210 lines
7.6 KiB
Python
210 lines
7.6 KiB
Python
import logging
|
|
import warnings
|
|
import json
|
|
import requests
|
|
from typing import List, Tuple, Dict
|
|
|
|
from elasticsearch import Elasticsearch
|
|
|
|
from Config import Config
|
|
from Config.Config import ES_CONFIG, EMBED_MODEL_NAME, EMBED_BASE_URL, EMBED_API_KEY, RERANK_MODEL, RERANK_BASE_URL, RERANK_BINDING_API_KEY
|
|
from langchain_openai import OpenAIEmbeddings
|
|
from pydantic import SecretStr
|
|
|
|
# 初始化日志
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
# 抑制HTTPS相关警告
|
|
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
|
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
|
|
|
|
|
def text_to_embedding(text: str) -> List[float]:
|
|
"""
|
|
将文本转换为嵌入向量
|
|
"""
|
|
embeddings = OpenAIEmbeddings(
|
|
model=EMBED_MODEL_NAME,
|
|
base_url=EMBED_BASE_URL,
|
|
api_key=SecretStr(EMBED_API_KEY)
|
|
)
|
|
return embeddings.embed_query(text)
|
|
|
|
|
|
def rerank_results(query: str, results: List[Dict]) -> List[Tuple[Dict, float]]:
|
|
"""
|
|
对搜索结果进行重排
|
|
"""
|
|
if len(results) <= 1:
|
|
return [(doc, 1.0) for doc in results]
|
|
|
|
# 准备重排请求数据
|
|
rerank_data = {
|
|
"model": RERANK_MODEL,
|
|
"query": query,
|
|
"documents": [doc['_source']['user_input'] for doc in results],
|
|
"top_n": len(results)
|
|
}
|
|
|
|
# 调用SiliconFlow API进行重排
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
|
|
}
|
|
|
|
try:
|
|
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
|
|
response.raise_for_status()
|
|
rerank_result = response.json()
|
|
|
|
# 处理重排结果
|
|
reranked_docs_with_scores = []
|
|
if "results" in rerank_result:
|
|
for item in rerank_result["results"]:
|
|
doc_idx = item.get("index")
|
|
score = item.get("relevance_score", 0.0)
|
|
if 0 <= doc_idx < len(results):
|
|
reranked_docs_with_scores.append((results[doc_idx], score))
|
|
return reranked_docs_with_scores
|
|
except Exception as e:
|
|
logger.error(f"重排失败: {str(e)}")
|
|
return [(doc, 1.0) for doc in results]
|
|
|
|
|
|
def merge_results(keyword_results: List[Tuple[Dict, float]], vector_results: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float, str]]:
|
|
"""
|
|
合并关键字搜索和向量搜索结果
|
|
"""
|
|
# 标记结果来源并合并
|
|
all_results = []
|
|
for doc, score in keyword_results:
|
|
all_results.append((doc, score, "关键字搜索"))
|
|
for doc, score in vector_results:
|
|
all_results.append((doc, score, "向量搜索"))
|
|
|
|
# 去重并按分数排序
|
|
unique_results = {}
|
|
for doc, score, source in all_results:
|
|
doc_id = doc['_id']
|
|
if doc_id not in unique_results or score > unique_results[doc_id][1]:
|
|
unique_results[doc_id] = (doc, score, source)
|
|
|
|
# 按分数降序排序
|
|
sorted_results = sorted(unique_results.values(), key=lambda x: x[1], reverse=True)
|
|
return sorted_results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# 初始化EsSearchUtil
|
|
esClient = Elasticsearch(
|
|
hosts=Config.ES_CONFIG['hosts'],
|
|
basic_auth=Config.ES_CONFIG['basic_auth'],
|
|
verify_certs=False
|
|
)
|
|
|
|
# 获取用户输入
|
|
user_query = input("请输入查询语句(例如:高性能的混凝土): ")
|
|
if not user_query:
|
|
user_query = "高性能的混凝土"
|
|
print(f"未输入查询语句,使用默认值: {user_query}")
|
|
|
|
query_tags = [] # 可以根据需要添加标签过滤
|
|
|
|
print(f"\n=== 开始执行查询 ===")
|
|
print(f"原始查询文本: {user_query}")
|
|
|
|
# 执行搜索
|
|
es_conn = esClient.es_pool.get_connection()
|
|
try:
|
|
# 1. 向量搜索
|
|
print("\n=== 向量搜索阶段 ===")
|
|
print("1. 文本向量化处理中...")
