You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

16 lines
5.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

如何理解空间观念和几何直观?
空间观念和几何直观都是《义务教育数学课程标准》中提出的核心概念。这两个核心概念都与"图形与几何"的教学内容有关,但又不限于这些教学内容,特别是几何直观并不是仅仅针对几何而言的。
空间观念是对空间中物体的位置、以及位置之间关系的感性认识,在《义务教育数学课程标准》中关于空间观念是这样叙述的:
主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形的。
从上面的论述可以看到建立空间观念的本质是为了提高学生的空间想象力。这个想象力既包括从现实物体到平面图形的抽象也包括从平面图形到现实物体的想象参见《义务教育数学课程标准》中的例11和例16。除此之外空间观念还包括对方位的认识以及利用方位判断物体所在位置例如《义务教育数学课程标准》所要求的会描述简单的路线图参见例36。在帮助学生建立空间观念的过程中需要把握这样一个基本情况以"我"为基准判断方位或者位置比较容易、以"他"为基准判断方位或者位置比较困难,因此在教学过程中应当注意到这个区别。
几何直观这个核心概念不局限于"图形与几何"的内容。直观是指对事物进行的不经过逻辑分析的直接判断,是一种经验层面的东西。生活的经验告诉我们:有些人得直观能要强一些,他们往往能够直接洞察事物的本质,他们的直接判断也往往能够抓住事物的核心;此外,还有些人对某一类事物有着特殊的直观,这要涉及这一类事物他们往往能够给出很好的直接判断。这种直观是思维的前提,这种直观能力的形成既有先天的因素、也有后天的养成,而养成的过程依赖的不是他人的传授,而是本人参与其中的思维活动或者实践活动,因此,这是一种经验的积累。也正因为如此,在《义务教育数学课程标准》的"四基"中包含了"基本活动经验"。
事实上,不仅仅是数学,几乎所有学科都应当把培养这个学科的直观作为重要的教学目标。数学中的直观主要包含三种:代数直观,几何直观和统计直观,因为建立代数直观和统计直观是非常困难的,因此在义务教育阶段强调的是几何直观。关于几何直观,在《义务教育数学课程标准》中强调的是:利用图形描述和分析问题,因为:
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要的作用。
正如我们在前面讨论过的那样,养成良好的几何直观的作用不局限于数学,对于其他学科(特别是物理学)的学习都是非常重要的,比如,初中物理将要学习的"力"的概念就需要借助向量进行数学表达,特别是表达几种"力"之间的平衡关系。几何直观甚至可以影响到日常生活和生产实践,比如,人们在表述几种事物之间的关系时,通常都会利用几何的图形或者符号,并且用这样的直观来辅助思考、理清思路,使得表述更加清晰、结论更加可靠。
第四部分 统计与概率
统计学研究的基础是数据,是通过对数据的分析得到产生数据背景的信息。因此,在"统计与概率"的教学过程中一定要强调数据,强调数据分析观念。
数据分析大体可以分为两种情况:一种情况不考虑数据的随机性,被称为描述统计;一种考虑数据的随机性,被称为推断统计。在推断统计中也经常会用到描述统计的方法。描述统计只是针对调查了的数据本身进行表述,推断统计则希望推断调查了的数据以外的信息。现代统计学主要研究推断统计,是通过经验了的东西推断未曾经验的东西,得到的结果是或然的。
通过样本得到的数据具有随机性。这里所说的随机性与不确定性有所区别:为了数据分析科学性的需要,随机性要求数据的获取尽可能地排除人为干扰的影响,排除系统误差的影响。估计是推断统计的重要手段,估计的方法可以是多样的,在义务教育阶段介绍的是被称为最大似然估计的方法。
如果仅就数学而言,平均数只是一个包含了加法和除法的算式,实在是无足轻重,但平均数在统计学中却是一个非常重要的概念。通过误差模型可以看到使用平均数进行估计的合理性,也可以看到对随机性的两个要求(排除人为干扰的影响,排除系统误差的影响)是必要的。
概率是指随机事件发生可能性的大小在一般情况下这个可能性的大小是未知的。虽然概率是未知的但经验告诉我们可以认为概率是一个非负的、不大于1的数。除却估计的方法以外还可以人为地定义概率这是关于随机事件发生可能性大小的一种度量。度量就必然要涉及模型在义务教育阶段主要是介绍古典概率模型简称为古典概型即要求随机事件出现的可能结果是有限的、出现每一种结果可能性的大小是一样的。
现实世界的大多数事件都是以随机形式出现的,因此在义务教育阶段的数学教育中学习"统计与概率"的内容是必要的,是培养学生基本数学素养的需要。