216 lines
8.3 KiB
Python
216 lines
8.3 KiB
Python
import json
|
||
import os
|
||
import time
|
||
from dotenv import load_dotenv
|
||
from volcenginesdkarkruntime import Ark
|
||
|
||
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY
|
||
from VikingDBMemoryService import VikingDBMemoryService
|
||
|
||
"""
|
||
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
|
||
对话结束后,把这段对话历史消息写入记忆库。然后再开启一个新话题,提出和刚才相关的问题,
|
||
AI 就能用刚写入的记忆来回答。
|
||
注意:首次写入需要 3–5 分钟建立索引,这段时间内检索会报错。
|
||
"""
|
||
def initialize_services():
|
||
load_dotenv()
|
||
ak = VOLC_ACCESSKEY
|
||
sk = VOLC_SECRETKEY
|
||
ark_api_key = VOLC_API_KEY
|
||
|
||
if not all([ak, sk, ark_api_key]):
|
||
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
|
||
|
||
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
|
||
llm_client = Ark(
|
||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||
api_key=ark_api_key,
|
||
)
|
||
return memory_service, llm_client
|
||
|
||
|
||
def ensure_collection_exists(memory_service, collection_name):
|
||
"""检查记忆集合是否存在,如果不存在则创建。"""
|
||
try:
|
||
memory_service.get_collection(collection_name)
|
||
print(f"记忆集合 '{collection_name}' 已存在。")
|
||
except Exception as e:
|
||
error_message = str(e)
|
||
if "collection not exist" in error_message:
|
||
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
|
||
try:
|
||
memory_service.create_collection(
|
||
collection_name=collection_name,
|
||
description="中文情感陪伴场景测试",
|
||
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
|
||
builtin_entity_types=["sys_profile_v1"]
|
||
)
|
||
print(f"记忆集合 '{collection_name}' 创建成功。")
|
||
print("等待集合准备就绪...")
|
||
except Exception as create_e:
|
||
print(f"创建集合失败: {create_e}")
|
||
raise
|
||
else:
|
||
print(f"检查集合时出错: {e}")
|
||
raise
|
||
|
||
|
||
def search_relevant_memories(memory_service, collection_name, user_id, query):
|
||
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
||
print(f"正在搜索与 '{query}' 相关的记忆...")
|
||
retry_attempt = 0
|
||
while True:
|
||
try:
|
||
filter_params = {
|
||
"user_id": [user_id],
|
||
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
||
}
|
||
response = memory_service.search_memory(
|
||
collection_name=collection_name,
|
||
query=query,
|
||
filter=filter_params,
|
||
limit=3
|
||
)
|
||
|
||
memories = []
|
||
if response.get('data', {}).get('count', 0) > 0:
|
||
for result in response['data']['result_list']:
|
||
if 'memory_info' in result and result['memory_info']:
|
||
memories.append({
|
||
'memory_info': result['memory_info'],
|
||
'score': result['score']
|
||
})
|
||
|
||
if memories:
|
||
if retry_attempt > 0:
|
||
print("重试后搜索成功。")
|
||
print(f"找到 {len(memories)} 条相关记忆:")
|
||
for i, memory in enumerate(memories, 1):
|
||
print(
|
||
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
||
else:
|
||
print("未找到相关记忆。")
|
||
return memories
|
||
|
||
except Exception as e:
|
||
error_message = str(e)
|
||
if "1000023" in error_message:
|
||
retry_attempt += 1
|
||
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
||
time.sleep(60)
|
||
else:
|
||
print(f"搜索记忆时出错 (不可重试): {e}")
|
||
return []
|
||
|
||
|
||
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||
print("\n" + "=" * 60)
|
||
print(f"用户: {user_message}")
|
||
|
||
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
||
|
||
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
||
if relevant_memories:
|
||
memory_context = "\n".join(
|
||
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
||
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
||
|
||
print("AI正在思考...")
|
||
|
||
try:
|
||
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
||
{"role": "user", "content": user_message}]
|
||
completion = llm_client.chat.completions.create(
|
||
model="doubao-seed-1-6-flash-250715",
|
||
messages=messages
|
||
)
|
||
assistant_reply = completion.choices[0].message.content
|
||
except Exception as e:
|
||
print(f"LLM调用失败: {e}")
|
||
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
||
|
||
print(f"伙伴: {assistant_reply}")
|
||
|
||
conversation_history.extend([
|
||
{"role": "user", "content": user_message},
|
||
{"role": "assistant", "content": assistant_reply}
|
||
])
|
||
return assistant_reply
|
||
|
||
|
||
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
||
"""将对话历史归档到记忆数据库。"""
|
||
if not conversation_history:
|
||
print("没有对话可以归档。")
|
||
return False
|
||
|
||
print(f"\n正在归档关于 '{topic_name}' 的对话...")
|
||
session_id = f"{topic_name}_{int(time.time())}"
|
||
metadata = {
|
||
"default_user_id": user_id,
|
||
"default_assistant_id": assistant_id,
|
||
"time": int(time.time() * 1000)
|
||
}
|
||
|
||
try:
|
||
memory_service.add_session(
|
||
collection_name=collection_name,
|
||
session_id=session_id,
|
||
messages=conversation_history,
|
||
metadata=metadata
|
||
)
|
||
print(f"对话已成功归档,会话ID: {session_id}")
|
||
print("正在等待记忆索引更新...")
|
||
return True
|
||
except Exception as e:
|
||
print(f"归档对话失败: {e}")
|
||
return False
|
||
|
||
|
||
def main():
|
||
print("开始端到端记忆测试...")
|
||
|
||
try:
|
||
memory_service, llm_client = initialize_services()
|
||
collection_name = "emotional_support"
|
||
user_id = "xiaoming" # 用户ID:小明
|
||
assistant_id = "assistant1" # 助手ID:助手1
|
||
ensure_collection_exists(memory_service, collection_name)
|
||
except Exception as e:
|
||
print(f"初始化失败: {e}")
|
||
return
|
||
|
||
print("\n--- 阶段 1: 初始对话 ---")
|
||
initial_conversation_history = []
|
||
handle_conversation_turn(
|
||
memory_service, llm_client, collection_name, user_id,
|
||
"你好,我是小明,今年18岁,但压力好大。",
|
||
initial_conversation_history
|
||
)
|
||
handle_conversation_turn(
|
||
memory_service, llm_client, collection_name, user_id,
|
||
"马上就要高考了,家里人的期待好高。",
|
||
initial_conversation_history
|
||
)
|
||
|
||
print("\n--- 阶段 2: 归档记忆 ---")
|
||
archive_conversation(
|
||
memory_service, collection_name, user_id, assistant_id,
|
||
initial_conversation_history, "study_stress_discussion"
|
||
)
|
||
|
||
print("\n--- 阶段 3: 验证记忆 ---")
|
||
verification_conversation_history = []
|
||
handle_conversation_turn(
|
||
memory_service, llm_client, collection_name, user_id,
|
||
"我最近很焦虑,不知道该怎么办。",
|
||
verification_conversation_history
|
||
)
|
||
|
||
print("\n端到端记忆测试完成!")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main() |