176 lines
5.2 KiB
Python
176 lines
5.2 KiB
Python
import json
|
||
import requests
|
||
from langchain_openai import OpenAIEmbeddings
|
||
from pydantic import SecretStr
|
||
|
||
from Config import Config
|
||
from ElasticSearch.Utils.EsSearchUtil import EsSearchUtil
|
||
|
||
def get_query_embedding(query: str) -> list:
|
||
"""
|
||
将查询文本转换为向量
|
||
|
||
参数:
|
||
query: 查询文本
|
||
|
||
返回:
|
||
list: 向量表示
|
||
"""
|
||
# 创建嵌入模型
|
||
embeddings = OpenAIEmbeddings(
|
||
model=Config.EMBED_MODEL_NAME,
|
||
base_url=Config.EMBED_BASE_URL,
|
||
api_key=SecretStr(Config.EMBED_API_KEY)
|
||
)
|
||
|
||
# 生成查询向量
|
||
query_embedding = embeddings.embed_query(query)
|
||
return query_embedding
|
||
|
||
|
||
def search_by_vector(search_util: EsSearchUtil, query_embedding: list, k: int = 10) -> list:
|
||
"""
|
||
在Elasticsearch中按向量搜索
|
||
|
||
参数:
|
||
search_util: EsSearchUtil实例
|
||
query_embedding: 查询向量
|
||
k: 返回结果数量
|
||
|
||
返回:
|
||
list: 搜索结果
|
||
"""
|
||
# 从连接池获取连接
|
||
conn = search_util.es_pool.get_connection()
|
||
|
||
try:
|
||
# 构建向量查询DSL
|
||
query = {
|
||
"query": {
|
||
"script_score": {
|
||
"query": {"match_all": {}},
|
||
"script": {
|
||
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
|
||
"params": {
|
||
"query_vector": query_embedding
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"size": k
|
||
}
|
||
|
||
# 执行查询
|
||
response = conn.search(index=search_util.es_config['index_name'], body=query)
|
||
return response['hits']['hits']
|
||
except Exception as e:
|
||
print(f"向量查询失败: {e}")
|
||
return []
|
||
finally:
|
||
# 释放连接回连接池
|
||
search_util.es_pool.release_connection(conn)
|
||
|
||
|
||
def rerank_results(query: str, results: list) -> list:
|
||
"""
|
||
使用重排模型对结果进行排序
|
||
|
||
参数:
|
||
query: 查询文本
|
||
results: 初始搜索结果
|
||
|
||
返回:
|
||
list: 重排后的结果
|
||
"""
|
||
if len(results) <= 1:
|
||
# 结果太少,无需重排
|
||
return [(result, 1.0) for result in results]
|
||
|
||
# 准备重排请求数据
|
||
rerank_data = {
|
||
"model": Config.RERANK_MODEL,
|
||
"query": query,
|
||
"documents": [result['_source']['user_input'] for result in results],
|
||
"top_n": len(results)
|
||
}
|
||
|
||
# 调用重排API
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}"
|
||
}
|
||
|
||
try:
|
||
response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
|
||
response.raise_for_status()
|
||
rerank_result = response.json()
|
||
|
||
# 处理重排结果
|
||
reranked_results = []
|
||
if "results" in rerank_result:
|
||
for item in rerank_result["results"]:
|
||
doc_idx = item.get("index")
|
||
score = item.get("relevance_score", 0.0)
|
||
if 0 <= doc_idx < len(results):
|
||
reranked_results.append((results[doc_idx], score))
|
||
else:
|
||
print("警告: 无法识别重排API响应格式")
|
||
reranked_results = [(result, 0.0) for result in results]
|
||
|
||
return reranked_results
|
||
except Exception as e:
|
||
print(f"重排模型调用失败: {e}")
|
||
return [(result, 0.0) for result in results]
|
||
|
||
|
||
def display_results(results: list) -> None:
|
||
"""
|
||
展示查询结果
|
||
|
||
参数:
|
||
results: 查询结果列表,每个元素是(结果对象, 分数)的元组
|
||
"""
|
||
if not results:
|
||
print("未找到相关数据。")
|
||
return
|
||
|
||
print(f"找到 {len(results)} 条相关数据:")
|
||
for i, (result, score) in enumerate(results, 1):
|
||
source = result['_source']
|
||
print(f"{i}. ID: {result['_id']}")
|
||
print(f" 相似度分数: {score:.4f}")
|
||
print(f" 内容: {source.get('user_input', '')}")
|
||
print(f" 标签: {source['tags']['tags'] if 'tags' in source and 'tags' in source['tags'] else '无'}")
|
||
print(f" 时间: {source['timestamp'] if 'timestamp' in source else '无'}")
|
||
print("-" * 50)
|
||
|
||
|
||
def main():
|
||
# 创建EsSearchUtil实例(已封装连接池)
|
||
search_util = EsSearchUtil(Config.ES_CONFIG)
|
||
|
||
# 获取用户输入
|
||
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
|
||
if not query_text:
|
||
query_text = "高性能的混凝土"
|
||
print(f"未输入查询关键词,使用默认值: {query_text}")
|
||
|
||
# 生成查询向量
|
||
print("正在生成查询向量...")
|
||
query_embedding = get_query_embedding(query_text)
|
||
|
||
# 执行向量搜索
|
||
print("正在执行向量搜索...")
|
||
search_results = search_by_vector(search_util, query_embedding, k=10)
|
||
print(f"向量搜索结果数量: {len(search_results)}")
|
||
|
||
# 重排结果
|
||
print("正在重排结果...")
|
||
reranked_results = rerank_results(query_text, search_results)
|
||
|
||
# 展示结果
|
||
display_results(reranked_results)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main() |