|
|
发现问题和提出问题有什么不同?
|
|
|
中国传统的数学教育重视的是"双基",即基础知识和基本技能,要求是基础知识扎实,基本技能熟练;与此对应,培养的是两个能力:分析问题的能力和解决问题的能力。毋庸置疑,重视"双基"的教育对我国基础教育的贡献是巨大的。
|
|
|
重视"双基"的教育与传统的"以知识为本"的教育理念是一脉相承的,但随着社会的发展,教育理念也在不断地更新。现代社会的基本理念不是"以物为本"而是"以人为本",这种新的理念落实在教育上就是:以学生发展为本[^20]。这种新的教育理念强调培养学生的基本素质,强调培养学生的社会责任感、创新精神和实践能力。为了与这种教育理念相对应,在修改《义务教育数学课程标准》的课程总体目标时,在传统的"双基"的基础上又增加了两基:基本思想和基本活动经验,这样课程目标就由"双基"变成了"四基",与此同时,在原有两个能力的基础上又增加了两个能力:发现问题的能力和提出问题的能力。现在的问题是,在数学教学的过程中,发现问题与提出问题有什么不同吗?
|
|
|
发现问题的前提是勤于思考、敢于质疑,因此与培养学生的创新意识关系密切;提出问题则要求能用数学的语言阐明问题,因此与培养学生的创新能力关系密切。进一步,提出问题可以分为两个层次:一个层次是用语言表述,一个层次是用符号表达。可以看到,无论是发现问题的能力培养、还是提出问题的能力培养都是我国现行教育的薄弱环节,这个环节的缺失对培养创新性人才的影响是重大的,因此,加强这样的教育应当是我国未来基础教育改革的重点。
|
|
|
下面,我们举例说明发现问题和提出问题的区别,在说明的过程中探讨在数学教学中应当如何培养这两种能力。
|
|
|
代数的例子。我们讨论《义务教育数学课程标准》中所给出的两个例子,这两个例子是前后照应的。我们把这两个例子分别抄录如下:
|
|
|
例28 利用计算器计算15 × 15,25 × 25,......,95 × 95,并探索规律。
|
|
|
例50 利用公式证明例28所发现的运算规律。
|
|
|
可以看到,例28强调的是发现问题。虽然例50说的是证明问题,但没有明确说出问题是什么,因此这个例子在本质上强调的是提出问题。并且通过下面的讨论将可以看到,对于许多问题,如果能够明确地提出问题,就意味已经有了解决问题的思路。
|
|
|
因为在两个例子中乘数和被乘数是一样的,因此无论是发现问题还是提出问题,都必然是探讨乘数与乘积之间的关系。我们曾经反复说过,归纳推理是发现问题(发现规律)的有效途径,而操作过程最好是一步一步依次递进。这样,我们就可以依次给出乘数与乘积之间的关系:
|
|
|
15 × 15 = 225,25 × 25 = 625,35 × 35 = 1225,......。
|
|
|
通过对结果的分析,学生可以感悟到其中是存在规律的,因此教学的重点是引导学生如何用语言表述出其中的规律。很明显,上面计算得到的乘积是一个三位数或者四位数,其中个位数和十位数都是25,而百位数和千位数存在这样的规律:1
|
|
|
× 2 = 2,2 × 3 = 6,3 × 4 =
|
|
|
12,......。这样,学生通过一些具体数值的依次计算,能够发现其中存在的规律,并且能够用语言来表达这个规律,这就是发现问题的过程。
|
|
|
那么,在发现问题的基础上,应当如何提出问题呢?我们前面谈到,提出问题可以分两个层次。通过下面的讨论可以看到,在教学过程中可以跳过第一个层次,即语言表述的层次,而直接进入第二个层次,即符号表达的层次。但是,在思维过程中,第一个层次是不可逾越的。
|
|
|
语言表述直接来源于发现问题。在发现问题的基础上,需要进一步引导学生表述出一个结论性的东西,这个结论性的东西就是人们通常所说的数学命题。比如,可以表述出这样的结论:个位数是5的两位数的平方是一个三位数或者四位数,其中后两位是25、百位或者千位是乘数的十位数与这个数加1的乘积。可以看到,语言层次的表述往往是很困难的,因此在教学过程中不能要求学生用语言表达的非常准确,甚至可以越过这个环节。但是,在人的思维过程中,这样思考的环节是不可缺少的,因为思考必然要经历一个从混沌到清晰的过程。事实上,只有利用符号才能摆脱用语言表达的困境,使得结论的表述清晰明了,这也体现了符号表达的重要性。
|
|
|
符号表达是数学表述的重要形式。对于上面讨论的问题,如果用a表示乘数的十位数,这个两位数就可以一般表示为a
|
|
|
×10 + 5。那么,就可以把语言表述的结论用符号表示为
|
|
|
(a ×10 + 5) ^2^ = a × (a + 1) × 100 + 25。 (9)
|
|
|
这样,就用符号表达了一个公式,现在的问题是:这个公式是否正确。这就是一个提出问题的过程,可以看到,用符号表达可以使问题非常清楚。因为这是一个通过归纳推理提出问题的过程,因此所得到的结论不一定是正确的,结论正确与否还需要通过演绎推理进行验证。但无论如何,得到结论的过程是非常重要的,这是培养创新能力的核心。特别是,对于大部分数学问题,一旦用符号表达了结论,那么就有了证明结论的方向,比如,对于上面的问题,我们很容易验证这个结论是正确的。
|
|
|
在上面公式的基础上,还可以把结论进一步扩充,而扩充的过程往往不需要经过具体数值计算的尝试,只需要进行形式化的扩充。比如,把上面的问题扩充到不是平方、而是十位数差1的情况,通过(9)式可以形式化地考虑这样的问题:
|
|
|
(a ×10 + 5) \[ (a + 1) ×10 + 5)\] = ?
|
|
|
当然,还可以把结论扩充到三位数的情况,等等。
|
|
|
几何的例子。几何的问题看起来简单,但要叙述清楚却很困难,这主要是因为很难用符号对问题给予直接表达,因此在符号表达的过程中往往要借助代数的工具。考虑下面的问题:
|
|
|
直线上的任何一个点都能把直线分为两个部分。
|
|
|
在教师的引导下,通过画图等实际操作,学生能够发现上面所说的问题,甚至能够用语言表述这个问题:点的右边为一部分,点的左边为一部分。可是,应当如何用数学符号提出问题呢?
|
|
|
符号表达的第一步是表示出直线上的点。为了表示直线上的点,就必须建立数轴、即在直线上定义方向、原点和单位:确定数轴的方向是为了表示数的大小关系;确定数轴的原点是为了用点到原点的距离来表示数;确定单位是为了度量距离。这样,借助数轴就把直线上的点与数一一对应起来了。
|
|
|
然后由特殊到一般的原则,先考虑具体的数值计算,即把直线上的某一个点转化为数,比如2。因为已经把直线上的点与数一一对应起来了,因此可以有两种形式把直线分为两部分:"小于2的数"为一部分,"大于等于2的数"为一部分;或者,"小于等于2的数"为一部分和"大于2的数"为一部分。因为对于其他具体的点都可以这样处理,因此可以用字母a来代替2、或者其他具体的数值,一般性地表示这个问题。更为一般地,可以用集合(参见问题13)表示划分后的两个部分:
|
|
|
A = { x;x ≦ a} 和 B = { x;x ﹥ a};
|
|
|
或者
|
|
|
B = { x;x ﹤ a} 和 B = { x;x ≧ a}。
|
|
|
通过上面的表示和论证过程可以看到,在许多情况下,用代数的方法处理几何问题,可以使表达更加清晰,逻辑更有条理;反过来,用几何的方法来分析代数问题,可以提供分析问题的直观,有利于厘清解决问题的思路。上面的问题可以进一步扩充:一条直线可以把平面分为两个部分;一个平面可以把空间分为两个部分;等等。
|
|
|
进一步,还可以考虑更加复杂一些的问题,比如下面的问题:
|
|
|
如果多边形的周长给定,什么形状的多边形面积最大。
|
|
|
这个问题对小学生似乎是困难的,但只要学习了面积的计算方法,通过具体的数值计算,还是能够猜想出结果的。特别是,通过对这样问题的探索,能够让小学生感悟"对称"对于数学、以至于对于自然界的重要性,让小学生感悟数学的美。因为探索需要较多的计算和想象,因此,这样的内容可以安排在小学高年级"综合与实践"的课程中。
|
|
|
探索的过程还是遵照循序渐进的原则,即从简单的情况开始思考。首先探索三角形的情况,通过计算容易知道,三角形的三个边长之和一定时,三角形的形状不同面积的大小是不一样的,这是一个发现问题的过程。进一步,可以用语言提出问题:
|
|
|
周长一定时,是不是存在一个最大面积的三角形?这个三角形的形状是什么样的?
