You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

14 lines
1.1 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

【题型】不定项选择
【题文】如图所示,固定斜面倾角为*θ*,整个斜面分为*AB*、*BC*两段,*AB*2*BC*.小物块*P*(可视为质点)与*AB*、*BC*两段斜面间的动摩擦因数分别为*μ*~1~、*μ*~2~.已知*P*由静止开始从*A*点释放,恰好能滑动到*C*点而停下,那么*θ*、*μ*~1~、*μ*~2~间应满足的关系是(  )
![5-40.tif](../static/Images/85927c7b95a747f9bef65fd67117d66a/media/image1.png){width="0.9847222222222223in"
height="0.6979166666666666in"}A$tan\theta\text{}\frac{\mu_{1} + 2\mu_{2}}{3}$
B$tan\theta\text{}\frac{2\mu_{1} + \mu_{2}}{3}$
C$tan\theta\text{}2\mu_{1} - \mu_{2}$
D$tan\theta\text{}2\mu_{2} - \mu_{1}$
【答案】 B
【解析】设斜面的长度为*l*,小物块从斜面顶端下滑到斜面底端的全过程由动能定理得:
$$mglsin\theta\text{}\mu_{1}mg\frac{2l}{3}cos\theta\text{}\mu_{2}mg\frac{l}{3}cos\theta\text{}0$$
解得$tan\theta\text{}\frac{2\mu_{1} + \mu_{2}}{3}$故B正确
【知识点】动能定理
【难度】中