You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
5.9 KiB

import logging
import logging.config
import os
import numpy as np
from lightrag import LightRAG
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.rerank import jina_rerank, custom_rerank
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
import Config.Config
from Config.Config import *
async def print_stream(stream):
async for chunk in stream:
if chunk:
print(chunk, end="", flush=True)
def configure_logging():
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(
os.path.join(log_dir, "./Logs/lightrag.log")
)
print(f"\nLightRAG log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760))
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5))
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
logger.setLevel(logging.INFO)
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
async def llm_model_func(
prompt, system_prompt=None, history_messages=None, **kwargs
) -> str:
return await openai_complete_if_cache(
os.getenv("LLM_MODEL", LLM_MODEL_NAME),
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model=EMBED_MODEL_NAME,
api_key=EMBED_API_KEY,
base_url=EMBED_BASE_URL
)
async def rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
return await custom_rerank(
query=query,
documents=documents,
model=Config.Config.RERANK_MODEL,
base_url=Config.Config.RERANK_BASE_URL,
api_key=Config.Config.RERANK_BINDING_API_KEY,
top_k=top_k or 10,
**kwargs,
)
async def initialize_rag(working_dir, graph_storage=None):
if graph_storage is None:
graph_storage = 'NetworkXStorage'
rag = LightRAG(
working_dir=working_dir,
llm_model_func=llm_model_func,
graph_storage=graph_storage,
embedding_func=EmbeddingFunc(
embedding_dim=EMBED_DIM,
max_token_size=EMBED_MAX_TOKEN_SIZE,
func=embedding_func
),
rerank_model_func=rerank_func,
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def create_llm_model_func():
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
return openai_complete_if_cache(
LLM_MODEL_NAME,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
**kwargs,
)
return llm_model_func
def create_embedding_func():
return EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: openai_embed(
texts,
model=EMBED_MODEL_NAME,
api_key=EMBED_API_KEY,
base_url=EMBED_BASE_URL,
),
)
# AGE
os.environ["POSTGRES_HOST"] = POSTGRES_HOST
os.environ["POSTGRES_PORT"] = str(POSTGRES_PORT)
os.environ["POSTGRES_USER"] = POSTGRES_USER
os.environ["POSTGRES_PASSWORD"] = POSTGRES_PASSWORD
os.environ["POSTGRES_DATABASE"] = POSTGRES_DATABASE
async def initialize_pg_rag(WORKING_DIR, workspace='default'):
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
llm_model_name=LLM_MODEL_NAME,
llm_model_max_async=4,
llm_model_max_token_size=32768,
enable_llm_cache_for_entity_extract=True,
embedding_func=EmbeddingFunc(
embedding_dim=EMBED_DIM,
max_token_size=EMBED_MAX_TOKEN_SIZE,
func=embedding_func
),
rerank_model_func=rerank_func,
kv_storage="PGKVStorage",
doc_status_storage="PGDocStatusStorage",
graph_storage="PGGraphStorage",
vector_storage="PGVectorStorage",
auto_manage_storages_states=False,
vector_db_storage_cls_kwargs={"workspace": workspace}
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag