Files
dsProject/dsLightRag/Volcengine/chat.py
2025-09-07 07:27:53 +08:00

216 lines
8.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import os
import time
from dotenv import load_dotenv
from volcenginesdkarkruntime import Ark
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY
from VikingDBMemoryService import VikingDBMemoryService
"""
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
对话结束后,把这段对话历史消息写入记忆库。然后再开启一个新话题,提出和刚才相关的问题,
AI 就能用刚写入的记忆来回答。
注意:首次写入需要 35 分钟建立索引,这段时间内检索会报错。
"""
def initialize_services():
load_dotenv()
ak = VOLC_ACCESSKEY
sk = VOLC_SECRETKEY
ark_api_key = VOLC_API_KEY
if not all([ak, sk, ark_api_key]):
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=ark_api_key,
)
return memory_service, llm_client
def ensure_collection_exists(memory_service, collection_name):
"""检查记忆集合是否存在,如果不存在则创建。"""
try:
memory_service.get_collection(collection_name)
print(f"记忆集合 '{collection_name}' 已存在。")
except Exception as e:
error_message = str(e)
if "collection not exist" in error_message:
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
try:
memory_service.create_collection(
collection_name=collection_name,
description="中文情感陪伴场景测试",
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
builtin_entity_types=["sys_profile_v1"]
)
print(f"记忆集合 '{collection_name}' 创建成功。")
print("等待集合准备就绪...")
except Exception as create_e:
print(f"创建集合失败: {create_e}")
raise
else:
print(f"检查集合时出错: {e}")
raise
def search_relevant_memories(memory_service, collection_name, user_id, query):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
print(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0
while True:
try:
filter_params = {
"user_id": [user_id],
"memory_type": ["sys_event_v1", "sys_profile_v1"]
}
response = memory_service.search_memory(
collection_name=collection_name,
query=query,
filter=filter_params,
limit=3
)
memories = []
if response.get('data', {}).get('count', 0) > 0:
for result in response['data']['result_list']:
if 'memory_info' in result and result['memory_info']:
memories.append({
'memory_info': result['memory_info'],
'score': result['score']
})
if memories:
if retry_attempt > 0:
print("重试后搜索成功。")
print(f"找到 {len(memories)} 条相关记忆:")
for i, memory in enumerate(memories, 1):
print(
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
else:
print("未找到相关记忆。")
return memories
except Exception as e:
error_message = str(e)
if "1000023" in error_message:
retry_attempt += 1
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
time.sleep(60)
else:
print(f"搜索记忆时出错 (不可重试): {e}")
return []
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。"""
print("\n" + "=" * 60)
print(f"用户: {user_message}")
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories:
memory_context = "\n".join(
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
print("AI正在思考...")
try:
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
{"role": "user", "content": user_message}]
completion = llm_client.chat.completions.create(
model="doubao-seed-1-6-flash-250715",
messages=messages
)
assistant_reply = completion.choices[0].message.content
except Exception as e:
print(f"LLM调用失败: {e}")
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
print(f"伙伴: {assistant_reply}")
conversation_history.extend([
{"role": "user", "content": user_message},
{"role": "assistant", "content": assistant_reply}
])
return assistant_reply
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
"""将对话历史归档到记忆数据库。"""
if not conversation_history:
print("没有对话可以归档。")
return False
print(f"\n正在归档关于 '{topic_name}' 的对话...")
session_id = f"{topic_name}_{int(time.time())}"
metadata = {
"default_user_id": user_id,
"default_assistant_id": assistant_id,
"time": int(time.time() * 1000)
}
try:
memory_service.add_session(
collection_name=collection_name,
session_id=session_id,
messages=conversation_history,
metadata=metadata
)
print(f"对话已成功归档会话ID: {session_id}")
print("正在等待记忆索引更新...")
return True
except Exception as e:
print(f"归档对话失败: {e}")
return False
def main():
print("开始端到端记忆测试...")
try:
memory_service, llm_client = initialize_services()
collection_name = "emotional_support"
user_id = "xiaoming" # 用户ID:小明
assistant_id = "assistant1" # 助手ID:助手1
ensure_collection_exists(memory_service, collection_name)
except Exception as e:
print(f"初始化失败: {e}")
return
print("\n--- 阶段 1: 初始对话 ---")
initial_conversation_history = []
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"你好我是小明今年18岁但压力好大。",
initial_conversation_history
)
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"马上就要高考了,家里人的期待好高。",
initial_conversation_history
)
print("\n--- 阶段 2: 归档记忆 ---")
archive_conversation(
memory_service, collection_name, user_id, assistant_id,
initial_conversation_history, "study_stress_discussion"
)
print("\n--- 阶段 3: 验证记忆 ---")
verification_conversation_history = []
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"我最近很焦虑,不知道该怎么办。",
verification_conversation_history
)
print("\n端到端记忆测试完成!")
if __name__ == "__main__":
main()