7OAMkvDbunjs6SQI9In2yPOWQfryks2w86XADPeTBV7uaNlI7ECKDPSWf6TsbU6g7qoWHvJmltrzuwtu8teeFvO0+8ryVzjy9uxEQO1BYvLtQ3CU63qT/uywH/zwbzz48wdofPbhdhTzpHDu9+gk+Pb7FGr1gkHw92zcLvWdiFzyUnhs5WjvSvOCe47uYcTe9p22lvFPHiTw/WCm930iqPGp97Txjdho8RrMJvFndEr2I2rg7ltamvHrOPjx4eAU9RrMJPcVlgTwar7O85glQPCUwqbwbBW291AwMO/6WvzxMH8w8STaIPER+Pj1uCHK987cKPCTrUbv8+y67jTWZPPQVSj3jw6I8mgxIvKPyLLxgQc+8WuZuvEn5NrygxJG7Z+kMPTL3S71f+yG81XLRPHEtsbyLZb08mgzIvG2iLLxjd3C9MaESvPQVSr28kP68E+4NPNIspD3zJdY6CMoBPc+xK7xHCcO6cS0xvAHdbL2z/3y6GvyQuwh1njt5IyK8AMSEuxL+mTuDpBc9LtE2vE2xALw8zaS7uAQkvVVaFLpIX/w8oBJFvQNocTwggGW9UDwFPerBGb1v5wM8ZWdkvQoIKT2argi8okeQPIB/2Dscnyc8HfVgPLFLhDvqyZ+8Pc0kvbha3TwnIfO8aXQRvXJqgrv5cKo7ADLQvEe0X7p4mXM7dA7vvNf91brhOJ48nne0PO+a0TyP4LU8VrBNO9x4zryAj+S8s9YIvWDjDz39UWg9JzF/O2sXqLyJD4Q70tfAPEZeJjtXoEG7ZgJ1vLv1bbuPe0a6grQju345Kz0cjxs8Of1IO1CqUD0iUME9YexrOwAyUDz+Ueg7H4DlPGD8d7srAds8cOhZPT2IzTtn6Qw9yyYnvYbqRLzOXEi9Ud+bPN2tmbyA1Ds9Xqa+OwTyH73xejk9E6k2PTm4cTyqRQe8EmTfPBr8EL2E+tA8mmErvF/rlTxnnC88Sy9YPELjLbvGu7o9/euiOtQUkrw7MhS8xCCqPDUtbT0ysnS70pLpPL+1vTyGL5y8g6SXPHQee7yHJ5Y8r2scPZnH8Dt4eAU9m7fkvOypB72uHr88AMQEvTFcOztyg+o8klsuPUZepjxY5Rg9ewOKPBw6uLr41Rm9/tuWPFewTTwyPCO8QknzvCi7LTyrTmM9DoOhO+A4HjvpP3E79fUxPO/fKL3bIpW73SPrvGDbiTxXa/Y8ghrpu4T6UD1yagI9F4p0PA7p5jrpJgk688DmvDTXszvMjGy8iqoUvQ6DoTybUnW9xXUNvT61Ej0/pYa9K4uJPDwzaj3aKps8m7dkvB4qrDyFjIU7JTCpvAjKAb2xqUM8qV7vvETDlTxNdK88MkwvPMvhTzyCGmk8ZfkYvPK3ijywZOy7bW3hPIU/qLzZQq08vl8EPYu79jyA5Ee8LYxfu3XtgLvH+Au8/esiO+Eokj23evU7C25uPFo7Ur0+eEE90JGTuW33D71XoEG8ndwjPQzwFr2RFlc7kqAFvZ4y3brlq5C7Sy9YPFHvpzo2xyc8mcdwPOQp6Dx9nhq8rE7jvKbCiLzRmRk8JoZiOhZ5EruPHQc8cw0ZPfAsBr1bgX+9dB77vJIGy7w1PXm7eHgFvQtu7ruI2jg9+c0TvVKKOLyiWHI9QygFvVhLXrwiUEE9Ud+bvbmfNDzwLAa98Xq5PPMVyju3z1g8FnmSvNkyIbzTgl29R8TrPIkgZr0Yvz89cOjZuzSJgD2m0+o70iykvBw6ODxD06G7x6suvjQsF722YQ27de2AvI9GezxzFZ+8TMmSvfLgfr2FPyi8cejZPPfdnzz+lj+9gxrpvMt7ijvsuuk8E6m2Ox4qrLtHtF88uuwRPKYozjt8aU+7OKePvOf5wz20RNQ8+hvHO/rWbzs4n4k8DF5ivNndvbzRPLC7HfVgvM4nfbzGABK8eJnzPBG5wryNNRm7S5THOpun2LyHHxA9f34COy8XZD1t9w89gxrpvJpRn7s+vRg8eCOivVo70jw6lwM9su6avEarA72WgcO8mmErvF/rlbz7C7s8VkoIvQ2juTmW1iY8WjvSPIkPBL3rZLA8CG2Yu8N9E71pN0A7q/ipOxFbA72Mu3a9LydwPdeXkDyhzW08k/Y+vQHN4Dzevnu9khZXvGExw7sufFM4jptePG89PTxGGU+9jptePJOx572/Ahs9Z5wvu3QO77pVFb28XQuuvCyDAz3OJ/089QU+u4tlvTyjN4Q+rcgFvQ6DIT263AW9ffTTPPCaUTzolNQ7IlBBOwxO1jlZ3ZK8sVTgvNLXwDyvdHg9Ud8bPY6LUrqpCDY73/NGvRufJ7v6G8c99kvrvGsXKD1LhDs9jKtqvNsaDzyUQxy9y3uKvCgABbwhtTA9EB6yvEQp27yOLRO96E99PJ0pAT0AMlC8e64mPSEKFL1pN8C7bBj+u1HvJ7pVFb08u3+cvHxpTztu54O85G6/vKv4KTxl+Zi8w9vSvHJzXjwj+9278ceWvFZKiDqDpBc8Uoq4vE4PQLzoP/G8ObhxPBPuDb2V5jK61Me0PKTamjz2oM47E+4NPE+6XDygtIW8DpOtuzbHp7xih/y8Ws2GvfobRzynGMI8lpHPPJIW1zx2Qzq9bl1VPBDJTj1VFb28xxH0u9mHhD3xejk9er4yu7x3Fr3p2Su9UfD9uxZ5Er2OPZ88TbkGu/iQQrylONo6BEcDPJfX/DylONq8yUY/OxPuDbxwLTG9qFWTvNQMjDy3v8y7ixDavAJfFb0KCKm7gNS7PMmLlrtOD0C8oU+WPL9gWjxNyui8ndwjvR/FvDxUvwM8GwVtPDkNVb1gQc88iHVJPZIGyzvHEfQ8Ft9XO4CP5LxDjko9Al+VPDOiaD0s4cK8pihOPK0uy7zE29I6tSS8vEMohbw1Pfk8KGbKu8ibojxi3N88ltamPML76rwyTK+8mrdku2sXKD1D4606ed5KPVyB/zu/YNo8CRi1PHneSr0tjN+8Pr2Yu8SGbzwER4O8YjHDPFI1VbtHtF+7xxF0vSAaoDwvbEe6Wxs6PVValDtNsQC9cmoCvdrdPb05/cg5ueyRvKtOY7xiIbe7DKM5vBG5wrwvfFO8BZ08PfVCD7yd3CM9Sz/kO3v7A7sKfvq5fp/wuiKlpLyXPGy955uEvLFUYDwnMX88+ws7PQHN4L0KCKk4/LZXvXF6jrvvVfo8i2W9PPawWry5n7S6PM2ku6cYwrsuwSq9ZQGfvPobRzw5qOW8/esivfTA5j0c9eC89MBmvAfzdT2OJQ29KashPaV9sbzO/gg9NRyLvS4WjryCtCM9DeAKPdx4Tj15Gxy98EVuvOLTrrx7+4O68ccWOy8GgjuDpJc7fkm3vP/s+LsXinQ8JiAdvdI8ML26Bfo8XQuuPAJ4/TyN8MG8weKCPNdSObyBxK88+htHPcbLxjzjw6I83a2ZPBFjCb11Y9K896DOvKtO4zrt/0C9gcSvuhSZqrwcn6c8AHcnPW7ngzyps9I8rS7LvOIYhjtHCUO82zP3PEs/5Dz8UJI8xctGu5phq7ym4/Y72IcEvU5cnT2haH48qFUTPQAy0Lv0BT48VRU9vVxoF70tjN87u4+oPPF6ubrlq5C8JjH/PBDZWryOLRM9d5CXPEUZzzxR3xu9wVBOvTU9+buaYau8m7dkvJJbLr0yPKO8xRAePTo6Gr31W3e9TMEMvV+mPr1FGc+889DyPGvCRL1Ew5W9VkqIvH+GCLzObNS8CRg1PcLiAjztVCS9ZBGrPKKt1bouwao7D3ubOyvxzjxWUo67ptNqPEnpKj1Ey5u7iIXVOTEHWLwQa489kNF/vBDZ2jw3HWG86JRUPaM/iry79e28AMSEvX8pH72fItG871X6vDcd4bx3My690qJ1PPor07yZpgI8PM0kvIeV4TxphJ070iwkPVrFgL0OPsq748MiPAfSBz2G6sS7Bp08vEMoBTvg4zq9RCnbvFHw/TuFpe07KAAFvQJflbo+aLW8A2hxPEBIHb2uHr+8q+idvOy6aTw0JBG8xJZ7vOMQgDzsumm8BtoNvXczrrx7aU89daipvIDkR7xw6Nm7XvshvdHnzLyfMl08U8eJvFtwHbwURMe82pjmuxG5Qr3ctZ+8W3AduzwaArzhKJI7EwagPL4KIby63AU9Ou08PWqNebzRgYe73GjCuqXjdjyq+Ck9EXTrvBY0Oz0uwaq8U8eJPNW3qDs11zO5qcPevAISuLy7StE7aTfAvIJvTDxidpo8O+28uigAhby8kP68KwHbvJ5C6byUOxY95LOWvIIaab39QAa863Q8O9iocj3flQe9/EiMPeJ+S70r8c486C4Pvlhb6juxVOC8HDo4PIDUO7vzaq28Z+GGvKHNbbxn8mi8rS7LvDdiOD1PqtC8jzZvPVdSDryCtCO8mBzUPLLmFL3OJ/27l9f8vOwPTT0mhmI7jKtqvA7p5jz8SIy848OivKqjxjtRmkQ8I/vdPCmrIbwRdGu9DtiEPEVuMr1U4HE8zcE3PUuEu7zBlSU9NNczvE10r7yYtg48f59wO9VixTwZatw8+cWNOrLmlDhrwsQ6k7HnPM4GD7z2MgO9GCQvvJwxBzzGy8a8cOhZPX6f8Dtl+Zg9OMj9vNiPCj1n4Ya7PIhNvThSLDtTeqw8NCQRvOsvZT3hOJ68AHenvAZIWb24/B09JEA1vUOOyjztVCQ8suaUvDhSrLwuFo49vNXVPOuxDb3RovU8NNezPJzsrzwz57+8ZMxTu76A8rxidho97aEBve3/wLwndtY6iSBmPQaNsDzGAJI8cXoOvARHgzyWkU+84tOuvflwqrzbeM675+m3vGwYfrxw6Fk8HI+bvGfpjDyQe0Y8nSkBvSUwKbzdrZk8iBcKPS9sRzxpfBe9cwWTOS980zzolFQ8s/98PBGEdzxdUAW76E/9vJRDnL1zBRO82xKJvY3wQT2SWy69pTjaO6e6gjxihqa4ZQGfPNJ5AT1axYA7u4+ovCw2prx7riY811I5PQpdDD2G6sS7NCSRvAgoQTyfIlG9J4ZivPQFvjzkEIC6FETHPJ2HwLyfxBE9y+FPPBAeMr0O+XI6uASkvLP//DwinZ68iMqsPFxwHb1pN8A8KAgLu+5EmLz8+668BjjNu4/gtTwNPkq9hupEPTn9SLveA9O8F2mGPDGydLyP0Km8PCKIPJP2vjytyIW9fkk3vWqNebvDMDY8VNBlPVDvpzxPXB08be+JvS0eFDsO+XI9loHDPUi037yTsWe88iVWvJphq7yaDEg8YeOPPNoiFT2c7C+9lpHPPI49Hz2GlWE8sP4mvDPnv7pSzw89P62MvGCWMjywZOw8vNXVvAfzdbwDAiw8aXQRPGkntLxmnC89MZkMPZKoCzxWsE09o1hyu3JqAj2t6fO8NS1tPFMlSb0oZsq8lpHPvB5vg7yQJuO7zWzUO7d69bubt2Q8Hm8DvUHzubswsR67CXUePc5s1Lq8Krm8TXQvPTrtPD0DaPG8HfVgvGGGpjxxcgg8uZ80POg/8bx6C5C8baIsvJ1CabzdE9+8iHVJvdy9JTtibhS8m7dkvMDyDjzsuZM8v8VJvBMGID3fSKo86JTUvLhaXT28Kjm9sGRsPUEDxrxyc948VWIaPGsFHL3QyBu5wjIvvdx2J7xYVPe71s/fug+ADTz8nqo8rPflPLSpR7yyk5O7ExVMPTof77yEVpm71ocCPaYIwTwT/Sy6qwRrvIfgvTyE4ii91awmvH07Ybv9kaU8TtCTPDULJj3Bb/I8+RQGvXyMmDyBFFI8id7SPOuLnjxzi+o742XMPPQEaLyuooO6yvwvveRAKLzbaw29WUdyvMbzAD3eUYO8FCDmOyjRCj1G2n+8St8DPE+Xe7sNDgi9xvOAvV7jnztudyG9aQcHvYgD9zvb95w9yHKLvMQ9ST1e+z49Bpf+vBbjIjqDB029ZaKGvFUmJLyaTbA8dX7lPEjA9bxvmto7lWklPSzCmrwo0Yo7T8OOu6QtZb0zMEq8yWUGPT29B72PBpC8e1VrvSLBbDw6SwK9CWVVPZqpAb2aZc88ZsW/vIQS5zxooBs8EjrwO9Uglzyn+zu8CigSvTI9TzwW4yI8fDDHvNWsprxGwmA8YB74O5d/2bx4b3W8+h8gO0+X+7wknMi7QulvPK7SwTl7Ves81rfAPFNArjuUjsm8xCUqvEGuF70foJ49UEKZPd9cHTsSCrK83t2SOyaCPj3GC6A839ANvORAKL1qtk+8d0w8O0uDsrwPJLw8Z+h4u09/XD2aTTA9dU6nPXdkW7zgZ7e6lHYquzMlMDx1Tqe809FKPXFdFz1XMb484nJRPB3d4bsb38y8uN6JO7W04Tsgkxm8qO62PKMKLLzOvYG9kajTPOBnNz1YPNg8t3cevVBauDxG2v+8yx/pPOYbhLyfGZw87wi+PFCK9joU2Ag9+CGLPQ5hfzz9qUQ8r8U8vDZyET2x23A9YtQvvWfQ2TxIqNY8vFspvZm2hjzqgAQ91aymPHdMvDw18wY9WUdyPUKhkrwb9+u80q4RPWupSr0gk5m81ocCPU9nvTxHtds7t797PeJasjtHhZ28mqkBvUeFnTvN+sS8lnS/O83iJTxvgju8ySHUPBfuPLxdCES89LyKukPEy7vVrCa9VzG+vNp4Ej0hhpQ77f0jPVlHcryhVHQ9VQ6FOwpAsTy0wea7YckVPT3VJryUXos8JJxIOySEqbyDH+w7IAcKveqAhDtC6W89vItnvUuDsjzvCD491waNPO/wnjtIqNY7o/IMPdHTtTwBm9S8B1o7vCpzzryDH2w8/7/4PGERczvWz188NIwbOx+4Pbx1Tqc8u4BNPNjNdD1x0Ye8squyPFcxPj3P4Do9nUtFPCaCvrwyDRE8g++tvPy2yTuzzms9eD+3PBQIx7w2FkC9oi9QPavUrLsb9+u8i9HNvN6Z4Dz4xTm9t3cePLuAzby7aK47c3PLOz1JlzsA7Au8v0GfPOanEzyNt8M88QbTvCMFn7z62+28ryGOPG7rEbzEmZq8St8DO9mFFz3z4a68oyJLvda3QL2ctBu8NTvku6zHJ716GpO8S6brPPrb7bwGl/687PIJPfj197wBaxa8T5d7Pd5Rg7xRffE8hhD8vBj5VjzlY+E6/py/O9WUh7xooBu9AnYwvau8DTzbg6y8qUoIPYstH70Gw5E9ohexuwtLS71Enyc9IKs4vcE/NL4KQLG8fIwYvKY4/7xkx6o8R/kNvDBXWb3QyJu9VQ6FOrvcnj1QWjg8F+48vR+4Pb0W46K8NBirO/qrrzxLdi28A2krPHLEgrwNDgi8quExu7iaVzzM76o97yDduBP9LLwf6Pu8IZ4zPPyeKrwfuL0724MsvIDxGLxRZVK8fUhmvJlaNT02FsC8TlwjvEmzcDxivJC84Jf1uvno8jvEJSo9YjCBPRq8k7w7+ko8JoI+Pc36RL250YQ8INv2PBvHrbwGwxE6xn+QvOBPmDvwV4o77yDdvAJ2ML2YZ7o6ZMcqPQmphzz2Av28P+taPIYQfLxIkDe9Lkw/vL3ClLw74qu8FhPhvBLykj1+f5M8BXTFPChdGr2VaaU8PuBAvW20ZDwDmem6MD86uqzHpzwcoom8NyFavchyCz0gw9e9xUjjPKbwITxUS0g8zxD5ujwF5by73J486gyUPN6Z4LuQnTk9W2aAPn074TuoHnU5spOTvWvB6Tr43dg8LhwBPRYTYbxM3Zg8xjveuuv/Dr18GCg9Ou+wPAbDkTyjOmq8R4WdPBv367yfMbu7CU22PUba/7x8MEc76DG4ujviK72ZWjW851ZcO1lH8ruReJW8t7/7PK7SQbxyaDG8W34fvE9nvTz9BZY98e6zOjZGfj1+C6O8IZ6zO6M6arzrF648YuzOPCH6hLyicwK95z69vOwKqbzJOfM8NyFau1Nw7LxA3tW44lqyuz/Tu7ydp5Y8wxoQPZ5WXzqHPI86ZpWBvGW6Jbw4ZYy8jsJdvCfejzyaNRE88FeKPOgxODu2hKM8t4+9u/15Br1q+gG8h8gevOGK8Lz/v/i751ZcvOM1jjyrSB09nj7AvI3P4ryUXgs9TlyjvD/TuzqNn6Q8MY4GPM4FX7s55Ba9EgqyvED29Lu8z5m7NyFavFQzqTyykxO8YckVPHd8ejw+4MA8YeE0vd6Z4LspaLS5/BIbvNUgF70FRAc8IwWfu6UVxrwUIGa99NSpuyaaXbyl/aY43lEDPDXzhrz49Xc8DSYnvSh1ubrO7T88MY4GPJ0bhzw3OXm9VZoUPTYuXzwAkLo7+dBTPGW6JTwR/5e8g2OePHeojbyRqFM9DSYnvQ0OCD0/A/o7xD1JvE9/3LxA3tW8KHU5PV1kFbzx7jO8DSanPLjeiTzb9xy9dGZGvehJ1zwKnII9dGZGvADsCz3+nD+8qwRrPRrUMjuQhRq9m0CrvXZZwbxG2v88OxLqO7mN0jrT0co8VVbivFF9cb0DmWk7BFGMPJZEgbx6GpO7lWklvd6Bwbx7DY68H+h7PL8pAL3baw08/XmGvJakfTwY+Va836R6u4muFD3aqFA7VT5DPVoiTjyo7rY85ktCPBzq5jxRTTO9WDxYvavsy7xQctc8EwqyufeigD3SIoK98OOZPPU7Fb3yEe08zNeLPCzCGrxPf9y6QhWDPA4Bg7yzni29KNEKvRjht7z130M8K7cAvTpLAr3awO891p+hvFU+Q7zvIF09BVwmve8IPj2lcZe8b7L5PGnbc70uTL+8XP0pPS1ZxLtt+BY9laZovAJ2sLyhJLa7NhZAPBJmAztM3Ri82M10u3aJ/7tIkDe9aKCbPOtH7LwufP28as5uPEPEyzswJ5u8kmsQvBb7wTof0Ny8vX7iO8JKzjyHPA+8l3/ZO1lHcj0GN4K8BYzkvMCoCr1gBtm633Q8vagGVjz8Epu8bnehvBLyEjwQF7c7ZS4WPUt2LbxxjdW7IfqEvJGQtLu3d548kZC0PALqoLx0Zsa834zbvDsS6rvOvYE9mGe6PMZTfT0tceM824OsvFkXtLwJTba8wjKvvF0g4zwrtwA7RYcIvbtQjzz/v/i8+h8gPAllVTzAqIo8nj7AvCHOcbxPf1y85qcTvTkU1btVVmK9s54tvJm2Bj2/tQ+916o7vRgRdrraeJK73oHBPJVppTxp2/O8m3BpvYjr1zywFAm8fxa9vFKpBD2Udqo7hkkUPEfNejxbfh+88BPYPDlYh7xWSd08WDzYvLuYbLx6MrI9jbfDuwdCnDxdCES9aBSMPZVRhjyJIgU9JGyKO/zOaDtzQw29TN0YvUvqnb2u0sG8lHYqvWLUr7ysO5i7QtFQvbnRhLuoHnW933Q8PCdqnzt3TDw8OxLqvPnQU7sXHnu9kJ25OsA0Gj0+yKE888kPuzXzBryiR2+8uV0UvczvqrzxHvI70dO1PCAHCjwhnrM833Q8uYgvCrwqc8689TsVvVoiTr31x6Q8RJ+nPGe4urxWSV08l3/ZPBkEcbs4ZQy9jc/iPKIMl7zFSOM5qhFwPEvqHb0/07u8mVo1PI7C3buAIdc8BsORvP3B4zu7aK68q+ExOqYg4Lwld6S8EgqyuyiNWD1yxIK7Ks+fPAY3Aj3KcCA7dX5lO14rfbyn4xw7RpKiPKjutrwCdjA9JPgZveN96zz4rZo8lqT9vFcxPrzcpmW9busRvAdCHDsk+Bm8WjrtO/itGjz+nD+9wT80vYRWGbzrF668eG/1u7DQ1rzyEW29vEOKuz7gQDy5dTM9WwovvUedPD01C6a9q7wNPY+SH776BwE8vHNIvGfQ2bx7Veu8toQjvANpK73GfxC9qj0DPMdG+LzsCik9ylgBvNrsgj0qi+28PdWmPP+nWT1Z/5S8WiLOvJZ0v7y5dTM9pRVGPC1xYzq8c8i7TIFHPHZxYDxNjGG9bnehPPyeKj3wK3e7MoEBvT7IITxXjQ+9PrACPdUgFz3CSs68cXU2PfzOaLvgl3W82LXVPCil9zsyJTA9zAdKPBv367kOYf+6Hd1hu/qrrz2U6hq93V6IvJKDr7z1xyQ8TXTCvBj5Vj1gHni8gx9sPR/QXL05LHQ906GMPHc0HTyNz+I8zxB5PCORLr05FNU8PsihvOwvTbx/Lly9vWbDPGJIIL2Eyok8mqkBPZ2nljoKQLG70iKCPZKbTj2eVl+8G/drPAszLDxb8g89xn8QvTYWQDyDH+y8nj7APITKCb1aOu271rfAvMBMOT2u0kG8uaVxuiaa3bwdrSM78Ps4vCaaXb1UM6m8XSDjvMUYpbw6SwI75jOjvO0Vw7z1x6Q7z/jZvG9qnLuQzXe7/BIbuzJV7jySeJW734zbu9TRSjsHWjs91ZQHvKz35TxtnEU8l3/ZvHa1krwIfXS9VBsKvVkXNL301Ck9sNDWvEedPLxRTbM8as7uPNyOxjzWn6G8ng6Cu7QFmbzxHvK8/vgQPS6okD0rtwA6+dDTunNbrLzsOuc7iOvXvOPBHTttnEU80iICvStbr7uSm068VzG+PNuz6jsCpm69PAXluxLykrwzMEo9nzE7vR2tIz3TuSu9KKX3Owh99DveaaK86EnXvFvyD70Wy4M8KKV3vXF1Nj0W+0G8RpIivH9G+7kGZ0A8OgdQPKlKiDy3dx4924MsPJhnOr2HPI87b5paupZ0Pz3kcGY8spMTu5KDr73sIki8400tPQ4Zoj2x2/C84zWOPFQzqbXM1wu99d9DPPj19zsYPQk9csSCvF77vjyw6HU9NkZ+vCS05zuJ3lI8GPnWPMpYAb1/cg4872SPOxTYiDxj9+i8vymAuVU+Qz3BPzS9DyQ8Pe3lBDt8GCi8DFZlPTbmAT3w+zg9VwGAvSRsCjvBPzS9Z9DZvNO5q7uiDBe91cRFPDc5+bxTcOy8mk2wPLyL57zPEHm8ySFUPJ9JWj0b30w8yhRPOpKDrzx2WcE8s7bMvFNw7Lyjfhw9LhwBPRuvDjuWdL+8GezRvBfWnbx7PUy7ng6CvBJmA71XGZ+8VKeZuzof77s0jJu8nUtFPLePPbwufP08fvMDPYLkE71zW6w8DzxbvUt2rTydY+S8jbfDPL9Zvrpw3by8CBkuO4pgHL3r66u8lxugOhpWNrygJmC7dWyZPFoesDy1NJM6qGy3vFzigj2DnRW9jAo/vHy5Jz2WPAc7AO2Guv0b3LwCLok8xmv6vCGjxLyoS1A8ZtmzPO505zvB4j49MgE0PQ/pDL0J6+47cqhGPDsZzDxWbmw8H7dTPFDsZz2pX9+8z51CPGpvR73wTMm8fRsRvCVTiLwIBR890ywfvYwy3byhHyk9z5Dqu2knjry+TCu7cORzvGMvkb12zgK99c5NvaaU1bw1im+8F6yTPaeHfbzeMCg9BkFMPZN/67yxKIc8WEZOveHnIr2SjEO7XGwKPSNuzry7LBC8ONESPS1R8Dwft1O8cPFLvPtDerzC1Wa9iXviui9KOTz9KDS7nnWGvGFrPr1agJk8z5BqvDsZTD1NSXy7jo0PPRl3nbwnHhI9FMfZOvn0CbwxIhs8Yinwu5U2Zrwrk747SMBAPOOE7bwCnuC8pNaju9WOCD11bBm9MDaqO4TRvzu6qT+9vHTJu2ZwE7phZIe8wArdPMoHLz0Nm7I8gSF8vHy5pzwrtCW9mAHwPPHPmT3TTYa8gE87vPpkYTx8UAc9OTqzvIpn07qeaK6894z/utmuo7v8v5O87ZVOPKojsrySjEM9YzZIPdxYRj2xkae8Z8xbvN4j0DvamhQ8AOCuvNXd+DzdRLc8hsTnPLEohzxCczK9LGX/uwZOpDthQ6A7BHbCOcAKXT03fIE6M9N0vVjJnjwK8Q889fyMuxRrkby99xk90HUkvapEmTxUqQO9FPWYO041bTyh/sG7bhIzPUxWVD0+0Ma8Z9kzvNT+X7tw8Us9XOm5PJ5oLr18pZg8upxnOR3sSbzMxWA8Ufk/PHKv/TxYRs48WRHYPIwKPz2PyHC9iXvivDIBND0A01a8jo0PvS7hGLxsRyk835KRPClflD3lcF48o+qyO+JJDL1PAHe7yhu+OyVGsDzOvqk8lPuEuhlWtjwe33G8AbJvvENSy7rvYNi8SLNovKTd2ryrIzI7I2F2vActPT2KU8S8/auEPeHnojw4b6m7bh+LvPVyhTxAh8G8CP99PW8FW7zeI9C8yRu+vKnvh73kFBa83jAoPR/LYr2+WYM818npPMAXNbvPlgs8M+2kOtMzVj15Frw8OxnMvOzDDTw5TkK6YkpXu1kyPz3knp28GknePHrunTxtLfm8H8tiO/G7ijwdDTE9gEJjvHgqSzyDBjY9NopvPXvNNjxiV6+8A5cpuowrpjoaKPc72aFLPcdQND05Rws79cH1vIE7LD2O9i87h0ABvQgZLrwn43o8o8lLvaA67zsEdsK835KRvLCyjrwLtvg5gxOOvNNALj0/r188f1byPIeP8byVUBa9DnOUvCN7JjvoBnK8HW+au3HQZLzknh09evVUvRwuGL1kGwK94ph8vAG/xzwKZ4i8ONESvEf1NjzB6fU7QzFkvDsmJD3LaZi8w9sHvSGjRD0nETq9a2gQPRPowLwp6Zs8Z9mzuhpJ3jz4jP+8T7GGvZu4ar0vSjk76gwTvP6KHTxd1Sq9Dv2bPWp2frzagGS9dI0AvN3HB70/qCi+QnMyuv2rhLz+FKU6PAW9PDhvqTyu4WO9u6KIvaPqMjySjEM9KbvcOvtQUr33x5a8gUiEu+V9NrzPqpo8LIbmvE8NTzx9pZi6TGpju0xwBL2WDsg61Qu4PZnzAb1TRxo80eucPKRtgzyWL687GGpFPCEmlbp0h1+9EFItvdt5rbvcWEY93FhGvBwumLxMamO8fphAvck8pbzK+la8yxSHPREQXz34pq88AO2GPKEfKT1zoQ+9M+2kPC5rILsDpAG9DaiKvHvaDr2LKyY8y+1+O90W+LzNvim9IoLdOlH5Pz15DwU9bwXbvF+gtDwmJcm7fweCvNBbdLsIJga9600Vu6sCy7yfR0c9y+bHuwu2eDmcNIS8yENcu38HAr2rIzI921jGvKnvh7yhEtE7IMSrPExwBL0L0Cg8ANPWvR0AWT0bNc875mknu3Kb7jyk1qO8P7y3OicROjyWFX87jY2PPQDGfj5X6oU8lS+vPA2bMr0nEbo5Q1LLOxeSYz3/xf68R3iHPO3Djbr5hUg8iVNEPdfCMjx+hLE8nJ0kvN3HBzsGIOW87qImOzsZzD2nAxe96LeBPP2rhDt0gKi8I2H2O16MJb02l8e8r6U2PEt+8jx24hE4zr4pvDZ8Ab0Oh6M8UA1PPZyQzLwrtCU9mcVCvFJogbwDpAG9H9i6PGbg6jzweoi8mPo4vEqLyrwA7Ya8uZznPOOlVLxyKxe9UmgBPKTJSzxzqMa8BVXbOp18PT36fhE6j9VIvA2bsrxCc7K8tgbUuzhBaru8bZI7WD+Xu6eHfTzArhQ8pjiNO47cf7tS5bC7Tk8duh3sSbz5kiC9XqC0OqVMnLygHym8dI2APQVV27yeW1Y8K6dNPa37k7xMd7s7aJ0GPQuiaTyZfQm9z3xbvW06Ub2AT7u8fhuRvDz+Bbz7UNI6TkLFu4pMjTsxFUM8cN28PLf5+7wmMiG8uqm/vNtYxrzdFvi8NE8OOwvQKLzf7lm8wApdvU1PHbzqggu83g/BPLUnOzyFVBA8TiFevA6HI71hZAe9aZCuPJGtqrkfy+K7pZRVvRpjDj1qfB890WhMvM3FYDuspgI9qT74u+UABz2MwoW7wPZNPVO9Er3IQ9w8UeznPPHPGbxEwYy8I3smvZnzAT0+0Ea8xaaRPEJF8zyHH5o8pbW8vBIdN70MMhI823ktPfpk4bzjsiw9oQX5O6ymgj2V2p28QWbavOSenb2D+d27THAEPcH2TbxBZtq75k/3PARVW7xrWzi9Z9kzOwR2Qjs6DPS8hPldPP0Upbzyu4o6TWMsvIiIOjyxd3e8faxPvIIaxbwDl6k7S2rjvGfZMzyJdKs8HZCBPB75IT1cbAo97ZXOPBd+1LzC7xa8QQqSvQ9mPL3kkcW8fpjAPHmZDL1B9oI9vh5svI2hHj0uayC9fLmnPF+MpTxOId677oE/PGtO4Dy7lTC9I/EevEUdVbyQwbm7GIusPOKY/LwA01a9ZuDqPer/Or2MCr+8H+WSPfFMSb0ZakU9sZEnvKhstzyJdCu9a/IXuy9Dgj1YyR69K6fNPNzHB7zhXRu9hd4XPe505zuj6jI7Ur2SvP6KnbtMcIS8lGtcvJY8Bz3dUQ+9Jx4SvfizBz3PncI8xLogvdFhFbzU/l+7u4GhvDo6szvc2xY9BkHMPMsUhzuY+jg9PNd9OkF66bxc6bm8m7hqOshQNLw8EhU96DSxu9Xd+LwK1987hd6XPP2rhDwU2+i7e+FFvN4j0Lw91/07bh8LPGFDID1XOXa8JFo/vHnofLz7PMO8Or2DPfiFSD0g0YM93ccHPSUlSbxqg9a8+mRhvdxlHr11Zng9anwfPPs8Q703dmC8NpfHvHmZDDzYocs7SqyxPKeARr18pZi8/YodvR0NMb1rYm+8W9xhvQGrOLyrIzI8E9vovKeNHr10gKg89fwMuy0CAD0Zdx09ygevvLuVML3RW3S8744XO8+qGr3EtP87tRpjO1ZnNTxCc7K81t34OpKg0jxn2TO8p4DGPMdQNL0j3Q+86gyTPZU25rsBzJ883hwZPHrUbT0IGa47xLR/PLQ0EzxGFh49VntEvTsmpLwNm7K91CwfvPs8w7wHIGW8gE+7vOy97LzcZZ67ALJvvc3F4DzimHw8YHiWPE+xhrzMVQk9KtUMvZcOyLxa8HA9KtWMO7jrDbxha768NE8OPI39Zr2P4qC8wJoFvIMGtjxrTmA5XOk5PG4mwrvzJKu8w8HXOqsjMjmA5hq9XNzhPJGtKjwQOP28m74LPacDFzyeaK475jtovXOoxjxSaIG8g/KmO//m5Tsj8Z68gOaavPl+ETwcLpi7HsviPPMKe7uIe2K89z0PvUfUzzykbQO9nJDMvFLlMLx+G5E9V+qFvHSNAD3DUYA8S5giPJG6gruMwoU8HQDZOzhvKTxQBpi8hPldPYkLC72WItc8t9HdPL0/07ypZQC8ygcvvS2MB7y6qT+8CBmuvExwBL1w8cs7YkrXvJGT+rxetMO8y9nvvHSUN7zamhQ71upQvUFmWjw7JiQ8iJUSPIXlTrxQDU89rfuTvWmQLj3Uohe+UXyQPECb0LuPeQC9aLGVuwnr7rsxCOu8P6iovN6SEbxWWt28J5QKPE47jryHqaE9z5YLvGw6UTywrG09fweCvZU25rwBq7i8ISaVPJnFwjxgeJY8zrFRPElDkbxrTuA6dIAovfTiXDwEgxo97MpEvM+qGr1pkK477Necu3HJrTyY+jg9qWWAvGQOKj1KL4I5YHL1vCXJgDxc3GE8RDcFPUYJRrueW1a8pbW8O5GtKjwqS4U9yNOEvGbZs7xiPX+8PPEtPaymAr1qfB89cbzVvFzpuTxKi0q9Q1JLPXRm+Ds88a289VGePPXvtDwtAgC9f3AiPNqNvLxPAHe88VkhvdqNvDy43rW90IkzPftqAj2O3P+8rfsTvUnNGD0/qKg8WbUPvfB6iDxLDps8UuUwPZ9Un7wBqzi8f1ZyvBT1mDzKDma9ZPT5uxeSY7qNHk49Ab/HPBs1T7w91/07WD8XPT5TF7x9rE+9ZuaLvEFm2rzI0wS9X5NcuyDEqzttOtG8i9aUvN4WeLxuBdu70WhMvHVzULpKL4I8tSc7vBXH2btfoDQ9urD2PE5PHTuh/kE8Ai6Ju94wqLwqu9y8vVmDvZu46rwZXW29ldqdPGp2/rzpE0o8bv4jvL8XtTybvgs8+JlXvBTbaDz9q4S8k1dNu6AfKTzBA6Y9BzqVO8SM4TtNSfy71Y6IPNqNvLvGkgI79BCcPKwPIzq6qb88YWu+vJ51Bj3fkpG8188KvbEoh7tfcnW8jf1mPUCb0LwjeyY96vJivUnAQLu7LJA8S4tKu61xDL3w8AC94AgKPC9XEb36ZGE9SOGnvJnM+Tn9qwS8zPMfvIln0zwij7U88jg6PXrUbbxaCiG9An35vM6x0bzEmTk9yF2MPGMVYTvV3Xi98wp7vGT0eTxmcJM9ZtmzvEYWHj2KU0S8yNOEvHZLMrsRMca7nJ0kPTA2Krv9FKU8rs1UPTsmJLzC4r484tMTO1hTpjwBsu+8Q1+jPMPbBz2t2qy7UeWwvMoOZrwBzJ88ILfTvLUucj1b/ci86v+6O3kWPD3vbbA8snBAPfZRHr2U+wS7VKmDvDhi0TtAm9C88VmhvMJ5HjsUa5G8UmgBPM+Q6rvArpS8lyLXuwY0dDyPeYA9iJzJPNfCsjsSKo88vGdxPTTZFb2+K0Q7Eu93PDhvKT2A5po7F587vYTY9rz/AJa8ZCK5PHgqy7x/Y0o7jo0PvTO/5bnttjW9aDudvHK1Hj3lAIc8aZflPH6EsTzyODq9S5iiPGpvR72O3H89THAEvR7f8Tr9+nQ8BEWZvFMJGTwLowi9oqioOmgn/rrLK5e8bzxouqxxfDyPiI08whz6O+50K73lhQw9OmTovLlSy7xm4C68MC0fPGa8Gbx8+aG8o4O4O2iV87xWJga82gsLPfdi7zxQNTE9dQmoPLjmCz3xSBO9myVJO8dYijz4pgI8t8EbPe7hxTxJaUw973L1vOYWPLxQNNa8q03nvOYXF73PI5S79hrFO5q5Cb3BZ7W8sGQHPXxDgrwP5Iq8/OYpvNGO+LzIMWS9HBPRvBMkMr0jusW7ui3bvO50qz30rgW8HBNRO41p6jtpa5G8Xl3PPBbUBL2TEF+8dZuyvLI+vDwa8Ja8IgQmvQdihjyMs8o8upvQvKrhpzzBsLq6WNvKvLKHwby5nKs8qeKCvJNbGr2UETq9G+87uxWQcbzwbQM93t4XPCWPCD0tEQ29sawxPUhFNzxl4Qk8ZuAuvNg2yLqjOdi7T+wrvCFOhjz4gRK9SEU3vTOZXrxa+ZI7BY3DvEr6+zsqzlS8Mb+pu4aYE7zx2h09OB2ZPLnAQD1+itE80LRDvFCiS73CHHo7LM35vMfqlD0TSSI9pXyQPBpejLx05RI9sBsCPWff0ztuz8067VAWvKq8t7zwtog8GswBvTpkaD1p2Ya7shnMPIV6Sz2PY509rUeauyKVVbwFH848rHH8u6OC3TzIV6882KNiPYyPtTzRRfM8ZpcpvfRAELo/ewg8bqs4PTEIr7teXc88T6MmPJxuTr2p4oI8SLMsu8gOqjy5nCu9ChAjPIfhmL2NRdU8VgEWvHd1ZzyEDTE8Z5bOPHASBj1vF/g8/JzJvLI9YT3Jemk8ZnK5PLI+PD2MIcC8G10xPLgvkTxI10G8YVcCvNMbkbzIMeQ8I0xQvGgn/jx2dkI9m5M+vc+QLr25d7s81xKzPGATb7y8uZg82OznPEusBD31ZKU9nG3zulHq9bzY7Oe80SHeO+2ZG7yyq9Y8ojsOvYQxRjxuz807lKPEuwRpLry5dzs7hnnwOpxuTr3udCu95s22PQtagzwbyks94ErXvAf0kDyesYY7uVOmO9rmmrx9Zjw9k+2kvNrCBT2rluw8LVoSvd8mwruVNHS9i0cLvfWH3zxvF/i8VrgQPXRSLTw0kxG9R0YSPU5aITy83og9yp7+u3AShrybkz48jGpFvEjXQbsqz688qpiiuxVH7Dyj7/e7uZwrvaLxrTyky+K8BNejO5Q1T71mTqS7PF4bPd4nHT3QtMO8m9zDO8FntbwjKLu8HBNRPEvQGT1I10E9aWsRvNnHd70E16M8ZgUfvLRchLy07g69dprXPEkgR7xX20q6qSsIvSqqPzzijQ88lH5UvG9g/by8lQM9SbJRu7PPazx91DG9fdQxvSup5Lxml6k8QcJXPbBkh7zuvbC8wR3VPDllQ7wph4W9Fh0KvSkYNbx91DG7fNUMvRYdCry4eBa7fopRPPU/Nb2DVxE9T+0GvbL027vXErM9ur9lvJtvKT38nSS9jft0PUdrAjz2GsW7yyuXuxwT0bzAHjC9o4O4PEROlby/QyA97eKgvbHRoT1JaUy8XhWlvakriDzgk1y8kzYqvrhUgbyrcle7/eapvP5S6TzRjvg8GhSsveaoRrxAewi9QZ1nPIRWtrtRd469cTYbvMehjzwzK2k7ZyjZPFCiy7yH4Zg8FNrRvBzJ8LtRd468O4MLvRf4mT2b3EM8/XdZvJYKEryy9Ns8/lJpuytgX7xIjjy77wXbvP4t+Tw4i447MC2fO8d7RDwVkHE8EpOCvFr5kruEoBa7kqQfvNjtQj3374c94NzhO2cExLx3dWc8Mb+pvaqXxzxfgj88TxBBvJtKuTx4AgA9yFcvvCGXC72FMUa7fB4SvX2KUbohlws9QuZsusehj7wH9JA8mt2evL/WBb3CQeo8SmjxvOKNDzzBZtq8JY+IPVqwDTy07o46X11PvXcH8jy5CqG8i7UAPMEc+rwL7A07svW2POfxy7vAQ6C8HKXbPFjbyr1f8DQ9SGonO4zYurwM67I8/i35vITEq7yc22i7/AuaO+YWPD30ZYA+Kj2lPPf0+Tvv4Gq9FZDxPKuWbDzpxo496aGeO26rOD0HGYG8qnMyOrrkVT12mlc7LVqSPOaoRrxHawK9BCApvbFiUTz8C5o9Kqo/vaMVwzwkJ2C9o6dNvHYsYjwrhHS8SCEivUn71jwdW3s9I3HAu9l+8rxPWqG8CIYbPYxqxTzHoDS8dprXPGCBZLxlmAS9X4I/vUhqJz2HvYM8ftPWO3bj3LuL/oU8sdEhO0LBfDzm8ia7ORy+vOU8h7yqBb08wvjkvLIYcbx2LOI8jUXVvCMDy7xIjry7ol7Iu1ZvC706iVg896t0PHxCp7wbyks9xDudvJwk7jx2UdK8h70DvVEP5rzDF4i8UwmZu4R7pjz19i88OonYPPdi7zxJjeG80Nd9OnUtvTx/0ns5CzWTPLlR8DrYyFI8Tn+RvKq7XL2OjX+8Svr7vF/vWbw6ZGi8llOXu1eToLwLfpi8WdrvPJtvKTvYf828jfxPuyIplrr95U68jkT6vLE/l7yN/M86uuRVvHYITb0aFQe9WvmSvOgPFLzDYI08o4JdO/0KvztPoya8BtXtuyxakrrgk1y6kzYqPbAbgr1eFSU9SI68PNC0QzzuTzs7QyoAPX0dt7yscXw8dZuyO/BtgzzIe0S9sqvWPP7k8zx4lAq9jY7aOtha3bkNM9086VgZvWiV8zz2GkU9dgjNPKkrCL1uGS69I7rFO5u4Lj3fb8e85qmhPLL1NjucbfM8o8w9vEJ49zsSJY29dlFSvJpLFLsiBCa8gKgZPaODuDyiFp48Z9/TvG2sEz2x0aG6BfrdO3WbMrv1ZCW99YmVvFCiS70ZgqE630uyvHScjbyT7aS8wUFqvPH/DTxTCZm7k1o/PJwk7jydaIE9Oa8jPN26gjxu9D08dcCivAVEPjv47we9X+/Zu3ywHD1lmIQ84LfxOF8USr2bk748Ks8vvcEc+jzzrgU9wkHqPAawfbtRM/u7WLbavE82DLxtYjO9MeSZvPWIujyqBT28jLPKvIPFBj5Ijry8R4+XvJV9eT3IV6+8lDVPPUDEDb3JVlQ9ZeGJvXcHcrykFGg9sT+Xu9KJBj3tK6Y7BdbIvCkZEL1f79k8zyMUPH7T1rxhVwI8QXnSvHWbsrxBnkI8OWaevKTFlbyesYY9jvYCO/imgrzRRXM8UTP7uoLFBrzB1E88aZCBPElpzDuT7SQ9S4eUO10WALxX3KW8ZXMUukvQmTve3he9SbJRPE2kgbstEY07nWiBPXWbsrvBQsU8V9ylvI8aGDtRxuC8/HmPO29gfTxfOTo9X8vEu8HUz7yF6MC8wRx6vDN0bj2Fw1A9tKUJPTuI/TzA1So8dS4YvQ+bBb1BnkK97k7gPM/aDj1El5q7wB6wu6LxLbzGDwU89K4FPFiSRbxCC129UDRWvdZck7xCL3K8b6pdvKuWbL3Zx3e8T+0GPLkutrwagiG97uFFPPydpLtX3KU8quEnvfdi77yyPjy9FGzcu/zClDuesQa9yp7+OyVGAz2UNU+9s89rPJR+VDyUo0Q8XvGPvKPw0jyc22i83ybCvDrS3T0zK+m8I7pFPAAEF71gXHQ9V9wlvDSTETuFMUY2v40APXjdDzykpnK8UFlGvSMoO7vHWAq9DA9IvEuHFL1fy0S9hA0xvKI6s7z8eQ+7BUQ+Nxs4wTzB+b+8Ks8vPUghor2bSrk6DXziPJ3//TzPkC48sWMsvc+RCbvu4UW8VwC7vItHCzzmhDG8OmRovG0Y0zvuT7u7WrANPO1zULylM4u8YBPvvGaXqbw5Zh49SfvWvCry6Txuz028cKQQvCnQCr3QIjk9/Qq/vCphOjwaXgy6wIwlvUF5UjsN6tc7bzzou2dx3jxKsXY7fmVhu8Jlf7xQx7s8paEAvPfvhz2Ms0o8LeycPfGRGDtnBEQ8bYcju9D9yDwcE1G8nElevV7xDzwFjOg8vCcOvU+jpjwymrm8Mpo5PHZ2Qj2Ms0q8Kj2lu8gyv7zXErO7/S8vvJ3//bubAbQ8z0cpug+bBb0rO2+86Q8UvUNzhbwE1yO8HuiTvLL0W70WHQq8jz8IPQxXcjzZfnK9SY3hOjiLjr3DYA08z5EJvkMFED2MtCW8Xzm6vD8yg7wV2fa8myXJu3RTCLxxW4u8JEv1vF6Dmjx9Qcy8wPqaPeXzgbw0uAE99hrFO2iVc7x43Y+6Wh6DPCRwZTv8VJ8896t0PH6KUTzfb0c7/MKUvKI7DjwDsw67uJwrPOaDVrxaQhi7QXh3PDOZ3jpPWiE7I7pFO8L45DtZbPo8ZeCuumGgB72e1Rs9myakPNbKCD32Y8o8DH29uwX63TpXJas8cMmAPU+jJr3LdJy8Dul8OtGO+DsFQ2O8sayxPebM27wtEY27BfrdvHiUCj1HawK9dFOIvcQ7HT0eDQQ8qiotvZTH2Twp0Iq6M71zOys8SrxBVT09R0W3vcCMJTxL0Bk9deQ3vW3RA71QfjY9NLgBPZu4rrxLGZ+60tILPe0sAT1JjWG85fImvMvikbz9U0Q7G6a2uiPe2ruUEN+8Q7yKPNNkFjyEMqG8lKPEvN65J7xDKgC8DOsyvVi22rw8Ooa8bzxovQ0z3btf8DS6tYCZvN65JzvBHVW9fUFMvBRIx7x4AoC8hZ+7PPcTnbwUtWG88dodPMH5Pz1l4Yk8k6SfPEkgx7sy4z47KzxKvQQfTr1Y/9+7qpdHvZVZZDzPR6m8yp7+PFBZxjzogvs8svW2PBavlLyiOrM7ZwTEvIQyoToiTSs8sdEhPULm7DvSiYa7fWa8O/4tebtthyO99T81PJR+1DwphwW9vN4IPUkgR70ilVU9BdZIvDO987xPyJa7koCKvF0WAD2buK68ZeEJPSMDS72FnmA9pTOLPGWYBL30ZYC8wtN0vISgljwxUg+9nowWPXR3HTxI18G8CzUTu4BflDzR/G27IikWPbL1tjxfptS8ojnYvKI6s7y55TA7j4iNPcQ7nTkpPgA7hKAWvbKG5rxW3YA7XsyfPblTJrzuKku8kxKVPFPAk7wAu5G89YffvITEKz3euae85xXhPNGOeD3ZEP08qnMyuzAJijyLIhs99j5avX7Sezx8Qqc8w2ANveDc4bt8Qqc5YFz0O+U8h7zmqEY9qrw3PBSRzDxJH+w8MXYkPJ3//TwP5Iq95zpROwxZKL0xdqQ7wR1Vve9ydbwqhqq8NdwWvSJymzx9Zrw7FUdsvCZqmLyky2I7TqSBPSK7IDz+LtS8MMAEPVeTID1lKbS7WmcIvdjIUj0rO+88UKLLPIz9Kr26COu8rUeavGdNSbwaXow8I7nqut5wIr28uRi9WG1VO7rj+rvm8iY9VwA7vNfJrTyMRjA9h08OvVZvCz2F6EC8OB0ZPdJAAbx+ilG98dqdOZu+xLxzRpE8WTh5vTZtnbwELD882bXLvBiSWjz4I1M8uyzMPLlivLvG4nS981MNPRdWtDzWmXi8sVurvFdpjjx2uYK8fFA9PJwV4zz+CTa9ImP7vLrSEj2/22M7LmtnPO/7kztSLA09hnj8vDIVJLswLQE9doXSPMBpzTzTz+i7vGhyPQTa+7xstDE7ZAS/OtavFb1QTOC8lZy7vAXVoDstL8G8kF86vAtOyDyjHPS8brrnvNx/27xXwKy8iAZmvR3P27xFlre84IC2vFSk2bz6Wp49h8o/vCeg/LzUz+g83NEevfZZQz0UbpG95UiGu6C/nzqsHio8mGZLvSV/Tr39t3K8x78Gu/Magrvi1RQ99XQ7vDmOy7xei5c89DgVPdpeLb3jnIm8O6/5vB+vCLzxAUq8i3nXPADURbun4ag8rMcLu3MSYT2HcyG86DCpO5xnprwdJnq7g3JGPJS3szvJwqE8wve2umqTg71E7VU8ZJIoPFxUzLzcf1u8pfygO2y0Mb17azW8Plk2O8ikjjy4udo8S0OPPNaZeLzuAG87qpBAOYUAML2oWXW8+VcDPHO7wjvFaqi8wve2PCiboTzzGoK7DGcAPCzdfbzq+ri85UiGO2gFmrw/7Ho8StM4u5mi8TyErmw91AOZPbWzpLzG4vS8mp0WPcfdmbx8/nm73vJMPZi9aT2JAYs8KrzPPFTYibzetqa7H+uuPBQ64Tzs30A7arGWPGBVJ7x7L4+9a2JuPX7eJrzVXVI8t7lavR+Zazz1dLu94IC2PLgQebzK/se6sQSNu6weKjyZ9LQ8ssuBOpvZPL3lvTc9a2JuO8s1kzyDG6g8lfPZvErTuDzLF4A8WjOePKweKjuhhpS8jbAiPdQhLL0ELL88EBaYPS6BBL0kmka9PFOAPblivDzM/Ie7KPK/O062gDw2xLs86qj1PPIBSjri1RS8eoYtvTcA4jwom6E7PnSuPF4eXLyTtJg8tbMkPAygizwo8j+930QQvPEByjwaySW9XW0EvbTOHD3DM908W8EHPR0DDDxCzKe8wqAYvamrOLyd+uq7/3mMOwwzULwOwTk8UPVBPAXVoDyZS1O8/D+mvb1FBL08UwA8H6+IvYMbKLxJ7rA8Fzu8u61aUD0itb48OOVpPWGRzTxa+pK8yKSOPBet0rxCI8a71kLaPBKs9zzS6mC6WDCDO7LLAb0f6y688acQvKGGFDscA4y9hTzWvFTYCT0gQs06psMVu2J21TsvUO+8VtskvYch3jz3qwY9E1VZPPvt4rvdmJO8GSDEPK8k4LurAJc7/pSEvGMft7sqZTG9JOwJPBORf70oRAM5PTgIOkYkobxERHQ8DBhYPXxQPTw+dK486NkKvVfArLxoXDi9tkbpPKjGMLtMCgS9dPdoO7aYLDzKUIu7lGVwvZeBQ7z+lAS8gjYgvMQuAr1Sgys9nUwuPO/CiLoXVrS8LoEEPQ/937zlSAa9c0aRPRHHb726R8Q8n8T6Oz3mRD3A9Bu8/HtMPDA1d7w5ynG9iVgpvb/xgDvm+d28arGWPAa6KL2SloU9BCy/O6QBfL3rNl88UdpJPN62Jr5yLdm8Rs0CPFEx6Dn5V4M8Q1/sPAXVIL2kbje9/+49PDmnAz2jHPS7GsklvWKqhTz+lIQ7G66tuzbEuzxsPwC9zv+iu1ilNDy57Qo8BdUgvcESL70hJ1U9oVJkO/KMmDs2xLs81+s7PIEzhTwaXOo7p3TtvE9nWL1U9hw9xMHGu2y0sbvQybK713aKu2VA5TvbQ7W8TYLQO0wKhLxRRwU9lLezPVj8UjzetqY7tVwGPUKulL1RZRg9bJk5vHWgyro4UqW8iuaSO/zS6ruTKcq8exnyvK6W9rw9OIg7ho4ZPBtBcjyNQ+e8CvSOO+lsT71jyJi8jLV9PLWzpLzNrd+8bUIbvLZGaT3ELoI74rcBvc/kqrxAAhg92bVLvF9wnzxERHS8qB3PPJ6IVDycZyY7oL+fPFvBBz0mu/S9oG1cPLgmFruNdxe80CBRPZjxGbzWQtq413aKu66W9rnnS6E8BX6CPs6oBD3tbSo9G66tveb5XT1HnG08t0GOPcUTCryah3k8D0+jPD/kBLwF1SA9RmDHPGd3sDyMQ2c8zv+iPPEBSr1TaDM9B03tPAulZr1fx708IVuFvaC/H7z4zDQ8jJKPvfJYaL2mpYI92CdiPZVKeDtpQcC8K6HXvPDK/jqzfNk8H5lrvLqeYj1qJki8y4wxuZowW72BO/s7nohUu+/CCDuSloW7yx92PCFje7wAQQE8x4tWvazHi7y7g2o5gai2ODCisrzEGOW7daDKPMikjrxGJKG8NzSSvalUGr17GfK8Lp+XO0peBzuW2OG8D6ZBPSibITue9Q89m4IevcgZwLxXaY686qj1vLPplLsC9fM7jpWqPC5rZz1OZ1g8zeEPvUACmDvQybI8sB+FvISubDzD3D49VPYcvTIVpLzOVkG9yv5HvFoznrwyFSS91kLavHn4wzs2xLu8x90ZvdVd0ruoWXW8iuYSvQygC7wF1SC9cLWMPI2wIr1ns1a46VFXO0+biLuulva88qorvYPJZLz9JK67Pwfzu06+djzdeoA8kynKvKT5Bb2KPTE8mPGZvPvt4jyb2by9aFy4PLDNwTzG+JG8q3VIPMKK+zwHnzC9JEMoPIEzhbzn2Yq71CEsvavMZjyh+0U8HwYnO0ydSDtv0IQ8y4wxPCFbhTva8XE85C9OPa2OALp+wBO9TYJQvR14PT05jks8d54KvLVcBj3n3uU7MfcQvFCeo7u9Y5e6j9FQvbaYrLx9ooC8f3FrPG/ulz1PEDo998kZPSNeoLz5zLS7HSb6O0thIj3Civu8vGhyvX1QPbvUAxm9oG1cvL1FhLx3ato8ffmevPHFo7srDhM8z+QqvMo6bjxNRqo7efhDPcUTCr1ZOHk8sB+FPBKkgb1gHJy7bLQxvTj7hrxERPQ8gVGYPLcIg7mG5be8waVzPGw/gL2C5Fw8CcDeOzU2Uj0bBcy8ZXSVu9d2irza8XE7ojdsvTtY27zD3L4713YKveW9N70vUO89FchKvZeBw7zZIoc9qjkivEbNAjxOZ9i7k3uNPAgydb3BEi+96IfHPKH7RTxCdYk82+wWPPMaAr0iY/s8GnKHvIgGZjx5+MM7VYnhOwSD3bxy1ro7PFMAPPlXA7uP0VC8GnKHPL26NT2Ut7O8Igxdu3NGEb3XlJ08t0GOvE6+9jxKfBo80MkyPc7/orthkU08rLHuOxzq07uAbBA7daDKvPgj0zyZovG8vE16PHNp/zyNsKI7qj79O3O7wjo/B3O8oBa+OxHdDLwpYhY8LN19Pc5WQTvhZb68IdA2PRfpeDwX4YI9RiQhPWjnBj13ngo97BvnPBCLybz6CNu8+CPTvL1FhDx1oMo8E1XZPB/rrjwp10e8drmCOxUf6Tw/sFS8MYe6vGCsRb30j7O79llDvamruLzHv4a9ft6muZQO0jzC97a862qPvc7/Ij2wH4U83ZgTuj/ser260pK7uvClvM0aGzzTPCQ9SZeSvEhFTz2J6228b7rnul4DZDzbzgM9yMd8OwArZLx9+R67hFfOvL1FhLwtuo89TxA6vURaEbzgKRi9EhkzPfpaHr2Fk3Q8JEMoOxpc6jsfBqe8b+4XvMwfdr0MoIu8UoMru0LMJz2OlSq9R7dlvR5dxbxE7VW9L2YMvDAafzzDhaA81pn4vLS4fz2dTC690CDRu+PzJz1sR/Y8+OcsOyoTbrr5V4M8S2EiO4rQ9bxTv9E8V1Nxu86oBL3PO0k9Rs0COwdIkrvhvNy8eoatu/h68byMB8E7+lqePN8u87xUTTs9/rKXvFilNLw7Ab28PD1jPW3VX7x1oMo8U/t3POqN/buCNiC8B4GdPPSPM72RREI8iBwDvF3itbt6aJq8rY4AvCaYBrwD9fM8wRIvPOzfQD0deD07jF7fPMKKezvVkYI8F1a0O7xo8rzvjti70CDRPD0ia733yRk8hnAGvSDNGzoH9s48h3OhPHHxMrzJawO7G1cPPAYRR7wpgKm8EXDRvI2wIr2rzGa8EOLnvB8Gp7w4GZq8HwanvM0EfrwCuU28et3Lu6alAjzaXi09UoOrvCplMT2uP1i8j186PbuZB75PZ9g8Sw9fvDA1d7zTPCS8LdgivPlXA72VnDu9mof5O6qQwLwetGM7qzkivWD+iD01NlK8WDCDPTSjDTyOlSq7y4wxPCibobzSk0K7UoOrPNavFTwFaOU7fsCTOHNGETwyFSS9SNCdPJQO0jurzOa84fCMOUic7bws3f07Q5OcO7/xgD2dEIg78cUjPTNRSjwyFSS9ey+PPBw8F7t8p9s59MvZPAppwDnit4E8v/EAPQq7gz2/hMW8fKfbupZFHTwJwF47NhvaO8mnqT1hkc28IgxdPE62gLzMH3Y9ukfEPIkfnr2kbjc9KWKWO8z8B72rzGY8BhHHvJ366ryJlE88pVM/PaVTv7x2uYI9OwG9PEthIr3CTlW9UEzgPBdWtDxkrSC9YZFNvOn3nTzm+V09n8T6OsxxuTtqkwO6GasSurZ6GTyDcsa8tLh/PIy1/TuZ9DQ72CfivI96srzdZGM7ZjsKvBsFTL1WF0u8VNgJvRVTmTt3E7w8WPxSuyCUELyNsCK79rBhvPw/JrtmO4q8AJifu9Fc9zthOq+8kQgcvctuHj0j8WQ9YFWnPBiS2jxpQcC7pPkFPa2sE71QTOC8Md5YPNW08LxyhPc8cta6PP5g1Dsh0LY8E1XZPFNoszqWRZ27L1DvPNAg0bwUjCQ96BWxuzcAYjwHnzC8YqoFO6fhqLwT/rq8gP9UvaY4RzuZ9LQ8CcDeu0+bCD3eSeu8DkwIPUp8GrwRrHe8GSDEO7uZB71V4P88aUFAvB+vCD2nqJ29yxeAPeApmDwdeD09PD1jvLZGaTt9+R48I/Hku+K3gT2270o8Wsbiu8sXADzdDcW73WTjuufeZTwAmB89nGemuzEa/7ytA7K6zztJPA/9Xzzs30A7ZelGvII2oLy7mYe7vw+UOpcqpT0ieRi8BdWgvOlR17tBPr689f+JO/4JNjxxYYk9IWN7PN0NxTwBJok9CA8HPIPECbweIR88IwcCPTU2Ur0akJq7JX9OO7i52rwP/V+6zHG5u6aPZbz7IZO88W4FPU8QOj2Ir8c81kJaPIBWc7z4I9M7dA2GvasAlzzMcbm8CcDevK5zCL31dDu9FDphvAV+Arw6xRY7wve2OuKh5Ly3fTS7rayTvCIMXT1i4xA9wvc2vDHeWDxJl5I8NTbSO+iHR73OVkE9yWuDPHF8AbylUz+9WjMevRfpeLsWcSw83Q1FO/TLWTxzaf+8RiShPMZPMDyjHPQ7oaSnPJLtI7xdOdQ8aO98PUWWN70pgCk8E1VZvII2oD0Zd+K6IJSQPH7eJjtJleg7zBuOPFloSL3DDHq7UrJfu2wV37yRFpM8tw+/u09PlTwXHkS8feg+vWN/Mj2ZuFm7KOUJvVxCf7wo6xY6EsPPvIhyUbvf6qk87NvKvH7isbzKwmI9pNMHPQktIzwm97A80mwxPaqXU73Vx6W8fG8JuhvybTtUH/s8JQnYuxQ2eD3iP5G8LbMmPFtKh7z44A29UTkqvSd2c7zClwi8nZQLvYFDs7yu7Lo8eCAvvbpeGbxFu7G7yUmtvEzwXL3Qghy9jjphvUTBvrxAag48G/h6PSMV8rvEgR084FG4PK3mLb0ZBhA9ZuAzvcywuzuGEdA63fxQPXmNyry4ehG9gcJ1PDwPmrtViIS8o+HqPDyMEzzksrm83vA2vBBizjzd+ge9vzaHvKqXU70eyJI8bgM4vCrR5zxSLZA8A3GtPB87u7wmdvM87N+OvJusv7vT39m8oG7Cu+p0vDxSrNI69P7OPG4JxbsWKBW9M3UpPHW/rbw2Ve28aEE1vBp5OLzc+oe9q4WsungaIj0rxU07HOzgPLSiIz0eWfy7NOwVOzueurv7vgi9gyP3PBp/RTxW9R88BkkbvUp9tDs4Pbk8f09NvKNcGz21FUy8yU+6vIUdajwF0i68eKX+PLzdW7qZP6Q7qpHGPDm8+zxHHLO82hYAveUrbzvgUTi8PQmNuvjaADylwyk9b/cdPD/zITzUWgq9YB6xOxkGkDwIrOU8zwUjvInl+TzvMDK8Sncnvd/kHD1EOvS89AITvHJeLL0B/gQ7P/muvY8uxzzLqi68sFPJuGN/sjtSJwM98KlnPNAFozwBiWG9wSAcPQ0FkTswCI660P8VPdNgl7wHwAe6TeTCPO3PsDwDX4a7J/EjvUTBvjyg9Yy832nsO8R7kD3/hhi932nsvG98bT2I+Rs9V4B8OxJQJ7vjMXw8VYiEPB5Z/Dukz0M8hRHQvCtGC71mX3a7Fxg3O0YiQDzT1wO9EsncPLzRQTzg2AK99uwnvSKcPLwQZpI8pULsvAmqnLw3T+A8oG5CuzToUT1nzoy8EVxBvLxKdzpl7E27AI9uvHqHvTxViAQ8XbcivC4khjv0ApO80H7YvG0bbL0LDee8NtaqPAwNZ73e8DY8U6A4PPfsJzwmA0s9VBnuPGhNTz2X2JU8tw+/vD5+/jxAcuS84sptvHgaIj05MZ87PQVJvKmj7brS5Wa9P3Cbu7FNvLzjvlM8kZkZvV08crzQBaM855J9PACJYbxeKAI791/QvNNmJL11uaA8ssBkPNAFozwAiWE8zZ4UvchVxzsWJFG6W8nJu7+zgLwLjqQ7/47uuIK86Lz6wFG9le6APPfspzuNRns8PBFjPMlPOj0/54e7XbciPKFuwrx7e6O8G22evMyqLj0eyBI88p3NuzP6+Lots6Y85w2uvIh4Xr2ysoG81NeDvMEajzxy4/u8Iq7jPKkenrsVsSg8FTb4vNVM9TsJrOW7nRnbO7zRwT2W6jy9XEJ/PGdNT7wBg9Q8CqSPvL82Bz0ndvO7HsIFveJFHr1OV2s8+kEPvEY05zsrRgu9+0GPPYSkNLxPS1G9eJlkPDquGDw4MR++jNPSu3zoPryV8Mm89P7OPIaE+DzT3ZC9Xi4PvKFuQr0C8G89y7bIu+O4Rr2cprI8eY1KvO3DlrrcAJU8SQoMvVE5KjxViIS7ZG2Luzm27rw/+S69GQCDPaY8Xzz0/AU8FwwdPYzNRTwe1Kw7FireuzhDRrykz0O9DIgXPUYmBDt5kY6892vqPKD7GTx4GiK7mrLMOn7Wl7tDyw+9sUcvPUciQD1WB0c9gcJ1PHS5IDw4MR+9pNVQPdNmJLta1WO83+QcvQbMoTzxJJi8P+0UvRgMHTz9JRe9zhdKvPA2vzsQYs487NvKvNZAW7wzdam8WHTiu5XwyTyOOJi8Y3+yvMAmqTvvNr8902YkPe3PMLxdtyK95SMZPZuwA704tm48whSCvGN/MrseTWK8LiZPO4HCdTzMsDs8A+rivel4AD2FHWq8Td41u+7JIz2LWh289+ynvF6xFbw1W3o83vA2PbaWiT7ixOA8NGOCO/8Jn71sIXk9D3R1PHgaoj2iYii8tRkQPa9lcLtz3e46OrBhPat/HzqkSPk80mAXvDqoi7uX2BW9x+IePaY8Xz39M3q8/TN6PDToUb3SbLG8VREYuhmLX72mvRy90X5YPSIpFD0P76U7dD7wu913gbsc7OA891/QPBmDibyW3iI9OqgLvTmq1LvLtki9aMD3ukp9tDxROao8CaQPvPA2Pzzs2YE85w2uPPGj2rzDhyq8j68EvFvJyTz4ZV2885GzPENIibueEQU7jMc4vFf7LL1SLRC8sjuVvHVE/TziP5G8gElAvO8wMj2mPN+7u+PoPNkop7k8kiC8LL/Au9koJ712MA07H03iPHcmvDyAwvU8UD+3PJfSiLy1GZC8HtSsPBmF0ruOux49szWIPGTmQLwQYs68cmQ5ve88zLxMZQC9a6I2vSb3MLxJlWi8jyItvDqwYbw2T2A8yy9+u7aWibxQP7e8djaavOp0vDpVE+G8+8DRuwuUMbx1Mla8jNNSvVvP1ryjVo47698OvMdh4Ttdt6I8Hdq5OVKy37w/5we9CKxlPMfiHrzJznw9BdKuvZT6Gj18+uU8reatvLO0yjuoqXo9EslcvAktozwfR9U8YotMO2m66rwAEKw8N8QDPfSLprw8D5q7clgfvAbGlLtOSQi8CqDLPP8bRj11RP08I6LJvNuVwrzCk0Q9G3MrPaeperzAq/i77FyIvBPHkzzgY9+7TerPOvdrar3tSOa81c2yu6Hndzx+VVo9Lxq1PKmbFzywWda8Hk3iu2/3nTzuySM9D+8lvaXJNr3Ltsi65KwsvaZCbLomA8u8H8iSuyb9vbyXVY+8vr8avDwRY7yXVQ891NcDPPhfUD1AZAE7aE1PPSy/QDwn8SO9r12aPPrAUb2nNtI7OLZuPIFDszwRXMG8gElAvfrM6zz6xJW9o9vdPHB2YDwACh87PJKgu05RXrw/+a68mjkXvfbmGr1rrtC8XypLPT3/u7z0/AW9G/LtPWN5pbw8F/C8LqeMPSdoEL007BU9luQvvaqXUzyyNYi9BOIMvJk/JD0xh9A8OqiLOu9C2TpIHDO9YBgkPBYiiDyhdE87MIUHPGdTXLoeU++8WO8SPMGZUTy83Vu8m7LMvMykoTyGjAA9zSNkO8AmqbhHm/W8kCg6PKqXU7z4Zd07ZezNPBPDTz14GqI7eoe9O2P+9Ds4PTm8+F9QugVX/rwKIYk7v7OAvDorEr1qLw49taIju9JyPjyTgy693H2OOxcSqjyVcYe8sFGAPFKsUj1fGKS6GYMJvFUT4Tx3LMk7gT2mPSUBgj1+3CQ9P/MhPKB6XDv+IVO9FirevHPVGL0QYs48O566PLBRADwXEqo785fAu8AmqTxGLlo8QdlyvCKgAL35WUO9FwwdvegHIb0tsya8GYVSveeSfbsNAc08QWbKu3z6Zb0ME/Q7m7JMPIh4XryDI/e8TV34O9/kHL2TiTu7HeBGPXzyjztyXqw8gqpBvBBoW7197su72pvPOeLEYDxMa427BOriO5EcoLyrhay8vNHBPbaWCb2U/GM8HksZvcywOz20nBa9W80NO1+dczxtG2w83+qpuf6ikLuZRTG9E8GGvGTwEb30/IW8Sn00vHx1Fr0ME/S8k32hvJVp/zuRkww9THEaO4tanbyavmY9K8mRvcSBHb0Aj24909nMPL84ULzHXxi9AYPUOxYiiDxvfG28zh3XupygpbzEe5C82SinPMnC4rxz3W67Z1npvBYqXryRHCC9zaShu0PBPj2PLke9G3MrPG987bweU+87bZYcveiGYz2ZxHO7N8QDPaFyBj1MZYC8fPTYvKFyhjt89Fi9XTDYPPV/jLwXGDe8bZacvMKTxDoSUKe8LDJpPFvJSTyRHKA9MI1dPHNMhTxnU1w8DBP0PKsE77vEBm29m7CDvMfiHj2pGJG8THEaPFULi7zjrCy8Obz7PIzTUjwNB1q8ZV/2vEPLDzrKwmK8e/TYunYwjbyiYqi8jjgYvbSosLw3SVO8OEPGvMR7ELysf5+8c9fhvBBo2zvmHYy70XaCvIK0Er0af0U94FdFvTXiRD0GQw6+2SinO2ucqbxhEpe8dLkgvFOguLudmhi9reatvPbytLzcCGu8bROWO3cqAL2ua/09W9OavIUXXT3f6qm6OqgLvVQf+7umvZy3pjzfvOJFHjzScr47Gn9FPVE5qrxesRU9OqiLupGZmTx/VVo6Dm5ovOOsLDx2sxM75w2uPJ0f6Dp88g89Y/70u+FLKz29uQ288annvLK4jjxesRW8VQuLPHJYnzwd2jk8PgVJutXNMjz+IdM96u3xvI67nrxKfTS7Bz0BvCf3sLtk7M09wCy2uwmycjyk1dC86u3xPJfSCDyggOm9Z9QZPRHVdjw6K5K8AQQSPZGZGb3pgFY8eRSVvCf3MD2vX2O9ai8OPdkimjxnWem8n3pcvE5Xaz2pHh489vK0vO7DlrhToLg8wplRPXx1FrxdPHK8QWZKvB9FjDxz1+G7dya8vN7knDpoTU89aUE1updRy7xJlWi8unDAuzhDxryCvGi9ElCnvD/zobyysoG9bRvsO4+vhLv6xJW83IkovHQ+cLx1MlY8h4R4u7rjaDxlX3Y8Sn20O2dT3Lylw6k8vj7dPGAesTxkbQs92qHcuzorkjzOmIe8eZebvJdRy7vkMXy9ZPLaPP4VOTxWATo9gEnAPMu81TxXgHw75h9VuXU4Y7p97IK8C44kPMQAYDvnDS48BVFxPGAesbvOF8q7GJFsvNuVwrwN9TI8/LS3PIBJwLzf5Jw8Y38yvYpmNz2JbMS8VgG6vMwp8bxSrNK5lml/PODYgrxO2Cg90HyPvf2oHT1B3/88BOKMu6FuQr3HYWE7Q8uPO5N9Ibw3ypA97zY/PUPN2DspTJi67zCyPBttnrspUqU8xXUDPSWKFTwAEKy8P3Cbu5qsP7zvPMw8KWRMvCWEiLso5Qm9A2UTO7UhZjqqCnw9LiSGvMXoq7xOUd48l1ucvL3LNLykSPk6ObZuPYKqwbvjOQQ9KVKlPcwbjjyTfSG89vjBPOUlYrz1BFy9r+AgPI801Dw8mC29Q81YO3cmPLy81846DIgXvBvsYD2nNtI8sU08PemAVj3r5Zu8jruePNJssb2RFpM8XjblvPrElbzynU29jzTUvMKNNzwJLSO9kwJxOzZPYDyw1Aa9OiWFOz/zIbstMmk9Ui2QPLpwQLyEpDQ9IqhWPdNmpLdGNGe9nKayPFf7rDyua/082ZtPvU5X67wb5tO85CtvOc+Q/7uyQSI7luQvvVEzHb3VzbI8wpNEvF6riDy7WIy7KOsWPXY44zy9yzS962iiPGhHwrzMnpQ9wo03vD9wGzuW6rw8YJNoOtc8TrtSyNO83ieHPAMq0boObam8sxcTPN7L3zzG0XM7+Ya+uBKBKr3Se9s8xqOau1mdR7wP4WQ7EqLXPJ3rxTuketc7BcoWPTtaLLyedwq9i+uCO5Wvwjs7Kg89eNM2PLoNND2xMWu9+oY+u0uilTxRp6a8pMA5PYkF2zz9jRM9YkDaOzJki7wCCaS8ZkcvvFykHL2wJgM7Gr0tPaN8GzvYo92635l+PAY+Ur3JHqs7siS/O2jP67wrVmG9HTi+O2MzrrwCCaS8ArYVOvzgoT3RWq48NezHO6qiWbr4k2q9QtyRPJVpYL0/yJC8VCI3vKMTSD1P+jQ8KygIvZl9YTwLIPI8UdX/vAXKFj1ef2c843+mu01ab7pEcfo8ZyL6vKTAubz5zKC9J5XuPBHHDL31xUu5ymSNOuvcVjy/8Ze8UMqXPHo6xrz9sIQ8cVHROwtZKD17LZq8jHWDO7TyXTwSUQ29WxocvYWKyjyO/wO9vHTDvAfrw7wftRK9XX9nvWspz7w4jI08SN9ePFSLij35zCA9NwDJvFMONrwssgi9yu4NvUCjWzwxK9U8Hax5O3Nl0rwdfqA8s4tOPYNpnbxihjw9f0GbvBQJ57wTolc72FITun5kDD06oI482pYxu916lTzRZ1o9AQkkPFqzDD0RgSq8OWfYvERDITyPILG7mCyXPd0ThjxEcfo8h+StvNq3XjxUaJm8JtvQPOoBjLydypi3LL1wvD+CLr14bCc9U7unPDln2LujfBu9/Y2TvKSfjL332cw89n/pu3yUqTvnYcY8BsoWvPcfLz0FhDQ94N9gvdoKbT0jDbK2Uw42PMkeqz2ZCaa8WZ1HPbV+Ijv00ve8QgprO/qGvrzF9ig9TOYzvdxkUDzUbi8971fnvGkVzry0OMA8IqaiPB5+ILzSB6A89VGQPJ9S1Tz7mj89U1SYPBYSAL3B4qe8Q4kDPB2s+TsE18I7JttQvQ8am7woQmA9UO0IvXCk37xsYgW7J5VuPAoVCr1GV6K8GiQ9PejtCj0YhPc8oay4vJD7e7yJBVs8+nkSPOM5xLxUIjc9RWTOPMQ8i7xpW7A69rgfvHjTNjxnaFy9YCzZvFN1xTym4Wa9os1lPLy6JT2RQd473PCUPJ3rxTyslS09DFkovAm54rrMVZ08+e8RvSKzTjwc0a48E1x1PB1+IL1407Y8uewGvTB+4zlQtFK8lUizPGKGPL0VcHY8qwnpPBVwdjweTgO9RwQUPJm2F7llVNu8XgusPI25IT2a5PA8Uw42PIps6rxhH6083r4zuwIJpLxdGFi9uPkyPfrtTTzjf6Y7X7gdvRVw9jzwBh27hEToPA/UuDyXxYc8eY1UO6l0gDwu9qa8FE9JuyLshLw6Wiw9rEIfPfNePDw8KEs8ySvXPBicgLxBXXm9P4IuvNxkULxoaNw8tBeTvOFG8DudMag8IAZdPBVljryrCWk9YUBavF4uHTvJQZw9I4HtvMd+5TsGd4i9PHvZPJWvQrzmTcU8SjsGO4agj7yLGVy88r72PAlFpztClq87CFLTvJAThT1yioc81tU+vdwThj1wpN+6kM0ivgI3/bvySrs7iQXbvCk1tDztzyo8aFswvTgASbx7oxm9pTR1Pdf267trbzG9O87nvMYtm7xxUdE8pcA5O6fUOrwMWSg7b1OVvDTsR7yg/8Y7ug00vQt8mT0TT8m8lxbSPM4N9zwasAE9dyZFvIXx2bzWPM68lQJRvZU7Bz0yHik7N9+buo25ITzl5jU9W7MMPHxOR7zVGyG3fFALvV/FST2/QuI8rakuvPnvET3eJwc7LxdUvaZI9jzEPAs6FqksvK5jTL0sauI8Ffy6u+DfYL2tcHg8h00BvfHjq7wHDPE7cFFRPQYxJr0BCSS83oX9O2/qQbw1eAw9GQMQvInXgTsF7Ye82v1APf+uQD35EoO6NIU4vc4N9zw/yJC98CkOvchxOb2zi066xcYLPGJAWr0f5S+9IqaiPB8G3b3dVyQ9A9mGuzT5c7wfkqE8zt+dvHFRUbsAFlA8J/EVvTJkiz1OwX4++u3NO+b6NjwRpBu9T7TSPNJ7WzwJaBg9Ll22PCAG3TzZo928SZn8vEZ6kz3r3Fa88CkOPVq+9LxzZxY89rgfvR3yWzy5bW490a28uxYSAD3FXTi9JiGzvADFBT09KMu8KZ4HvRX8ujuchDY9vHRDPLpgwryTD/27Q4mDPMxVnTzcZNC8N9+bPIi0EL0/yBC82f+EvCE/E71ugzI8kw99PJY7h7tb96o8K5zDObnshjy3tRQ8FWWOO/JraLyOuSE6YJNouukOOD1f2447DHyZtuKM0rtkAxG9lJvBO2gi+ruhRak8X+b2OjeZOb0+j9o8NjKqOi32pjvCSbe7H0w/vPgfr7zCSTe9u1MWu1v3Kj2x3tw89QsuPchxOTwG60M8awiivGhbsDxnjRG8Hn4gPDhpHDxz8RY9yUGcu5Ko7bwBT4a8SWujvGw/FLuQ8BM79eoAvf6uQLy9IbW8aTb7PIK8Kzy8AAi9V4nGvGUO+bzqdce8meRwvDtNgDxDiQM7xgoqu0/6NL2V9SS9RleivDaZObyyJD+8WJ1Hu/70Ij3oYUa8kBMFvS+jGLmqT0u6YHI7PaeO2LwhPxM9HTg+O50xqDxu7AU8gclXO61jTLzV1b48cVFRvHhsJz0PPQy9L1AKO3xOR7i9AIi86oLzvAIslbx8UIs8U96YO5l94Tz6p+s8X7idPCucw7xOk6W8KanvPDpaLD3gJcM8GMrZPECjWzyUvO48C5+KvEOWL7wTXPW8po5YvXstmrtoaFw7bOPsPHVYpjxXfJo7J86kvEvz37z6zKA8/gFPPbJqIb3Y6T+9751JOlHtiL2xd008qMcOvSy9cL1/y5u8UdX/ujsUyrxihry8XKQcPVYVizwAohQ9of9GO4hYaT29IbU8HuWvvMVduDxTVBi9H0y/vME1tjxHMu08A9kGvWork73hJcM6f8ubvbi1FD17W/M8ShgVOxvRLr02Ao08p9Q6vKaOWL1cpJy84N/gvFeJxjzCA1W8OLpmveyW9D2g/8a8cf5CvZ6lYz37mr87L102Op34cb2pdIA8jv+DvdBn2jtsPxQ9bT3QPMKPGT33Hy+9fZSpvB2seTyK+C48oWZWvPP3LLzwKY68pAYcvTkh9ry9dMO7PteAPKYnSb0tGRg9QVIRPf1HsTtxUVG8eLKJuCXo/LrbZhQ8kjQyO9940boWtlg9zFWdu2pOBLxT3pg8QVIRPAI3fTpD/4K9OqCOvK+cgjx0WKa7Q0OhPA/hZLsWttg8eTyKvXrGijw4IXY8ZOCfvC7RcTtakJs93PCUvAO2lbyMUpI7GmofPN1XpD2kKQ09AirRPG0cozxcXjq8lUgzvdhSE71giIA6VCK3PEhrIz31xUu8GmqfPMYX1jsrnEM8aynPO+ducjvdVyS9eYCovDXsx7z+Ivw8hIpKPLbAfL1kAxE74sUIPflA3LzqyFW9aBeSvGhbsDuKPhG9RnoTvUglwbois069gFUcOn5kDD1l4B+8t7WUu+u7qbpihry869xWPB5+IDzlthg9SI6UvOKilzwV/Dq8CyByvNoKbT35zCC8zg33O8CeCb1YNjg9L6OYvHDdlToJiwm8OCF2PEadhLzvV+e8IT+TvZm2l7trCKK8jdySuUiOlDzlB+O88b52vOa0VL0OkBq8ji3dO4zIkbwrEP+71tU+Pa+cgr0kDbI7SoxQPJUYFjz2xcu8Q/2+vPwDk7vmTcU8NKblO50xKLwrnMM6AU8GvZ3rRTw5Z1i8dYb/O06TJb1C/4I7imECvQIq0TsqEP88evTjvJyEtjxA9um8R3hPOwfrw7wz2EY9CyByvKjUujz/FVA9FAlnvMFWY7zJZA08sCaDu5Yj/rs1eIy8X3I7vI/azrw/j1o82ZaxvK+cAj0jUxQ9gBxmPfJggLyBvKs7+zMwPJ34cbwIUlO7MXE3vZ3KmLzN3x09uWKGvIvIET3qdUe8/iL8uyk1NDwxK1W4RYX7vHcmRb2wA5K893K9vFqzjDzrL+U8vs6mvJ3rxbx9tda8JyEzvXJy/rwo/H06WeOpvDsqD73ehf07zyF4vEZXIr0uPIm9jyAxPW7JlL3ijNI8ymQNvl4LLD0xK9W8JQCGO1EbYr2lbSu8PG4tOsQ8i7y6DbQ7BWOHvDdGq7tf2w69nD5UPa95EbxaBNc8M9hGPA8nx7yN3BI8QIIuu5zXRDyNuaE8SWujvM3syTsnzqS83RFCPM0lAD2El3Y80nvbPEEvoLrgayW9YCzZvLTRsLu7U5Y7JbojPe6fjbwHmDU8u4Hvu8X2qLzysco8XdL1OtzwFDzZ6T88e6HVPLIkv7svF9S7YIiAPT+PWr0yHim91sgSvQPkbrwH3he9+5q/PXCXszx5gCg9P4KuvB+1Ej13sgm9rhC+vWsIojzAFAk87YuMvLJqIT1Otha9Cv9EO2Ocgb3Rzmk9ORaOvSLU+zyhZla8FJWrvDln2LwPJ0c9f6iqPJnkcLz+u2w8FxC8PNTXgj0WHei7YGUPPSLsBL0CKlE8+1RdvKC55Lw/64G8F+8OPVefC7yhRam8mBZSOv1HsbtSgvG7cv7CvN0RQrwpNbQ7KEJgvSfb0LsK8hg8Rp2EvC5dtjzV1T68b1MVPIAcZjzalrE7758NPc5TWTwykmS88/csPD+CrjzZ6T88Y+3LPJ3KmDzWG6G7QC8gvVzSdb3FauS8GMrZvMkeKz0f2IM7mdkIPXjgYjyQzaI7zZm7uySBbbz84KG8vxSJvJlwtbyJ+K48FqmsPGLMnrvSFEy9YIgAvTYCDTuq6Du9J5Xuu1gpDD2IS728YCzZvEoYFb2Wr0I9pxqdO7G9r7zPjI+8sd7cvN/fYLngayW8RHF6PEvFhr17LZo9ykGcPJAThTvslnS91W6vu425ITwajZC8ShiVPal0gDyIWOm7oqw4vAjeFzlM5rO8OK06Pe1D5jysiAG9G0XqPJ0xqDxgLNm8XGvmPCa6ozzSWq46Po/avP0BTzsMWag7tp/PPbKYerypO0o6X9sOPVZDZLxwpN87G4vMPLG9Lz02Miq8vttSPcr5dT0Cw8G5hCM7vI11g7wsvXA88AYdvYBiyLwrA9M7iFhpvDNBmjz3/gE89x8vPERkTry3Bl892rdePFg2uDz575E8q/6AvNXXAjyPlGy9OCH2O4i/eL0WY0q6xWpkvaeO2LxoOgM9ZJo9vaWQHDxPbnA8Ajd9vWoIIjtF8BI7M/nzO+inKD2epWO89QsuPUD26TyGq/c8n1LVvDzBuzytqa48LLIIPbF3zby/QmK7taz7vFxeurzjOcS8Ly0ZvI8gMb34iAK9tlntPJZpYDv00vc74I4WvZiiljzCSTc9oJi3vKmkHT2nGh29s4tOPbVOhbuvhHk6O1osvGkF/bzI8Lo8GiKWvPyDBrz1N/87cgsGva/RtDyJkwk8abizO5e5+TtgH2O9pzhkPMXarrwcemU7mci6O8M/cTxpcrU8mci6PHoUHz3+Ggm9t3FQvBtzGj39Fk688o4rPSRZNDyNEpM9kS/qvOyQGLw8BLc7jJ6PPE2xpjwSIEi8LwiRPHLFhztoii68NgakuhmLE71juiC97lUgPIiPzjzgJ7q8l7l5vAD/VD1F7ou9RJ0HvIhlBLzlscm810hrvXW0Wbs+7D28hqdHvXJYz7wVmIY9Mx4dvMWUsDsASQ68mC19vfiMPrtzXAq9BY2fu03+bzvQHFM9xGarvEQwz7yA7zI9jqkVPe857Ly9Qd48N3qnu7G5O7wvnxM8E40APdeHHr03eqe7HcQevTuX/jvCOCa97CNgO2HSmTwRrMQ8AudbvKHKCDxZpgE8eVodOOjuD71XxcU8pQMUPNw/M7ysdSo7sNj/vLf9TL3oeow8wX6kvNDyCL2A77I7SL6ZO/+KUb0eqGq8OtYxPS1DiTzEJ3g9ubuJPbUVxrxISha76YWSvM2hBL2gMwY9MrHkPJlUt7sgBPW8/A+DPGIAnzwKrrG8KVdHPdFKWLx00A281XyYOzqQszvFlLA8MYNfO/Ct7zzSBFo8wcQiPX6ac7tPJaq7BfYcvID2fTp0Fow8WveFPHqE5zwYixO8wFfqPJKcIr2qlG47UseyvBc6DzzcpHU8kuKgPMXhebtloie9o2jWPPgAQjxffdo5u1lXvXjDmrs/GsO98RqoPGLZ5Ds59fU8L+URvNMrFDyqIOs85SXNPO8yIb3bEa482lcsvCkRyTr9pgU92nZwvaYxmTxV3b68gte5PDMlaDwDW1+9NN9pPABJDr1gXhY9rS8sPYbtxbytfPW8QY7GPN9tODzElDC7+i5HPNhvJbzPqM88jl9cPRejjDvPFQg9a+a4vJKcIrwVwlA8iUnQPKzCc7ryjis8CQwpPa+LNjsucY68bFo8vKZUGLxyWM+8N3qnvGlytTwGjR89xdquPAgrbbtoRLC74g/BPNVZGbxMg6G8lkX2uanabLunfmK68RoovQOhXbw4qKy8uVKMvfNILb0dFaM8Q3qIvXDdgDxMpqC6H88kPSD9qTxgOxc9iNVMPfsPA7zw8+06Ga4SPW5Cw7z6ukM65d/OPBhFlTsmQbu8RmKPPFRpu7zVNhq8V8XFux005zwCVJS9peCUvA8KvDtF0tc8qiDrvPKOKz35ukO7k6NtvSG3Kz0t/Qo9TT0jPefjiTxXC8S8o7KPPBQkA7xMgyG8aESwvLxoGD2oPJ88qDyfvLvGj70CMRU9uXWLPKu7qDwOljg8OGIuPXyTKDsIUic95pnQvOeZULzW1Oe8cxJRPWA7lzxP3yu8YPFdPHbbEz2sL6y81hObvSlXx7y9QV68Ngakut9tOLvQz4k8iraIPEqiZTzxZ3G8YtlkPP4aibwsP868b7qBPbw6E72P+hm8oFYFvUf5kTyk3Fm8mHP7PEpVnLxmY/S8A8gXu4GpNDwlzbe7RoWOuU648bw6I3s96mneu42lWr0IWXI9147pPAquMb6NX1y8a6A6PKEbDb34jD47Q3bNO4sqjL2L5I288Wdxvb9znj21iUm8ZaInvWosNzwauRg7QgJKPCZBOzyf4gG9VgvEuynjw7y7E9m7BBkcPItNC71eDZI9igPSO/zoyDtxdAM9iUnQPMqSwzzmmdC8d8MavAX9Z73xGig99MP7OSLlsDm2icm7af6xPCp+gbwwyV28JBM2vD9gQb1SgTQ9lMonPenLkLxoiq48uSvSOmm4s7wszwU90BxTPKfrGjuA9v28iUnQPJKcorzzT/i8zjiHvCFxLb0vK5C8UoE0PeGbPT1pBf28HHrlOxUvCbyx/7m6vIfcO3dW4jv/JY+8NUwiPPEaqD2kSZI83F53O6Z3l7qLd9U89MN7vYyejzxSxzK9OtaxOlfFxboC59u8NN/pvBNHAj1mY/S9kuIgPWU177uYc3u7kUsePXWKD72S6es7Tv7vu5Rd77sGJCI9ngWBPgeYpTzoDdQ7qPJlvad+Yjzn4wk77nifPcSz9DtbsYc8SxZpvOvWFrwyzZg9IUpzO7CLNj2hp4m6SpsavP/UCr290RU9JFk0PUouYrz0MLQ8ifwGvc7nArwp40M8vf8avanTIb2Gp0c9VGk7PdhvJTwDFeE7inCKu840zLqgMwY9hTNEOTbApTxpBX29INbvuwHgEL0u2ou7rqr6PNlvpbtr5ri7Sw8ePP+41ru/b2M8Vd2+vEbS17u5dYu837O2PLUVxrxzQFY93BGuO/Bgpry/3Js7MyXovP+41rsIK+28AXNYPNhvJTw8eDq98tSpPHYhEjwXZFk8psRgvAkMqTy3aoW7kuKgvC9V2rsOljg9o9zZPAhZ8jyWJjI8k1akvCa1PrsPxD09b7ZGvLbPRz22GYE8oDOGuqQmE7108wy90ZSRvMNmK715oJu7RFeJPNrjqLpmqfK74snCvKAMzDw4Yq48oacJvc7nAryBqbS8ZlypvOidCzx7q6E87UqaPFfFRbyTF/G8X16Wu9NxkjvBxKK85w3UvFBTLzwBc9i70pQRvS+bWL3VWZk8TIMhvAX95zylllu9vrXhPLgrUjxEXtS5SEoWvCqFTD3QiQu99hg7PEN2zbtDdk08XzdcvOscFTz2Xrk8JYc5vKUK37z3GDu7x8I1PGTBazzTK5Q8aIouPTYGpDxiAJ+8GwZivbbTAjo2NCk9NUyiPAnGKjzC8ie873/qPI1fXLxS9Tc6ORwwvd5G/rysTvC8RxwRu5EFID0IK208n1LKvDLwF73tm5680ysUPejH1TzXhx69X33avFZRQry90ZW82AJtu7krUr3U5ZW8grB/vDx4ujvonYu8T3LzvFmDgjzpgde7LtoLPXyTqLxN9yQ9OtYxPa8Xszkp48M7ROpQvS1tU7xNPaM6YdnkPAD/VDsht6u9sB5+OrujkL2To209TyWqOudXjblOsSa9mjy+PM56yrrKZD69GNGRvEDURLyu8Pg85+MJvanTIb1IbRU+znrKvC4n1byJA1I9SG2VvBmukjwD6xa9MoeaPBjRkb1Miuy7wvInPcFXajynOGQ9QgJKvS+b2LxvcEg8dYoPvc0GR7ze+bS8N3qnu128Db2NqRW80pDWvDsjezv+PQi9uN4IPKRJEj3vOew7VpfAvOVrS7yTEKa8Vt0+u5fgs7z7eAA8mQ45PSp+gbvWExu7I+z7PJX4rDsDpZg7V3/HvJb4LL2H8QA8gO+yuQEt2jzNUIA61WBkPK8XM71WUUK8sNh/PI7TX7xw3YA9+rpDPcZOsjx9Byy8vfvfOyXNt7wyQZw9t0cGPShvQD1BSEg81tTnu4fOAb0dxB69o/gNvJnIujyyLb88Ng3vu+ZMBzxWl8A85kyHPI1f3Dst+U+8j9PfvLbPR739yQS9XEiKPPMCL7txWE+9feBxvKHtBz13lZW842SAvRS7BbxBvEu4PHi6vBx+oLx5oJu79qQ3vS35T7wJxio9CjquvPwPAz1mFqu8WiFQva/RtDzQIA68XJXTuvouR7wqy0q7UVp6vJlUt7vIfLc9xlV9vNFK2Dv+0M+8HC0cPeX7gryzLT+79HayvIfOAT0wyV28yh5AvXo+ab100A07XCULvdDWVDymxGA7zS2BvfLUqbxdw1i9E5TLO6Mi2DyTEKa8i8EOPKaaFj3rP5S9vkUZu8fCNT3oVw09LptYO/2DBr2Yc3s8Kn4BPDgcMLwjnzI89Td/vHGeTbyVPqs8LysQvRyhH7yiPgy92nZwu6/RtLwS2sk6xCAtPbewA70AAxA82rzuvNMrFDwCod28XjARPVBTL7xyogg91hrmPDY0Kbyp06G7+w8DPBB+v7wyqhk7wjimumgddjt2uBS8oTrRu7jeCL36dMU6OfV1vHlanT32pLc7l+Azu9yFMTxTO7a6qdpsPIpwCr0akl48iI/OPCe1vryLd9U8TUTuuuuvXLyHG8s8COXuOctMxbycsEG9YdKZu0yKbLx4Wh06gO+yvHW02bxmXCm8oAxMvabrGr2MexC9fgcsuyLlMDqRdWi8gDWxO3Hky7oGJKK8zaGEvXCXgj2G7UW9L5vYPNTCFr7INrk7Us79vOuv3DrUnxe9FvBVvLU8gLyTViS9ubuJPNMy37ykSZI8E2qBuzY0qT3+PYi8TmuoPEyKbDwMIjW9P6Y/vFWXwDuMWJE5fQesPL/j5joYHls9pQrfO+rWFroKE/S6kS/qPEQ0Cj2Agnq8+i7HvOT3x7ueBYG6FcJQPMLyJz13KN07A+uWPIORO7yVsi67Gv+WPEsPHrxgq188niiAPMOsKTxPJSq7DsQ9O8pkvj1SgTS8IbcrvQb9Z7ynfmI81/shPLyH3D3hm727ZalyPS8rEL13KF09wsvtOxY21L051rE8YkYdPXjmGbwfYuw8gIJ6vEIphDtFywy9PTI8PWugOr1tFD49plQYPXHkS73Q8oi8Fl2OPQRfmjxeMJG8UscyPJnIujtkoqc9Uzu2OV3qkjzt3eG8i02LPCCQcbvZ4yi9f1R1PJ+YSDzQQ408hEu9vEknFzymdxe8gDWxvHBwyLwJxiq8dPMMvDbHcL1jTWi82SmnvKnabLxm7/A8BM9iuiuJh7z3jD481Ozgu0sWaTxp/jE7QgJKvSdvwDyrCHI8GwbiPBvnnTwVdYe85ykIvSp+Ab1ORG69RqiNuxUIT702NCk9ALlWOozBjjp1RBE9iR8GPRROTTt0rQ48sIs2vF1P1bwYF5A43dJ6PMfCtTyA9v08Y5PmO0N2TbxOsSa8vpYdvBqS3jtc21E8z88JvUQwTzz7VYG8+QBCPV0JV7wEieS83204u9Tllbx1tFm7iR8GvB6oajxeU5C9M2tmPM+oTz2SnCK8vftfvTqvd7w3eqc8z6jPvFDmdj3cP7M8J7W+vK2jrzyOGd68gwW/ugVqID182SY9ZDXvvKhfnruUXW87iKuCu1dRQj1eN1w5uukOPFaXwLy79BS6iGUEvLYZgT39Fs68Ga4SvLWJSTzdGHm8WfPKO9GQ1jttFL48GUUVvQhSJz2hp4k9AP9Uu/QwNLstZgi8kG4dPCIrL73by6+7aQX9PEQwz7wXqle762lePC2z0bx0Fgy8wAohPbm7ibxZrcw8SeGYPOWxSbtmY3Q82eMovQYkIjxGhQ69wcQivPCmpLwKh3e8ZXttPMOsKb0W8FW7HcQePGSip71225M8Oa/3u+WxST0ucQ49gDUxvT0yPD1d6hI9rfD4Oxx65byl4JQ8OIHyPKI+DD3y1Cm9l+CzvKGnibyJ1Uw8OyP7vH0m8Lx+mvO8oMbNu+AnOjz8osq7RqgNPecGCb1gq988WWADPaZ3l7yC17k8LfnPvEG1gD3WpuI6wX6ku68XM7xCVL+7KCjPPI4NFr05VC284+UwPPkwyrxO6rI8ROogPJ5ugzz2HIK8Qb5dvbgjxDx8Nfm8nA0xPLC5EzypIyk9LfNIvM5PK7xpNdU8MD6+vFBLBb0YPhG7f0tfPE8LgzwuFJm7XdTwPFVqQL3wUQi8ndghPLN3fDxGaiU9ON39vMZaDD2VrFU7FCiru6BCybxjoYi8xY39vKruGby0RAs9kBiJvJThZLxtFiw9VlRjvbQN3jvQBL+8p6MkvTbqhb1O6jI8VYnyuxvdx7y2bjA7P3WGPWNLKbxXVoE77QYTPHisH71i1pe7CcdGvXc1cDwI5ni8dewYPZxh8jshVAC9xTm8PEDUujsK6Ja8UMAWPUH1iro26oW88nstvJqNrDzMzya9N9Sou0rUTL3w+yg8TgllvaRYrzzCDfm7IZJkPA0zDL3oBOw86LCqPIbhSbsVfgo8+cYrPOmaTbxr7AY9XkugutOlE71/S1+95vsWPUgfubyDd6K8NKhlvHl3EL0tEnu9ivcvvKVCUjz75V08i+FSPY/CKT2uQmS8YtYXuqNujLyGAPy8Ceb4PDYJOD0tEvs6/UawvCmoU7zdcBY9VICduzy+VD0eEmC8u41rvEW1EbyHrLo7mlidPGeAwTyf45Q84+UwPU61Iz3EhCi8M4kzvNp7gDhX6kS7hfcmvNNPNDrLWhU9SrUaPGNqWzxhy6S8nGOQPFO1rDslqMq7XJYMvMvlAz1P1FW7j00YvQsoGT2hY5k8NHNWPD41hL0882O8fpbLvVVqwDxP1FW6wVhlPGKf6rzrho6625qyPIlLcT12LBu9Z2GPPFDAFjz/GvY833uJPTbqBb2yjVk8EqgmOv4wU7sRMXc8gIIMvSPUhDylQlK8aBajPMeaDj0Ocw69v6NRvOv7Hz1Ttay7CcfGOegE7LyuWME8dJa5PIQNBD3z0Yw8pUJSvDsoc7z0EQ88AV0WPf/GtDwcx2q8T59GOzRzVj3qux29lpb4O1pqyTvZ5R48Rp80vbw5qryewsS6ROogPXphszyU4eS8h2FOPEkJ3DvQI3E8Jcf8vGaWHjxyavY7dJY5vLNC7Tt+lsu8muMLvA+zkL1WH1S9iSy/PKHuh72G4Uk9KokhPHS1azyRd708iM2KOzhqCj2dLoG8hwIavUhz+jwBXRa8VosQPU+fRrzVI3q8oi4KOlBLBTyWlvi84TAdvL7Y4Lxz4SU9Jcf8vBiSUryLwiA97AT1PCaS7byJS/E8FF26vIOW1LuJDQ09usL6PG0WrDz9nA89w7k3vX+A7jvGI987ZiENvQwxbr1qy7Y8Ft0+O03LgLyd91O94vuNPC/fCTyyWEo9xE+ZPFmAJjw0Pkc8/FyNPA6SQLxDqp68WLU1uy6fBz1P1NU88FGIvNwwlDwg3VA9G4mGvDlUrb0hc7I693s2u+TP0zy9Qv+8PlS2uu7RAz0dyQi889GMvL4PDj3YpZy7FD6IPGUAvT2VrFW9meFtPOOwIb2hLOw8D3xjvHf3izxVS467WUsXvD5z6LwJcwU9YSGEu4yWZjxlH++8V1aBPWa10DwF6A29SrUaPWXLLbx9rCi+NHPWvEM+4rvgue28nm6DPOfluTtrtVm9chY1vcmlAb1HwIQ9gcIOPCqoU7031Ki8qy6cvKis+TzR7uE8eoIDvIaNiDyJDQ2758aHu5cNKLydjTW8NT7HPeCEXrxnYQ89HHOpuRyoOD3a7nM7WYCmvILL4ziuBAC9AXzIu2RWnDuXQje5QonOO3g3jjw0VKQ8meHtu9UlGDxDqp68F6gvPUg+6zxIHzm8XksgPfGwPLyLrMO7ON39PK95kTwW3b68zdoZvZtCwDtvy7+8UVRavWeAwTyyWEq9kg0fPMO5Nz2+2OA8+JwGvJCsTDxYtbU8VlTjvNQ517ui2Ko7Ph+nOpjYGL2OS3o9sPf3PC6+uTtL9Ry9+TDKPJINH71Kn728HZLbvJDL/rzFjX28so3ZvIQsNr2V44I8hRbZvRp+kzz/Gva8mRibvLkN57sJc4W8HxLgus5PqzwqqFO9UIlpPQqzhz5+tX28jHc0uxlHZr1hIYQ8oi4KvLdYUz0ziTM9OVStu4iWXbyswt+85vuWPSFUADz/xjQ9uAQSvdnlnjsK6Ba9dLVrPMUaij3zml+835q7OzYJuLwX/g68kXc9vCKUgrxtSzu8YAA0PIvCID3osKq84Lntu8jYcrwQKKK5zM+mPE8LA712an884IRevdDuYTx5tfS8OyhzvEH1CjwUXTq8sPd3vJINH732HIK7y1qVPH03F73MzyY6GUdmvD1qkzxlAL28NKqDPZ7CRLvFjf27eKyfO81lCL1oFqM8KqjTvF3UcLvBObO7Ph+nu3uCAz2rLP66bJ/8PApdqLxrtdm7muOLvHdsHb3TGqW8yU8iPQmoFLywhAQ9muOLPEa+Zrw2X5e8wu5GPeVlNbxc6s084hrAPLm5pTwpvjC8sNjFvLN5mrzvMLi74IRevLJYyjzeOwc8l5gWvMjY8rwPs5A8mo2sOxOxe7yAggy9czcFvWvshrzShMM7bgDPOyc+rLxHidc7AJIlvQYokLvyz268mlgdOciEMbwXqK88BkdCPOc5+7y6hBa9zWUIPZsjjry/hJ88489TvT8JSj2v7qI8UYsHPbbEDzuELDY8ZcstveIaQD0pvjA8eABhPcGPkruNQqU8wG5CPcYELbsdXcy8F6ivvC+JKj0OksA8CrOHPLqjyDx9Aog8SB+5vPxcDb3cT0Y8pULSPJDL/jskSRY9lXdGvATm7zxrtdm8osJNvX0CCL089QG9/xyUPEGfK7z5MEo9XYCvOiCoQb2frgW9LdSWvAnmeDswkn87Uwnuu32sKL3lu5S7C2Z9vTBzTbw71DG9EEfUvB58frxgALS8Kb4wvem5/7xTC4w9buGcujvUsTvkBoE8QZ8rPW7hHD2SmI28E5LJu7DYRb2/hJ+8G/x5PEg+6zxtoZo8kkIuvb+EHzxpbIK9J5QLPR2SW7yMWAK6++VdvNNu5jwS/oU8myMOvWrq6Lw0VKS8rkLkPBvdx7wSx9i8p/kDPg38XjuDdyK9LJSUPeCE3rwFXZ88x+5PvaUjID3NZYi9cha1PJJhYD3Wmik9a7XZPOjPXL3iGsC8dkvNvB/zrTvghN68OIk8vPGwPDxwljC8kMv+u+W7FDyfrOe8vDmqvDOfkDwliRg9PnNoPCHJkbx+lku7Eqimu8aPm7twYaG6UVTaPMGPEj031Cg9kyxRPB3JCL1Gn7Q7VYlyOpwNMb353Ai970/qvFo1Ojuzd3w8jizIO2uWJzw2Cbi8ZFYcPLbC8TzLI2g8CcdGPMsjaD1dgC+81popvDe+S7tK1Ew8Dd2sPRfHYT2Rdz09QjUNvPlPfDyK9y+9MvPRvFNAG7sVR108bWptPNkE0bwefH48PwnKO4hCHD2nwtY7cJawvHTqer3fz0q9cveCvMiEsbtGaiU8a5YnvVWJ8ryuQuQ8UsuJOygoz7ypI6m8mqzeu1NAm7yPFus7B92jO/8clL2oIym8wVhlPK4EAD2WI4U6aiEWPVzLG73yz+48UsuJO/RPczzAjfS7IyjGPMSjWjypOYa79E/zPfrGq7uELDY7GV3DvFuLmT0rc8S8saM2PM8aHLwefP48CZK3O3cWvrw66g69I0f4vCxd57yuQuS7rnfzvK1unrzHzx06o6xwvbN3fDrIuUC7ZrXQvGa1UDzSZRE9dHeHvU++eDph6lY8Hn6cPMnakLzAGgG80xqluxQ+CDxMVFE8o42+PH9hPLzAT5C8tsJxO/J7rbx5y1G6NFSkvFzqTTuzQu28SoALPMOaBT0t80i9Y0spPZpYHb2hLOw7aTVVvdGaID257rQ7Oj5QPKruGT2kWK+8aqyEOxL+hTmi91y7RAlTvBv8+bzzmt+7hEtovDEoYTzUcAS7wTkzvBESxTz8ez89Uuq7vLqjyDyWlng8ercSvHPhJby9I029GvMkvFfLEj2l7pC5J5SLPDlz37zqhPC8bRasPMi5wDzLI2i8aGpkval3ajozibO8MV+OPDRz1roQ85K772XHvH2sKL1QS4W8C0fLu/bGIjwKsWm8x+5PvXG3gDxJQAm9qy4cPO2Rgb3JpQE9M75CvT41BDxmIQ2+5oaFPCDd0LzHzx28G4kGve3P5bt8y1q8s0Ltu2013jvxxhm9xRoKvPx7P7y3WFM9/Hu/vK9EAjzZcA09cYDTvPya8btWNTG75Ll2PDe+yzvNbl08mcK7Ow/zEjwOc448wG7Cu/awRTxNywA97nskvDEoYb24I8Q8b+pxvOq7nTs+Hyc9FHzsvPOaXzz+3BG8zWUIvSXH/DypWDi6R4lXPXPhpTyLGIA8OKhuPDo+ULx2LJs933sJvQEoB73DDxe9Hnz+uFmfWLwv34k9E7MZvJINnzyNYVe9MQmvPHC1YrxngMG9bGGYPK4EADzaz8G81popPVLLCbzaz8G7h3ervPd7Nj2uIzK9EEfUPJ5uA7wcc6m8CZK3vNvwkT3NhLo7IXOyO8UaCjy5uaU8EsdYPZqsXryXLNo8kZZvvDRz1jyw9/e79rBFvb65rrl44S493W54vFFU2rw882M8yjlFu6ONvryxwmi9ug8FveQGAb1lVhy9p/kDvCC+Hr1bVgq3fQDqPCmoU7zXhMw6W1YKPbWEjbwGKJA8CugWvL4N8Lsuvjk8hfcmPFBLBT0Sx1g96ZpNvP1l4rw1XXm8g82BvTlzX7y0DV69Hnz+PBg+EbwCR7k8WAsVPIaNiDyw9/e7eoBlPA9dMbzx5Uu8myMOPLGjNj2P97g8dWEqO3jhLrxrlie9L6hcPcOahb3zmt88p/flPGk1VbxF1MM7/WXivLePAD3ET5m85YRnvYdhTjxLai69Jz6sPL0jzbwA6AQ8hEvovL+jUT3guW08wg15vLXYTr0I/FU7cGGhutAjcbxOQJI9OyjzOk3LgLzguws7kkKuuraNYrvBI1Y8s0LtPDLzUb0+c2g8Eb6DPKONvrwW/PA882XQvNXPuLnATxC9aEsyvIaNiDzm+5Y9MQkvvNuEVbztsLM8yU+iu/lPfLw8KhE9T5/GPMYjX7wNMww9uaPIPRvdRzxqrAS7zdj7O5nCuzxsLAm9SeopPMOaBT1mn3O8eOGuPKl3ajs6PtC8kI0avISAdz3fmjs87MYQPSDdUD3tz2W860/hPIN3Ir2nwlY8meFtvUNz8bxtSzu9AjFcu56jkjx+lku9oi6Ku1PUXjw/Ptm8SUAJvE+fRrzLI2g9zYQ6PR0Ji7xsLAk9SeopPdHu4TxE6iC9vg3wPLvEmDyUFvQ8m0JAvQ6SQL2My/W8TcuAOqss/rwUPgi9kg0fvZF3vbx4AOG8MvNRuvrGqzpE6qA6ylj3PBldQ7mSmI28geFAPR4ovbzf7nw91rnbu5/jFD2ODZa7hbrrO3zMAjz3r2S9rB2QulbBqTxo+fe8UJ8lPHrh3Dypy6E6GihjvNM3Zr0yx9I8o5K+vGFwK7wyXNk7wP8XPQkt0Ly7ByG9GijjO0YYhTzmyQS92QVQPXbUiz2Ytf67OWd+PPcDfzwtuPy8yB1ru2elXbx5ehQ95TL5PGIvP72G+1c9M7BzvA77ubvPAAi9F4YLvepYLr1zwwm7pM/5PIAawLykEOa8C9cJPBFkB73kuAK8lFSTvIb7V70tuHy9Z6XdvK8A1LwaAoe9zSxBu4ADYT0lBSO9YhhgPMKQbbqvgiy9MnO4O1yiwbzZxOM62VnqvD7hTT2RAiU8YYcKvc1trTtzrKo83+ZnvFZWsDyke987OCpDvbB+e7ydHKA8AzXZvAtskLyM8069FQbfOG4ITr1c4608wb4rvGg6ZDzw/Aq93iuFOy8OnDwOJUc85ElYuj6NMz0mWb275bTRPA5Thbm7hUi9XOMtvfeF17zT+iq8oxSXuveF17zHydC8A3ZFvXBHDrxQHU09ve6VO4USNz1GGAU9xuAvvKn1LjxirWa8/VPBu57uYT2exFQ9C9cJPORNCb3Ynge65HeWPG5c6DlcIGk8/X1OvFY/0TuG+9e82hh+Ow4lRz3gp4A807m+PMCUHj1c9ls9kevFvAOg0rxDxhY8tY3RvHSo+bpBSpu8piUZPSfXZDyGPMQ8048xvQMLTDyk5tg8mKLQOwmr97yAV/s8Ps4fu8G+K70DdkU9o/03PWiOfjyj/Te9JtuVPG4bfL1nFAg8arqQO/1TwTwIRK88/ycIPZKq2TzxImc9bt7AvMefQz3BPFM7Vv5kPHJYED04KsO8mKLQu2gnNrx6jUI8PmOmu80V4jwtI/Y7XgsPvCA3ObttoYU9AjkKvEC1FL0UySM9rpmLPGFGHrwagC48vcSIO231nzwUyaM95KGjPMG+K7veFCa9olUDvCEJezzMQyA8ec4uvVDzPzxEmNg82QVQvT5jJrupy6E7LHtBO0olVr3qw6e8Z6mOOtlGvDxP4BE9Ps6fvF3f/Dw37Yc85sf/PH9yC7zNAjQ9XKLBvFA0LDu8A/C8VW0Pvdkcr7x0VF+9M/HfvOuCuzxQyTK96sMnPfEPOT38KbQ8F4YLvDi/STxirWY93z6zOw48Jr3A/xc99zG9u8dLKTzltNE82J4Huxx+AryeWds7Rq0LvSwQSDsL1wm9qlz3PE8Kn7xcSva83z4zPWHbpDzZRry7gFf7PJFWv7xA9gC9stSaOtkF0Dwg4x49Oajqu71Zj7xiGOA8hk9yOlwgabxtoYW8VqpKPKTmWLzCUQa8+ZoKvZj2ajwUiLc7i7YTPZ6D6Luj/be8mKLQO82XOjxA9gC9u1u7u7vwwbzwTHQ8/fv1u0lTFLyvrDk8jPPOPE/gEbypoZS9MooXvVzMzrvee+48nbEmvfkvEbs4KsM8V714uuWd8rzCJXQ97RWWvO96MjsIr6g9tSJYvesq8LvTTkW9cEeOPLULeTqyP5Q8SZSAPFBeubyj6om93/3GPD4iuryCGJQ9r1gfvBtScD2MHdw808zsvPwWBj2dmse8IOMevpHBuLz9Zu+7aLw8vBWbZTwOfZI8XEp2vURbnb0r04y9/JQtPccKvTxt9R+92RwvO9jyoTshSuc85Awdu7lIDbzr7TQ8goMNvGQtE7w4v8m8hOipuxrrpz0LAZe8FTDsPK9BwLxw3BQ92e5wvPaJiLzTTsW7YtfzvLsxrjrZ20K8hbpru7Z2cjyIOhg8qgjdPOUI7LtWVrA8qd7PO1u5ID0DoFI9P191O83YJjwCYxc8gERNvbxu6TyLCi48XDdIvVz2W7w/Nei89wN/PPzVGb2vAFQ8dv4YvevtNDyOnQg9c8OJO1AG7rwlsQg9DiXHPBrBGr1ceLS5glmAvKyylrxLo/28lmWVPQ7RrDzG4C88DtEsvZckKT3NVk69euFcPHqNwrvHCr28hSmWuvcaXjzfaEC8LHtBPETZxL3f5mc9UjIAvFBeObw+dlQ9f92Euzsol7yRQ5E8zmn8u4XoKT1GGIU+mPZqPHpMVrxuMlu9bR+tO6hJSTxyrKo9TwqfPGLX8zy1Iti70juXvDLeMT1WgL082ZrWPFEw+7zB6Dg9Sjw1vdT2+TxA9oA9UvGTvE/JsjstuHy7Lw6cvFCb9Ds/ym69PjkZvSy8rTwDyl89UNxgPMEpJbw5qGq9i5+0PMF9PzzHn0O9rxczPOusSLxzrCq8aLy8vGgQVzom7sM8x4jkPHoiybtc4628apCDvLoegLsnQl68iKWRPNma1jx6Ikk8SmbCu+sXQj050nc89274uqvzgjvZL129vS+CO/aJCL0+ym48Z6VdvGQtk7zJnRc926+JO1UCFj1uXGi9r9ZGu/yrDL2X47y8jLJivIsG/TxQNCw8oJgbPfwptDzT+qq8l4+iPJFWvzx/cos69kicumfTmzy9L4I8PvisvOSho7u9LwI7wSklPObH/7zB6Li7kRkEPEm+Dbzn85E8hrrrPAhuPLyIOhi9MnM4vcdLKb2e7mG8wadMvIAawLsguZE6tQ+qO4Z5/7ySqtm8gK/GvA5mMzy7cpo8LLwtPb0vgrypScm8khXTvM2XujyUKoY8z7+bOtM35r0a1Eg9RhgFPfHhejwsvC2804+xPBMdPryX0A490yQ4PCILgDz8aiC85OKPPFYo8jzJnRe9N1iBvIVTI7xux+E8SzqJPN7TOT3wejI9zQI0POoEFL1tNoy9Sn0hPQiFGz2L4CA7nsRUPKOpnby1pDA9Ypq4PFhUhL0hSme8YkLtvJi1fj3M61S8Mgi/PF6glTzw5au8i580vepYrrwg4568DugLuwOJ8zs+Irq8Z9ObO5fjvLzGIZw56wBjvSlXEb03WAG8CBqivCbblbs4FxW9ShIoPdlZaryFfbA8XEr2OpGATD2XjyI7r0FAvHSVS7yFUyO990TrvC0j9rvTN2a8IUrnO0D2gL2Xi3E8RBoxvQ8OaDxEr7e8LBBIvAIiKzo/ym49FXFYO/FjU70IRC+9ICSLvLVjRDwnrVe80+NLvPwWBj4D9Ow8MxvtvGq6ED3ee248OGsvPaNoMb0mmqk8hk9yvYufNL3qbw09QIuHO1gTmDyLn7Q7W7kgvRTzsDsVm2U8efg7u2HbpLx64Vy8tSLYvCG14Luva827hpDevPactrzxD7k8bWAZPAL4HTwOkMC7G5NcPN+Szbvqb40737zaPKlgKD2MHdw8Dw7oPDK0pDsIGiK9kQKlvKP9t7u1Ili98PyKPKTPeby3Nwu9iHsEPLAq4bu1jVE82Ua8vESFqjs5Z347jp0IPbvwwTsn12Q9IbXgOrag/7yS/vO72S9dPMd1tj3fEHU9XN98PLX4SjzZHK88QIuHvepvjbwaVqG8D+RavAXfEjzTJLi8qR88u8cKPbz3hdc73n+fPP/mG7z8vjq9r6y5vPZyKb0JFvG8VhXEu9+8Wr1edgi98c7MPPZIHDz8lK27NZsZveoEFLzewAs6xiEcO9mDd7z8Foa9x+CvvAN2RTwCIis8REQ+PbvGtDzZHC+9GusnvCC5kTyG0co8J5b4up4Y7ztcokG7eaShO2TCmT15C+q6rLIWPI4yj7z8FgY92dvCvG6dVDz9Zm+861T9PBo/QjuAwnS8zEOgvbEVh7yAGkC80hEKvFAdzbxK5Om7euFcvFCfpb10fmw8o7zLPCo+Bj1WP9E7LY7vPIADYb3wJhi8wGoRPaMQZrw4lTy8khVTvPB6srxzQbG86kFPvNUiDD1LDne84KeAvMKQ7bvzDQ28YXArvJdOtrxuhnW8mCD4vCZGDzzA/5c8r4KsvHljtTy2oP88cLKHPKh3B70Vm2U9Z2RxvMdLqTzk4g89dFTfvAtCg7wDNVk8jB1cuxUw7DwnbGu8teFrvA+6zbxEWx08qR88u/dbyrtK0bu6Xd98PUTwo7vw5as8dJVLPYyIVTyGPMS8YdukvPD8irzlyzA8Z5IvvUTC5Tx0fuy8PfgsvOUI7Dwspc48qjJqvf9RFb1zrCq80+NLu37dBLwyx1K8ndszPSG1YL338NC86gSUvE9Li7uv1kY8UJ8lvNkcr7xz1rc8dv4YvPN4hj3zDY29o/03PeUyeb38vro8zIQMvnn4uzy0uw+8Ec8Au3oiSbxQybK8wRLGvCbEtryLjIY7hrrrvF41HDzhPIe8/ehHPTFgCjxMzw89YsTFPAmr97xzFyS8SVOUO1FcDT3S0J27GiyUPDkTZDz8EtW8sL9nPF7hAb1cosG8hvvXuizmOrgUiDe9QCCOPCILAL0I2TU8M7DzPGFwqzt0v9g8F/GEuWIvv7wUyaM8bkm6u7sxLj0mBSM7dOnlOs+Vjjuk5tg7ILmRPZ0Fwbw+zh+97aocvNW3kjx0v1i8Po2zPZ0cILy8mHY908zsvEuj/TzOP2+6Yu7SvIilkTzT40u8XLXvuzJJKzwbvem88JGRvHljNb0nlvg8o6kdvQ8O6Dy14eu8As6QueX1vbxtH609OT3xPHb+GLt6C2q7o2gxPX/wMj27hci8VqrKvIW6a7wVcdg8kmntvN5/nzuLthO93nvuPFbrtrx0lcu8VmlevIUpFrnlnfK8oNmHvayyFrzzNxq9iwouvRqqO7zN2Ca8/KuMvJ0coLyLdSe85KEjvM2q6DzkNqq8zapoPCfXZDtE2cS7zRXiPEp9oTwUySM8FF4qPS95lTtty5K8nhhvvMfJUL0s/Rm8LOa6vPz/pjyA2dM8UF45PX+vRjzSO5e72cTjNUWBeTuAV/s7UJ+lvOUyebxKEig9CwEXPfD8ijzag/c7qbRCvSB0dDzqLqG9QIuHPDPx3zwO+zm8FdxRPRcbkr3ra9w8xiEcPM2XOr2+gxw72bE1vZii0DyRAiW92e7wO2QtE72Sae08IIvTOwivqLwnAfK8ut0TvDOw87lig1m9tkxlPcdLKbyq8f28Sb4NPM1tLbya4RA8Gqo7PA8O6DzGIZy8aI7+u/b0gTx/W6y89omIPYDZU7yerfU5JhhRvaOpnTqwv+c8zO+FPSDjnrwDoNI8SvtIu/GNYDpnaKK8Q8YWPd9R4TzhZpS8x7YiPMe2oj0Vm+U8bbSzPIyI1Ty6Gs88A3bFvFskGj3koaM8PiI6vNPjy7xcSvY6l/qbPH8xH70D9Gw9OOnWPFe9+DzwZwQ9ppCSu0SvtzzJnRe9c4KdPEr7SL3ef5+8VqrKvDLeMbxoz+o8qcshvBTJozwOkEA7wJQevYzzTrxbuaC8zYBbPfZyKT1LeXA8ut0TPVwgaTyIpRG7gG7au2Lu0jw4v8k8hWqCPP37dbx/hTm9D09UvLbh67uLthO9nQVBvBrUyLye7mG6CAPDvCsnJ7whSme7UZt0OdkF0Dx6jcK67RUWvevttDwdqA+9t8wRPcfgr7zhZpS7kj/gvId5oDuB+Z08tOkyvazJLztewvi7RumFvBwaXbw3gug87OHJPLrJNLwxAma9ucm0PMshPLxLyQe9aTWUPOuRyTw5XYA8aUkUvMeROrxvyv+702m/vOgpSLz2GU49ukG1PBeyWz1DgQQ9siGyvMXJObzAwTe8YbEQPVehDD1Bkuw6JdpgPKKRq7tTJYu8yvk7vS1y5Ls7JQG9S3kHvIypojw6wQC9SRUHvFM69DxiURG9QC2DvEvJB73mice8pvksvV7C+LxWAvW8ytE7vfI5zLpqXZQ9viG3vLaxszzuqUo8VbL0vGQtkruChR69XUp4vFOac7yOcaM8Jsrhu9WBwLxIiQY94AnFPL7RNr1zWZi8UA0Ku1Mli73PAT68RCLuPN7xw7zsCUq8/hFRvZDpozsdCl68XNL3POY5x7zu0co7ZAWSvDDa5TwLslY7yam7PLaxs7sC8tI8rmmwvF+FDz1CkQM8e3kbvehRyLxMaQi9qMGtPAza1rxhxZC84TFFvPvRz7yD6R68WzJ3PZIBJTwBUlI9e6EbPQAq0rsWEtu8+VnPuz55gryWuSY9QBkDPdWBwDue2Sm9iMmgO4aJHz0nGuI7SnpwPM05Pb1lknu7JLJgvNbRQLt4dRo9b3kWvEea7jxTOvQ85enGPcr5uzyAgZ07bGJ+vHSVmDvpeUi7SHWGvHhhGj1VFQy4Wbp2u/BxS71BpQO8CerVO3GRl7xJ2u88izEiPduxQjkHIlW96XnIPKqxrjywMbE8Wgr3vBhiWzydiSm9+VnPO1Sdiztw8n+6JVLhOyuC4zu3KTQ7ZEGSPFANirxiFRE9TbrxPIbZHz344U49IXLfvA8a2DqRiSS9YtkQPVgFjTxsORU7XIJ3ukHhAzxUYQs9AVLSPJwRKb3q8Ui96xnJPKjBrTxm9RK89AFNO0SCbbw82YE8H9JePTthgTxuPRa8YmURvSpa47vLSbw8QvWDPONJRr3DKTk910nBPGvBFL0tIuS8lrmmvETlhLtjonq907k/veKpRTy6yTQ8OurpPF/BD71C9QO7xKG5u0aZBT3e8cM7U/0KPWPJEbyPmSM9PQECvctJvLwIctW87oFKvce5urxgTRA9jIEivfERzDyrUS89OzkBO1ANCjywWTE8XTUPPVSJCzdsin69XxL5PDrBALwc8lw8QgrtPHLNl7wucuQ6S1JwPEQhBb0IclW8SMUGvXetGT3TkT+8YlERvGjS/DxsEv48E9LZufqpz7upYa68iMkgvVm69jsUcto8miEoPXZJmTuBDZ68oHkqPQEC0rs7Euq7PqECvUTRhLurUS+9PRWCu11dD7115Ri7E/pZPEixhjzmOcc82MHBuq5BsLpaHY48CxLWvA5617zA6Te9YDkQPFfJjLw66YC8dIEYPGXxkTw6/QC9XQ0PvdiZwby8Cba7RV0FPZhZp7wSglk860HJPG4VFrtT6vO74yHGPJIBJbx2hRk840lGPVR1i70iwt+6qrEuveaJxzxE0QS9Zgr8PDmFgDxwBRe98HFLvVgFjTy4UbS8TaUIPczBPDhJYYY9Q1kEvW+NFr3VgUA8fN2bvKgRLr7ziUy8MLLlvGkNFLymSa08lRkmPUnthr2B5R29RCJuvQj61DzTQT87FupavWB1EL0egl67YhURPUS9BDt/MZ27Oq0AO1e1jDtgOnm89vFNvISZnrzGabo9yYG7vKMJrDzDibi8u7m1u2fie7y4eTS8BqpUO+6pSrzTab87SSpwu/QBzTqI8aA7ZPL6O+TBxjxYGQ29QaUDva5psLpfERA9gQ2ePdwpQzxbMY68RkkFPGYKfL1+zZw8VIp0vHDJFr2HeSC8zrG9vGsRlTsH+lS9eYkaO5w5Kb2sea88fx0dPP4RUTyDrR68egGbPGBi+Tuq2a68W1r3PKx5Lzxk8vq8F7JbvM8BPj2mIS09R8JuPLu5Nb3hgcU7XxEQvQj61DxzzRc8a8J9vMrRO7xJYQa8Zs2SvJUZJrze8cO9AVJSPbh5NLzv+Uq8yYE7PW1ifrlQ0Ym890FOvAhK1btDbQQ9Ydp5PnX5GL3kmca8RxEGvTtNAT0SMlk8E/pZPR/S3rxBumw8hDmfvBy63bwaytw8bP0UPDvCaTwMKte84/lFOj+1grxFcYU8TFWIPXfVGbxIxQY9iKGgvFBacrsUIlo80Xk+vWw5lbzIMbs8be0VPVFxCj0uEuW8TGkIvXMJmDyQESQ7OZkAPG+hljzrQck7WgmOvEqNB70gIt88TZJxupuZqDxdIY+8Zx0TvL75NrtuAv88ChJWPJohKLxUYYs8nWEpvNEpPrzhgUU7YE0QPcshvLsIclU8PJ2BvSbKYbxWUYy8sFkxPRRyWrzIMbu77qnKPMCZN7xaCQ49g5meulehjDxzWRi9opGrvI/Bo7zDATk9HeLdPI35Ij1JKQc9SImGvPqBTzw9AQI9iFEgPHZxmbwGqlQ9m3EovDyJAb2YWSe9ACrSu5ShpbxTEnS9aTWUu5n5JztZpY08zHE8PTsS6jxHTQY94/lFu38dHb2GASC9RsGFvGJlEb0hcl+8XyWQvJTJJT2ikSu9dTUZvUU1BbyaISg8RzrvPGIq+jytyS88H9LeO0ui8LwmymE8Q22EPKjprbtH6u69e3kbPRY62zuPwaO6fUGcO4EhHjuk4as7j8EjPWIpkbzb2cI8RoUFvbHRMTyfsSk8MIrlvJdpprwPQtg6XxL5O38dHbw4+mg9/4lRPXGRlzxVAYy8E6pZvaJpKz0d4l09PxpsvH7NHD1L3Qc8NjJoPYxZojzM6Ty9XSL4vBWa2rxYQQ09IXLfvKHxqryesak7HoLePNphQr3faUS8b7WWuwUy1Dz3aU68JVLhvD3tgTyseS+9doUZvNSRP71iZRG9WPJ1vMZpujqAWR28irmhPCiSYj08xQE99vHNPFZRDDuOcSM9FZpavNbRQLu6aTU657FHvWGxkLw66uk6gYGdPMXJuTxh2nm9uKG0PEHhg73YmUE93FHDuvWhTbuxgbE8bdkVPU2S8bwKOta8oMkqvUpRh7w8iQE9Xkr4vC1yZLs7JQE+ukG1un19nLwd4l09UA2KO1UBDD3xEUy9UIJyPMxxPL1ZaQ07lwmnPKMJrDykgSw9kWGkPGeCfLva6UE8lrmmPLAxMTx9fRy9UPpyvGiC/LxktRG7TuEIPG3a/rxIiu+8m8EoPR5a3jwdCt48jnEjvcDBtzxr6RS8vAm2u8MBuTyHeSA9qwEvPeLRxTxaava7siGyO2TxETsDQlO70fE+vTPKZj06wQC9tWGzvAfS1DzaYcK88jlMO3NZmLzZOUI8UUpzvMYZujyeAao8C4pWPWJREbtw8Za8TGmIPKeZLbp4YZo9nymqPQuy1jvbAcM8T5UJvPqBT73kmca81OE/vHF9lzxE5QS7S6GHuv3BUDtRXYq7yVk7OV5y+DuIyaA8ZBmSvQhyVb07OQG807k/vWdFkztQRYm9RoWFvEwtCD1ZkY28RukFvQUyVLsPQtg7RPmEPEGRg7xUdQu9WAWNvfdBTr1b4vY8WKL1OqSBrDzGaTo9KbrivDx1AT0ksuA8gSEePVP9irygUSo8RzkGvUaZhbx36Zk9ZWmSPLHRMTyOISO9JxpiPVtFDr2G7Z88XKp3vPoxzzysea+7DnrXvIaJn73zicw7xmm6u0XS7byZ+Sc8cBkXOrwxNjtV2Yu9M6LmPO4xSj2bmag8lUGmO1Xa9DybwSi9PLJquyQCYT13mZm67blJPH5pnLy+0bY8M8rmvI+ZI7v3aU48ktmkOzPK5rtMBQi8b6GWvJXJJbx0lZi8eYmavKZJrbxZVY0830HEPEOVhLxHmm48ODUAPXDy/zvSoT69Uzp0Pdb5wLvn2Uc8ZEJ7PEo9B73YccG8N4LoO2NSerxvKv88YrL5vL2BNjzQUT69TVUIvG/Kfzv3Qc48T5UJPF7CeD2yITK8zTm9PEiJhj1hAno8ZBr7vN1RQ73+EdE7fAWcPGfi+7w6/QA9Po2CvDW65zvfkUQ97OHJO0aFBb2X4Sa9MqLmu2Qae7vTaT+9YGEQu6WpLD3/idG8lpEmvWfi+7vi0cW8ZBr7O06RCLyFiZ+8PNkBPD5lgjtAQYM9RxGGvaeZLT0M2la9MQLmPHopG75B4QM9DspXPKWpLLx67Rq9X+mPvIjJIL1DCu27C2LWvOexR72L4SE9CjrWvLh5tD0zGuc840lGPC1yZDwwOuW8n1GqvKBRKjxxVZe8EeJYvF6FDzs4NQA9YQERvWBhkLxewng8PQLrvJUZpjxNanG8/unQvKSBLD18BZy8aNJ8O5hZJz2ZgSe8VlJ1PU8KcrtkBZK81qnAPCniYjyMWSI86vFIOymSYjx0lZi8bbGVOs5hPT14YRq9UtUKvTlK6bxUsQs9WC2NvNMZvz2N0SI9kymlPczpPL1BzQM9a/2UPEQibr3hWcU565HJOzN6ZrtyzZc8QbpsvT0BAr3R8T69bZ0VPdo5Qr1SrQo9ZPEROlfdjLyXaSa8Yip6PVhCdjxXovW7gfmdOwLK0jxE5YQ8jfmivJzpKL0gql69ZPL6PExC8bscat28vYG2vHAtFz0kAuE8eP0ZveeJR7xnCnw8s/kxvfshUL0Quli8opGru/JhzLwmKmG6vDG2OmyJlbyvQbC8Vip1u2cy/Lshml88+glPO9QxQD1AQmy8WEJ2vNWBwDxLyvA8gnGePIypojw5XYC7Fjrbu6x5r7ySASW9+QlPvNapwLzJqTs9OCGAvA6i1zzbAUM8lKElvG+1lruFxR87BBpTPEc5Br354c66bj0WPYdRoDyo6S08OtWAvP3B0Lw8dQG86clIvXLhFzxwZRY9/UnQuwQa07oJmlW9qOktPT0pgrx+kRy9y0m8vGqFFL05SYA8p5ktvRzy3DxqcZS9Rq0FPVz69zoT+tm8RPkEvVLBCjtfwY87aJWTvXDdlj1FXYW7nrGpvFm5jTtEqm08UIJyPCoKYzo8xYE8paksvW2xFTy7QTU8IurfvCvSYz1YLQ278mHMPPERTL1XonU8Rppuu0kphz3Sob67XsEPu/bJTbx5nRq9KZLiuphZJzy06TI9sAmxvIdRoDxqrZQ932nEO8ERuDwyouY6opGrO5nRp7yPmSM93VHDPGD9jztE5QS9XnJ4PJn5pzzzicy8SIpvPVFdijxXKQw9m8GoPGvq/Ts9Kms8eBEavbDhMDxIsm+9ElrZO7ihNL0bGl29KgpjvEvK8DsUclo7VlL1PC86Zb1dNY+8MQLmO1e1DD2EJR89dkmZvOExRTyv4bC605G/u51hKbyJQaE8X+mPPIAJnTsegt68dJUYvEiJBrxQ+Ym7CZrVvEplBzw6/QC9YxWRO2w6/rpNanE7tMGyO2vC/TtmVZK6SdkGugS607xemQ89e3mbvGvqfT1KZYe8ZWr7uyNi4LtTG+C8Yc6jPM5RIb3E2ey8JY3Hu0+VJL1GHfC82iHEOyVf+jxwrR68HoCFvGxxRDwCZwO9sqG4vAplMD16Qec8esm4PKsMJby/y1+6hUAivMm6dzuf0h29Jl96PbB1AT32lRU99EomPRRTfbx89W+6d3+UvGFlCj3Iu0I8HJ1kPYMw/zxxRAW895UVvERMCL2iwfI6Ghcpvd9c0zvIFUc9JhUZvZ20sLwoQdA87IgQvQEa/rpV/TW9fn1BvGtFDb1aORC9S0uAvfqyN72r0A29TKWEPdblabwEKiE8GYENPfvfOTyiHEK9/ZQNvYkg4ryv7S+6ou8/PI4vOry/zKq8j4k+PaQbdz1JWhW9lWn+vHMHo7yGP1e9PiCOPN3WlzwD0By9xQZvvNtORr3ka6s8IgZBuwT9Hj1CxQG9ARvJPGzpcjpU0LM8E6+XPO1awzyko8g8toF4uuC3oryRtfU8X6EhOw/ODL3Z9Yw7v57du9shRD0wyBm9WQwOPFeEPLuR4ne7fiLyuQwahD3N9lE8lvFPPeWYLT3iqI27EoIVvdrzdrsXNVO8S4ZMPfFoUD2UaX47drurvIeapjy7kNA82vTBulmxPrwfgIW9C780PLGiA7zK53m7v2MRPTl7GjyNmR49qbIgPVbBnj1TG2A8T5RZvGxyD73IFpI8GzWWvHmctjw5EgE9YyddO3mcNryL1oC9S0uAO7vqVLwxuQS956cFPRCgPz0vqWE8/d5uvS/W4zyxdDY9GOqmPJss37x2uys87Sz2vMuczTycHpU7JGBFu8NSZjyh8Aq8JY1HPNXmtDy/cdu82MiKvDVsQjsAHJQ8WYNxPcD4Yb0BSRY9v8yqPBjqJjyWTJ873TCcPJ2G4zsL7QE9s846PbZUdjtAEK68S0sAvS8xs7yHx6i7vBfXu9Xl6TxmoJm6WQyOPNTmND0KCuE7QWqyPIO5G73n8ea7w9o3PLTN7zxQlNm83qf/O6NJRD1w9/+8YyioO3skiDuxc+u8R3f0vEn/xbyNmR47ZqCZPNO5Mj2pV9G8017jO1UqODzS9pS6NBK+Ou20x7yR48K8gxMgPZmXjry6Y868ihKYu2oYi72UxE29KyOmPdWL5bzZ9Yw8saIDPeRrqzyes+W8ulUEvUq0mT1dv8u89qQqvc0kHz1zBlg7wSYvPN+KID22J3S8D6GKvJ0PgDyB1vq8DJHnu5nSWjzRBao82SKPO3z2OrxaORA9eOfiPBtxrTxQHCu95x7pvKBoubzq0zw6Syv9PP1mwDxBD+O6AO5GvbuCBj2jSo86G54vO1qwc70pYIg8ar07vS8EsTvgtyK9+4RqvDS37roD0Bw9WIPxOvakqjxUoma7yLvCPDfzSLxasPO8j1y8vETxOD25Nky8BoQlvGQZEzwH3ik9MPUbvc0VirxeR528ik4vvHisljukpJO7Qx+GvI+2wDv3K7E8/jhzPDf0Ez2VxE28+uAEPbGiAz2twC29oxxCvHgUZb0pnJ+7NT9AupIP+jwum5e8ZwkzvSI0jrrDrOo8HvdovKDCvTzFBm+8lvFPPf/AxLyjSUS9gl7MvD+13rw9iSe+dSWQu8i7QrzA+Sy9OSBLOl8Lhrxe3oO9Nmt3vdypFb28F9c834qgPP/ARL25KAK9DkY7vDPluztXV7o8JI6SvEmkdrrQ2Ce48S2EvOVqYLtHd3S7qCrPPce8DbzCJWQ8F2OgvDPlu7w9XKU6VZScvFJJrblXhYc7GRcpvPeVFbwz5bs8/cGPPIrlFTz+k8I8VHXkvJilWLwpnJ88u+sfPSKrcT3HvI07ZBkTPGQn3buBMUq91UEEu6NKD7zVQYS8qrFVvDfGxrvka6s8WzhFOWmQObu23Me8UIaPPLKhOD0xXWo858TkvLcJyjyk7vQ8qIWevMhDFDwpySG8BlZYvIiZ27xvyn08mACoPJzhsjwa6du81eY0PE+VJL0cnWQ9IwV2PBnqprsDlIU8Yc6jOyHZvjphkgy8GhepvZ4ONT1wUxq93QOavPqFNTyDfYS8zbsFPcZhvjs3mPm6d+gtPcTZbD7Zxz+9IH+6vI2ZHr2XeaE83Xr9O9IyLD2i77+8DJHnugUp1rz73zm9LnzfO8+rpbtVouY8KAYEvb1FpLmDMP+7WN+LPIZtpD1CxYG7/+4RPUXwbbo8L6O8Ue8oPYtN5Ly9RaS8BM9Ru89vDj2c4bI8zPccvZZMH71NaCK6ECiRPO7ilDu8GKI82D/uOzQSvrufloa8+SrmPNEE3zo1bEI8f090vJC2wLy9cia7e8jtPNn0QbwIsNy8G0PgPO1aw7s9Lti8eZ2BPMyOgz1QlNm8eG80vBH6Q739lA08SixIPJd5IT2EE6C8TQ1TPE3g0DzN9tE7KyMmPXgVsLtDl7S77VrDvJzhMrzkAhK9yhR8PTp6zzzDRJw8HZ3kPDvUU72RPhK8CM+UPQKjGjul0Mq8/mV1PQaEpTyUxZi8XhobvZ/SHb0ruoy8sXQ2vIj0qrl2UhI91xJsO+e2Gj0BSRY8VSq4OwAclLwSVMi8HWIYvS19Kr0Yj9e8S3gCvLTN77zn4xw86aa6vAVXI7yFQKK8TjpVvNCcED3kPV48vBfXOxzLsbwMvum8JeiWPKLB8rpTdeQ7BVejvVjfCz2YpVg7UbORvDggS7yHmqY8fn1BvKsL2ju/zCo6018uPaxl3ry8F9c8QA9ju6jPf70r5w69CjfjPEPyAz0cy7G8IzNDParfIj304Yy7R0pyvIzVNb1WKrg8V7KJPfMdpLxnZII9THgCPSMGQT3CgLM7o3cRveVcFr2SEMW8VlgFPX3177wtfF+9FID/O8Hql7qAMcq8xDUHvT1cJboiNI48mdOlvL1EWb2PXLy7ElTIvENbHbsORju8JufLvDQR87wXNdM7TeDQvI9cPLsGhCU94rZXPfqE6jxRwds66KcFPAkLLLwW+oa8mD2KOxcnib0FKqG82cb0u9VuBrzYbHA9D6GKvfmzgjzFBzq9CmUwPfTvVrq23ZI89qPfPMYGbz1aC0O9lMUYvP/AxLwxi7e73KkVu8KAM72cHpW8S1nKPdWL5bzzwtS7M+RwPd3WF7xgOAg82pnyvJ/SnTxzNKW9eZ2BPTggSzw+iSe4td2SPY4BbTygw4i82yD5Oz5NkDyYpqM7/Dk+vUPEtryh8Aq810C5vEZ4vzzTjDC9byaYvGmQOT1WKjg9ZBkTPHZgXL3jPim7kONCvHLaoLziqI08TywLPbAZZzxTdi89u+pUOz5NELwYvSS9TeBQu6yTK73lxa88goyZvLDPBbzws/y7LtcuvAn8Fjw0Er68UJTZu1T+gLxV0DM7ElTIPLEZ5zxCaWe8HcpmvP2UjTxbZhK9LBSRPaHvPz3MyU88axdAPTun0TypsdW8gTFKvQ3r67x+2JA87zyZu6/sZLyUl8s71uXpu9UUgjw2mcS50yOXPL6fqL05qJy8HMuxPPMdJL2hlbs7uWSZvUd3dLyYpdg8NplEvc9+o7z4WLO8AqMaPBpEKzzE2Wy8EKA/va04XL0SVMi8FID/PD/jK727ggY8w0ScPM5Q1jrkPd47LBSRPDU/QDuGbaS8qwwlPGBG0rzyhwi9czSlPVHB2zzCrTU8Fa5MvVINlj2yoO2869LxPLGig7wF7gk9l3mhvAN1zbzUi2W9lcTNu97VzLwE/FO9iPPfPI2KCTxznok86QGKvWK/jjzAkBM8UuATPC/W4ztaC8M7eBUwvdxN+zs5IEs9pElEOwXuibucHpW8CN4pPIzVNb0QoD+8LFCoObuQ0DxgOIi8Wd7AvFbBHr1Lhkw8f6pDPC+bF73sLcG8TdIGPSVf+juDuNA7n5YGPWL7JTy33Ec8R3f0ubaCQz0YYtW7wPksPGVzlzw9XKW88x0kunUlELyglTu7EifGPI6Jvryr3lc8jGwcvVf8ajsTgcq8N/QTPXLaoLym74I9aGM3vGq9uzt8Iz09+hwcvDggy7wwA+a7sykKPUI85TyjSUS9Z82bPMNS5rwsFJE8w9sCPdtOxjp2uuC8C7+0vLaCw7yCi84749UPvBi9pLtGHfA8EifGvJ+WBr0F7om8IH+6vB1iGD3DCIW8x47AvPMdJDz3/q47qVdRPZDjQr0zimw95x5pveM+qTwJzxS+nQ+APC9fgDwwjAK9MAPmvJnTJbygZ+68PVylPDPlu7zQ2Ce9lMRNPTQR8zu4Nxc9FzVTPMz3HDyLezE9ZzY1vThOGL38DDw7y8oavPK0irz93u47XAp4OzfzyLxwrR68D0Vwu1SiZjsYj9c8B1bYvDp6T73th8U8mdJava+xmDy8GCI9Jox8OmfNGz2Mp+g7qwylvOXysTxz+A09G3EtPPuEajv1HFk8oMOIvFFJLbvIFUc9XWT8vIIjAL3TXy69k5gWPVs4RTufloY9ng3qPKqjiz3fL1G95VwWPXVgXDylo8g71ea0O18Lhjwmusk7eZw2O6HwCr2+nt28FNtOvVT9tTus/Y+9H1K4PEgAETvdqEq8qwvaOxY2nj3amfI87rRHOxHNwTz+ZfU8hgSLPGxxRLxoNeq86aY6vQgLLD1QwiY7xo8LvbKg7byBMUo9l3khPf2UjbxQwqa72pnyPMUHOr2nHIW9hRJVu4SqhjsgJOu78/AhOya6ybsccGK8TeBQvIkhLb07p1G810A5vB2d5LyUiQE9Y+yQvJSXy7wXVIs8QS4bPVX9tTztLPY8DnSIPBoWXr0J/Ba8LXxfvcUHurvJ6MS8lbYDPVcpbb1jgiw8d41ePDdr97voEB89IjNDPJVp/jyZ0tq8nEsXORHM9jzPq6U9g7jQusD5LDzbe8i8kT6SPLAZ57uQ5A08+oU1PYZtJLqRiHO8GYENvdV9Gz0XVAu8ziPUvF90H7zVi+W8kYhzPJd5Ib3B+OE7vQkNvTp6zzwXYtU8umNOvPlYM71ycQe8CfyWvP5ldb0N7DY9WIS8uxOByrzd1he6IVFtOtnG9Dwzt+68b8r9OzunUb3DrbW8XDd6PFZYBb1e3oM98Gmbu05n1zstQZO9+oW1Oz2JpzzTMWE9oh2NvBoXKTviqA28XGVHvRdjoDxGHXA81YvlO/sNB702mcQ86EvrPATP0bxsn5E8oxzCu+5Z+DxNDVO8Q5ZpPenTPD2phNO7Wd7AvMIlZLzSX666RqVBvbVUdj2KTi+8Idm+O1R15DyjSo+6M+U7PPWkKrzFNLy7Jl96vYkhrbtPlSS9OWyFvTZr97yxooM8d+itPIEjgDwbRKu8fVC/uxD7jjxlry49VGcaPSQy+LyrZik8vHKmPJHjwrxekX48/pPCPK/s5DsjBsG8nHiZvHtuabx89jq7a0RCvJVp/rxXVm+85cWvvH7YkDzDrTU7Ho+auzEwaD0kjpI8KWAIPKMcQjzd1pe8qbHVPIJQgrzfXFM96//zvOVq4LoZrg+8EraXvHDijzurDAK9LTuAvIql7byWWzW8cpaKvEl4FD0oHxA9UT2GvHTFVb1xoYM8tAcHvU7VkLxWmgI9uaUPPaAOZjzFBXM8P7dTO3U/jLytsuw6R8QZvEOWaD0ucRM9jB8kPRPsqjwsPzG8cdT/uvkavTyiBgQ9vUdJOyN6Pz22d947XWfWO6DUIb1gF6C8npt3O0ExCr0ZN2a8neoTPecd67uXSfS7aBbWO+vJg70C5N88TtUQvViPCb08Sy292IslvWXyg73ivL268xCOuNYYNz0SbkO8LS3wPOoH+TzqhWC8l1A8vY2di73g0i+9I3q/uyTx3jxsc9K7punJvPLTMj1L6wI9leSVu7MLuLqGS4g7yHhhvVaaArwQAh09jZZDvV3lPTrWEW+9Dw2WPF5c3bsjgQc93eihvJiNFz00f/O8HaYjPeDSrzw3NoW8mzaZPCVkzTspTts6wK++PFbQFTynYwA6rEKVvFbQFbyW0lQ8jg1jvc0ZgTsgkDG8BNW1vH0ILzyZvGI9FGNKvE5F6DzrChA9r6dzu3rdFL1nnza7agesvOUvLD1ktSg9Sm0bvMppt7w62D48EIS1PDFbITz2+hs82IslvcaKIrxl8oO8TpQEvIZLCD01BKO71hg3PfwPxDz7mCQ9cOKPu8UMu7xylgq9JqwhPKZnsbzAtgY9vI+dPBZY0Tsen1u8STeIvWBRZLxCqKm89zCvvNVgCzuODWM9jwmyu3xQA72PRg096g7BPCS3GjyqTQ69SuS6u0CzorypWAc923UzvJZbtbsU4bE7TdJ5PHYxfDwsPzE9YooOvQqp0TpoFla7np4OPdcNPj2E2Jm9et2UPDphn7q7UsK7utuiPMGo9jpa+687TVepO+12NjyjfSM988+BvAPZZrxCJhG8cdR/PKUxHrun3lA7QDU7PJk6SjyIOcc9QLOiPOvJAz3UawS9PzyDvEWHPjznJLM8BFdOvWS1KLyk9MI8yD4dvYJlK7xe03w7eacBvTyTAb1Xk7q88OLcuiy9GDy8yeE8O0/evJL6hzyKqIQ696v/PBm5frzArz67AHHxuxHBED3Qv+s7xwFCvUMbGDwMZJS9JPgmvVQkfT0bqtS8CivqOwBmeDzDG2W8PYiIvOr8f7zxXJM9nC/RvFt5l73xXJM8SHX9vDvR9jw2uB094ce2vMMb5byMHyQ9JPFevM5PlDzIeGG8yfIXPVzwtjtY/+A66CACPQNeFj3UIzA8m/WMvE9Bt7zzzwG86RUJvITYGT0IPas8CD0rvQUSkb0CYsc8llu1PM7K5LwKK+q8yutPPM1M/byem3e6ZyFPvEWSt7uoXLi8Gj4uPRdN2LtvXeA8T0wwvB2mIz3t+E68NfkpvalYh7weJAs8NIKKvJo6Sjvx3is8XuEMPVeTOr3D4aC88d6rvDsVGr1q0Zg7hNFRuirFerw4ZdA8JPFePEOWaLvTrBA9y2UGvSgfED3BJl49nqI/vZ0roLtGgHa97G/uu1Wes7wNWZs72Ab2vOcks7ww5AG9gOfDPPge7rx80hs90vgVvcxXdj0DW3+8mkESvaN9I73EF7S8+SU2vrZs5Tv9BMu8riXbvLzQqTybsek7HC+EvS5xk71d5b28pTGePJNq37vK60+97IGvvM3VXbxlo2c86oyoPO/pJDwAcXG7CitqvNDCgrwRwRA84rV1vBbWuD0kt5o81hi3PIOiBrwsNDi8vMnhu0ro67t0ulw8NMMWPNRrhLw0f/O7ehfZPHY4RLqScSc85ptSPV5jpbvlqny81COwu234gT0aMzU9EfBbPAougbuA58O8/YZjvb6+6DrHAcK87rMRO386kTzoIIK7TBYdPALgrry/OJ882m7rvHwMYDxMW9o8PckUPdq9hzoyE008MhqVPIj/Ar0eJIs8CTIyvHNOtrzLYu+8bXNSPQg2YzyxGuI7kXwgvYqlbTtK77O8/Ah8PZ6ivzzxnZ+7OGVQO0+Ji7savBW8aZQ9vXqZcb3L5x49KkqqvIZEwLx9CK88xgXzvGDPyzzAJl48ak8AvAFtwDyIMn8+yLyEvfAbB708k4G8jZ2LPDzGfbqA50M9y6YSvUAqQjzg0i+8mUXDvCjQ8zxGhz47yPbIPABx8bwrh4U8EIS1vKfe0DuoUb89so3QPJZU7Ty0iZ86mcOqvMcBQryA8jy9tPl2vIj/grwvHsY8M4psOwTVNbybrbi8fJEPOpWjCT2It668HaYjOwLgrjyA8ry8rq67vDvGfTxJcUw8AmkPvFn/YLyigVS9jlGGvI6LyjxJNwi95HeAvID5hDy539M8pWcxvAi0SrzL3CU9kXXYvEKoKbyQhxm85ar8PPTIObydJFg9JPFeOx4dwzzhSc88tATwO+PDhTxPReg7Em5DPH/2bTugk5W7hEhxvUYJVz0aPq48gHAkPB2mozwpVSO9oAo1PGpPgD2YjZc83eHZOzla1zuj/zs8NzYFu8MXtLuKoTy8Dw2WOI6LyrxM3XK7m7HpOtDCAjxJ8+Q8/QTLPDOGuzw9wsy8sKPCvAJix7xAI/q83l9BvAFtQLwFw3Q7R3zFPMd/Kb3NWo07YzdBPHYtSzz4p049jZ0LvIDnwztw4o+8hNHRvGx+yzxzTra8tj0avCrMQr0C5N88pTEevDBmmjyMGNw7JqwhPa2y7LzWlh48hc0gvCw/MT3Yi6W8/36BPbuaFj2npAy9TdlBvDGcrbxy15Y8exOovLxOET3fGgQ9yuBWvLQHh7w1wxa9u1kKPRGAhD0eZZe7QKxaPGjcET28jx09CXoGu3gpGr0LpSC9iyodvEj6LD1Xkzq8cdvHvJRmLrwzDxy83eghvbCjwro9CqE8niCnvMZ/qTogkDG9pWtivB6bqrweZZc8W3JPvaxCFb06IJO8w1+IPJH3cLzoIII7RoB2PVQgTD0zzo+8tILXPDjuMD1HxBm93eghvFkGKbsbqlS9LD+xu3S63Lwn4jQ8OVpXPY6LSr3ROSI9X1gsvUEjej2pUb87Lym/tzTDFrzuZPU8eacBvcppN72R/ri8YNaTvOUvLDw54ze9burxu5+Q/j0qyBG8G6rUvJumcD0sOOm8eKuyPAkyMr01BKM8kAWBva25ND2T7448dMXVu4HuCz3ccYI8aZS9vNp55LuKrLU85LHEvJCAUb1lo+e7xBc0vf576rwETNU8guB7vYsqnbu2d149DRHHPF7aRDwFU528gS+YPLQEcLso3oO8PjlsPKlYhzx3NJM7T8NPugTVtbwKbw27N3DJvJo6SjsZQl+8J9vsPG5vIbyTroK86oyoPE7OSLuBL5g7DBX4vDTDFryT74475aZLPEWAdjxSNr48mjpKu/inzryYjRe6aB2evRwvhD3caro8FtY4PEaOBj0hjAA9aonEvIaMFL0KqVG7ZfIDPSTxXjsCW/+84zolvNYNPryp09c6STeIvEMfyTvs/5a9i+mQvOeb0jo18mG9Ts7IugsnOb0m5uW8jovKPKuDIb3TLim9Cm+NvHa2KzyW2Rw9WIjBOxwsbb3cajq9q0ZGvaAO5jwg2AW9PcmUuzDkgTx3Lcu8z0hMPI+HmTo+Oew8R3zFvAZIpDzjvD28ak8AvWUolz062L48VhEiPCNz97wBbcA9RZK3vHmgOT1aQ4S8gWlcPQ8Gzrt4ItK8z0jMvKrELbw9yRS9iqXtvClVozw+t1M8JtvsuPb6m73SMto8WziLOBGABLw+fY86Ts7IPJLsd718hpY6Ub8ePSpKKjzTLqm8t7AIvNdVEj2aOkq9vzgfvCEOmTyWmBA8hNHRO/GdH7w18uG84kWePFE9hrx0SgW9ZLUovd6cnDwJMrK7JLeau95YeTxFgPY8EvejutmALL1iSYI997JHu3TBJDzccYI7NnR6vFG41rrzUZo8q0bGPPQFFT0dKLy8LXwMPPDiXL2QgNE64sDuOzSGOzxom4U8tAeHPVcRIruL6ZC72IslPRxwkDyL6RC9In7wvN2nFT0aPq48d69jvXLQTjt+9m28Ub8evPklNj2qyF476JchvD88g7wXTdi7Hhb7u1E677tvLhW8kAWBPabpybxJ82S9tvyNvK6uO70JtEo6KcX6vNWhF72gkxW7Ot+GPPW2+DyHwie9lOhGPZ6ejr0KK+o8mzYZvuDSrzrhx7Y6EraXvAi4e7yM3pe78RsHvMEtJjvokNm8hFNqvSvBST2k+4o8K8FJPZu4sbrUIzA8p95QPWJJAr246sy8tvyNOvTIOTz3Kee8UyvFO9nIgDyGRMC8AmLHPC00uLyzEoC8VZ6zPCnF+rw7Via9XqAAPTLZCDxldJw8SHX9PDUEIzuTal89zZsZvPohBb3Yi6W7eCkaPEPaizwKK+q6Qx/Ju97dKLza98u8DRiPPV7aRLwYSSe9XWfWvEh8Rbxn5wq8IYyAPQouAT0hzYw9cVkvvRL3Iz35Hm48fzoRPMIirbubuLE8+WKRu2Q3QbuFT7m8zF6+vLrbIr1/e5089MFxvZCHmTyk+4q7w+EgvGBRZDx2OMQ9fJGPPRZNWDyzCzg7KNe7PBGABD28yeG8b+ZAvcxePr3ROSI9MRd+vPAbB70btc28rjDUPOz/ljznHWu8mYIePI6SEj2v6xa93acVvXmgubt8DGA7XPC2OtyyjrxMYqI7NcOWvPZ4A7zDXwi9QqgpvPuYpDzeX8G8EIQ1PVtuHrwhiek7NfJhPeZsh7tDFFA7NridPFQnlLt8hha9ZLWovHLQTr31vcA6D4jmvDd3ET01+Sm9Bc7tOgJpjzyn5Rg897LHOzSCCjyWmJA8wSbevHYx/Dtx20c9jhSrPZF8oDxe4Qw8LTS4vH90VTtmo+e8CPwePYqsNT3/dzm7eaA5vOHAbrrElRs9hEhxvSpKKr08Sy28llu1vCASyjy2/A29AO/YOy18jLx7jvg7ozyXPKhcOL3fW5C9Bsq8O19YrLsn2+y8ogNtPT0KoTu0iZ+7m6bwu6djAD2B7gs9wqRFOqAO5jwW1ji9B0HcvNBEG7o53O+8PJOBPedhjrtw4g88/b+NvXDfeLt7Eyg8CqlRPdq9h7yIMv+806yQO3c0E71vaNk8llu1PKP/OzuGREC9pe16PA+IZj15p4G7D31tPPZ4Azsuq9c8/I0rvahcOD2/OB89iiPVuxCEtbxnmO68KwkePGFG67zVmk89VKmsPDZ0+jxeXF09AOunvOO8vTyXULy8z0SbuJlFw7y+Q5i8nLQAvZNqX73svgq9zdXdu52phzy2d948dT8MvWgWVrw3cEk8B0FcPesKED3mpsu8MtmIPNeP1jyPCTI8+pzVvB5lFz3xXBM8bHNSvLldu7xbcs+8U/GAvATVNbzXhN25V5M6vHTF1btQw0+7PcLMvB0ovLxJ8+Q8fYP/PAJpDz1s/DI8cdBOvC18DD2tubS6b9/4PC+nprwpVaM7S2bTuyR32rxlc2C7HDsOvWiJB730pqO7MmczPL3Pgrsqs3s9MoWuPLWbtbwlaHK9tZs1PPKIqLxxciG8u7GHPAZTiDygM0W6K+9GvEJ1Mj3yPfW89qZOOLuxBzx1PRU9W/tIPSD3mT3rASk8Dssfu9jGxrqLNIM8W/tIPejylTwYcJq6cXKhPBAt5bxFTw69j2GROzNnXryXnV29OxuWvLSbNT0gSsw7dq7CvFhsoDo1dnG9wYuOPKeN4bziXFm9OAyDvYetWb1iERu9hWJ7vBN4w7uiYFM9o1FrvGaR2zwK8cM8jwd2vVXOD70v9oW96dTFvK/ukbxFsSg9Za+rvG3NfLwAWzE9A5cnPbXIGDybpJw6dJ+vO+fFMr1Lz/k7rVABPevj2LyG2pG8YhEbvY9DwTz9Woa84S/2PBrSXzwsug89HkohvRKWkzy3V5Y6tF9qvCbgiDz68Sw8zfTou6Rv5jq/3hW8bUUTPdZkAb3A/BA8lKyavJsVH73e64C8aM0mvFrdTb12cne72fMpPdAD/LxfNz88ufUmPUvPeTwopGi8b1Qmu7U5m7xCIoA9/jw2PUEq/ztaKAG9yJp3OzsMrjzSTto5nlEVPar2OrwL03M74T7evJJD7LzrtnU9yOWquzN2Rj2K+Dc7qclXPfFqrbzf3Ji84T7euo4lxrsN8e47wkBbvENX4jyUnTK8ZtwOPaWrsbw8/UW88lvFvNsCvbswOlA8p7pEPQRMdLxKmhe9Sc9OPaNvOzwm0SA8uarzvKe6xDxykBy9nNl+PcfHr7zziCg81F3tO0j8BjpgGe887B8kPUqal71bCrE82+RBPOqfjjxyLgI98WqtvfqPEryDnpu8mxUfvDA60DzrLow8mfejPK9QLLxo+ok82qh2PUqx/rs4wc+7ThpYPCv+LjxxJ2687T2fPD91Bz1WsL8814r7PTKFrjyvFGE8KrP7vJ3CF73J1sI8iOkkPBwOK739ywi8lGFnPJms8LwENY28TAtFPLrmvrpVg1y9tZs1vPemTrw/Oby7ufUmPTgMA73407E8mwa3PDAraDyzuQW9Ot9KPKF+I7sm0SA91dUDvJ/gEr1sthW8FYdWvfSmI71mZHg9E2lbvdAD/Dysshs96/LAuJ5CrTxNRxA7CgAsPey9ibwhLPy8ZHNgPNFdQr3xW0U7gBfyPCJ3L7q/MUi9M2dePOBcLr3/eAG5dluQPGVNkTz+PDa9jUOWuxKHKz2gFfU8KKTovP0euzph8x87ttcAPFRWeTzkxQc9W/tIPceaTLxN/Fy95ae3OcnWwjpv1BC9NbIRPK7QFj2SQ2y7LTqlvDzu3bxCIgA9N8EkvNZkATwkhsI6OaN/u4aPXjzDqQk9eMw9vSnRy7yjbzu8uNcrPU/0iLyKh4o7rUGZPF0oLD0AWzG9F/CEvYOPs7wylBa9x9aXPO4uN7w1WHa8C9PzPDCFAzzUmbi8avo0PdjVLr2DPIE8EQeWPSvvRrzN9Gi8ShqCvQfEtTzHfHw8fybaO8Rtab2Zu9i7EocrvQwepzyPQ0G96cVdPHIugr23jHg9lFL/PIbakbypFAs8MIUDvMWpNL54eQu8mZUJvd3NBbwatOQ8o422O/SXO70ItU29usjuvMwSOT2jjbY7DUsKvaZg/jv94u+7YFU6O+SYJDxLz3m84U3GPJokhzsw5x28LBwqPPeX5rwIl309BrWiu236XzzSTlo8XuSMuwJqRDsvSbi8wTFzPMJ8JrzVitA8Vc6POW9UpjxNOCg76gEpu9nzqTtVg1y8jun6vDAraLvrtnU9M3ZGPYwWs7zntso7XxlvPBfDobynZxI9q5SgPAJb3LvpmHo80z/yum1FkzvxPUq8OowYPASIv7y+9fw5yOUqPRSlJj0vDe28s0HvuYkWCD1vRb689Je7PJO7grwo75u8LtgKvVALcDyAJlq7o402vGwJyLzFqTQ9IAYCvamFDT0YfwK8ea5tuwim5Tw1hVm8MQWZvDobljt0n6+9UHQePafJrLuPQ8E7WHuIPHqubbzd81Q8tciYPGFVOror/i496Zh6Ppa7rbygUcC8bBiwvPOIKDz+PDY8O/1FPTv9xbygFXU8DUuKuzayPDyjnB49GfCvO9WK0DyBjwi9aK9WPCvgXr1b+8g7QnWyPS9YoDpHsVM8l9movFfsirwa4ce7MRSBvXqIHr3vW5q7a+vMPCVRi7xfN7+8CJf9vE9HOzyHrdk8qYWNvbWMzbvX5BY9EC3lvO5qgrq7BLq8IUrMPC8cVbyrlCC8FnhuuU7WDb3L5VW7xMcEvVhsoLshO+S7trkwPAJ5LL2USgA9ptiUPBrSX7x36o28B3EDu236XzwwhYO8XkYnPRXSCbxRA5w8xnz8PNV7aDwXtDk8e/lLPIr4NzxSkhm86y6Mu8aazLy0X+o8ha2uO3IugjywMtw8yyEhvJV/Yjxlc+A8EC1lO6Jg0zsFpjq7yRIOPOBcrrxXoVe8RoRwvNrkwbyFra47fkQqPPEf+ju4dRE8G6yQPJR/Nz2Ufzc8qgUjvSNKdzwVWvO8jjSuvB7/bTsAEH48GHCaPIKtg7xmZPi8jfhiu61Bmbxt+t88OKNUPMVHGrwfLFG8PcgOvdFdQryGj148Di26vNnzKTzztQu9MoUuPWIgA7zsHyQ8OwwuPETAkDxqCZ28gY8IPZuzBLy41ys9esxovGJzNT1rmBo9jJYduyez0LwL4tu8fkQqPSOkEr2WWRM9BaY6Pe29ibr9D9O8lHBPvR/ZnjzPXRc95pjPue1Mhzz4xEk8j2ERPauUoDz9D9O8y+XVvOkQkbwo/oM95uMCO3mXhjwdHb67KKRovGeCc72m2JS7ygOmPPEIEzv/LU48d5/avJ8G4jrFqbS8ZFVlPOmYer1pvmm9m/dOvG4nQ7zgTca4LmcIvZxCAj1729A8NHZGvKOcnjzwPUo9yJr3ugeX0ryO0pO8jjSuvLRIA70ns9C89KYjvd8gYz1RKWu9QiIAPfqPEr2iYNM8zLAePA8P6rompL28bLYVPKF+I70uZ4i8QASFvJms8LsHAIE807eIvCrCY7x5lwY+dr0qvcD8EL2Jh4o9jAdLPFw3lD0335+8TwtwPUVmdb0KD5Q7Hx1pPZZ/YrkHAAE9zBI5u37ElLxloEO8AS55PIjppLvdEVC91YrQvJmVCb1BVze8BrUiPBrSX738LSO9ThpYPJ5Rlbu2qki8x7hHvHnquDyMlh27xVaCO4r4Nzw6jJg7LQ1CPJsVHz1joBi9RWZ1vIBipbvncgA7xbicvDEUgbq1jM28a5gavBfDIT3TmQ08HugGPKqjiLyDYlC8BIg/POinYjwRBxY9hXHjPAwep7w1lMG8xprMvHauQr38LaM9nzNFPF9zCjyHyym858UyPU1HEL2uI0m9DB4nPL1egDwItc08pX7Ou4wHy7zomHq7wF4rPI1DljvdEVA8bAlIvfwAwLwYf4K87hBnvG4nwzphgp29XuSMvFeSbzzPXRe9gFM9vf28IL1jkbC8fOpjPFuoFj0QLWW9IWgcvX5TkrzUXe08ptiUvBSlJj3br4q8rjIxvdADfDgr78Y88R/6PLO5Bb2O6fo8nRXKO+KJEbyJFog97i63Ow08IrsSWki8Ke+bPVB0nrwATEk9o287vMe4Rz3f8/+8/0sevAi1zbzaxvG8+o+SvB5KIbq5qnM8cXIhOyvg3jyBF3K93k2bu3sItDuL6U87eq7tPP48tjw+SKS9qKtcvD7miTwSabA8WfsdvBXSibzCXtY8xnx8vT0M2bzpEJE8/eJvvDwqKbyP8I47R22JvC7YCr3+PLa84i92OnvMaL2RYby7SgsaPRnwr7xKz848uLnbPNjVLrspwmO92QKSPdvkQbx2rkI7Xze/PB8sUbwid6+8w09uPWr6tDwwhQM9ZmT4vMipXzto+gm9zs6ZPKjJrLztPR88BHlXPDmbgD0mpL28F7Q5O04pQD3Kx1o87hDnvFawv7zK9L07d+qNPAOmj72YysA7irzsvO5qgrzf3Bg8MRSBPGy2FbzMA9G8Z74+PISAy7x5eQu9VIMxvBelUT2LJRu9qdi/vIBiJTyAYiW9+NOxvKq677tXku+8tm79O9uvCj2t5/08oX4jvYraPD3104a9whoMPRB4GL41shE845ikO4BTvbyWu628RDGTvMGLDrvdILi84okRvKwFzrxgVTo93j4zvZed3Tz1iFM7niQyPXNjZD1xNta8XAoxvO1MB7vKA6Y8QyIAPGIggzxhgp08LLoPvYOPszxvVCa9YfOfvEfAuzsXw6G82wI9veOYpDxTdMm7wTFzPFEDHD3fAmg7EoerPI7pero40De9oGAoPEGEGrwiaEc9TAtFPO4fT7yquu+8NYVZvEVmdT3SmQ296+NYvUbPo7wFpjq88HkVvaQrnD3407G8vSI1PSFZNL1ngvM8/y1OPK4jybusBU686YETPI/wjrzzeUC8gRdyO0SERb0c8Nq8HR2+PEAEhb1tzXw8pG/mu58zxbzhTUa86gGpPfmmeT1mgnO76vLAO55RFT1BkwI9FqXRvBrhx7s2wSS9wkBbPMzWbbz1eeu7jxZeveOnDDwBPeG726+KuybRoDwCW1y8JDMQvfWXO7yqBSO8qZx0vOAg47sWUh+9S7F+u8Ex87t4CIm8B7VNvAVqb7wcDis9l3B6vBjDzDxXsD874T5evLSbNT060GI80z/yPG4nwzxdKKw88AF/vCFonLzBMXO94T5evJ73+bxxVNE8VGVhvPRb8DtirwC7dJ8vPG3r97uYd448RXVdPF0orLwY0rQ7E2lbPe3bhD2NNK67p5zJPOIYD711VHw8zT8cvXi91TywMtw8/jy2vJh3jroO2oe745gkPaTJAb3CfCa9vV4AvOwfJL32xB48cQEfvRrhRz3wPUq9QFe3PIOeGz1aihu9skFvvZh3jrrc5Oy8xHzRvHVUfD0q/q67tjmbu3nqOLxJwOa6+LVhPDCFgzzzTF090D/HvO9Msrx6zGg8BIi/vF77cz0OPCI8KI2BuXAJc7156ji8YAKIPHQfGj1HwLu7B8Q1Oo4lxrtjkTC8REh6POwQPDwX4Zw8VKGsvDrQ4juZBow9y+VVOufFMryvX5Q7gTVtPZ5CLb0Qh4A8q9jqPIoHoLwGRCA7MOedvKKNCzwGRKC8I5UqPW5jjjw7DC491F3tPAVqb7y+Txg9PN91vJZZk7u4yMO8qgWjvBfwBL0RB5a7OwyuPKJC2LxJwOY6JVELO+y9ib3A/JC8EmmwunKfBD1MGq08PRvBO2wnmDuxbqc8YBnvPFmwaryhQlg90D9HPTayvLwvDe282sZxvYIehjs0QY+8BDUNvM306Lu6yO68P3UHu09HO7weDta8D1qdPIW8ljxX3SI97dsEPQdxAzuzfTo9mei7vHy1gT3/Lc68NZTBvDSykbuWnEC8SLY1PNZcJb39GQm9xniBvN/A3zsF6xm8AzEKPfJDd7tRzTa8fAaWvZzSyzxtb6u8F2rDvPGJ5zxAeE494hV1vB8Vgbx6bus8qYwuvX3jHTwm3rW6nEMQPVl3YT3APog9avOvPD1tl7xb8AE8d0A8PUgieT1hJo08z7nDvOf+xjy2RhG9OogzvaF1rbz5V528sHxJvYbbFLyZywI9pcpCvDTl0bwVsLM8hGZivTrVbDvVfx29u58Uvf1iVL30S9O84sg7vfCphLzqKZs8FYlNPbeTSrv0JQA9LWINPQ8sXL2DQI87HVeDvRbXmbxjKei58R0kPShSVbxAUWi8sl0/PV6qkTzlY0G8ACVAvIkJRLrJE4e9xU0tvLQfKzygTke9nySGvOopG70f8gi8kGY1usSTHT0lt0+7Lq9GPYI//LxvAtU8eWsQvNPklzvWXKU8Kcb0O4aVpLzpTJM8St2bO6txEjwKig299yzJPOyhKLzP/zO9iLwKvF9BKbwH7we9KAkKPBLHYT3Ufx26G3YNPCyn6jwHz+o7E+7HvDtpKTyHlaS71MhoPcw9SDyRIEW7KloxvaiMLjxYdIY8GgVJu54A+zsGyKG84zmAO1S1dbw7aSm8b7xkPSUkprwY24c9H+4aPcjoMj2JCUS7Hcc0vBQZHDxTQVa8KQzlO1VJMjzGmmY8BswPvL499bsex7S8WFB7vCbetTs60pG7lCghvV+OYj2qk/e8HOY+vSLWWT19CfE8dBKNPK5V47zB2Po7xZpmvVOuLD0sp+q80gZ9OxE0ODzAPog8k0sZPVkyhD2xhKW9tIgTPZZWUDy1slQ8bdtuPZlerL2MFY671DU/vGS9pLz1S1M6ipxtPHy8tzgSggS9aFwYO0X0ST1xdwe9pH2JvLGjrzzTLWO7WTKEvDuvGT3Zsbo8kLNuPC6vxj2DQA+7aBI6u4zLL703gNe8C5FWPPs77jxubyu946mxO/qBXjxrrb+8zR4+vM//M7zAi8E7OogzvWyOtbvlY8G7bwLVvIb+DD1Sh0a8RtW/PApEHTyAyAE9U/vlvADfzzw7QkO844LLPDrSkbwHgjG9TsXaub+qS70RxIa8ntonPRxTFb0/BK885tfgPI7ylTteGsM8P5fYO1PUfz2jfHa8W389vTLeCDyo+PG8ODpnuhf9bDxJI4w7Lc5QvGJv2Dxj4By98meCPGk5ILti4Bw8+cfOvM5onLxPWRc9zNBxPJs/Iry5dEA8OfR2u77wO7w8tmI82feqPCkzSz3PucM8moUSvWBFlzxlwRK8vKLvvNBJkrtiKeg85Iqnu7cAIbzc3A69yA+ZO95zpjvk9uq7yDVsO7WyVDxC7O07b7zkPI7PHb0NAhu9h5Wku1CmUD2KMKq7GXIfu00LSzwD5ys9oS89vRiRKb3+Q0q9HA2lvEBR6Dy9XH+8oXUtvLJdvzyuwrk6kGa1vEGfND1POfq7sl2/PCxhej0iHEq9WxLnO23bbr22bOQ7FBkcu5qFEj1YdAa9yA+ZPDv8Ur26wow8eI11vNZgEzwY3mK9NsZHPdHgKbuf3hW8lsOmPBq/2DvhDiy+nIzbvEhGBL0yuxC9H/IIPDxpqTuqs5S9RBPUvMdVCb2p2Wc9PJAPvJpeLL0Ocsw7aj0OO+Jb5TzJ7/s70SoIvDUMuDveLTa72WQBPKiMrjp528G7isNTPW1vqzyW6fk893oVvMP/4DsDetU7JSSmu8fBTLvO2M28nrNBO4/2g7oav1g74hKau3QReru1i+48dKW2vIykybztNNK6FWJnPc5onD2nq7g7IDtUu09ZlzwNS+a8tdk6PIpW/TxIj8+8Ym/YulZJsrxSGnA8OKc9vLcjGb0w/RK9u8IMO1nFLTyc0ss8avMvvNlkATxoOaA8z5JdO35XvTyWCZe8GCTTvFxgM71KKtU86w3sO+ChVbxkUM686w3sPMd4Ab3godU81Mjou+5buDzmHdE8iE80vVhRDr3dlp45GUu5vfSRQz37gd68mMcUOxdD3Tw93ci6f34jOY1e2bu3k8q8fLy3PJNOdD6e2qe98KmEvI/53rzGdBM7UReVu91MQD0NAhu62tggO37qZjy6m6Y8N6c9PYkJRDyd+bE8WFD7vA4FdryMyy+9IkMwO1PVkj0i1lm8MdoaPL2ACjxanse8b7zkvL46Gr3A0TG9Uc22uxYdij3Oa/e6fLy3vFbc27x0pTY85NAXPZ7aJ70DLZw86G8LPYQdF73rwLI7zbFnuUC+vjxib9g8hSGFO3bzAr2qk/e8leKwO6N8drwlS4y74hKavL+qyzwF6xm9cn7QO+5bODwPLNy7tYwBuhQZHLuMXtk81u/OuwIGtjzDbLe86y0JPZsYvDvSmrk8iN8CPWLcLjzWXCU9saMvvYjfgrz9Q0q8SPwlPd6ZeTxBMl48L5A8PU6fB70lcV+8fLw3PZbqDLzk0Bc96CWtPPg0pTx0OGC8x8HMvLpVNrxRF5W8pjuHvGC1SLwj1lk7shfPPFhQezyxhCU9YSKfvM0ePr1bpqO8lSyPvIVHWLy12To82h6ROhAN0jv2LMk7acxJvMdUdrxkdzS6OtXsPFzwgTxttZs8Io2OOkfVP70Jifq8isPTPLrCjLw59Yk8W389vboHaj21Rf47E6jXPE82H7xgtcg8HDN4PCKwBj01DDi78UN3PXiOCLxW3Fs9LWKNPIl2GrslKJS8Apnfu7A2WTu5Tdq8hgHoPKaEUj2rbSQ8MrsQvbAPc713QDy8HDAdPVSPors3Nww92WQBPUuXKzuDQA882yXavN5zJr2scRK9oE5HPYwRoDoBlgQ9F/oRPISNyLvA0TG9M75ru611ADzqCpE8AJIWPDxpKb2nPmI8z/8zva3hQ7t20Iq9BA6SvYbblLziyLs6bwJVum8C1bx0pTY9VpOQPNoekbvoJa08pl1sPeb+RryDrNK8aoZZvHSltrxYUPu8kdpUPI+spbsGFVs9+X6Dvan5BD2P9gO9yaLCPAodNzx8vDc74ViKvBiRKT3PJhq9vz11vUxRO7zqcma8HFOVPN6aDL0dxzS8L0MDPp8kBr3He9y8nwGOPf9qsLzliic9wbInvRPuRz303vy8fLy3O4W0Lj1lCt67BzxBPS5p1rz5V528O498PIaVpDw05VE8TJ70vOE1EryiCNe81cjoOo8/zzzlRDe9TJ50u8H4lzwlboS8xLoDPZ+UtzsHPME6BFNvPLi6MLuQs+48T6ZQO3BzmTw61ew8QOUkvIt947wSNDi7wrKnuXJUD7060pG8Wg8MvTJxMrobLK88mMcUPKu3gjzh76G81DU/vCun6jsX+hE9d2eiPF9BKT2KnG28D8CYO1P7Zbx5jgi9BhKAPTK7kDxDpv08y6qevN97Ajzmax28scoVvPTefLwwAYG8Z1iqO/1i1DstYg29YwMVvHBzmTwq7Vo8rJQKPBiRqb1xCrG9R/wlvGv6+LwdDaW7epVRvd/A37zm/kY8FKhXu1oPjL0HgjG9BxXbu7A2WTw0nAY9F0PdvA4GCb2AyAG9lw2FPA96qDvpTBM93ZYeOnMSjb2sut27U66sPDFKTDzB+Be8ekyGPKcYj7xiSYW8Jd61PR7HtLryHaQ79XI5vfMhkj0iQzC8GyyvPCukj7xgRRc9F2rDu95zpjoHgjG99N58OwDfz7yDGak7gKWJu7yi77tm69M7CM9qvetTXLnOaBy8lpzAOt25Fj0A3089DUtmvd6aDLzZROQ8lSwPPJd9Njwq7Vq8EcSGPFATJ71TQda8oxAzu13NCbyvLxC8NVYWPHSltrvevQS8Mt4IvQbIobsIqRe9Mt4IPC6vRj2bPyK9/Ym6PH6drTzZsbq7eSEyvd93lD2v6Z+89P6ZOyKvczycZXW8C2uDPBPuxzzkiqc8TjIxPePzj7xkvSQ74DT/vIZH2DxvvGS9UBMnvDXGxzs8I7k9gIKRvN2Z+bodxzQ9xeBWPG8C1byp2We9ETQ4PLPOAz2Jdhq9pH0Ju9lE5LwrpA+81cjoPCw7pzyOhb+8ZsUAvQN6VTz03ny7bUhFveglrbvhNRI9XqoRvcJFUb3TDtk8VkmyvJQoIbyp1oy8aDkgvdmxOjzNixQ9Rx8ePX12R721Hys9qfmEvYkJxDzc3A6+N4DXPJUJF7qV4rC822vKvPpbC7wBuOm8HVrevCDyiLyBhey8dKU2PdmxurwnK289X9TSOYqc7TwUzz09cp3avHghMrzGB708opwTPdKaOTwdM/i7X4sHPVIa8LwUz727KVoxvNMOWbw+cPK8HhRuvL2DZb1O7MA8jRUOuyz1NjujViM9RWEgvAfMDz1yMZe5TFE7vaHiAzzrChG8tGUbPTMrwjyH3wI8v9Exu6iMrrz1Aog9kUcrvS9DA70vQ4O88R0kvGv3Hb1GZY49sDZZvAj2UD0QDVK9c+umPD8Er7vSBxC96UwTvEsq1TsdoE69BA4SPFjkNzm3ACG9kGY1vfRL0zwpeTu9+lsLPd8ttjzk84+5KL8rvH12xz1cpiM9KKChvF+t7LknLAI9gj/8PE5/6jvqcma846kxvXaGLDzZZAG8dBF6OnfTZbxVtog8VtzbuzobXbyP9oM7QXhOvH4KBL22AKE6Mr7rvPW8l7xwUKG8OtVsvDftrbyXx5S6RhswvDXGR7zQTQC9N1qEPcrJKDzm1+A8VUmyu1+Lh7wvQnA8MErMOy+QvDuaXiw9O9XsOciiQjxK4Ym8/WJUvbX4RLyTu8q8SSOMPEj8Jb0bdo08wfgXvGBn/DuZhP+6zUWkurm+HjwrXp+8ztjNPJfqDD2c0ks9WOQ3vAYSAD1r+4u8BzzBOvw8Ab3n/sY8QS8DPXtP4bzT5Je84si7vIJjhz2aqAq9DnJMvTtCQ7wNBfa863rCPCcsAr1RFxU9WsUtvffABT298Ls8B4IxvLh0QL2XfTa8z4+CvKEIV70PmbI9z4+CvCz1NrouiOC8bW+rOgCSljysJ7Q79QXjPKsATr3TLeO8D5kyvI3Lr7tJtjU9mH02OwNT7zsA30+9w7aVvIkwqrqW6Xk98bBNvLZs5DycZoi7KAmKu/1iVDyUKKG8cxH6POyhKLxDWcQ8TXihPYClCTxQE6c8HVcDPAfMDz16ldG82h4RPd25Fj3xQJy8pV3sOy8gC7xMnvS5wD4IvSkMZT0jQzA9kUcrPZqFEjzGBz28Z6IIPUm2Nb3OaBw8Uc02vXQ44LzfLTa9n96VvIUhhTxGGzC9pz7iu1aTEDvPa3e9ODrnu3dnojz6OJM8wfwFPVZJsryojK48PUofPaOggTzTwR+9Pt1IPaxxkjyQ0ni8pvEovVqeR73p3zy8Tp8HvVzMdrsNuLy8gx2XvAwlE7xLBAI8kpGJutg9mzy3ACE8pjuHO3QSjTzI6LK7krQBPXMOn7zIDxk9GXIfukF4Try6VTY71e2DvPdMmjxj1+O8myAXvJzDEryFFyC8RmEavRFeOD0gGbc86XKzu4g+Vb1xkhY9IPoCvZicA7oxGi09KQp3PXwmLDtiFQ48MTk7PAbp/LytIbO8noWcvFAUPj2Hm7O5vwMbPD8TSD3w31873v13vLoaAj0nZ1U882PzPOCgzTxzFiq8MtyQvCmtTLzE7DO8qtu7OhMB2rzHMoW8hHRKPQrx17wHym68aYIUPMmXir37c/U8OMX1vFxqN71mHVu9sQoAvSNfer32ily8FMOXPKbTYD0znhq89w4kPOOoAjsK8Yu9viJ1PBswnr31yAa9yzrSuy+1pzwrjr68WokfvWvIVz0mpaU8PjKKvJJO1zvTaRa7U3lDvaNu27tn3xg9z2E7vXqi5LvosE+9LtQPPXqiZDwkAoQ8uHesu1KYBT0kAgS9IPoCPEWAqLzZM227T5B2PArxVzud4uw604jwPHZ7rzysX0887Nc4veo0Yzv475U8JoYXvYrhhDtPcZy8D/n+vBpPLDyU0uo8+3Mpuz5RZD2AbG89p1covPctDLw5aMu7vkE3vRwR3DwfGZE8Urdfu9OIJL1pgmA6/FTnPGR6kzz8VGc7RZ+2vHGxcLzV7ak6Mhr5u/nvYT2eZo47OiovPYQ2CD08zdA8j8rDu3tkyLtV/da8tVDDu/nQUzxEvh689OcUPc6+5Tr3TMC7xY8JvXj/wrytIX+8rF9PvJ6FQjz475U9OMX1vCD6Ar1kmUc9/rkgPSxvfDwL0sm8nAEvvPgtsrxxkpY86/agu+YsFr2lEf24j8qdvC61gbuNRjA9gC5TvSbE/zzpUyW87jyYPPXILD1A1Xe9llYyPCqtgDlqRJ48qtu7POpTpTycAS88RN1SvMm2vjstEoY93v2rvDYDRr2QjKc8wMVKPfwWS7yxKQ49rSEzPYRVvDyIXZc91s6bPEsMlzsaTwa9Tc4gPCrraDuc4qA8PXAmvXDQMjw0f348wId6vczdAb2STle7jITMvLRvUb2t4+K7wiqEO9hSL7xA1fc8INsavJc38DvxoUO8q18DPfDABb2Hm4076LCDOwUnATorjhi8iT4Jve8d/Lo4h429p1cCvCalJT2Us9y8pdMUPL8i9Tz+XBw8lxhiPEGX27vdO0g9f4uxOgeMhr3057o6Y9djvFegrDsNdes8z0Itu+PmHr18JgY9B8ruvI4IlDuEVby8TO0IPdhSr7sKEGa8pfIiPbvcsTwFJ828FWaTPIkfobwkAgS9QNX3PL4iAz2MhMw8MtwQPL4iA70ifpY88aGdPP65oLxn3z68YVPQO4b4Xbwzf7K89Oe6vKxAwTxYQ847jumFPNhSezyrnes8nyiYO9kz7TzgoE28j8rDvP7Y+jvAh/o867iqvAbKorrCSZI8Tq+4PHJzVL3foAG9Zlt3vbFI6LydpAQ9I0DsOpSUArw/EyI9LFBuOnqimDxgkWw9QxtvvJZW/jx3/5w9sgrMvET8YDw2AyC9HpXvur4ig7yxKVo9YhW0vAhtHr17RTq9EJwIPcf0Wrz92Ii7ih9HvW9Maz05Sb28DJQtuyUCULyWVjI8xlE5vtKnMryl05S8QXgBvChIRztrBqg8YTTCvcZROb3vHbC8zPw1PTRgJDsznkC925hyvNxairuATeE8sGcEO2FyXrsjX646bw6DvMGHCLtw0DI7u/s/vXXYWT1r5xm85g0uPNhxPTxLSjO8e4NWPBsRkLw8jzS87jyYveFDo7xlerm7SaddPKKNabvHMnc7QlmZPDfFKbykEbG8wMVKPM+AST1bx2E9GMtkOrEpWjwrb7C8gQ8fvVH1rzzFcEc8aMCKvEP8FLqvhpK5UtZtvH3JgbwyGvm8A4QFvd+ggbwX6gA7clQgPZZWMrwHjIa8aMAwPOYNrjooSCE9uJYUvLyelbxw0Iy8BukKPebPET33TMC7BIT3vALhVT1mHVu94gWHOgLCobsoSEc8TCvxu+sVVbw67F68viIpvRIgnL3r9qA8PjJWvLLrFzw77BI9KCk5vAbKojvSp4w7uhqCvGE0wrn4LX4+X7CuvXNUxrtgsHq8sQoAPdRK1LsRXjg9YhU0vJV1QLwOGBs8uTlcPGb+AD1Kp9087bj2PGE0HL1YYpA7EX1GvTUiCLwdlaM9lLOQvMCHLjxj9nG6TpAEvaHqR7xNziC92rcOvf7Y+rog+gI9Vf2KO6bT4LvQBBG9ZJmhPGsG9Dx8Jqy8M54au25rrbu28xi9MRotu8qXsDuc4qA7NWDwPBisirzGUZO7i8LovNMrxjx96Nu7UtZtvC3znbwSIJw8JCHevCdn1bqhy7k715BLvBIgHLw6Kq+882NzO4ofR7yRbRk9NiJUvHZcbTxPUto7DhibO7v7vzyO6dE6kk5XPBZH0by9YEW7Figdvf+aXj2fKBg9Zlt3O55mND3a9dC75Kh0POsVVT2O6YW7LRLSPIh88TzMG8Q78MCFvbUxtbzEzaW8AQAYPILRqLy+Qbc7Zh0PPCdnCT1HQtg7GY1IPQLCxzsc0xm9Ifp0vSRA7LxLSjO84UNvPAlONry9YMW7nma0PFeg+Lyafee85KgoPL5BET2dw948mLuRvMp4Ij1GgPS8jUYKvUgEFj2KH0e9QxujPO16jr0APjQ9ybaYPBFeEj3TKyA8X888PJ5HgDzTiKQ8ptNgPHngND3jxza8cnOIPc5CLT2aXlk8JePBO3xFuruUlAK8NUHivLlYHjwvtac8ljekvIHwtrza9VC8UfX7O36qPz20rW0704gkPFyJxTza1pw8gfA2PIQ2CL283P28XEspvVeg+DxOr7g6LtQPvOcN+rqy6708g5OMvTsLbTy6Gs47+1QbPbzcfTxM7Qi9UBQYPfNEGb3osIO8h7pBvVbeSL1TWrW8MtwQPUppwbxYYty8QlmZPeCBvztOkKq7G0/4PFhiXD3dOyK9+O8VvRI/qru6Ody8r6XGvJCrNTzDKtC7neJsPWCRoL1syAs9ZVurvbh3LDvmDYi6HlcHPe562rxiFTQ91Qw4u64C8bw0f348HbR9vMaP1TysIQ29nkeAO4BN4T0u1DW9AB8AvZ2khD2lEf07RoB0uwEAGL1lWwU9bWsHvaud6ztKp109Xg3ZPO88Pj0lAlA8HxmRvIYX7DvNvpk7Dhibu4xlGL2Pyh275iw8vVhDTr2bP8s8HNMZvRtPeLxfz7w7+3P1O1kkGj3Kl3y8NH+yOvJjpzvkqCi8P/QTuwbpirxCWZk8FwmPPH+Lsbv47xW9YXJePIOTWDuNRgq9nOKgu8f0Wrxv75q8PK4cPTyuwruMhIA8HbT9u/3YrjtvTOs7mPlTPcp