|
|
|
要回答这个问题,就要进入深入探索规律的过程。还是从最简单的情况入手:从直角三角形开始计算。通过计算可以推测:在三个边长之和给定的情况下,两个直角边长的比是2:1时面积最大[^21];因为两个这样的三角形可以合并为一个等边三角形,因此可以想象:对于周长给定的三角形,等边三角形时面积最大。因为等边三角形是一种"对称",可以让学生感悟到,这种不偏不倚的情况能够使三角形的面积达到最大。
|
|
|
然后探索四边形的情况,还是从最简单的情况入手:从矩形开始计算。通过具体数值计算能够推测:周长给定的矩形中,正方形的面积最大。很容易把这个结论推广到一般的四边形。
|
|
|
进而猜想五边形时正五边形面积最大,\...\...,一般多边形时正多边形的面积最大。遵循这个思路在想下去,可以猜想:对于任意图形,圆的面积最大。圆是最对称最和谐的。
|
|
|
可以看到,这就是一个完满的提出问题的过程。虽然对于小学生来说,证明这些结论是困难的,但也可以给学生们留下一些进一步学习的悬念,感悟到发现问题和提出问题的魅力。
|
|
|
要鼓励学生自己得到一般性结论,并且用数学的语言、数学的符号来表达一般性的结论,哪怕是很简单的问题。让学生经历发现问题、提出问题、分析问题、解决问题的全过程,是帮助学生积累思维经验和实践经验的有效方法,这应当是未来数学教育改革的重点。
|
|
|
第三部分 图形与几何
|
|
|
空间是一个关于物体存在形式的基础概念,人们从物体的存在形式中抽象出关于图形以及图形关系的概念,构成数学的研究对象,人们还构建空间的度量方法来研究这些概念的位置关系和变化规律,而几何学就是研究如何构建空间度量方法的学科。人们根据度量方法的不同称谓不同的空间。
|
|
|
在日常生活中,人们看到的物体都是立体的,所谓的点、线、面、体、角都是人们抽象出来的概念。这种抽象不仅舍去了物体的颜色、构成材料等物体的本质要素,还忽略了所占空间:点不分大小、线不分宽窄、面不分薄厚。这些抽象了的概念本身不是现实的存在,只是一种理念上的存在。
|
|
|
在欧几里得几何空间中,两点间的直线距离是本质的。通过两点间的直线距离还可以定义线段的长度。所谓矩形就是两个对边长度分别相等的四边形;所谓两条直线平行是指两条直线之间的距离处处相等;所谓两个图形全等就是指这两个图形任意两个对应点之间距离相等;所谓勾股定理就是描述直角三角形三个边长之间的关系;所谓三角函数就是描述直角三角形中的锐角与边长之间的关系。
|
|
|
在线段长度的基础上,人们在平面定义了面积的度量,在空间定义了体积的度量,这些度量的基础都是两点间的直线距离。
|
|
|
平移、旋转、轴对称是小学数学"图形与几何"的内容中最为生动的部分,是在"图形的运动"这样的标题下给出的。运动是需要参照物的,平移和旋转的参照物都是一条射线,轴对称的参照物是一条直线。这类运动有一个共同的特点,就是运动之后保持两点间距离不变,这样就保证了物体运动之后形状不变,称这类运动为刚体运动。
|
|
|
在小学阶段,与"图形与几何"的内容关系密切的核心概念是"空间观念"和"几何直观"。空间观念是对空间中物体的位置、以及位置之间关系的感性认识;几何直观是指能够利用图形描述和分析问题,是指借助图形对事物的直接判断。 |