You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

230 lines
7.8 KiB

"""
LightRAG Rerank Integration Example
This example demonstrates how to use rerank functionality with LightRAG
to improve retrieval quality across different query modes.
Configuration Required:
1. Set your LLM API key and base URL in llm_model_func()
2. Set your embedding API key and base URL in embedding_func()
3. Set your rerank API key and base URL in the rerank configuration
4. Or use environment variables (.env file):
- RERANK_MODEL=your_rerank_model
- RERANK_BINDING_HOST=your_rerank_endpoint
- RERANK_BINDING_API_KEY=your_rerank_api_key
Note: Rerank is now controlled per query via the 'enable_rerank' parameter (default: True)
"""
import asyncio
import os
import numpy as np
from lightrag import LightRAG, QueryParam
from lightrag.rerank import custom_rerank, RerankModel
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc, setup_logger
from lightrag.kg.shared_storage import initialize_pipeline_status
# Set up your working directory
WORKING_DIR = "./test_rerank"
setup_logger("test_rerank")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key="your_llm_api_key_here",
base_url="https://api.your-llm-provider.com/v1",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model="text-embedding-3-large",
api_key="your_embedding_api_key_here",
base_url="https://api.your-embedding-provider.com/v1",
)
async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
"""Custom rerank function with all settings included"""
return await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_k=top_k or 10, # Default top_k if not provided
**kwargs,
)
async def create_rag_with_rerank():
"""Create LightRAG instance with rerank configuration"""
# Get embedding dimension
test_embedding = await embedding_func(["test"])
embedding_dim = test_embedding.shape[1]
print(f"Detected embedding dimension: {embedding_dim}")
# Method 1: Using custom rerank function
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=8192,
func=embedding_func,
),
# Rerank Configuration - provide the rerank function
rerank_model_func=my_rerank_func,
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def test_rerank_with_different_settings():
"""
Test rerank functionality with different enable_rerank settings
"""
print("🚀 Setting up LightRAG with Rerank functionality...")
rag = await create_rag_with_rerank()
# Insert sample documents
sample_docs = [
"Reranking improves retrieval quality by re-ordering documents based on relevance.",
"LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
"Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
"Natural language processing has evolved with large language models and transformers.",
"Machine learning algorithms can learn patterns from data without explicit programming.",
]
print("📄 Inserting sample documents...")
await rag.ainsert(sample_docs)
query = "How does reranking improve retrieval quality?"
print(f"\n🔍 Testing query: '{query}'")
print("=" * 80)
# Test with rerank enabled (default)
print("\n📊 Testing with enable_rerank=True (default):")
result_with_rerank = await rag.aquery(
query,
param=QueryParam(
mode="naive",
top_k=10,
chunk_top_k=5,
enable_rerank=True, # Explicitly enable rerank
),
)
print(f" Result length: {len(result_with_rerank)} characters")
print(f" Preview: {result_with_rerank[:100]}...")
# Test with rerank disabled
print("\n📊 Testing with enable_rerank=False:")
result_without_rerank = await rag.aquery(
query,
param=QueryParam(
mode="naive",
top_k=10,
chunk_top_k=5,
enable_rerank=False, # Disable rerank
),
)
print(f" Result length: {len(result_without_rerank)} characters")
print(f" Preview: {result_without_rerank[:100]}...")
# Test with default settings (enable_rerank defaults to True)
print("\n📊 Testing with default settings (enable_rerank defaults to True):")
result_default = await rag.aquery(
query, param=QueryParam(mode="naive", top_k=10, chunk_top_k=5)
)
print(f" Result length: {len(result_default)} characters")
print(f" Preview: {result_default[:100]}...")
async def test_direct_rerank():
"""Test rerank function directly"""
print("\n🔧 Direct Rerank API Test")
print("=" * 40)
documents = [
{"content": "Reranking significantly improves retrieval quality"},
{"content": "LightRAG supports advanced reranking capabilities"},
{"content": "Vector search finds semantically similar documents"},
{"content": "Natural language processing with modern transformers"},
{"content": "The quick brown fox jumps over the lazy dog"},
]
query = "rerank improve quality"
print(f"Query: '{query}'")
print(f"Documents: {len(documents)}")
try:
reranked_docs = await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_k=3,
)
print("\n✅ Rerank Results:")
for i, doc in enumerate(reranked_docs):
score = doc.get("rerank_score", "N/A")
content = doc.get("content", "")[:60]
print(f" {i+1}. Score: {score:.4f} | {content}...")
except Exception as e:
print(f"❌ Rerank failed: {e}")
async def main():
"""Main example function"""
print("🎯 LightRAG Rerank Integration Example")
print("=" * 60)
try:
# Test rerank with different enable_rerank settings
await test_rerank_with_different_settings()
# Test direct rerank
await test_direct_rerank()
print("\n✅ Example completed successfully!")
print("\n💡 Key Points:")
print(" ✓ Rerank is now controlled per query via 'enable_rerank' parameter")
print(" ✓ Default value for enable_rerank is True")
print(" ✓ Rerank function is configured at LightRAG initialization")
print(" ✓ Per-query enable_rerank setting overrides default behavior")
print(
" ✓ If enable_rerank=True but no rerank model is configured, a warning is issued"
)
print(" ✓ Monitor API usage and costs when using rerank services")
except Exception as e:
print(f"\n❌ Example failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(main())