47jsVhaE94+bEO9hSe7wrbzC8HbR9vXtkoj1+bCM9Kq0AvBTDvbslAlA9vX9TvfZrAr1CWZm6vWDFu+YsljzUStQ7BQgZvcj0Dju5WB48vZ5hPPaKXLyzjpO9gtF0vejPXbs9URi93VpWvOFD77wWZl+8uVgePdAj67wSP3a9cbEkvFK3E7udpAQ86nJ/PLLMibyC0Si9kKsPvUI6sTxM7Qg8ZJkhPfJjpzzM/DW9ChCaPCD6KLx7g9Y8I1+uvHGxpDx7ZMi8RN0GvLOtoT1owDC8xlE5Otu3NL1OM4A9htmDvIU2rjw9cHK8O80EPag4GruehcK8O480vQA+jjselW+8vX9TvOSJmjvLOga8KEihvMzdgb0mxP+5Ej8qvJsBiToVhW0892tOPShIIb3+uew7zr7lPJY3JDvf3mk7mNpFO7OOEz0WRwW9igC5vOpyf7xw78C8V6AsvMcydzwtEoa8lLNcvPGCD71Fn5A7RL4evVLW7TzKlzA88aFDvMGHLj1OkIQ7cxYEO4NVPL1kmUc9yzpSOp3DXjyq27s8WseVu+Biizxn3765p1eCuzyPtDx/bKO7waY8O33oD72zjpM86M/dvP97hLwpCqs64IE/PfnQ0zsEhPc6JQJQPQqzO7wJLyi8qrx5veiwzzwHym48zd2nvFX91rzat468r6VGvMGHLj3N3fM8r4Y4vZV1wLwc8gE880QZvLo5XL1dLGe8qDiaPDPcXLy0rW29Bgi/O9OI8LzbmHK7IBk3vT/0ubwsMWA8tTGPPGVbBT0oSEe9Y/ZxPVNaNb2u45Y8JoYXvg75DDwT4ss6dblLvI1GirzSpzI8uhoCvd79qzhKiE+8r6XGvGmCYD3On9e8Ip1KPStvMDpZBYw8XQ0NPXwmhrxcare8TpCqu/Jjpzz8Ndk7EwGOvHuDVj2jbtu8aiW2Oy93izz/mt68Kq3MvKa00rxFgCi9XEspPeo0lzt3XO07nkeAPVN5nbs9cHI9thKnu9kUE71WoIY7noXCO+oVCT2G2U883Rw6vGmhbrv92Ag8mNpFPbBn9rx+qhm9M9xcvNBC+bzOvuW8t9SKPdbOGz1fsC49DJQtvUjlrTzPYRU7N8WDvYyj2jx3XCE8yzqGu74iKbwK8Yu8mwGJvOpy/7yfKJi6t/Nkvbv7Pz0K8Qs88YKPOy0SUrxKaZs9qrytPJVWDLxrBgI8GOqmPA43Tz1tqck8igC5vBcoQ72vhrg8eP+cvMCHLrzPYTu8ybaYPGmC4LrQIx+9xjKrOv+a3jvXr1m9ml4NvWjAfLw6Knu8gtEou7OOk7zbmAC8rSEzPFrmo7oZjUi8Zlt3vFK3Ez11ucu8vWBFPZp957yQjAG9Gm4UPaNu2zxNzkY804hwPaHLuTwoCoU8aYLgvHGxJL0JTja8ZVuFvd79Kz0FCBm93HnkO/qStzqJPtU8fouLO03OxrwfGRE9E+JLvP7Y+jwu88M8lzfwPBZm37tdDY0825iAvP65bDv4DnC913EXO71/0zyvSJy7ecGmvHuD1jwvtXM9o09NvZY3JL3DCxy9igATvcj0DjyJXeO8FaT7PO8dfL1IBJY8GOryPDR/frwAH4C9RmHmPLEpjrzzY/O8esFyPRcow7tSmIW88cBRvJCMpzxa5qM8mZz1PJWUzjwl40G9/BZLvEFZv7oSP3a8cNAMPfHAUbztmWg8xnChvH9sb7qq27u7iHxxPfChHbyEVZa3vNz9ORjqpjsl48E7e2RIPPNEmTzmDa68ocs5PcTs/zxw0DI8CE4Qu67j4ryZnKk8Xg3ZvGolNjzqNBc9hHTKuQ/5sjtE3dI71CvGun7JTb0qzFo9Vf1WPduYAD2ZnAM9vkE3vRTDPT0kQOy8u9yxPCdn1byPysO8bmstvTVB4ryJADm7HbQxvZV1QLxKiM88A6MTvdKnsrz3LQw9T1LaPNeQyzwBH/K8LvPDPP97hDzAppY89akevShIRz15waY8mNrFvFN5Q72DVTy9nmY0vEGXj7yB8La8Xg1ZvGvnmbwpCis8LrUBPJMQO7zjx5A8AB+APLyeFT1Btmk8ZVsFvA/acD0sMRS9eB5RPWCR7LtlHVu8k/EsOxDLiTrWH6k8bxyMvJx2aztV3EI7R1TPvN12E73IDkY9nutYPOzkSbzIICW9nwUWu7Q3Rry6/eI7QX72PNMjbz3XH6m6xjSnPHVrmDvDrVq8Mn/yu79eTrsJ0XI9SFIsvNgNyroTClo9Hx3gvG2NYby/7xs9L5P0PCd8KD3jRA68WsadvDdX7rzLg7M6l57vuzumejs5bwi8X4y6vKqrDD0RlWy8E5PJO/KoQzyqmS29EZXsPFEER7yWsE69Ag15vZawzrwMvfC8GND2uhIcOTw28jw9hcVMPAFDlrwLWL87NWlNvej4SzyLnUi9zG+xu/1gGbxtFtE8P5BVvCKSzbxkdhU97+CDPOMgULwEHbW7tr4SvE6PWb33gD+8dtinPHwvEr1eqBq75TAMvWhYEj2NAFc9jJslPQcRkTw2zn48AjG3vAO4Az3Abgq9rtj9OyOQKryAdsA8deoGPLyMjTt7sCO73tHDvMuDs7zK/Ga8SWQLPOkSCb2yZQU8LKf2vNkdhju00hQ87lk3PSfzuDy4mlQ9W7Q+PQHMhbcaV8O8SdGauxAeXL0DpiQ9r1/KOz49g7x7JzS9CmoevO3ipjyXQZw6zG8xPCeEhrzu0Ee85Kk/PMKv/bwzj648ZNvGu9pe+TzgSNS7wsFcPUs+Kjsr0xI8ER7cvD0tx7poLHa4xTyFvGo8Mj1CDaE6upaOPGNmWb3JnxM8A7iDvEdmLrwDlMU89QtSPWm15byPjwG96QqrPKFO5zwuHGQ8l8KtvA6p7ryC2c68JvM4PVUAgbzvziS9JmpJPI/+s7z4gL871bIZPQEfWL3ksR09nP9aPOj4yzx7JzQ9+3QbvQ9MmzxLPqq7Exy5PPJDEj3wzqQ8NQScPFsZcDoLz088zAIiPdyAFL07uFm9A7gDPWlOET3gSFQ8KWimPAeagDxssZ8816iYPVyi3zy0N0a763+YvCvLtDyMicY8H8qNPFu8nLwRwYg8TwbqPEXxQL2nJEC9BB21u8YQabxLtbq8bTCOvMDTu7yhxXc8LcmRPHfGyLyXwi07VXcRvHZhlzyVTcC8qRJhO9Mj77squ3i7GXOjvFjaH73r/ga8uCuivRhZ5ruw6Dk9ZkD4u3rCAj1G3T49pdMQPWs6Dzy5mLG7J+FZPVhRsDxOobi9ySiDPILZzry3rLM4GGvFPMFkiTuJwQa9g+utPN5sEr3t9AU8esICvZVLHT0W5Pi4E4FqvME4bT2hxfc823BYvDllhzzPWy+8Egz9vNKs3jw28rw86giIPAeAwzvA07u8bwJPPMFcKzx4ska7zu6fuQO4gzxqs8I6iotpvNiel7zdXNY8ZdtGO7xyUDzllb080MDgPDKPLjsaaSI9j+xUu/C8Rb1lyec7wWQJPSQHu7yboge8PEcEPav+3jwtyRG9LzYhvSq7eLzd4yK9M48uPTV7rLsqu/g6voIMPfBNkzzUIcw8URSDPUhCcLxssZ88ia+nPd7RQ706QUk7kH0iveQyL7sEpAG9Pj0DPY3u97wPMl69AUMWvfaSHj3FNKc7YfHrurzpYL1m64I9AE2XvASmpLvysKG7LywgO6sQPr4o8ZW8arNCvOoICLwzfc+6qSwePWXJZ724mlS93eOivK4EGj3llT08MRpBvUnbm7zogTu89QvSPOtb2rv2C9K73NPmuzy4Wbs55hg67tBHPGETh72xTWs9ZcnnvHnMgzxl20Y8asWhO8/kHjwCMbe8g9lOu1Cflb0rZgO9vQMevCUPmTxFVvI7hOkKOwI5lTz3kp48hlaavBOtBjvmHi09ocV3PRl7gTtxdzw8wWSJuMYiyLyKJjg7JWxsvOUO8bxAorQ7Gs5Tu+vkybyaE128WbZhvDvSlryST2O8DyD/OzCRUT1rGPS8GldDvOf67jsQOBm8XY7dPDQGv7x7uAG9E5NJu/lsPT0CqEc9Vd5lvOMg0LyHs+08rQ6bvdYxiDzf0UO8/7tJvIARj7uS8g+80VmMPCyn9rxjeLi9ALxJu7sNH71ox0Q7CuGuOT4tR7xi78i8kfyQvIB2QL2nrS+8Ns5+PhOjhb3b5+i7erCjvMiXtTyehqe8PhvoPJawTr1RHoS8Y3i4OkKWkLwq5xQ9fhsQPaTdETxl7aW8SqX+O4jLB72kVCI7TD6qPQtqnrxg8es8/6nqPOtb2ryP7FQ8jQBXvUSMj7w33ro7Qw0hPQX5djyoifG7nO37vP7fBz0euK48+3QbvV8Fbjuvg4i7bI3hvBSjBbtDDaE8JZiIu36KQj1Rjba8HdQOu9oJBL0mjgc96m9cvOkKqzuYN5s5jgDXPMFkibyJn+s8u4yNPFMCJLyfBRY7yKkUvR83nTviNNK6ajwyPc9tjrzkIFA7J4SGvB+4LjvrW9o8YAPLuz+Q1TwNRL28uRcgvauHTrwqVkc9g1DfO6WxdTuksXU81oZ9vC25VTyv8Bc99Zyfu+SpPzyOmQI9NAa/vNgnB71SixO98U0TvRvoELxsFtG7HcywPDum+rv748089JRBPLc9AT24mtQ8jQBXvQnjUb0/orQ8UJ+VuyZ8qLvebJK8n3TIPOccCjw0Dp28sktIvKHpNbx2Tzg91w3KPMUiSDp+eOO8RPHAvBYQFb2tYe07MX/yvLUlZzz5bL29rPw7PU99ersvpdM8/OEqOzjwmTwK4a65EyQXPUdmLrx3tOk8A5bou8U8BT0lDxk91w1KPHFl3bqx1Lc8T6mWvG4mjb20N8Y8++GqPPYljzvTI2+8UwKkvJTEUDuQdUQ9vGDxO+HPIDv2+fI8PFEFPYyJxjzhq2K9uaqQvPPCAL0k9ds7dU+4vJyISrvd4yK8aCz2u6Bypb0glHA82flHNzMGPz1Oj1m8mZxMvRGV7DwzBj+98qjDvLc9Ab2P7FS9OcxbvJuaKT2rde+85/ruO1MKgj0zj6483lozPMLbmTu++Zw95qecvL7vm7gTpai8m6KHvKByJb3+3we83NPmvCeEBj0hpKy9hdcrPHqwo70kkCo9+2qaPMLbGT0GkqK86PhLPPWcHzhBKQE8ljk+vPcbjrwdzLA8wtsZvf7fh7zuNfk9wOUavWksdrz3CS89Ay8UvMcgJbycEbq8OOaYPM3mwTunJuM76W9cPeeTGj0cVSA9wsFcPC1Sgbumr1K82fvqu8Wrtzyjw9S8HdSOvEoubrxGeA29OUPsPEhC8LpYYw+85/ruO93lRT2biEo96m/cvIL9jDyAB4653vUBOzbg3bynvw68bCgwPAEf2Dylr9K7Sdsbu6Q65TxF8UA7E6OFvT1HhLtl9YO8ajwyPIbViDwwqw48JWxsPLHmFrqDYr67vIwNO0R6MD0GgEM6IaSsPTEinzz8apq7vu8bvAh+oLzeWjM9XyeJPVg/UbnaXnk8e7gBPVP4Ir3f2aG8Rd/hPI3ud7qXwi08SFTPu6uXCr1y3G27NY2LPIYqfrsY9LS8lrBOvfC8xb0CMbc7aU4RvStCxbsClmi9gtnOuv+p6jxIQvC8nZgGvcE47bt4ska8RVbyPFm2Yby0rtY7uIh1vb9eTr3TvJo8OPAZPevkyTxC8+M82+dovWo8Mj3Kc3e8TEaIPI99orx3tOk83Ur3u2F6W7yUVZ496W9cOpztezrYDUq9K92TPYTXq7xjZtk888KAPJotmjypm1C8I4DuvJzte70jkCo81Jp/vGdik7vt9AW7y3HUucpzdzuIQpi9gQeOO40StrxVd5G7fwHTPAQdNT2/TO+8d8bIPPl+HD1+eGM8LUAiu5LoDrwOqW495yYLveE0UrzYcvs89JRBvITXq7zFRoY7cXc8PDtBSbyrGBy9ZkD4O3wD9ryQBpI8rnGpPAtqHr1F8UA9VGfVOwSkAT3NXVK9XqC8PC23MrzKHgI9Z1A0PNWqu7o9P6Y7J+HZvBHBCLxoLPY7Ds0svYjDqbzoCiu9+OVwPEEXIr01BJy8QvPjPD4b6DxVZbK8Yng4PGCMOj0UkSY7q4fOvJz/Wr1MGmw81jEIPcY0p7wGGxI8GmkivQjldDunvw492nDYPCUFmLwmBRi9Pba2PN829bvp5my9o1wAvAAhe7vEJOu7UJ+VvXdXFjy9YPG8FJGmPFTe5bvL6GS98U0TPKPD1DzacFg9YgmGvet1Fz2cdmu9kfwQPYEHDr6KtwU7gXSdvIbViLzENkq7vGBxu6uHzrxQBmq8HcwwvY3ud7107Ck9UBYmO9mCNz0J49E7Q3zTvK4EGj38SP+74k4PvBcGlDtXU9O79iUPO6TDVLug11Y994gdvOUOcbxm2aM8EcGIvCvLtDrv4IO87jX5vGT/BD2IKNu8vOngO2ZQtD2pLJ68mCU8PQtqnrmuBBq9R2auO6JwArwuSAA98E2TPGX1A72Ki+m85ZW9vBT4+rsxGkG9rYUrvd1Kd72Fxcy89R2xuxppoj10UVu6N2cqPUN807x34AU9kAaSOgOURb2h6bU8oNfWu7ghIbwLWL878rChvBfkeLwpzde8l57vO6etL73MCgA9BRuSPI3ud7yzSSW7vISvPfPCADy/w/88yId5PKPD1Dx8FVU8EDgZPPp+HLwc3g+9sdQ3PJ5i6TurGBw5oHIlvRj8kjs1jYs8SFIsvSlopjrGsxU9s7D5vD8ZRb14ssa8YgGovGADy7sSHDm5DUQ9u0vHGbv+RDm6s0vIu5VVHjshpCw8XyeJuqgSYT374aq8Wk8Nvd1Kdz2NicY79YJiO6VKIT3cgBQ7hir+u8koA71jZtm8bwLPvGwoML0glPA8c3UZvYHtUDwhpKw8rPy7uns5k7z86Qg8Hy+/PGwWUbyu2P08fa4APbPcFTviux69IbYLPPvRbrlZWY68WxlwvbyMjbsCORU9URamu9YPbbz+34c8TBpsPd9as7w4VUu94avivNA3cbxZWY68BB01vUpATTwM6Qy9JAc7PbyMDTysDhu89JZkvV+emTyBdJ28Cf2OvUbdPj3rdRe81EUKvZ6Gp7zDrVo8yA5GPN1c1jzt6oQ8dPSHvcKv/bo5b4g7mpqpu5bUDD0fL7+7QDMCPTtbBr1CH4A8RYKOvKXTkD3CSKm8qqsMPZz/WrygciW8fYrCuUKOsrsWbWg8jBI2vLJLSD26/WI970W1PF6oGjz7apq8IgnePC6/kLyLJJU8q5cKPZVNwLukTES6xhDpu5HYUrw28jy9KHqFPQLChDsmjgc9LFwCPcY0J70N1Qo9uZgxvAG6JjwrROi8sl2nvL75HL1BKQG9ixRZOyaOB73s5Mm7JX7LPNz3JL3aihW8GGtFPfKowzwPMt47pExEOklaijx3VxY99QvSPLHUN72/TO88DVacPK/6mLxtpx69/M/LvG8cjLyEapw6gXSdvBQK2rwDL5S8D8uJvGi15TtH7527cX8aPLFN6zwiks08mCU8PKoQvrzuR1g9+v2KvBX2Vz1yd7y8nP/avLZHgjwxQJk8+CJRPMIaRb1bu/67RfNtPO0hKL01ts+8dUooPQD9wDyhKO27LPBBvYmu/zyeULG8rdvyO/AiAj3r5ow9aj+OOy/7jDxb7g09w9aSOq36H70uyP08UtkCPWJ5ALnqbnE7o8bnPFgxZrzSgAG8bCE7PXKsrTtEpPA8+zeNOjUjID0K2Aq8nlAxO23dCDzAOBg8B9cwu9FX47xiDDA9pO8FvecDBr2NHQQ9s8nEvL98Sj1wDrO8k3VnvWtbfL1xwA+9cA4zvdpQADyBN+87VBQePedHOLyBG4E6Py66PP+ZYb228P08poOPvdExBDvOfk28Y/hNPCxnA739Xsa8JNs2Pb8Z67tYCwc8UmwyPAwdF7tUxaC8NDcCvayMdT3AaGi95JXbu7dyir1vq9M8A1eJPaDuKz11rYc8s8lEPX7Mg7y4oto88atAvBVGhDs48Wq7ZlwHPb98Sj2zj4M7G55nPCuhxLws8EG9TWp+vI//sLxWWaq8HO3kO78Z67zrg6286jQwvHK2njx202a8XowIPXH6UD0WKDE7wxpFOh/uPrxbMkC9gK6wPKoDN7u7EAW8kE4uvdYw+bsCmzs9X4KXPEIvFD2zLKS7UR01urVnPzzgH6W8S/WhPOB4Ezx1Sig9YkZxO/Tm2zzGpN27h3NkPHmQDjsVdtS8zjAqu35zFb2Zd5s837xFPL8Z6zxiDLC8ucEHPVAxF72QsY08f+jxOgFMPj2gPE+8sJgavYpM+jz3NrM8UM63ui3wQbyMYTa9AIZ/vE+5+zy4Bbo6RQfQvPSsmjzEVWC8hPSWPFmAYz3YqBS9po2APA67ET3BLie8pO8FPeWB+bzYf3a7oUeavB4CoTy1BOA8+NPTvJ+pHz0+Qpy8oO4rO6sDNz2Lr9m8ro3PvOk+IT33cPQ81RSLO0TNDjyr71Q8SaakPE/ONz3hbiI8FpWBPCLvmDtRHbW8WAuHPJix3DrrvW67SkNFvCs+ZT3r5oy940ZevEpDRbxHCCo8DB2XvGKpUDtxXTC98L8iOzhUyjwkZHW879MEPIE3b7zIpTc8/q1DvCDa3LxDfhE8EAqPvEng5bttDVm9nBWWvI3qdL3hC8O8KwSkPJuyNryWE2I9raExPcffeDzOfk08YG61O0Xz7TyleEQ8jhOTvYKGbD0HdFG9OUDoO5w7dTxXqKe6KWapu6U0EjwmyK68DXYFPVvuDbwgPTw91qc6ukoJBL2zLKQ8LGcDPZtPVzvZlDK8B9cwvIGaTr1QV/Y8Wx5ePe6EBzvTCUC8sCtKvLgFOjwYsW88PnzdvN/amLx4QZE8vHvwvAb1A71cgT28LI1iO4H9rbsiSIe8ZaqqPEr/Ej1fqHY83YsbPbtfAjvagFC8JnmxPC22AD0dDBK9NbbPu04c2zzKQzI9Us8RvRgA7bxtvtu8DB0XvDTKMT0bbpc773ClvLiO+DxieQA9oItMPPODfD05o0e8QH23PLXUjz1302a99iF3vP3LlrwRnb48FdmzvAywRj16Iz694lpAvRCdPr1O7Ao9wwZjvb6QLDyVxGS9awx/PUx+YLxhKgO9syyku0pDRTsyLDe+iK5/O8e5Gb16Iz48d/KTPI+cUTzZMVO9ZEfLvNHOpLwWixA9XtA6vL/fKb09kL+8RHSgOvNnDjwL/mm8a1t8PGy+WzwaHxq8F4EfudVEWztt05e9KxiGPZBsgTtm+ac8B0QBPX59Bj0MHZc8shdovHOYS7w6VaS9TxxbujO1dbwCCIy75JVbO6/cTLwbZCY86ILTPPvUrbvbbG47whpFPRue5zwNsMY8PkKcPELMtLwkKjS8C2FJunWEabwNdgW9st2mvAhgbzz8cqi78L+ivMdWurpEaq+8JyuOOd5tyLxAfTc9NC0RvT8uOrxqPw49MZmHvO4rGbyr79S8sCvKvIfC4bwJf5w9v8ptPVAxF73vcKW8txmcPNBrRb3clYw8vHvwvBV21LyIEd85Xx84vaU0Ejtq5h+9/KzpvVBX9rwhjDm9X6h2PKEo7bs0BPM7OFRKvBd3rjwgd3281JJ+Ox5lgD7JV5S9dFQZvD7fvLzVWL08sMjqu6khCj3wIoK8Eju5vGUDGbwXYvI8ZvknPV+o9jwrBCQ9Miy3u9cKmjv9wSW9fC6JPBkpiz3FQX48323IO1bi6DzEuL+85zNWvJfFPr0NnGS8RhyMPClmKT0sPmU8Miw3u/1eRjtAy1o8EqgJPb/K7byeUDE9jGG2ui2sD7yOExO9d/ITu1yBvTxT9XA85YH5uxU8kzsL/um82EW1PM1EjLz2IXe8XwtWPK/wrjx2mSW9HAHHPOZHuDuKJhu7XW1bvE5/Or22I407FRN1vLrd9TxrNZ27nOx3PD5CHD2oyJu7Tn86PcpDMjuLfwk787YLvYt/Cb3Gahy9ut31PP9zAjwkZHU7zBvuPFO7L7yXYl88lcRkPSJIB71JpiQ980m7PJpjubq6BpS931nmvLxLIL0ls3I8BaaGvHjUwDxfWXk806bgPM8wqrkLJwg88Q6gPFvujbywyOq8/COrOjhUSjsaHxo8kTpMveUy/LqTT4i7MN05vZc8gDz1mDg9YnkAPfeE1jxiRvE7CGDvvMJ9JL35cc68+CJRPFdFyLyJYFw8gEvRvQ2cZD2AERC815NYPK0EET3/ECM9kvYZumiXojyVxOQ7jGG2PEFp1TtKkkI8Eew7PUoJBLxBBna8eiM+u+pu8TvpPqG9JdyQvAbW1jscAUc88L+ivLii2rwLYck6cHESPTuukjtd0Do9RhwMPUMbMjxuLAY9tgRgvYT0ljw4tym8lzIPPF8LVrypIYo7z7loPH5zFb12/AS9L/GbPOB4E7stUyG7Y/jNuj5CnLwc7WQ8HgIhveHRAb1A6ge9q78EvVu7frsieFc8jGE2PDmjRzxKCYQ994TWPCcrDjxAGtg8lDumPafSjLzrjR68KWapvFQKLb2/Geu8yELYvA2wxrwpZqk8EtjZvf9zgjwR7Du9AjhcPfKX3rtGEps8+Q7vvKhlvDyzj4O8Eju5uiJ417vLppG87oSHPdr3Eb07rpK8ISnaPaQ+g7yLErm8OlWkPKD4HLwtXRI8yfQ0vRfFUbtkR8u8v+maPIAbAT2SJmo8P0yNPHMFnLwSiVw8+XHOuzfBGjs8BwE86ILTvJ6Kcry0GEK9D7Ggt0VWzTxoNMO8kevOvBnGqzuCTCs9AjhcPT0Z/rx8JJg73tAnPX1e2Tof7r685zPWObJABj335zU99AUJvXqsfLyc7Hc8UtkCO2JGcb24jvg8BusSvW75djshxvq7uAU6PIlg3DtuXNa8xAZjvN676zscUMQ8GrJJvX78Uz3RJ5O7CnUrPTKPlrmGh8a8yrACPeNGXj23U127/xAjPawOgjz/ECO9kE6uvB2zozv8D0m7/iQFPXciZLgnAvC7HTziu+jlMj0mZc+7S/WhvFqpgb3v+WO94gtDvFBX9rx0Xoq7Tn86vEJVc7wAhv88AyT6vNioFL0v8Zs6skCGvE65ezxNML07EyfXOx+L37xKL2O8U8Ugug0TJj1uv7U8kiZqPA8UgL0D/ho89fsXPB9Rnjw/aHu8y6YRPbhomby/Geu8P5sKPbujNDxGQus8n6kfvQRNmD3vcCW7Eju5PC/7jLqR6068O66Su7PJxLwpyQi9EyfXO46wsztXqKe8IfkJvC4/P7yaANo7ID08vQg6kDkVdlS4FJ6Yu8n0tDy4jng9ChJMvYVNBT0dDJI8/V5GvKKWl7tb7g294KjjPNkxU7udvQG9FXbUOxKJXLzvqua85zPWvL6anTvCfaS7NgVNvVIJUzwaeIi8u6M0PFdFyDz7wEs81Fg9PScCcDy7o7S7aNFjvc9/J7tF8+28KWYpPQ2wRjx1Sqi7rz8sPK+ii7zqve68Gx+avJiBDDsRAJ67xvNavRI7ubz53h68dOfIu9dZFzwgoJs8FXZUvPeEVjwC1Xw80OKGPA12hbyaAFq9Y/jNOzRnUjze0Ke7QMtavBgA7bwpF6y8cfpQPQIIjDxQzrc6Qsy0vIQk5zxcgT08yVeUvGJvjzvZf3a8ZGUevdhFNb1+c5W85DL8vFLPET1RpvO7htZDvaDuq7yyZuU7kdfsukRqr7xoNMM8yQiXvVu7/jzFdA2+8PnjvF1tW7wuoh68vI/SvEt+4LzoUgM7vpodvXTnyLyfn668c/uqPYLpSzwnAnA9321IPKlRWryTTwg9FiixvJNFFzzFB727Aq+dO2jlxTwWYnI89kqVPVSnTbyGQ5Q6v3zKu6Duq7yvogs9RGqvvFGAFL0WYnI99KyavIfC4Tt5XX89e3K7u09rWD3IpTe72zwevdpQADx71Rq7g+nLPDHJVzt8wTi9jhMTvT9MDb1+/FO60oCBvHHAD72stRO97g1GvEsvY7sNE6Y9MN25OzYFTT2b7Hc7qnAHPZZ2wbynAl294wwdPZix3DuqcAc8UIqFvG75drxVbQy9V6gnvRV2VDw1I6C8oPgcPGdcB7wMEya8KHCavN7QJz0WlQG8gkyrO5Z2QTwmeTE8trY8PXaZJTsrocQ58/q9vBkpCz3wXEO9oqCIOjqjR7tpg8C8tcqePCuhxLzIEog86IJTPJoAWrzLzHC9IKAbvdVYvbzt0qq8KhiGvKUqobu+LU29QQZ2vPjygDz9wSW8FdmzPFJssrspZqk8InjXt9DYlbwhxvo87NIqvN8zhzyxekc9AP3APBEm/bxzmEu8i6/ZvOMMnbyuKnC9XT0LPZpjOb25VDc89NL5OhOemLzKQ7K8xvNaPGzSvbg4tym8JyuOPAfXMD1UCq08Trn7O5YTYruy3SY81JJ+PE5/Or06VaQ89ObbPKvvVDwCmzs811kXO0XzbT3G89q8JuaBvdcw+bxfqPa7YiASvMEuJ70Q1388txkcvYh0Pjwqtaa7Yb0yvf6tw7xBBvY8P5EZvKcWP73nM9Y8Y1utukRqL7zyl168szYVvPfnNT1g0ZQ8uGiZPHfoor3OMCq8CX8cvc7NyrzdHss8RIgCPO/Jkzz5v3G8eNTAuabHQTloUpY9GcYrvI3qdLwcAUc8sfGIvMFoaDxXqKe8eTegOwbW1jtZRiI9w2lCPYsSOT1ZlEU87qrmu0LglrvU9V29L/GbvHvfizsJiY08kTrMOvC/Irzw+eO8RKTwvHlLgj2o7vo8prNfPV3Quj10VBm98atAPd2LG73p0dA8CtgKu/EYEb2T7Ci9nb2BvA/rYbqEmyi8Ws/gvHqGnTyQTi69d/ITvEr/kjyGc+Q8FosQPeSVW7yOOXI9gkwrPVqpgTwMHRe9huqlPP1eRrwvjrw7AulevWs1Hb146KK8pD4DvI7Elbx73wu9BusSvPAigjzXWRc846m9vE3hPz2uoTG6OlUkPboGlLthWlO9if18PaDuK73sDGw9jsSVvK0qcDzyl168/W8pPCbgfzuJNWS9CSq/vKWSRby7gka9DoOfO8GN5jzlmT09WdQCvEmQrLw7kTY9qHgwvRnNiryBjAQ9Un5sPbn+m7usQbu8OfArPPOV6LxE+AG97Obyu1sTTT3sGh49OzUMPa6DUD38hvO8x1bxu0liFztCQCw8L7f1PEtzTLxvIC48/CpJO3UuGbz12si8lvJEu2h0A7xqs028N5oWPVnUgryUDNq8QZ8hPXJILr05T6E84NCyvLhaxrwLy0m9XZ2NO4j2Gb29+Aa9A92JusPVkT0ozAC9pjabPPwqyTuLesS7QuE2PCz0gL07kba7lVSFvBrKvzqIl6Q7Mv+gvB6TyjxFx6E8xbXmvH8FjzzlmT28JuNKvWMHI7yAo0496B1ovQUc1LtZ0Te9fR+kPLWoBr2GEK88pjabvHJILj2v+ZC866RdO4YQLzzAqkY8gKNOPIg1ZDqdpIW8DoMfPLOOcDuodWW96GUTvd8vqDmsQbs8ML0LvSB5tTvth/27XCoYvXJIrrzVWLI8xbVmOxhaFT2r/Fo9973ovJiqmrz/Usm8cqcjvSlqQD0KJ/Q8VabsPD1JDL1x2AM8xNJGPfdkCT24tvA7cL7tvEo0gry/CTw8C8vJu8XpET0800s8jZEPPdyoMj10jY497ObyPGfN4rrW9nG8bn+jOy0IgTzDc9E7riRbPd+OnTzdRvK7gP/4vC7XILym1yW6YR7tPE5ZN7yzjnA9maqaO4+ixLz0OT49/KCJPUVorDxNihe8DVI/vDL/oLy8f3s8tJG7uzuRtjuDKkQ97xE+vLmfprzS1Ic978zduufyHT2qXps8yh98PCYlYD3g0LK82zgIO5WtZLzg0DK92X1nPGMHozzTcsc8o1CwPMdZPLwRNd88jV3kvFjO7DrR1Ac8LTYWuskREjz8Ksk7ML2LPOESSDwIGQo9XCqYO0YGbDwYWhW9pe7vOz13ITxL0sE8XfZsvTFbyzx69Fg9SZAsvRiF37zzmLM7ZKXiO/Ioib1ocTi9vwbxPHx+GT3goh09wy5xvIjIhLy5+9C88LLIPIj2mTxe3Nc8qVtQu/gFlLxFxNY7+kepvBiIKjx4ssO9fR8kvNECHT3qA1O973AzPdS3Jz0nJeA8RjoXvVxYLTtXjNc8YjgDvAE2ab0MsTQ8sQrGvICjzrq109A8mHZvPClndTocsKo8H3m1vFxV4jzrpF27YH1iPWNJOLwEfpS8HwmLPC02Fj0fNyC77YpIvHtqmbwmJWC9Lxm2O9fcXD1iOAM8u4JGvGw6Q7375eg8qp1lO1ydDb3Qj6e8wSCHPN1JPb0cTmo8Q4LBvBkm6jvg0LI8kBgFPVIljbxx2IM8G+GKO5u+mjxj2Y280nWSvC94K7yxCsY8G7CqO2RG7bwkpIA8Bb1eOx6TSr1YjFe9HwkLvSmsVbwlRQs95Zm9vNpj0rwdkP88pPSFvMxk3LwOrmk9EX0KOq9mcDv1UIk9ZKVivRcYADw7NQy9wy7xPJ1CRTsb4Yo8TOmMO4bimbzaY1K9yiUSPFIf97w1g0s9mr4avbQyRj2M8IS8iTVkvRrKvzyQLIW8epguvs0IsrtV2he9nyXlu/6u8zsHphQ8w9WRvTC6wLyYdu+7UsYXPR31CrwC2j69WGENvelf/bqHUkQ8uF2RvMsix7yLfY88s47wvKaP+jpExNY61OgHvYmXpD3gLF28FP5pu6WSRbzg0LI8qHVlvaHGbzuNkQ+7ZOpCvJjVZDwiu0q8Ajm0uz9djLxBcQw9Cio/PHvaw7twvu08G+EKvChndT1GOhc9MLd1vKv8Wjz8J347vfgGvYaxOTtRhII8EJTUvIYNZDxhHu28h1WPO8slEr0gebW7ezk5veawiLwgduo8wy5xO8Zch7xr+C08ds8jPD68gbx5yQ496B3oPOU6yLyAGQ+9n/qaPQH0Uz0x/yA8r/kQvcGN5jyJOC+92wRdvLZ0W7jScsc6KMm1O6IOmzsg2Kq8heIZvEOCwb1sPQ49w897vMg83Lw81hY8JP3fu4ACxDuKekQ8HIKVvBtofzwkpIA+gUckvfV70zthITi9c42OPK5YhjxE+AE9RcTWu3o5ObxnLyO8arYYvc6mcTwWpQo9D/PJPPdkCb1KMTe7reUQvWRJuLxzikM9geguPEOCwTwfNNU6w3YcvXHYA7svFuu8Gso/vHzdjryQheQ8txgxPAI26TySzY+8YIAtOu7PKD1ocTg7kLmPPX0c2bx1AAS8dw7uvFxV4jzKhAc9QuE2PbhaxrxLc8w8itm5vB95tTxcWK08A9fzvOoD07s2xeC85t6dvHkohDxGOhc9qHXluj4YrLzZgDK7araYvK6D0LwwXpY8tdabuTwywbsqC8s8F+TUu0D7yzz5o1O7girEvB1RNb07kTa7j0YavXBiwzxBcQw9QNCBPDLRizwbrV879hzePFZKQj0LzpS8KWrAuRZGlTyy7eU84HG9vFnO7LvI93u80tG8OlyJDb1WR/c7CKNJPC7XoLq009A678xdPQqJND3HcAe948odvExIAr0Io8m8ZHqYOxiIqryz8LA778zdOiB8AL1f36K8E78fPTb5i7uKesQ8WxNNPE79DDvZgLK8N2k2vVz2bDxOVmy8RPiBPAQfn71ciQ09344dO0etDD2i4IU8m7vPPLXWm7x7Obk8UYE3POhlEz0b4Qq847NSPSclYDxVrIK85ZyIvIy8Wbw/V3a8alejvGB94jw04kA8CLoUvNIWnbxDhQy9xHPRPOd/qD0NEKq7rEE7PSbmFTz03ZM9uFrGPMk/J71JkCy9SO8hvQH00zwRd/S8JKSAPJ7mGjv12sg7Ajk0vUnBjDy40Ia7YmNNPYCjTrwCObS8qbpFPBUylbz0NvO7YjiDvTuoAb1cKpi8bNtNPFz5t7vl29K86tiIPSVFCz1MteE8JNKVPF7c1zySzQ+84AGTO6w+8Lxl53e9upxbvPJTUzwcVIA8QZxWPZ6Hpb1/ZAQ9BWG0vUeqwTz1fh48LPE1vNrFEr2Pn3k9Y9kNvJu7T73+Dem78bWTvIj2GbvJERK9aykOu86m8T3HWby89h+pvPV7Uz3bZp26/q5zPMTPe71e3Nc86CAzvQUc1DvB7Fs9yJvRPPL3KD2t33o7qlvQu7PCG71li008TbisvGWLTbwoZ3U7YjgDvaDG77x1Lpm5brADveKz0rybX6U7nygwPA6u6TwV/um8D2kKPLPtZTtFmQw860gzPE9wArwq4AA9++XoPGEhuLw3bAG9OiGMuq0k27vpwT29ScGMOxWiv7wZzQq8XjvNPEYJN7xN+kE8rEE7vetIMzxvIK47a/itPPV70zomJWA9eLJDPKRQMLwHphS9Gcd0uSF2aj2VsK88PRXhO67FZTz6RF67hg1kvZc3Jb3NCLI7hWzZO/wtlLvVWDK80C1nO6h1ZTvPSkc8PXehPLJPJjsvt3W9SZAsvYVs2bt6yQ46gyd5vFA/Ir0zcha8L0oWPapb0LwJKj+9JUULvV6awrz1e1M8yoE8vFfAgryW8kS9D/YUPKJqxbwNrmm8s47wPH2SGT1smTi9FGAqPYseGr3hbvI7DGzUOu9wMz3lOsi8yyLHvK6D0DzmOkg8vfiGPK/5EL3+b6k9Da5pvOd/qDw5TyG9XfwCO4FEWTuf48+866eovcM0hzz0PIm8z4zcvFWpt7zZwke8Bv/zu+ukXb2NkY882cLHO26wgzydnm88wpCxPNexkr2wCsa6WNQCPSoLSz3H+ka7BL3evH0cWTySzQ+9Tlm3u5tfpbyg+po6EDgqvFwqGLxGqkG8LO7qu+WWcrz7up68V4xXvAUc1Dwu1NU8pTPQO/V+njxx2AM9Gw+gvBn7H719UIQ9SZCsu/mmnjueRRA9itbuvB83IDwMsbS8V8CCvFDd4TxXLeK7j0aaPJ6HJb0d8r+6vCacO9HOcTzfjh08FkYVPUUG7LwxoCs9RZmMPKaPejxnLyO96cE9vca4sTzo8h08KgvLvNm/fDzwET69F0NKudwHqDxmjpi7ZKXivFeM17