|
|
import json
|
|
|
|
|
|
import fastapi
|
|
|
import uvicorn
|
|
|
from fastapi import FastAPI
|
|
|
from lightrag import QueryParam
|
|
|
from sse_starlette import EventSourceResponse
|
|
|
from starlette.staticfiles import StaticFiles
|
|
|
|
|
|
from utils.LightRagUtil import *
|
|
|
|
|
|
# 在程序开始时添加以下配置
|
|
|
logging.basicConfig(
|
|
|
level=logging.INFO, # 设置日志级别为INFO
|
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
)
|
|
|
|
|
|
# 或者如果你想更详细地控制日志输出
|
|
|
logger = logging.getLogger('lightrag')
|
|
|
logger.setLevel(logging.INFO)
|
|
|
handler = logging.StreamHandler()
|
|
|
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
|
|
logger.addHandler(handler)
|
|
|
|
|
|
|
|
|
async def lifespan(app: FastAPI):
|
|
|
yield
|
|
|
|
|
|
|
|
|
async def print_stream(stream):
|
|
|
async for chunk in stream:
|
|
|
if chunk:
|
|
|
print(chunk, end="", flush=True)
|
|
|
|
|
|
|
|
|
app = FastAPI(lifespan=lifespan)
|
|
|
|
|
|
# 挂载静态文件目录
|
|
|
app.mount("/static", StaticFiles(directory="Static"), name="static")
|
|
|
|
|
|
|
|
|
@app.post("/api/rag")
|
|
|
async def rag(request: fastapi.Request):
|
|
|
data = await request.json()
|
|
|
topic = data.get("topic") # Chinese, Math
|
|
|
mode = data.get("mode", "hybrid") # 默认为hybrid模式
|
|
|
# 拼接路径
|
|
|
WORKING_PATH = "./Topic/" + topic
|
|
|
# 查询的问题
|
|
|
query = data.get("query")
|
|
|
# 关闭参考资料
|
|
|
user_prompt = "\n 1、不要输出参考资料 或者 References !"
|
|
|
user_prompt = user_prompt + "\n 2、资料中提供化学反应方程式的,一定要严格按提供的Latex公式输出,绝对不允许对Latex公式进行修改 !"
|
|
|
user_prompt = user_prompt + "\n 3、如果资料中提供了图片的,一定要严格按照原文提供图片输出,不允许省略或不输出!"
|
|
|
user_prompt = user_prompt + "\n 4、资料中提到的知识内容,需要判断是否与本次问题相关,不相关的绝对不要输出!"
|
|
|
user_prompt = user_prompt + "\n 5、如果问题与提供的知识库内容不符,则明确告诉未在知识库范围内提到!"
|
|
|
user_prompt = user_prompt + "\n 6、发现输出内容中包含Latex公式的,一定要检查是不是包含了$$或$的包含符号,不能让Latex无包含符号出现!"
|
|
|
|
|
|
async def generate_response_stream(query: str):
|
|
|
try:
|
|
|
rag = LightRAG(
|
|
|
working_dir=WORKING_PATH,
|
|
|
llm_model_func=create_llm_model_func(),
|
|
|
embedding_func=create_embedding_func()
|
|
|
)
|
|
|
|
|
|
await rag.initialize_storages()
|
|
|
await initialize_pipeline_status()
|
|
|
resp = await rag.aquery(
|
|
|
query=query,
|
|
|
param=QueryParam(mode=mode, stream=True, user_prompt=user_prompt))
|
|
|
# hybrid naive
|
|
|
|
|
|
async for chunk in resp:
|
|
|
if not chunk:
|
|
|
continue
|
|
|
yield f"data: {json.dumps({'reply': chunk})}\n\n"
|
|
|
print(chunk, end='', flush=True)
|
|
|
except Exception as e:
|
|
|
yield f"data: {json.dumps({'error': str(e)})}\n\n"
|
|
|
finally:
|
|
|
# 清理资源
|
|
|
await rag.finalize_storages()
|
|
|
|
|
|
return EventSourceResponse(generate_response_stream(query=query))
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
uvicorn.run(app, host="0.0.0.0", port=8000)
|