import asyncio import logging import time from utils.Database import * from utils.DocxUtil import get_docx_content_by_pandoc from utils.LightRagUtil import initialize_pg_rag # 使用PG库后,这个是没有用的,但目前的项目代码要求必传,就写一个吧。 WORKING_DIR = f"./output" # 后台任务,监控是否有新的未训练的文档进行训练 async def train_document_task(): print("线程5秒后开始运行【监控是否有新的未训练的文档进行训练】") await asyncio.sleep(5) # 使用 asyncio.sleep 而不是 time.sleep # 这里放置你的线程逻辑 while True: # 这里可以放置你的线程要执行的代码 logging.info("开始查询是否有未训练的文档") no_train_document_sql: str = " SELECT * FROM t_ai_teaching_model_document WHERE is_deleted = 0 and train_flag = 0 ORDER BY create_time DESC" no_train_document_result = await find_by_sql(no_train_document_sql, ()) if not no_train_document_result: logging.info("没有未训练的文档") else: logging.info("存在未训练的文档" + str(len(no_train_document_result))+"个") # document = no_train_document_result[0] # print("开始训练文档:" + document["document_name"]) # theme = await find_by_id("t_ai_teaching_model_theme", "id", document["theme_id"]) # # 训练开始前,更新训练状态 # update_sql: str = " UPDATE t_ai_teaching_model_document SET train_flag = 1 WHERE id = " + str(document["id"]) # execute_sql(update_sql) # document_name = document["document_name"] + "." + document["document_suffix"] # logging.info("开始训练文档:" + document_name) # workspace = theme["short_name"] # docx_name = document_name # docx_path = document["document_path"] # logging.info(f"开始处理文档:{docx_name}, 还有%s个文档需要处理!", len(no_train_document_result) - 1) # # 训练代码开始 # try: # rag = await initialize_pg_rag(WORKING_DIR=WORKING_DIR, workspace=workspace) # # 获取docx文件的内容 # content = get_docx_content_by_pandoc(docx_path) # await rag.insert(input=content, file_paths=[docx_name]) # finally: # if rag: # await rag.finalize_storages() # # 训练结束,更新训练状态 # update_sql: str = " UPDATE t_ai_teaching_model_document SET train_flag = 2 WHERE id = " + str(document["id"]) # execute_sql(update_sql) # 添加适当的等待时间,避免频繁查询 await asyncio.sleep(60) # 每分钟查询一次