|
|
query_embedding = text_to_embedding(user_query)
|
|
print(f"2. 生成的查询向量维度: {len(query_embedding)}")
|
|
print(f"3. 前3维向量值: {query_embedding[:3]}")
|
|
|
|
print("4. 正在执行Elasticsearch向量搜索...")
|
|
vector_results = es_conn.search(
|
|
index=ES_CONFIG['index_name'],
|
|
body={
|
|
"query": {
|
|
"script_score": {
|
|
"query": {
|
|
"bool": {
|
|
"should": [
|
|
{
|
|
"terms": {
|
|
"tags.tags": query_tags
|
|
}
|
|
}
|
|
] if query_tags else {"match_all": {}},
|
|
"minimum_should_match": 1 if query_tags else 0
|
|
}
|
|
},
|
|
"script": {
|
|
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
|
|
"params": {"query_vector": query_embedding}
|
|
}
|
|
}
|
|
},
|
|
"size": 5
|
|
}
|
|
)
|
|
vector_hits = vector_results['hits']['hits']
|
|
print(f"5. 向量搜索结果数量: {len(vector_hits)}")
|
|
|
|
# 向量结果重排
|
|
print("6. 正在进行向量结果重排...")
|
|
reranked_vector_results = rerank_results(user_query, vector_hits)
|
|
print(f"7. 重排后向量结果数量: {len(reranked_vector_results)}")
|
|
|
|
# 2. 关键字搜索
|
|
print("\n=== 关键字搜索阶段 ===")
|
|
print("1. 正在执行Elasticsearch关键字搜索...")
|
|
keyword_results = es_conn.search(
|
|
index=ES_CONFIG['index_name'],
|
|
body={
|
|
"query": {
|
|
"bool": {
|
|
"must": [
|
|
{
|
|
"match": {
|
|
"user_input": user_query
|
|
}
|
|
}
|
|
] + ([
|
|
{
|
|
"terms": {
|
|
"tags.tags": query_tags
|
|
}
|
|
}
|
|
] if query_tags else [])
|
|
}
|
|
},
|
|
"size": 5
|
|
}
|
|
)
|
|
keyword_hits = keyword_results['hits']['hits']
|
|
print(f"2. 关键字搜索结果数量: {len(keyword_hits)}")
|
|
|
|
# 3. 合并结果
|
|
print("\n=== 合并搜索结果 ===")
|
|
# 为关键字结果添加默认分数1.0
|
|
keyword_results_with_scores = [(doc, doc['_score']) for doc in keyword_hits]
|
|
merged_results = merge_results(keyword_results_with_scores, reranked_vector_results)
|
|
print(f"合并后唯一结果数量: {len(merged_results)}")
|
|
|
|
# 4. 打印最终结果
|
|
print("\n=== 最终搜索结果 ===")
|
|
for i, (doc, score, source) in enumerate(merged_results, 1):
|
|
print(f"{i}. 文档ID: {doc['_id']}, 分数: {score:.2f}, 来源: {source}")
|
|
print(f" 内容: {doc['_source']['user_input']}")
|
|
print(" --- ")
|
|
|
|
except Exception as e:
|
|
logger.error(f"搜索过程中发生错误: {str(e)}")
|
|
print(f"搜索失败: {str(e)}")
|
|
finally:
|
|
esClient.es_pool.release_connection(es_conn)
|