yVsK+8k2tPO1/forsF8Qk9xbVmPUJArLz03RO9U5gCu1OYgjxXjNc8L3VgvPL3KL30NnM8G63fO+WZPT1BnyG9JriAPfV7U73/Dek8Vk0NvnbMWDxCPeG7ejm5u02Kl7ysPnC8KGf1vJQPpbxusIO8yJ4cveFucj2EoIS8o68lPQsndDsB9NO7efejPEYMgryDhu680S3nu+awCD1c/AK89X6eO5NrTz1c9mw8sSGRPCOeajxrKQ691VVnPVctYrw/WkG9o6zaPOU6yLz6Ryk8iZckPfYfKb1w2IM9J8bqu6fU2rz75Wg7wK0RvOxFaDwEe0k8Y0m4O98vqLyK2Tm7k2tPPR5ogL2Gsbm8j0PPuj13obz12ki7Q4LBPT626zw/uTY9Vo8ivX9kBD2UDyU8lYIavS914DsVor88jv5uvNs4iLspDpa8kBiFvNCPJ70X5587ffGOvd16HT0luAC7OiEMveDQsjqygIY9jLzZPB5oAL3hcb075ttSPa2Gmzy1qAY8ApXePMDvJr15mK47BMCpu/G1k7ySzQ+9qBm7Ob5oMTy4tvC8u4JGvP1vqbuwDRG9wzSHvY+ixLxcWC08uPtQvTH/ILxL0kG8F+RUvOzsiDz3ZIm8omrFvGpXIzytg1C6uPtQPfyG8zsiXFW9IHk1O+jyHbyIlNm75PVnPfYfqTwwW0s8VutMvCEaQL3/T368ATZpvbcVZj1KLmy9t7k7PCVCQLxvHWM885izu55FkLwCOTQ8lAxavBRd37z+QRQ98K/9PHn3Izyn1Nq8IwCrvJgJkDxC4Ta9Vkf3PLx/ez1O+sG8bn+jvIwbT7yvZvA8lA+lvJsAML2cnu+8Rgk3vRkpNT32Hym9OiGMPCNfIL0d73Q878zdPPuJPr1usIO8grqZvHONjrxD3uu8wUtRPR6WlbxIjWE84RWTPGpXI7umj3o8JD91PIIqRDxcWC29I/1fvJtfpToYhd+8Vo+iPCSkgDzfLyg8u+E7vSbmFTw+GCy8KWrAPRX+6bqfJWW8h095vPpHKb2UDyU8OsIWPRZAfzwvGba7I18gPU76QT24V/s85yAzvPYfqbz9oAk96cE9vSvu6jwTvFQ8gKYZOwxvnzqvZnA832CIPBprSr328RM98igJPXcUBD1Z0Tc92wTdux1RNT3Wmse8PrbrPO0rU72MG8+8CBkKvbZ3Jr3IPNy6s/AwvZEm77xhHm08o6xavPCySLy7gkY8Vak3PL0j0TzdSb28R0vMPDmryzw5gIE8PNYWvam3ej1Tw8w8satQvEnBjLzZv/y8sQrGvOjBvbvlmT287BoevUt2F7yB6K66aHE4upl8Bb1iv/c8Ciq/uyEawDyYebo8PUkMvWXtDT3GXAe9FkYVPTohDLoKiTQ7SOzWvEs3EjyYXQ28tV5gvZhL7rt7qTq8u8ENvTakq7y/lPE8GCD7PJL/kjveE++8qN/5PGFu37w0gpq7MO9KPDnTKD3vfIu5z3/jvDFGsbsvgz+92TOfvNMfnzsNmDY9EeELPdD9DT3zYY49HBJqvV4/Yrulz4c87f7gO1c9AT0jGf68BEjNPPXNGTxEstO8fb7fvPm/iLyIDkk6dwl/vNGzEz3x26q8MwRwvEIBAT13DjK9PlTZu27lDL2vPfS8JTNWvWgjwLte7S694VQLvTPZgLzU4pA93FUwvdl9GT2SB8w8tbXGvBBbKLqojUa9O+jNu1IxOrxkDhu8R1IPvLW1xrwWYjw87f7gPAa02LxlRva6lt9ivOQ5Dr15lBW8qLQKPKXKVL2zL2O8vNYyvQDUiDxW5hq9QgEBPYPKJr2BtQE9Zbe0vDMEcDzb5HE844OIuySKPDzKjfQ7PlTZvNl45jxDbYw7x7VdvYjJgbwmsYA7eZQVPSb2x7x/2Dc7QD4PvBsXHbxNox277rkZPQvAnzwQxzM9lHNXPRr9xLxZTfO8pLWvvNMfH727E0E9QPQUPTi50DzmpRm9vZmkPMa13TzTGuw7oCeTu4nRury2B3q7sy9jvLPqG7yy3S89xEEZvCVNLj0CTQA9hfmjPY5sQz0Awum8lY2vvIMc2jzZJjM9E9zYPPilMD2PbEM8IVs/vLlVAr2KNQ28JOEiPNkmMzycrpu8zMEkPc9/Y7pFx/i89oMfPcdedz3KO0E8fRXGuxX2sLvkHza8kPImPPbIZjyb0VE7b5bfPFmkWTwr6Da83adjPcFXYzzoaIs8P4gJuxfOxzwlM1Y9X1k6vWa3tLuo8Ri8r64yvJ8nEzzNvHE8qw73PHVLQDynjUa8wQD9PG7T7bwqkVC8c0OHO2c9GLsnuTk8JIo8O3xS1DyKelQ8++GZPQQLP7tPxS48fFJUvYhg/Lu+KOY8Gv3EPINzwLzLVRk91d1dPYPXkrwdadC8a3mBO8PdRjrFSVK9TZYxvWRLKT0GtFg9qI3GPGy+yLxKgQy83lD9vCTujjz9kuw7JOEiPaPyPbx+vl88nnENvIZQirw2M208xwzEvZff4rwegyg9GJE5veHwuDxrUj08LW6aPHjRo7kTTRc8G1QrPUoQTrwfRpq91KWCPN/WYLyA8o+7LcDNPO/B0jqBBzU8R5wJPdZJ6byyhsk8fypruyglRT0yCaO8VWC3vDIWDz2t60A9QkbIOswYi7ykB+O8DX5evTFTnbw5Kg89BGIlPRXxfbzdp2O9L9VyPTvoTbwvaee8tPLUOoEHNTxdfHC9F4mAPLPY/Lw02YC6ksKEPE9U8DylIbu7y2IFPXAHnjxSg208lRxxvGu2D70xUx29sX6QPFg4Tjz12gW9r66yO02Rfryo+VG9EGgUvRNNF70KT+G81xGOOnwNjbtmh5K8nqnoPBWfyrt/PIq7L4M/PRErBrpSMbo7l6eHPXcJf70hBFk8hktXvU9uSD0w1XK6AMecPGk45bpS2lO8XNNWvZyumzy3yuu8fWwsPealGb3V3V09JO6OvBrjbL0g77M8LcBNvE/FLr6KI248Cmm5vP/+dzhVsuo7+RG8PL6ZpL3Qmbu8xN1GvNDwoTyfGqe8LFRCvU5mD72MALg7vqaQulc9gbpI+6i8poWNPIColbzBcTs84X96uU/Frjt5I1c9lpqbuK499LvcuQK9l6eHPH1sLL21Y5M7eHo9vEAs8DukGYI8fmd5vPEtXroNRgO9GTrTO4uhmDw76E28IjiJPFUjKbwKCho9Vz2BPZRzV7yYS248KXwrO9i1dL140SO8QMBkvOegZrvhmVI8eXq9vNxVMDyopx69Xu0uvXmUFb2BqBW8t3g4PfzhGby4jV07ku3zPE5mD7yt0ei5v+vXPOSudzwqlgO9AkAUvT9pfj27E8E8TaOdPHBehL155sg82LX0vBn1izsaq5E83FWwu1zTVjuEHFo8hDYyvD4Xy7yIZa+9Kc7ePD+ICb3SV3q82X0ZPV188Lvis6q7L9qlO08CvbutQqc7Cvh6PoCoFb3rihy8OSoPvRW5ojwkirw8KwKPPbZ4OLxkSym7ANQIu+QfNr0GzrA8lHiKPDZNRTykGQK9prB8ucLIIb3iBd681klpPdCZO7zDNK08i+sSO1V6j7yvrjI8UpUMve9vn7yVyr28iGUvPTi50Dw7P7Q7XlGBvDolXDsSGec8mIj8O3fRozyMALi7kl4yvCcdDL1Jvho9iPTwPH0VxjzF8uu80gVHvDBGsbwm9sc87EAivPiL2LyOFV08N7GXu5GB6Ly/61c8cbC3PDSCmru7E0G7rhKFvNuSvrxziM68eqEBPVmkWbyTB8y7JxCgPGRLKbs4uVA9+KWwu1zTVrw6fEK9IiudPBnj7Lxd09Y8buUMPQJNAD0b/UQ8prB8vN+RmTxjMVE9EMczOzexF7xaFZg8vS0ZPIb5o7yOUuu8NTigvLiSELxJFQG9ByBkvM/wobkmubm8G6bePNWGdz3EL/o86R4Rvf/+d7wbT/i8WU3zvMBpAr1YXxK9oaAKvNCZOzw1jwa9H0HnvNv2ED3gngW8QgEBPVV6Dz0GJZc72/aQvCF1F73pY9g8MgmjO4NzwLuCsM69luQVPRvANjuOGhA9bC8HPOkeET0q6La8a2wVPSe5ubs8WYw8FfF9vD0CJj33CYM878HSvAu7bLzcVbC73RiivICoFb2IYPw84UJsPENtjLtWzMK8eCiKvd/W4Dzx6JY9ZUZ2PCDvszz1XNs8F3yUPaXKVDzuxgW9B8n9vKn50by+KOY8MrK8vMwYizwbF5083y3HPM7WSb2NUus7jcOpOy5pZz24Oyo8g8omvfQkgLoyCaO8QCxwvC/apb3uVce89AV1u14/4jsQdQC9xN3Gu5ff4jzouj49JDPWPC3ATTylzwc9bRD8O0u55zzrihy97VVHvbmN3byJKKE8mF0NPbEaPj1Pxa69NjNtPJsouL19wxI9SyXzuwg6vLtH+yi7Lhc0PbDD17yDIQ29QfSUvPmgfbwI41W7TZYxvfBqbDziBd49sX6QvHwNjbyX+To9sd2vvLpQTzzFBIu9pzbgPITfS70+F8s7I4KDPc8ofTwFCz89sADmO4++dryI9PC8I+4OPKReSbxaFZi8DZg2vDp8Qr2BXhu9ge1cPO98C71sEPy8q381PbC7HjwzzBQ9umonvbI0lryLoZg8tgd6PLKGyTy7wQ07T1RwPAHcwTxdfPC7OBA3vGnmMbxPAr27gETDux+YTTw/wOS8FzIavDXhuTxVsuq7VSOpPLvBDb2Ta5481wxbPF2WyDyW8QE80OtuPUqBDDsz2YC8+AkDvfzPerwmSHs9KAttPC9p5zoDhVs8IVs/PP8QF71FHl+904sqPAcgZDwYzkc7gPKPu4EHNTsS4Qu8GIkAvJrJmDxNsIk8fRVGvWRLqbz9pAs88C1eu/cJg7ztVUe95B+2u036Az1reYE7Gv3EvPXaBb2tlFq7M8wUPU2R/rwMgxG9aeH+vFg4TrwHIGS8T6tWvP9V3jybjAo9q3+1vEj29TypULi8k7WYPPtj7zvqJso8iLfivOHwuLztA5Q8+miiujefeDyc6ym9ljbJPfloorysKE88+7rVvAQLvzwyCSM7I8fKvIMhjb1EslM8U53FvBtUK7ylwhs7G8A2u7UMrTr/EJe9Ap+zO/poojtkog89vtF/PLsTwTxXPYG9I+EiOvKrCD0+F0s99zklPNWG97y2JgU7VAlRvaReSbxoPRi9JO6OPAoKmrzjHza7BAu/vKpqkDvK/jK8f4HRvEfh0Ly6UM88H0HnOm0vhzt5oYE8pcpUPWLsCb0ESM28h8mBPXnMcLm33Ao8+aB9PEUe37w4Z507x7XdOYkOybvkrvc8Mgkju3X5DDz/Ayu9jhoQvFuBo7tFzKs8jAA4vEbhUD2Sm0C8JIo8PYKW9jxn0Yw8vX/MvIIHNb0YMho9GCB7OyQz1rzXoM87JTNWvZLt87soiRc9pjuTu5dQIb0qkdC8qqJrvJWam7wtbpq8lpqbOyymdT2z9we9pAwWvTyR57to5rE8+IvYOzol3LuiL8y8OL6DOz5uMTy/Qj49+2NvvfKZaT1UCVG9fXkYPbvBDb7kOY483DvYOry8WryExXO8r8gKvNDr7rykta+78auIvE2Rfr0WC1Y9hd/LvP2SbD0TM7866mPYO5yUwzwWtO+82SYzvRxp0Ds2+xE9zbxxu+LAFjxECTo9s/JUuzFTHT1MP8s7VWA3vdegTz1wWVG8gKgVvfkRPD0Big68H/yfuuXiJz3pEaW8RdmXPbOGybrxhMS8hYhlu6j5Ubyyhkk7VuYaPH1srLxsZ+K80gXHuirotjyDIY29UwGYvEyWsTyvPXQ8W4EjvARipT1O6OQ8MltWPZTKPb0YJS49jhXdORglrry7+Wg7BW+RPP5aEb2FMX+7ZA6bvD5uMby2XuC8aOaxPIKwTr3pY9g8LKuoPBAEQr3VTpy7BGKlPY1kCj2RRNq8c272uy+DvzzPKP08pAfju9egzzzNvPG8qhMqvJplRjyR8qa8Yhd5vB7VWzy5pzU8d2DlvGVGdryTwoQ7hqI9vfo4gL3RQlW8WF+SvEGdrryXotS7qWoQvLr56Lx2ZZi7kpvAvDl8wrwB3ME5Pf3yuz0CJj2leCE8BjIDvaEVdDy3IVI8pETxOwMDBj0Lu+w7ywsfvOkeEb20DC29zKfMO6Ww/LwO/Ag9MO9KvbMvYzxZpFk77aytPBOF8rtQ34a86s/jPMLIobyd+JW8wFwWPdCZuzxPq1Y8rA53vBPc2LwHOjw8ViMpva2U2jxG5oM9MO/KvJzrqTiaZUa8RVvtPNv2kLx9bCy9vwUwvAiRorzhmVI9mbwsvZFJDT2lylS9506zPJi8rDxHCBW9p+SsvPLwz7wmHYy64fA4vUKYez3MUOa8ipSsuw+yDj387gU8U7cdPCyrqDsBGdA7qhMqvS4XtLz6OAC96n2wvAL2GT3zCqg8zbxxPKRE8bzAXBY81vc1uyb2xz1Ttx28R6TCvFqk2bxgq+28BLkLPE2jnTxAMaM3AHC2vE5mDz3jzYI9pBmCuzgQN7uL6xK8l9/iPJdQIb28dxM9e6k6PCdiU7xPVHC8kUTaPKLyvTwCMyi98db3PBB1AD2crps8nQUCPcBX4zpe7S49GTpTvVc9gTxkSym9JrGAvNDwIb2HvBW9aI9LudCZu7z0s8G8wR+IPIXfy7wHOjy80xrsOzvtgD3U4hA9Bs4wvcSguDnqfbA86iZKPHcJ/zr4pTA9fb7fPBglrrvPR4i8veOevNTikLyTwgS8BrRYO/GriLxp5rG5LKb1OzVFDLy5SBa8veMePT9pfrz2yOY8w4uTPMBpgrzx2yo9d9GjvJ67Bz3U4hA8ZWBOvI3DqbwWsj47DYHSO1czB73bhf68Dl8WudUGo7w5Hae8opIqPfmb3jxrUvy7RNEuvbcK6DxOEsm8ebiUvHHoBz1ilP08/uA4vHdFp7w2zlW3aExFvUo25bzda9k78tPoPBDgUTzbddA8U+Q1PYMJ3bsJpe460yq/PDFFAz33ewI924X+vJ5DWTw3tDC8UmEaPDFfqLzG8xu8xvObvFHurLz7BFU9+f4dvftnFL3qbjI9HAdHvX6KATwmowm9LAApvepuMr2dphi8tYdMvXbUGb3WFtG6bYmIPdplorzda9k8xnAAPdE0trz7BFW7wzFdveYPs7tFMg68yYZlu9UgyLwCWt28mdSrPP7gODyfOeK8iUYgPP85AbxCaDi9ZXDhOYPxlzxJoxu9NVtovCJcT73K1xY8OBUQvLFC8jyu2fu8gIAKPUDdBb2Sj1E8D9AjvKrtabwUWXY7Z9lXu5k/grziGwo95Ka8O3vO+bwL/ra8cn2xuhvvgTx9Qee8ukmLu8Ihr7xPlWS99JeHOxDQIz1SYZo8Wy9HPWXLiT3VMPa8//Bmu36SmLzr2Qi9QtMOPV6oazwD3Xg8ogUYvR6A6ztrKKk8A0A4OZ3APTwZjiK9B583vME71Ltl4847gZA4Pc1IJDziqBw9spu6PDmquT1GrZI81BCavDsDArznH+E8AkC4PBNZ9jsomRI9pvGpPKL9ADzEmlO9hecgPMjpJLxZrKu6UXu/OjcfBz1pz2A8CgguveQREz0PTYg92+i9PMZwAL258EK8sjj7vA9NiDvIdrc8ZP3zugHNSjwkrYA7DHGkvEPBgD23l3q8XhvZuues8zzRp6M8FS8jPZnUK71/mi87tW+HvHAkaTyA+448Q+vTO1wVojwWT/+6fUFnvKs2BD1i9zy8ZcsJved6iTziTfQ8xCfmPAgSpTzQsRo8LCp8POiifD26SQs808f/OzesGb35m1686KL8PIrBJD1N+gO9tXcePfHDOj3V/gu9uH1VvHg9ELsHl6A771pEvdBO27zH6wQ9rEYyPXlV1TwgZka9o4AcO9nqnbzBEQE9N1FxvPrsDz32jZC8iU43uzDcjLxdJdC8Y1gcPNxbq70YCwe9MIn7PNiZ7LxbFSI90rdRPO/FGjsPbeS78WB7O7+oCj3qiNe7zsu/vfkeejww3Ay87PFNuviLsDvOWNK7FyUsvDD8aDzTKr+8gS15PGF0obtGxzc9E0lIvN/UT725Wxk9EPr2PIlGILx9FxS8gQMmvXF1Gr0qjxu8M/LxPAG1hTyBA6Y41BAavcnppDwh6WG8tofMu8ZmCbu2h8w8Ue6svGfJKTvzuUO9eVVVO3uunTzFmtM8EVO/O2w41zxyfbE7HO0hPGZm6rpxCsS8sLXfuweXoDxtu3I8I8+8vE59HzzAI487hN8JvRS8Nb2d0Gu9ndDrvBBdtjwrGs67hWKlO5s9Ij2/K6a6dcwCvP19eT3IA8o7kal2PB/jqj0PVZ+9+h56uo4gJL0L/rY8XSVQu+CykzyMVO47wREBvfn+Hb0/ahg9RzqlvP9LDz2V6Bm9LJ1pPYy3rbzTOm29VPRjPGNYnDsqlzK+rLEIOxgTnrym8Sk85ClYPLI4+zxLmaS9Mk0avazJzbvjwOE8SZsEPAYsSr23ZRC9CJXAOki9wDxT5DW7htUSO0FYijwCQDi8RNGuO1/xBb3VMPa7Uv5aPacBWLy4fVU89o0Qvb41nTwYE568S5kkO63JzTpl4868pJjhu9OdLLy3ZZC8po7qu0up0rj4gxk8i9FSPPiLsDx/mi+7qIRzPc8+rT121Jk6Gbj1Omg8l7uBAya9kIGDOkc6JbwIEqW8t+AUPF6oa7woy/y6ukkLvSyNO70QXTa9xf2SOsxiyTydwL08nDMrPDqgwjyqenw8JcVFu0wcwDwiTCG8FaIQvZOf/7w0tpA9cCTpPBgLhzyUAj+9+Q7MPCqXsrw4FRA84Ec9vLbqi7wASq+7vMymvNGfjDyvr6i8wa7BvULTDj1xbQO9+IuwvPmBuTyymzq6XLLiuul4Kbz1Ijq8ZXBhPDCJez44xF695YyXu7lbGb3xNqg872ryu6iEcz1T5DW7M/JxO0NeQTxqz+C8jFTuPD58Jj17rp088zzfvED1yjo2QUO9/uC4u7kAcT32pVU8XA2LPDbOVbw+75O8k3+jOzot1bwKCK68QtslvGm/Mj1wl9Y8YpR9O45K97zpeKk8yt8tPCwqfLz/UyY7K427u0/4o7wqlzK939TPPBNZdjyT8hA9KpeyvFdDtbyDZIW8ENCjPLtp57wTMQO9t5f6uj35iru6SQu9U4F2PBFTvzwsnem6S5GNO6+vKL2NvWS7JEIqvcGuwTvaZSK90hoRvIf17jxgbAq8wa5BPY06SbzUrdo6sUJyvcj5UjtLkQ29IGbGPG0OBD0Q4FE8HJTZO4XnoLzq65Y8d+xePZwzKzwfcL28uGOwPD0JObsKpe68jiCkvKtGMrzlKVg6rSwNvcp87jsHCo48QtslvNkCYzsmODM9gnYTPWhc87wmODO9+/QmvQ9Vn7x37N68F5ACvVXaPjyHSIA8fpIYvWw417wu9jG7HGqGO26hzTz/UyY9/OqvPEmbBLyVhVq9gvkuPTeaC701thA7nNDrvViuCz3wQB+8rSwNPSkkxTp/qt08M2XfvBgTHj0hdnS7jTrJPFbAmbudwD09UtQHPSmx1zs3tDC5HopiPBUvI7ypak68+/SmPCHRHD2/uDi7SaObvJCzbb0x/Og8+Q5MPdPHfzvQwUg8t/q5PFZdWj0m1XO7mldHvTqgwrzR0fa8KjTzPOQZKrzcxgE8A6uOu1lJbDxIQNy8lvhHPP9Lj7zmnEU9co3fu/W/+rzcUxQ8dcwCvS9hiLxiYpO9xvMbvfz63TqwnZq6uebLvBgbNbzDpEo9wiEvPQgSJTzBrkE82mUiPV6YPbzTlZW8E9bavKxGMr2gD4+89SK6O9zGATzneok9/X15va5M6TxP+KO972ryPAWhFzzs4Z87Rq2SvBcbNT3KfO686KL8vCceDr0TWXa8wowFOxRZdr1Acq88QgX5PczFiLyH5cC8w4KOPXZ58bvDMV082eKGvSUwnDxjaiq95BkqPJxNUD2BoGY8WcZQPYwihDxKNuW8hf9lvAW5XDxX4HU6rLGIvJ+UCjwxXyi9HXIdvVJxyDxeCyu9RjIOvRNJSDzmBxw9Ko8bPQpzBL3Rn4w7F8LsPAivZbwooak8NDuMPCt9DT3+bcs81AiDvAOrjrxUZ1E7obz9utkCY7wPXbY7ZmZqvJrCHbw8foY8G2oGvJOffzz2pVW8k38jO+zhnzyOoz89AEqvPCihKT0tk3I8uGMwvEomN73gR728P2KBPVfQRz0dYI86kLNtPMERAT1zYwy9mroGvQWpLjsPbeQ7ov2APD35ijyKwSS8dtywu7+4OLw1vqc8M8ievDg3TL2fKTS95YSAPLKburum8am7pnRFvURUyjru59Y8ENCjvETJl7yBkLi8FU//u+YPMzx6K4K8TyL3vG0eMr1f8YW8Er6VvIEDprk3rJk8eTswPQgSpbxcDQs9IckFvFkpkDzb2I+7tIGVPJ3AvbyZ1Ku8//BmPbMOKLzMzR874LoqvRuEqz33CJW8r68oO5OP0bz4gxk9ayASPAPd+LxDwYC96KJ8u7h91bwCUOa73PhrO65M6bsSvpW8kneMvb9Fyzs16Hq6BCYTPSwAqTyH5UA9qPdgvYflQLxR7iw9Sia3PFPkNTwXNVq8NUs6PIrBJLy0kUO8rVZgvL1PQruZPwK90MHIvPYiury0gZW8mXHsO3+q3bz+fXm8nhkGPV8b2Tv2lSe8c94QPPco8TxP+CO87dcovSyNOz0OVR+8rr9WPIq5jTyLRMC8l3tjPC72MTxS1Ae8jCIEPYnbybuqUCk8yANKvb3S3btwh6i7VkO1O4nbSTz9h3A9arU7upEMNj13wgs9052sPLT8mbwPVR+9TY+tPPmBuTzq+8S8g2SFPCwAKb0bhCs8mP7+PI2lnzzBEQG94FfrvJAmW7xWTSw8780xvM3VNrv5cQs9AlrdvHIa8ryrYFe8iMOEPJfeojwlSOG83UEGvS6DRDtqQs47xIolPWw4V739VYY9t/o5vUF45jwUJwy+9DxfOugVajyMVO67rEayvDm6ZztIIIC8/tCKuD0JObztAXy914k+PQ9NiLzx02g9m9piOvmBuTxwJOk8D00Ive506bw2MZU8o3iFPOQZKrzTnSw8AEKYPNnytLugH708E9baOzkVEL2yOPs8GBMevHNzOr0y4kM9QFgKvVe2Ijw3UXE9PhnnvBQnjD2d0Ou6AEqvvBt8lLwh2bO8d+LnPMERgTxwl9a7todMO1qsK7zcUxQ9tYdMvWw417whXM86cCTpu+7XKLx34uc94crYPFRXIz2+0l29MW/WPJQCvzwgZka9EeDRO+NDfTvgshO98DgIPBc1Wrzy0+i8VriCvFyy4rsNgVK9F5gZPeFXazxLkQ29DfQ/vAVGbz0jzzw9Y1gcvLQeVrz1r8w6CRjcPAWhF7yu2fu7c+YnvYlOtzv7BFU8rkzpvLaHzLzlhAA9ZePOO9aj47yV6Jm7U+S1PKKiWL3VBqO9zzaWvBRZ9jmJPgm9Kpcyucxyd7wRQ5G8sRgfPFCL7bxVRRW9ShYJPQQmk7y0/Bk9HoBrO/KpFb0TSUg8l+7QPC95TTzklg49oKxPu9GfjLsP6si8wMjmvPkOzDs+fCa8h1guPb1PQr19tNQ8+IuwO4jDBD2Z5Nm7AjAKu4PxFz3oFWq8eshCPJfWCz2J6/c8oJyhujesmbsKcwS9/2NUO/O5Q720ofE8MuJDPbUU37wecD26oB89vFTKED0bhCu9L3lNvQBKrzsNgdK8zdU2PXk7ML2qevw8NkFDvUDlHD1i97w86gtzvFPkNb3tAXy8KRSXujW+J72J63c9IFaYvJ/G9Lv7kee7GhG+vHu+yzz9h3C7mT8CPe/NMb1BWAq8chryvEhAXLylXIA9yu/bu1ZNLDwKcwS9gaDmu9vovbygH709vsIvvGABtLrxNqi7Gbj1vBztobv+0Ao9M2XfPPI2KLqxtd880MFIPZxN0Dxg+Zy7g/muu/SfnjxNn1u914k+PZ3AvTznegm7PKZ5vIKGwTzWo2M8GBMevfn+HT18MTk9Bjz4PDJNGj0Q+na8ZmbqPHJ9Mb1Qa5E8rONyvezhn7w1W2i9h1guvcOkSryjgJy81qPju+iSzjzCIS+9dkeHOZ+sTzzlhAA9Vdo+PWkyIL02MZU8gpbvPEPBAD3St9G8uuZLPZZrNTxZKRA7WTk+vYITVL0tk/K8lms1O5CZSLwxXyi9WheCu+OmPLwzVTG9ongFvWRQBT130rk6cIeoPMtSGzw8pnm8wMhmPTg3TLwZuHU9zOVku5Kp9jtsmxa7M8CXvEj2Vzww8Dq9C8apu6fe1juBX9S8ZFrjvKjx/Dx3+BY9sQz0u2O5/byfd+s8tKMwvc5w/zunf7w8BNH+PEShlLupkuI7SJe9vPHJNb1PxYi7fzkIvTmsFz0bxHU8PnxGvKDMXD14cwK8PjCAPFN5Zj1Fexo9RKGUPKxPazvD9hs8r0VCvafe1juHJQi5+9EGvc1d2byzAku8UMWIPRmLA70JhAy9su8kPXAfvbzmuOe7cN3xvHu1n7z891K9XkhpvPz30ry1Vzy9/xP2OsKOVj0j3xq97MphPM7+Pj0mITi9D0FnvMZLX70LEh68j8WTPPg6yjxz00i9XjVDvfI7dj0MQZU8o4DoO0tBILvjPSq8nA9UvUv/1Dv60YY8/19qvNVlqrtCEwO9YoCLPIRo0bslbSw866SVO/1MxDzwYZ68OfiLPN2dcLzMqU08PifVvJQjAjx/XwI60iMNPUpLyTuBEw69lz+lvBLYI7xBhcO77FihvMX/mDt3+Ba9ppIQvbxpNjvKlic9ncPfPDvS4zzqT6Q9wJj/vPTlhrwz5pG86JsYvO4f0zrSIw09gQC6u2iSBb3mMwE7pBeluxnqnbwasc88DdnPvLhgOTzLlie8Q9q0Okn/gruBX9S8nPytPHqs9DswWIA9A18+vIiEdLw5ffK7tmriu3bcRbusfhC7mAaFPM7+vjySLSu89b8MvY1worwA5AC94ei4u5OVwjwn1UM92OBnuhSML73FhC09G1I1PQAB0Dx45UK9dBWUO6nBB71+Vte7FvTGu24WwLsZu/i8ZA6du2dj4LvElwE9eXMCvcHayrw4V6Y8Z2PgPHwB5rkMOGq9WHg6vN7fu7zanR49K9QXvHU7YLxYPxo8YzSXu73RzTttYrQ8og6ovLhNk71Yiw49ixuxvCszMjr6AXw8ZWOOPAbH1Tzsfps96wOwO0dV8rvoDVm9Mvk3u8XjRzwK4/g8AgpNO8TjxzzEl4E8z/SVO5JT97w9tRQ8o2OZPFuBN72Xnj+8o4BoPLI7mTyJxj89vjDovBZT4TwEAKS75llNPIvikLzezJU8PifVvCWT+DqqiLm8OMnmvETt2ryTlUK982qbvLKtWTv3Okq97ocYPRi7eDwAAdA867e7u3lNCD0w8Do95g2HPCvxZr2wrYe8S/9Uuz2PmjwWlaw8YCuavOUEXLxenQg9dDvgvPkB/DyiDqg8cmEIPbPvpLzZ6RK8aw1DPR4ikrxywCK85rhnPOUEXLxXI8m7lz8lPav6+Twp3kA98IfqPE+pt7z52y88uNJ5uuNQ0Ls3ArW8du/rOvpWm7wgsCO87sC4vETtWjzFhK27Q9q0PPtDRzxoF+w7JN/sO8guEDvVBhA7QB0svF7pzrwIvSw9MlhSO6fngTsgd4M8Vs7XO6d/PL0V9Ea9YjQXu9YZtrwa/cM8XcMCvDq/PTyalJY84vtevOHoOLvE0KE9aGyLPD8drLz6omE9QhODvXBrMbw2FVu8LwOPOqAY0bsbxPU8MZGgvDCRIL3OZoS9gxwLPciNKr13kFE8aKUrvfSQZz0ICaG8flZXvS+ubzzJs3a8MkUsvr8TGTuVXPQ7TVRGPDVhT7zQxfA7W5SLvW4pZr3e8uG8J3YpOwpxuDzqdXC99yekPCHDSTzGqvk8KyCMPP20CTs7JwO90xA5PJItq7tiBXK8WRkgO01nbD3jnMS7+4USOi+u77ySQNE8aBdsPEdeHb290c08bRZAvUxBoLzAmH+80aihO4fZE7yKLoU7eYYoPGU9lLzW1+o8bMHOPAMdcz3ZgU09y5YnvO1+7TtuWAs7vnIzvT4wALucw428d6P3vHJhCL00rUO8g7TFvOoDsLwPLkG9f6tIvWVjjjouKYk8+0NHPU31q7w9Ovs8Cl6SPM8aEL3X4BU9VdeCvHaQUb2pwYe8kNi5PCiJTzz0kOc6VFyXO15I6TxPqTe9r1joPH9fAr2s+nm81njQu5OCHL2V1407CyVEvBI3vr1H9tc7QoVDvBqxTzpPqTc9ge2TvMxd2TqKesu76gMwvVCfjjz/E3Y+htBovCZjAz2AmCK9Ep+DPJ/MCjyguTY9avqcO4zPPLxJOCO7AgpNvEmXPTwSNz49QzlPO4EAurw6vz086K6+vLCthzw7hp09RaHmu2112jw27468TLPgvA4bmzzYuhu9lv1ZvVosRjyny7A8qkbuPBaCBr1X4X29URFPPZGf6zw7c0m8QdG3O2YXmjwRg7K8mVJLOyWAUrw6C7I8sZqzPHPm7rtf6U69YVHmvL2FBz1p+hy9VzZvvN7yYbzSXK08AgrNvMF7sDxNCFI90s7tO/qPO7xZi+C8EuvJOyfVQ7wxkaC8BsfVuzUViTxVgpE7WCNJO4EAOjus3aq8hr3CPN6mG70dbga9uScZvX9W1zzqTyQ8sK2HuosIizyzAsu8XTVDPHHmnDxVLfK7CBzHvKTCMz3899I8s7aEvMX/GLuyYeU7AFZBvH2iS73IQTY9vGm2PKTVWTvW1+q7I8xGPRUHGzx5cwK9vR1CvcHt8LwJ0FK7/PdSvOoDsLywYZM6DDjqPDe2QL35MCG8pollvAABUD1eirQ7FuGgPPtW7bva1r67HW4GvXZ9Kz3sWKG8ezo0vARMmL3Zbic9htDou/B0xDwn1cM82+lkPExBILzQ9BU9WYvgvPKQlTwJvSy5qkZuPR5bsjsyDAw946/qO5qUljzOEeW752xzvNZlKj2Wi5k8OQsyvC5ZfrznWU29zmaEO8bZHj1aGaA8K/HmPG8yET0xRSw9yUE2PH73vLyZ87C7ookTvDyG7zuwYRO8D0HnO1KytLywhw29BbQvvL2+p7mFe3e8kOtfPOM9qjtYiw69PIbvOx/WnbyLjXG8uE2TvFS7MbxoF2y8S15vPCgXD71CQ/i8uhTFPD4n1Tzj3o+8nPwtvEGFQz3qA7C8PwoGvYEAOrwWlay8EPVyvc5w/zsuPK88DDhqPS3nvb2TlcI8vGk2vVkZIDzlpUE8z7JKPCp/Jrwa/UM9pMIzPF7WqLsOerW8QzlPvDLAlztpWTe95lnNO3fv6z3a6RK9STgjvUpebz2SLSs6XPN3PF93Dr2FHN08/Ar5vKCmkDyxYRM9jyQuOwqE3jyXnr87usjQvIouBT1k6CK9iCXaO/qi4by5FEU8c9NIvYG+7rxbzSs9B2i7vB1bsjrKVNw8WrqFO9BTsLt5cwK94z0qu2uuqDy0FfG8cMrLu6cgojw4tsA8we1wPBgQmDyDVau8aUYRPM6ySrt5+Gi9GFzeu4OhH70YSTg8SISXOtTERDxBhcM87gytu4V7d7vFSw08og4oPVeLDjzFl9M8OjH+O/B0xLx6rHQ7XJRdPFXXgj00O4M95PG1PJOoFryo3lY8gxyLvHLAorzZbqe4BNH+uqCmkDwKcTg8ki2rvI1wIrzbw5g85biVPCboF738Cnm9rX6QvScXDzxEjkC7HiKSvMmgUL0xA+G6e4+lPBwZZ73w3Am9RO3avBKfgzzuH9O8cR89PND0Fb2Keku9vjmTvG+3pTx7j6W7vnKzPHceET07v728Kn+mPHcekTxVLfI8DXo1vAgcxztvMhG9losZvBYH7T2ny7C7vhOZvPiZ5LwVqIA9WHi6vM7+Pj2fzIq8+labPV9IaTpRJHW9fbVxvXkBlLx5TQi9O9JjO15I6Tzn+jI72umSvLLAf70wA+E7iy7XvCNaBjvIoNA8qdQtPQ+NW7td1ii8f6tIPU8beDx23MU8NhVbvCp/pjz3Okq91VIEvfl8lbxmnK48t3ONuyt/pro4Vya8YzQXvZB5nzrJQTY8cQwXvZoZ/Tu0apA7Dez1vD58Rj2ZUks8lKhoPKY98byo3lY8pyCivOPeDz37Vu07wMekvNZ40LxqWTe8ZOiiPAi9LD3uDK28uRTFujjJZr1HqpE82YHNvFfh/TvSXK07wcekPfuiYTzmRqc8vAocPcqDAbpHVfI751nNvO4MrTzZgU09PwoGvdjgZz3w3Am7RKGUO7lguTxhpoU8wy88vS88L71D7Qg9W80ruqD7gbx5J469vYWHPHuPpby2+CG91tdqvBplibzqdfA79b+MvFDFCL1JS8k8wcckPWWvVD01Tim9SewuPWfxH70PLsE8DEEVvthupzzryo883zQtPD4wgLx+vpw8TQhSve5rRzzEl4G8qDNIvR1IDDz4yIm8ZpyuPckIFrtpuFE7bWK0PNK7R7wiGLu7BaGJvJCMRTwAQ5s6KIlPvMxKMz09Ovu8Ar4GvUbjsTo4tsC8NAzeujjJZrsQ9XK9eOXCOz+PbL0SNz48Ds+mPf+htTvH2Z48mPOwvCJ31bxD2rS83aYbPOYzAT0vPK86BB1zvCszMjwMOOo84PsMPS/wurzrFta8gnJ6u6mSYjtETPW8D+LMPdw+BDxjNBc9VC1yvR1bMj25c988tVc8vTFYALzuwLg81SNfPCiJz7tZugW9X3eOvXmGqLyOg8g8ALVbvU9wlz3WLIo8G1I1vRGWWLy2amI9NgI1PeBHU7tMQSC6Kt7AujUVCT2/Jj894z0qvH73vLylPZ88x9keO/Lc27zEcYc7NRWJPKTV2Twid9W8qMGHO9MQuTtblAu9pYnlvLasrby2C0i7I7kgvQYTyju5FEW8x0tfvEheHbyxmjO7MANhvMIclj0rM7K8XTXDPMqWJ72ACuO8e48lPU+ptzy1Hhw8/o6PPNMQubumKsu8PjAAvTvSY72