""" conda activate rag pip install fastapi uvicorn sse-starlette """ import asyncio from elasticsearch import Elasticsearch from fastapi import FastAPI from openai import OpenAI from sse_starlette.sse import EventSourceResponse from Config import Config app = FastAPI() # 初始化ES连接 es = Elasticsearch( hosts=Config.ES_CONFIG['hosts'], basic_auth=Config.ES_CONFIG['basic_auth'], verify_certs=Config.ES_CONFIG['verify_certs'] ) # 初始化DeepSeek客户端 client = OpenAI( api_key=Config.DEEPSEEK_API_KEY, base_url=Config.DEEPSEEK_URL ) def search_related_data(query): """搜索与查询相关的数据""" # 向量搜索 vector_results = es.search( index=Config.ES_CONFIG['default_index'], body={ "query": { "match": { "content": { "query": query, "analyzer": "ik_smart" } } }, "size": 5 } ) # 文本精确搜索 text_results = es.search( index="raw_texts", body={ "query": { "match": { "text.keyword": query } }, "size": 5 } ) # 合并结果 context = "" for hit in vector_results['hits']['hits']: context += f"向量相似度结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n" for hit in text_results['hits']['hits']: context += f"文本精确匹配结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n" return context async def generate_stream(query): """生成SSE流""" context = search_related_data(query) prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告: 要求: 1. 分章节组织内容 2. 包含关键数据和事实 3. 语言简洁专业 相关信息: {context}""" try: response = client.chat.completions.create( model="deepseek-chat", messages=[ {"role": "system", "content": "你是一个专业的文档整理助手"}, {"role": "user", "content": prompt} ], temperature=0.3, stream=True ) for chunk in response: if chunk.choices[0].delta.content: yield {"data": chunk.choices[0].delta.content} await asyncio.sleep(0.01) except Exception as e: yield {"data": f"生成报告时出错: {str(e)}"} @app.get("/api/rag") async def rag_stream(query: str): """RAG+DeepSeek流式接口""" return EventSourceResponse(generate_stream(query)) """ http://localhost:8000/api/rag?query=整理云南省初中在校生情况文档 http://10.10.21.20:8000/api/rag?query=整理云南省初中在校生情况文档 """ if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)