from openai import OpenAI from Config import Config # 初始化DeepSeek客户端 client = OpenAI( api_key=Config.DEEPSEEK_API_KEY, base_url=Config.DEEPSEEK_URL ) def call_deepseek(prompt): """调用DeepSeek API""" try: response = client.chat.completions.create( model="deepseek-chat", messages=[ {"role": "system", "content": "你是一个专业的文档分析助手"}, {"role": "user", "content": prompt} ], temperature=0.3 ) return response.choices[0].message.content except Exception as e: print(f"调用DeepSeek API出错: {str(e)}") return "" def ask_llm(text_chunk): """向大模型提问并获取响应""" PROMPT_TEMPLATE = """ 请分析以下数学教学内容,直接返回处理后的文本: 1. 根据每个段落间的逻辑关系,判断是不是强相关,一致内容的划分为同一个段落,否则视为两个段落。 2. 不同段落间用两个换行符分隔 3. 不要添加任何额外格式或标记,绝对不要使用markdown格式返回。 待处理内容: {text_chunk} """ prompt = PROMPT_TEMPLATE.format(text_chunk=text_chunk) return call_deepseek(prompt) # 修改后的处理函数 def process_response(response): # 直接返回原始响应内容,不做格式处理 return response def split_text(text, chunk_size=6000): """按段落分割文本,确保每个块接近6000字""" paragraphs = [p.strip() for p in text.split('\n') if p.strip()] chunks = [] current_chunk = [] current_length = 0 for para in paragraphs: para_length = len(para) if current_length + para_length > chunk_size and current_chunk: chunks.append('\n'.join(current_chunk)) current_chunk = [] current_length = 0 current_chunk.append(para) current_length += para_length if current_chunk: chunks.append('\n'.join(current_chunk)) return chunks def process_document(input_file, output_file): """处理文档主流程""" text = read_docx(input_file) chunks = split_text(text) for i, chunk in enumerate(chunks, 1): print(f"正在处理第{i}个段落...") try: response = ask_llm(chunk) paragraphs = process_llm_response(response) for para in paragraphs: save_to_txt(para, output_file) except Exception as e: save_to_txt(f"段落{i}处理失败: {str(e)}", output_file) print(f"处理完成,结果已保存到 {output_file}") def read_docx(file_path): """读取docx文件内容""" from docx import Document try: doc = Document(file_path) return '\n'.join([para.text for para in doc.paragraphs if para.text.strip()]) except Exception as e: print(f"读取docx文件出错: {str(e)}") return "" def save_to_txt(content, file_path, mode='a'): """将内容保存到txt文件""" try: with open(file_path, mode, encoding='utf-8') as f: f.write(content + '\n\n') except Exception as e: print(f"保存到txt文件出错: {str(e)}") # 在process_document方法中调用时,请确保output_file参数是完整的文件路径 def call_deepseek_api(prompt, stream_callback=None): """流式调用DeepSeek API""" try: response = client.chat.completions.create( model="deepseek-chat", messages=[ {"role": "system", "content": "你是一个专业的文档分析助手"}, {"role": "user", "content": prompt} ], temperature=0.3, stream=True ) full_response = "" for chunk in response: if chunk.choices[0].delta.content: content = chunk.choices[0].delta.content full_response += content if stream_callback: stream_callback(content) return full_response except Exception as e: print(f"调用DeepSeek API出错: {str(e)}") def process_llm_response(response): """处理大模型的段落划分响应""" paragraphs = [] current_para = "" for line in response.split('\n'): if line.startswith('## '): if current_para: paragraphs.append(current_para.strip()) current_para = line[3:] + '\n' # 去掉##标记 else: current_para += line + '\n' if current_para: paragraphs.append(current_para.strip()) return paragraphs if __name__ == "__main__": input_file = '../Txt/小学数学(史校长).docx' output_file = '../Txt/小学数学(史校长).txt' process_document(input_file, output_file)