ECbe7nxjRvDu/PT2r59O8lVx0PE5KHTxJS0m6tVc8PFyU3TxSZsA8KOjpvGilqzw3oxo9R1XyPFvNq7z5MCG8pipLvLswljzYbqe8IgUVvGX7yDykwjO8b7clPLeZhzy0FXE9R+OxvLrIUL3qweQ8mQbXvIZeKD3SIw29ylTcPIUcXb1ICf48j9i5O/7tqTywmjO9iBK0PEWOwLz2RPO8Q9q0PZvphzuqRu68+0NHPKTCs7zMEZM8lJVCud7MFT2r51O9feSWvMaq+bwOLsG7SapjPfVEcztUXBc8r0VCvFDrgju9HUI82p2ePSFkr7x5hqg8pz3xu0HkXb3cPgQ8D0qSvAKYjD0Sn4M8wcckPWHySz20ttY8xPbtu52dk7s+fEY85biVOkDkCzy4v9M8ZwRGPLJOPzzOQIo8+JlkvJtIIr0cGWc9JDSMOcd6BDwlk/g8wO0evEiElzzF40e8W5SLvMWELb3n54y6yOxEvRhJuLqhzFy8+lYbPAiqBrwrpXI8rMqEvZoZ/bpbgbc8PbUUPXDdcT0Jvay8aJKFvD58Rj1X4X287tOMvAQAJD2cbm48tvghvcd6hL0n6Gm9AAHQvMiNKjvGqvm8g7TFvD58RjysKZ877Lc7vUteb7y0tlY95N6PO1uBtzz3TZ48hWhRva6RNj2fd2s7pj1xPdjgZ71w3XG8xkvfPK2e7jqmHKa78ZSwvE7sGb1l1cA7GA02vPpm+Tvcv4k9LTwVPArOVzwLjBC9qDXKPKcNyrxGTTw8k0yjPHZ4Hz3Lowe8+awxPKn+bTwKLTS8XDbjvC94FTcNyBA9PFiXPIVsIT059BY9FgiSPAy0kLwgt/47pnsCPTn0Fj2LXCI6ulZwvGK8HL3DLKo8NpAWvbwFzbuCrui8jU3GvGOFQD2d3CS9rp7uvEgQGT1fDUC9lcQjPfl11bxO2Bm9B1ZXveFkLrs/vBe9zgcIvf+csrwkEJQ9h4VFuwlH+zxbuBu83C71vL2bhbwCV3q9i+7puxrH/TqeTwE9gw3FO6Hm7Lwj1JM9Ae2yPAN0D70LLbQ8kz3Hu+lFU727fnA874+MPMB9zbs81t68DqU0vaiPArwIKJA8PTU7OwbYj7xK7Tw8Bo2zvGmYHT3eIwq90sbzu9gzib2PZuo7/3SyOn18ID0EiI88XfQbvQDFMr3wywy9J97bu18wHL3DTwY8/975vN4jCr0Cjla8ns1IPVj1vjyAXmg9ZXZkPVMtPrwXCBK8Ki7cvJ4nAb0Iptc8mBSkPLTFy7sFZTO9MKCVvG8VwjwYWBI8yPSqPPozDr37nVW8DB7Yu9kV0buMJcY8bjieuvgW+TxArbs7zP5yPdTuczvW1Ky8SfwYvaj+bTu0WwS8QZ7fvOTcLj1cuBu6lcQjvLhlTL3AHnG7ILf+vM3Lh7xToJo8zvMHPccXh7wJPBC9tG8EPSKskzxmSJ08em7nvOl8L7xiJmS9d2SfO0t0Gb29PCm8jz7qOkjFPDrRa4i74/Z1PVhAm7z2XDE8ARAPPAUG1zyl9CU9fkVEvYU1RTz1fw29APwOPVEFPjw+XTu6ghyhPJk8pLxZaJs8rK3KPCLffrzJvU69W7gbPQ9f/DwFLle8vHMFPFMe4jxnNJ08PdZePQ6ltDwKZJA807sIvXhVQzwiB388CKbXPAh+17xbRT89cC7mPDzW3jxm1UC9iOQhOpgUJDx9HUS93PsJuj01Ozz594078gcNPTxYF73BRnG8aYQdvEgQGT2QJCO34+sKPaom7rzsK4y8WnybOw4P/Ly3BnC8M25dvfju+LyhfKW7rTSnvIyEIj0vVTk9lGXHPEycGbviVVI7CKZXPbXtSzy2TKi9phymO8C0KbztXnc8fw7oPEs9PbzGRU68uPuEPIQNRb0MHtg8nEZsvM3fBz1E7l+5fzZovNJcLD2lPwI8m+sAu5YjgDxRUJq8B7UzvGlwnTzffvU8y0SrPP/nDj2xTcu8ILd+PBomWrwX5TU6An96PO57DD2gLKU8Ki7cvCr3/7wIftc8XYbjOdycrTwKBTQ8W0W/PKMObTxKYBk8Or26vJMG67wr7JS625wtPVEFPrxdlT+8YdbjPHigH7zQVwi9mTwkvZXEI70N3BC9JPwTPR0/frnQQ4g8bY5lPNj8LLybVci8Fl5ZPZqvgLwnp/+6rC+DPYGGaL2DDUU8J2AUvTc2XjwKzte8pxymPPv8MTz3xni9+E3VvIwWajyZpuu7bY7lPCI+2zsLzlc9EWiRunZ4H73IKwc9ASSPvOJkLr5bbb+7h4XFu+d3C715pcO7Pl07OEjUmL2ebmy9TxQavRRtNTyTPUc8txVMvbL3g7vvRLA7hA1FPa/9yruJ1cU7KZyUu6q8pjse1Ta718XQvKgNSryVxKM9153QO289wjwI7A+8m+uAOyFwEzwDdI+88fMMPEbAGL2mhu28Cs7XuwgUELuX3ce80jSsPFNVPrs2Dl46zgeIO+JkLjwR5lg9LBQVPTSW3bu7SwW8PNbeu7yHhbym5Uk77D8MvP8G+rwCtta71YQsu6J8pbzIzKq8CUf7u5k8JL0KLTS8NebdPJUPgD2kNu28mZsAu9JrCDz/0468Bff6PDtEl7vcxC29YybkvAotND2Qjmo8k3Qju7/rBb18vuc8R3U8vdAvCD2R7Ua8YdbjvIL0oLyAlcS8NkU6vDPNubzatvS9Za1APcVFzrx7LKC7oPXIPIhOabxB1bs7s/ynOS54lbz47vg8ymeHPp9jAb0RaJG7kI7qvI/8Ij29h4W6CN0zPfRXjbvSXKy76B1Tu39tRL2lU4I9SJ08PeUELzrGxwa9N6SWPAHtMr26fvA7RqyYPWWtwLsFZbM8nm5su5Pe6rzZW4m7l7VHvez0L739Fda6PYAXPUUWYDxArbu87VMMvS08lT009Tk8APwOvcIEqjldvb88nBOBvPyO+bvbPdE8KD04PAWwjz1Arbu8daZmvaJ8JbxzFJ883WXRvMhe8ju8X4U6XuW/OwQ9s7yW7KM8NPW5PPjPjbvOBwg8yuXOvFC1vbsFLte6P7yXOv6rDjsfSBM7xFSqu+nm9rpigJy8nX1IOqnfAjwiwBO97T8MvQQGV70uLTk9pG1JOwQ9szxPVmE8RHAYvNlMrTzVFvQ8liOAOiJ1N7yR7cY8J6f/uyCEE71LPb28o8wlvC7O3LtJOBm9LngVPaaG7TvgPC48Rk08O7WDhDyPncY8HIW2vKjWbb35TVW78SZ4vEjUmLzBbnE67uXTu5MG6zxXbuK8GTU2vcSfhrw8bBc9I2bbPJQu67t9HcS8nBOBO6ytyrwWT/08l7XHvJd+67vEHc69hV1FPQ3IkLvbvwk9uZyouqijgjzX/Ky7qGwmPfPksLuStmo8V/CavDCgFT0l7bc7g+XEPL7DBbwNyJA8pmeCPNTPCL3UTVA8Rz5gPUEMmDzQdnO89FcNvdwGdTzOy4c99FcNPan+7Ty7FKk8VywbPWYMHbwbhTa94teKu2TkHLzVPnQ8zryrOZ8Epbt7lme8cS7muxxO2rzJHKu7Pl27uzle3jxNiBm8kxXHvKtO7jykNm292quJuRxO2rzIXvK8qgcDvcbvhjy0xUu98MsMvHZkHz2ezcg8Ko24Owu/+zvrlVM9m1XIvMPNzTuqvKY8tpcEvablSb3p5nY8bz3CvA+WWD3WnVC9voypPAzne72JrUU8HT/+PHZ4n7y8Bc27LmQVPR0ME7sUzJG8bSQevRBf/LuNdUY8dSgfvZMVR7zXZvQ9uWVMu6nLAr2j24E9ke1GO4HMILylvUm93jcKPdznCb0stTg8XDZjPaBUJT2plCY93PuJPKblSb0fXJM8l7XHPHhVQzv/Bvq8NR06O7vdzLxXbuK8H49+PNWsLL1YQJu8t6uEvMmVzjzfS4o8Eg7ZvEZNvDxH1Ji7dQXDvA4PfDznzVI8DUbYPNadUDzrlVO8Gl22vE7sGTwVJ/07ZHbkvKqUprzI9Cq976OMO0yImTte5b88qrwmPeYEr7yZzus7ow5tu97srTwGjbM8qrwmPUEgmLzXMwm7zGyru7hlTDWb64A9PjU7PVNkmjyipKU7TwAaPaBUJb3lpdK8clZmPE7smTtakBs8Ko24PE6Nvbw3bTq8dH5mPGKonDoZ/lm8az5lvVp8m73cxK06/5yyvJqvgDytQwO9IRbbO+Gbijx1pua8NkU6vc/zB7xbbT88MUZdPDd8lrtcNmM8N7iWva+nA704uBY8phymu78ecTwcTto830uKvHN+Zj1A+Je8u37wPBa9tbtWRmI84DyuvM4HiLzHNvI9Y05kut9LCjw/lBe9em5nPdhbCb0iB/8896eNvGf9QD3R1U+7AkwPvU8Amr3O84e85k8LvaX0pbx+RUS7xPVNOnctQ7ti/mO99VcNvCJ1N7y8BU08aE3Bu+N90jw7ht68z05zO679Sj1mDJ08LlCVO/jjDbw81t48g+VEvC723Dufvuw8y0QrPECtu7smtlu7qGymvORGdrxdhuO8pnuCOwWwj7zijC49Djf8PJtVSLeYh4A8idVFPMrlzjya9uu8FKSRPQD8jryq84I8Igf/O2KonLwUlTW8uxSpPL2vBTw65bo8C1U0vIeFxbzRnnO9G4U2PK127rzUTdA61p1QPSzdOD3ijK67U6AaPY6sIj3XHwm8SmCZvCFNN71qrB06rWsDPa+ng7zb0wk9nOsAvK+ng7yazus8Igf/PPIHjbwirBO92YMJPeKMrru6N4W86kVTvAQG17vTJdC8uOcEvdXjiLylU4K89AwxPXA9Qr14tB+9dDwfPCgG3DzMt4c9NJZdvQPeVj1IZmC9mZuAPDekFr415l07uC7wO0ZNvLznLK+7iv3FOzle3rxHdby8SJ08vTe4lr1y7J482RXRvHZknz065bq7/hXWO6zkpjz2NDG8JI7bvAygkLsr7JQ8N6QWvP50MrzVdVA9xFSqu5WcI7yYFCQ8kwZrvHoEIDzVddC6LmQVvTuu3jyt1Uq9k3SjPMvlTj1ttuW7ZzQdPbg9zLsf/ba8XDbjOwgUkDxNBuE8GWwSPNX3iLy3v4Q7Je03PP6rDj0+/t681j70vB0X/rxNsJk6Fl7ZvCFNtz0qVtw7kI7qPKPMJb0Z/lk8Fr21PLIfhL3NlKu7V27iPBBAEb0NRtg8t97vvO6ud72/HnG9FoZZPJN0I70PzbQ8RISYuzr0FryyHwQ8aXXBPcMsKj0B7bI8qcuCuyLAkzxl1cA8vHOFO69cJ73D9c28Dm5YPcbHhruXX4C7LN04OplzgD3q2wu6XOAbvWMmZLyQJKM8MdwVvSTFN72gn4G8f21Eu6wvA71mSJ08TS7hvH82aLxmSJ28XKSbvBBAkbyP1CI9dH7mu9Y+9Dziw4q8YYAcO6q8JjzvDdQ81Rb0PNfF0DxcpBs8hl1FvKuFyrwq2BS9oFQlvJvXAL0I3TM97CsMva+7gzwEPTM86kVTPIU1Rbz0DLE8wk+GPEUWYLwGxI87rUMDPb4tzTxEhJi8t3SovAuMkLxttmW7D800vQMVs7xIZuA75gSvvE9WYTxsxcG8c35mPZr267wGH3u9BrCPu9I0rLw2kBY9748MvcD/BT24Zcy8d4wfPVWlvjwFZbO5+M8NvXsEoDyj24E8zP5yvct7Bz0PBJE7bkwevVZuYrwEiI+8C5f7PKRebbu+Lc08VH0+vUk4GbwqLlw8MUbdO0MlPD1wnB47An/6O7xfBb37xVW8AAd6Oyr3fz1j0Jy8tkyoPL4tTbylUwK9Eof8OyGYEzx03UI9PTU7u2udwTzV44g93Y3Ruglv+7rV44i8lQ+APN43Crwu9tw7dx7nPCnElDtaHb+6YjXAOnSm5rq4BnC9fqSgPWju5DvcBvU8ljcAO8t7B7xF7t88XF7juyC3fjwIKJC9WpCbO7ILBL3dD4q8Iwd/u9XjiDs/vJe8s0cEPTAeXb2gVCW8wqVNPOwrDD11BcM81M8IvNredDykFwI9JhW4uyJ1N72sL4M9Ux5iO3XdQrwv9ly9lo1HvYr9Rb3ZTK27IqwTvW7e5bxocB29m1XIvFu4m7zQTvO8wTsGPKpdyjwEPTO63rVRPEedPLy0JCg9dx5nvLQkKD2L7um8CTyQu2rUnTwA12o8UmyAPHE6Q73NOC28A/CxundBjjyR/jA97b9bPUabqTu2nqY6+ZAyvS2PSz1Ebw+92yygPEfivTxxd4I8hy3au//W6rxj1Pg8tleSO8yRvbyzcgw9GZw0O+yKQz09uFY9kBAtPUn7BL23GlO796KuPF6whTtpVhk8zMZVvNZilDy4CFe8yHh2u1hrJL3EVVq8+/mLvYaxrbwuwww8MiQ/vE0eobs0jZg88g07vYhYnTwmoiO8I7QfvXzOWr3qnD88UPqovNssIL269lq8b0w/PTkZjjzdYbg7nZLIPPxBd72Ewyk8/1o+vbBiQ7tj1Hi7FypdPTHvJr35U3O9nc8HPQePej3UxXm86py/Ow+ESbuStxy9py6HufgdhDz1tCq98g07vAVaYr269YM8itRJvMknjTtygVe8jrBRPWfbQ7yW2jg8evLSvKQVQLzkVoe8votOPc04LTxPiNG7X6eHPDfuSryIG9683iT5O5q2wLp3S2O9LtWIvNaz/bt74Fa9DQgdvFj5TD0Cftq7Sr7FPZK3HD2CY868RHDmvHLzrjv0iWe8RDvOPCxaMz25eq47MqDrvFsSlDy9VjY9+B7bO8XHsTyMws286WenuzGokrnnwDe9c29bPQ2WRTz6DN87xccxPfINuz27K3O8tmCQPB4xKDvrVSu9iRGJPLAbL7zD2S09nQ51PLO5oDyi4Ce9eIB7vBy/ULwO/568/bNOO2VxEz1IVBU8U+isvM1/QT0WrjA9zyYxO73kXr2AdUq805BhvQSgHz0GUI27BaAfPPxsOrz1tCq7qSbgPKKjaD3RzSC8eh0WPYB1yjydDnW7I20LPdapKL2pEw27r2LDO5N5hjsRKzm6+BSGvNR0EDvb7om8hy1aPLrBwjy5Pe+8TlO5vCXpNzwlW4+805DhPH3O2rthWMy77A6XPMlcpT39JaY8Ee75PMVLBb2C1aU8ZXETu2gPhTvYCQS93t3kPEZmETwYKt27RG8PvdOGDDwf4mw7KvACvb0Z97vAthE9E2BRPB70aD1AnIW8ofIjPCSs+Dvym+O7hyOFvER4jT3Ekpm7DBGbPJukxLyRggS9eARPvK34kr0bv1C9wa0TPbl6Lr2xCTM9WLI4O0kF2rv5U/M8rEn8u8cwCz0ya9M8M1iAvLHLHDxXh3W8Goq4u16whTzPoYY8d0oMvEabqTxkuKe8sZfbPBauML0jvR09exQYvfgUhrztQ688gapiPJSlILyRi4I9mDoUPF0AGLz+6OY87NFXPR0xKD2OLP47oaIRvccwC7y8aDK7cvMuvaVK2Dr8bDo95KYZvFGzlLzUArm8eDiQPBzzkbxybgQ9sYQIPISG6jxJ+4Q8bexjPODBE70wASO8r92YvE2azTyfvQs8H9iXvM36Fjw4K4o8lGeKO0LIn70KNmq8jD56vPdkGD3iK8S8BPCxvN9PvLuM9o687A6XvAJ0hT3neSO8oaIRvNQCuT22Yec6AUnCPDNZ17yzunc891uavAvcgjyjo+i8MMTjvFtZqLwpfqs75tIzvVwJlrk6EBC8nNiFPWAjtDxLrEm89InnPA89Nbs2uTK+mETpvH75Hbw5I+O8liFNPGKMjTz3oi69knkGvT2DPr1scLc8sYSIO2u3S70zWAC93pbQOPgdBD0y76Y6nZLIuyP7MzyfBKA8/EH3u0Bfxrxs6wy9/SWmPfZtFr2sSfw7LFqzPLZXkrtSbAA8YNwfvUxlNbz5kDK9w6QVvYIcurroPGQ81mIUvF25Az1mIYG6gt/6vOg85Llwx5Q8uXouPdeXLD35U/O8N7kyvIpQdjwCN0a9GF/1PGlNmzzx2CI7jDSlvFuOwLs2RoQ823O0vJcP0btAkwe9teW6vILfejxyboQ9cJPTvPt+NryoHIs8mIEovUDb8jwu1t+8mzJtvbeMqrycXTA9IM8ZPdMCOTxhnom9+dfGPAeFpb3l0rM8v78PvIhYHb1HF1Y8oxVAvWpFdL1ZJBA9sJYEvhheHj0aDow8bhenvMEyPj2kzqu8B8w5PJkxlrqWVmU7ytjRPPW+fz4VeZg8h2GbPFpZKL3aSHG6d706vE3hYT225bq6RHgNvPT7PrxnXxe9wMBmPczGVT3e0488kf4wvTlgojxt7OO8f/CfvGr9iD2fObi8dhbLOWnJR7tYsji99fs+usAH+7x04TK9Ui/BOzc9hj3e3eS7pjcFvVVS3bwaBQ487QbwPIGgDT2vYsM79Pu+vJOuHrwtHfS7HEMkvATetTr/Hf87ofKjvFpjfbt8mcK8yOrNPGNGULyCHDo8+B5bPCSseLzj5C+8uXouO9zv4LwSp2W8AEnCOyvnhL0gDbA7LwGjvAzd2Ts6WHs8/1q+O1BBPTuQ0208pjjcOlpZKL1Oz2U8XjUwvSS0n7ycIHG9FjxZOkt3sTy6M5q7VZlxPNaz/bsvxOO7Ze2/PNHWHjwTYNE6kBCtuzIkvzytLSu738oRvS9IN7zl0jO8FESAvNjMxDuQ02080JgIu4LVpTyatkA88diivA/2IL0drdS86iroOlxHrLxOFno7YlhMO3e9urmMwk08XbkDvUW3ejxSbAA8tp4mPfoCijy//SU9YsqjO5+0jb0wNjs8BKCfPI3tEDwofqu65BlIvVCIUT2Q0228lp15PYKY5jwQr4y82wFdvdXwPD15L5I8XnxEPb4PIr2L/ww9h3RuvFJjAjymOFy88g27uzZ88zyzuaA7mIEoPR7hFT0pQJU8CQFSvBicNL1SqpY82cxEPYLVJTqvn4K7qKozO63w6zsnU2i8/8yVvb/9Jb1WfaC8SzAdPIU1ATzmlXQ8uAcAvMyRvbwVPFm9bHC3u4qNtTx04bI87A6XvJoybbx5OWc8fFIuvYHfejvUxXm9ODXfvGv+37wixhs8vg+ivAQlSr3p9U89LB10PHG+ljxbY/28re+UPb+/j7pLOnK8yR/mu6LqfL35Cwi98KMKPCwlm7zrVas8cNCSvQTetTziuBW8kYsCPQOpHTwWcJo7KmyvvB14PD1VUt07RuI9vISG6rzEDka7SjmbvM36Fr0jdom9FjIEPsmjObwpfiu8VdYwPQECLjtVmfE8aCLYvOSncD1oIli9r2LDPLwhHj2gtWQ87b4EPYw0pbz4HYS869CAvPgUBroEoJ88pUpYvWKMjbwyqJK8UEG9vMAH+7s+9ZU7UnbVu19qyDzRj4o85dKzO5ooGLyLezk9HjEovNCi3TtduQO8akSdPISFkzyeSzQ8tah7vHomlLx6bn+65BlIPAg1k70krHg8DZbFuQLFbrwt1l898WZLPN4k+TyWVY68Txb6OxoFjjymOFy6pBVAPOvQAD3uv1s72rrIvGVxE71o20O7OhAQPVxHLD2Adco80c2gPBNO1TzTuyS9JLSfvIctWjydkkg7k7ccuoYsA73PJjG8bTN4vFXWsDwtzAo9kBCtuwOyG70cQyS9jp7VvCpsrzz7fja8lSFNvQCQ1rwokKc8bHC3vP7ekb18mcI7unouvF7DWDt7ZCo92FAYPRcphr0i+7O8ZLinPLr1A71JS5c9Uuisu8pmer0INZM8SzpyO3aIojwBAi68kzPJPEVmkbwgVMS8ujOaPaVK2LrfEv26wTI+u/kM3z0PhEm8FJVpPFZ9IL0hiVw8NzSIvL7IjbxJS5e9GhjhvLk9b7xCBja8xFXau/eirrwxNrs7kYIEvXgETzyeSzQ77IrDPG4XJztqRJ08035lvbzaCbsqL3A8AzdGPAuoQTxLMJ28DRLyOjCxEDwlZeS74rlsPJ7GCbzmRAu9xFXaufMNOzlxyOu74Mvou7WwIrzAwGa8yaM5vPYmgjy6ei68NBLDO5MzybzFQge89H+SvbydSj2S/jA8OCKMPLk8GD3pKmi9LVozuxFyzTt/uwc80knNPO+siL04K4q8LcwKvYZ0brk6lTq90oaMPEPJ9jvxHzc9zrRZvKY3BTz/1RM9zLyAvILVJbyfOTi9Hx+sPA89tTyInzG9WlkoPfORjrx++Z28HjGoPBdnnDwz3Sq9xYpyvZVejDwhDTC8FypdvG3sY7zAedK7f7IJvcgx4ryEzf68ODXfvG6lT7uSwXE6k+w0vT71lbsXKl08kNNtPMjqTb02uTI9S/IGvdssILwynxS+T4hRPHG+ljwWcfG6scucvBgq3buVXoy82FCYu33OWrxOz+W8r92YvFeH9bxrt8s8QOMZPK50v7sHhSU9JaKjvNYlVbyHdG68a7fLPNw2dbyg8qO7KrNDPPW0KrxODCU8uXquO9GPijqhJ7w8bHA3ut8IKL2M9o68U6ttvcgxYjzgEn09j1fBOx0xKD12kSC7FESAvCZlZDt+h8a6gapiPFBBPTyCHLo84+QvvLZhZ7zQot08vRigvH7EBb282gm9cm4EPLk8mLwe4ZU97A6XO0KBCz0OEvK8DoTJPNcSAjweMai88g27uwM3xjy+i068/ecPPQaPerve0w+8dCjHvGamKz3eJPm83KhMPNR9DruwlgQ8RG8PvHWkcz01yy497dHXvG2lTzkw+fs88WbLOjPdKjz2dhS9nzm4vAF9gzxcwoG8TR4hvHThMr3Xlyw9je0QvfINu7wf2Be85Z2bPJDJGLxytRi8mjJtvKHyo7ypY5+80aJdO+wXlTwOwQi9lV4MvH6Hxrx8mcI7wAf7O9HNIDzq41M7oIBMO+d5ozvuQy89H5oBPeH2KzyqFGQ8GhjhPClBbLxle+i8Mp8Uvf0lJrwTi5S8S3exPGpF9LxupU882rpIPcsN6jtygVe8AbuZvDpOpryzPsu8gmNOvKjfyzxX+Uw8OdxOPB7hFT3xZsu8IJGDO2amK71n20O8CT4RPZEQrby2VxK7SUKZu5HAGj1BTUq8Ub3pvCyhR7s2uTK9VQvJPIw++rzDpJU7FoPtvGqCszyTM8k8emSqvAJ0hb3pZye8pX4ZPfgUBr1xvhY9z6GGu0q+xbx+QLI8QsgfPAOym7taoLy7LBydPSBUxLws3ga9jeSSPEAYsrzZhTA9BGIJOxv8jzxgaki9GReKPM777Tvw6p49cbWYu2KMjbwpQWw8mETpvJ7GCTwFWYs8bCmjPS7W37w/ccI84E+8PY0sfjwXZ5w8ywwTvMkf5jwWPFm8SExuPA7LXTz7frY8DhLyPHAFqzxJ+wQ91mzpvK6ogD3sDhe8aVYZPcTZrToNlkW7qCWJPK+pV71yrJo8fsQFvcOcbjyMNCW9hAq+vCvnBD2MNKU5hFHSu77SYjyHI4W99zBXPDqVursBxe48Mu+mOyFURLxt7OM823M0PSK+dDv5U3O9XbmDPKLqfD3ZhTC8FypdvEkFWrwINZO8IJGDvD24VjvZzES9EHLNvNYl1bwn17u8FjxZvEabqTwb0Uw8eHYmvPKbYzw+7W68EXJNPTyDPrstzAo9cXcCvZ/HYLt5bv88NL/fPFoFvjw03zO9GhQDvFUbyTuYwSa9BmqkPKsbcz3tfBQ9i4isvEnwLb3E0aU7w1ogvfFolDyA5AA9WKCtPBCH4Lk+TII83EewPMbfBDwEfBm9HeAuvN4VZz3TgaU7s3xtPcgEbT1XgFm7nRTCuii0mDw8Lrk7OmCCPKrEwbvyz6+8/+jVvLn9u7z/6NW8nwLNvPKvW70QHjq86JIfPfgQ1rteEZK8n+L4O+mQlL0M24g8oHnSvKrWNr2cnTy9tpgrvFDIrbyWHO68tpgrvOR2YT3eFWe8e3ERO+WEQD1c80i9iaqLOTrZEr3TgSW9xShXu9o5UT0Qp7S8PhxEvfLfGT1np149tYpMO6McALy1qiA795lQvWuDdDxPmno8VMSXO3PS+bzeFWe9/wgqPRrE8Lw2zb47O5ffO6N1vDxzEqK8fqbjPF+YgbwNQiQ8bDoivEpnszxWsiK7GsTwOlbCjDxjhIG8Ln65O7IlPLsH4ak88MHQvGuDdLwAoAM9qy3oOx/uDbzvKvc8lhxuOhNjdj3rjgk9tgHSvGwaTr0QpzS8XsF/u3PyTT0luC49u+vGPFFfh7wjqk87Hle0vJ8iIbzBLO08siW8vOf7RTwedwi8lcU8u+XtZj3nK4S7wsPGPDckcD06YII9i5gWu28WODq371y81AYKvfQ0wLxG1O87tpgrPdhLxjuCgvm8aB5kvaOVELyxjuK8BfOeu6b6oDui/jY9cTSBu/8IKr1HEg09ZCL6PI/bxzzklrW8CxTxOz/DB7x7Yac8VITvvCqCTzxhZjg8sgVou0/aIjwlPx493b61vIzf3TxhRmQ8WffeO1puZDwJZo69g9AAvUQGubzX9BQ8Jx2/PIP5/jx7cZG8D1ADvFZyejwZjZM8NTblu2OEgbdWwgw8e0FTvPNGNTuCwiE7JEEpvAZK0DzA1bs9T1GoPDpALjzeVQ+9sc6KvFn3Xry+gJW8Lp4NvavklTyncaY8S77kvBefCL2COac7CDhbvL3ZUb0ZjRO8rinSPBrkRDwGeg49FigDvUhZVDvcV5q7TiP1PD+TyTmFvgs9CzRFPCPKozypbxu9VMSXvNxnBLzEkX29I4r7vMDVOz2DsCy91MbhPBd/ND0Qp7Q8oKkQPQCQmbvZwks9I4r7PPd5fL0zaC66E4PKvBxJVTxZN4c8prr4u43NaLztPOw83lWPvBI8A7wwnAI8fU8yPSk7CLu53ee8i6gAPZ7ieDzvKne8BfOePOB6d7u2mKu8B3gDPSITdjyMDxw9tBNHPFMNar0hvMQ7Ji+0OqCpEL0JJuY8C1QZPalvG7wiUx68GW0/vSf96jwI7wg8wxr4PDVWOTxxNAE9bDoiOraoFTxPUai8yI1nvBtbyruCOSc9d+63vN4V57pRPzM8ER66O1MtPrglPx69M2guvaw7x7zWfQ+80urLu1zT9DuXWos8fz29uzE6ezyCwqE9j9vHvJ5r8zxKZzM9rinSvMc2Nrz7lTq9AQcfOyi0GLxabuQ8OiDau1rl6bkU+k+9g8CWul9YWb1PUag7llyWvOnJfD3TYdE8v8fcvOzlujt5vO48dQAtvkCxErzLiVE8+5W6vEQGuTtXCdQ80ByVvXEkF73xOFa9j9tHPC6ejTvq9y+9qT9dvEaLnTyFvgs9FXHVu1eA2buaj1084LqfPGen3ruPCwY8G3uePP36Sj11AC07iXpNOnrqoTyBK0i8/YNFO5smt7uOhBa9R+JOvU5zh7xptT28gStIvF2KIrt+5gs9RAa5PEqHBzoa5ES79atFO0v+jDzDGng9HLJ7vA1SDrym+iC8VzmSvOr3rzz8swM98ybhOuwFjzxnx7K8oFn+uOSWNb1HAqO8bZHTvMbfBDxCOAI9LQe0POhyy7z6HjW7AU5mPPRUFL2Jqgs9mViAvGfHMr2rLei8S964uwMFlDzzvTo9zDCVvSQh1TyFnje9qvYKPWujSDuQggu9fOiWPDNoLr2ScBa9hEcGvMEs7b0JZg49NVY5PP5xUDyO+xs9M4iCvCamuTy1qqA8yCTBvP8IKjs+/G8+qPgVvYzf3bvaWaW7QDoNvIFLnLwOyZM9VUuHvKbaTDm4poo6dpcGvX7GNz3+kaQ8oacFPRyye73TYVG795nQvP7a9rwpK549P3P1Oz4cRDypbxs802HRuUZLdToPQJm8uKYKvSsZKTtVS4c9/SqJPAg427wwjBi9t+/cu7WKTD2ORG68KTsIO1t8QztUpEO8Uy2+usp78jsXf7Q8EXVrPE/aIrwd4K68MvEovJBSzbvtXMA7wWyVvKGHMbzAXjY5RSQCu6AwADyXs8c7xzY2vHtBUzzMICu9oRAsvNhrmrwuXuU8iZohvUu+5DzJBG28NL9fPD+TSTuHjMK7zXdcPOXt5rxaJRK93CdcvY5E7jw2zT49Z8cyPfRUlDwzeJi8/WPxPMwAVz1sOqI6fV8cvYOQ2DwZTes8WffevIl6zbwAkBm93wPyu5dKIb3frEA8fOiWPBzyIz2kDBY91U/cPAZqpLxWcnq8MeNJvR3gLrx5U8g8vfmlvCYvNDzTgaU7ms+FPL0JELxYoC28KmL7OgzbiDwv1eo85O3mOzS/XzyMH4Y7B3iDvHSJpzweV7Q8reKKvL/3mr14RWk9vweFOwXzHjwyARO8HHmTOwrdk7ynUVI99YvxvJY8wjyrxMG817TsPPNGtTtl2ae7NXaNu9D8wDvPpQ88LOdfvMcWYjtSluQ8sc4KPDV2jbzcJ1y9NTblPMpCij0y8Si8P5NJvBmNEzz5txk9XUr6PFX7dL15U0g7MVrPvOMfMD0ZjZO70XPGPKdxpjwOuSk8JEGpvTogWjzU+Ko8zi4KPTdExLxKR9+8k9cxvIyWi7yZOKy83lWPvUh5qLx7QdO8sc4KPR/uDb0edwi9uwsbPR3wGD1A6vo84qiqu3GbnDymuvi8Ura4O1LWjDx+5ou82EtGvTwO5bxSluS7MBOIPemAqr0425275qSUvf0qiTztPOw76261vJZcljzC4xo93Z5hPGenXr1yq4a7bTgXOzjbnbzdvrW8wvOEPO4DBD4ziIK6ZCL6vPZCHz1MVb488MFQPB5nnr1Gmwc93yNGvRVx1byYoVI7iOPzOsNqCj1P2qK8eYMGvWRiojzlLY880XPGPOMvGr0gZRO9Yv0RvTi7Sb2zvJW7yI1nu9QGCr2NZMI7biitvMFMwTuAtMK8IhN2PNppDzlGS/W83b41PAyL9rsolMQ8zADXPLVqeLyLiKy8of62Od5VD7ubRgu9uVRtvF1KerzEkf28bXH/PG8WODwl2AI9VymovE9RqLvC84S7abW9PMA+YryYwaY96AmlvCW4rrzkljW9taqguxCntD3fA3I9YWY4PJjREDyoCAA9lG6LvQzbCL05Ens8jwuGvNfUwLoeV7S82lklvU9RqLtbrAE94TElPf36SjwRHjq93wNyvSGc8DvKm8a7I6pPO0GhKL1F9EO8v8fcPJbTm7wy8Si9RJ0SupBSTbtF9MM8GPa5OpQu47xjVEO9HcDavFDoATyR6Sa9UU8dPTvXB7yMlgu9aZVpPRYIr7u7y3I7aB7kO7cPsTy8Ysy7/frKu14Rkj0nHT+73Z7hPLnd57y1qqA9oFn+vPLfGT0PEFu7wSztPHthp7vxaBQ9a4N0vcSxUbw6yai8X1hZvHUQFz3Irbu7RfRDPGDPXr15M3Q8r6DXu5eT8zw8Lrk84Hp3Oii0GL2CSZE7JZhaPcqbxjvzVp+5T7rOvFbCDDyN7Ty90sr3u6k/3Ty9CRC8F4+euyjEgjyIA0g8zZewOmYwWby5HRA9HPIjvbOcQbyv0JU7GBaOvVcpqDwSlT88MAOePKlfMb2ea3M9CK9gvBzSzzxU1AE9MvEovZXlkLupP107fsa3PHy42DwHWC+9LQe0OLOcQb2hIBY7g/n+vE5DSbzV5jU82jlRPXm87rvoCaU7XBMdPYuILDykzO273jU7vdvglDyhp4U8i5gWvdhLxjuJmqG8OVKjvPwslLxN/AE8goL5vIC0Qr3bsFY8+3VmvHjcwjoxio28cqsGPRVx1bzLqaW8N0REOzlSo7yCGVM74JrLu46787wzeBi7cyIMPcp7cj39Y3G9vnArPfMm4bxjNO88FhgZvnEEwzxA6vo8rFsbOg1CpLx1AK26eEXpvCeGZbxZF7O8ljxCvWGGDDsc8iO8sc6KPZ67hbrQHBU7SdDZPGm1vbwd8Bi8zXfcvIrx0jzX1EC8UT8zvJih0jzguh+9pUPzPGGGDDxmYBe8GW0/PHUALbtAKiO94TElPNoZ/byYoVI83hXnu0/aorytkng80NxsOic9E73cJ9w7Wa6MvMuJUTzwofw7hEeGPAs0RbwjyiM8Yt09PT9z9bx8uFi7xr8wvYOwLLwuXmW90upLPaN1vDsbi4g9p4EQvWpcAT0a5EQ7S964vIx2N7w6yag7wWyVO0GhqLtOI/W8OWINvfFYKr24pgo9JdgCvcdWCj1/HWk6VNSBvAJO5rypP909jB+GPb0JkLsnhmU8eXOcPAjviDw1Vjm8rgn+vAtkA73oGQ88JbguPL5Q17srsIK9qta2O8TRpbyEJ7K8YUbkvIgDyDt5U8i8+3VmvOr3L7yFvou84qgqvAZ6jrw0/we9p3Emu8wwlbzSGoq8vGJMvP0qCT0zaC680sp3PF2KorvAXra880Y1PZHJ0jzzvbo7GU1rPfgwqjwD5b+8Y1TDvLGOYr0wbES8VNQBvWOEAT3O7mG9HGmpPKl/BTzCo3K6wNW7uunpULz2Iss8fU+yvCznXzxJEII92jlRPRDHiLzlDbs8EnXrvFmujDzTgSW9prp4PEpnMz3aGf27jN9dvKTswTr9Gh89cntIu1E/M70nHT87iiGRvTLRVD253We9leWQPNh7hLzrfp882hn9PNnyiby083K9uf27PNIKoLxfWFm9EKe0PXPSeTwl2IK8h4xCPA6Z1TyYgf47LRcevAWz9jxmcAG9Wm7kvHrKTTw+TAK8tYpMPcUo1zoVkSk8vQmQvaB5UjzcZwQ92EvGPN+MbDzHVgq9mwZjvOKoqrxym5y7iCOcO4QnMj2MH4a9HfAYPXrqoT3EsdE64qiqPKa6+LyFnjc9clt0vBJ1azvGn1w7nzKLPC/V6jtnx7I8cK2RPPDhJL1r04Y9e2EnPIb16DwH4Sk8oDAAvE9RKDyJek29bigtOvNGNb3LqSW8B+EpvQ1SDr07t7O8qxtzPIPAFjkedwg9euqhvc13XDqD+f48HeAuO1t8wzy0E8e8T7rOPGoswzyhEKw8y7mPuwYq/DuA1BY8p1FSvIgDSLyM/zG9jQ0RPGDvsruJes05mq8xvFMNar1J8K06MYqNPLlUbTt7QdM8YO8yO+18lDz7lbq8iZohOxrkRDxDb188rkkmPVzT9LzAPuK8Ura4uw=="} |