import json import os import time from dotenv import load_dotenv from volcenginesdkarkruntime import Ark from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY from VikingDBMemoryService import VikingDBMemoryService def initialize_services(): load_dotenv() ak = VOLC_ACCESSKEY sk = VOLC_SECRETKEY ark_api_key = VOLC_API_KEY if not all([ak, sk, ark_api_key]): raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。") memory_service = VikingDBMemoryService(ak=ak, sk=sk) llm_client = Ark( base_url="https://ark.cn-beijing.volces.com/api/v3", api_key=ark_api_key, ) return memory_service, llm_client def ensure_collection_exists(memory_service, collection_name): """检查记忆集合是否存在,如果不存在则创建。""" try: memory_service.get_collection(collection_name) print(f"记忆集合 '{collection_name}' 已存在。") except Exception as e: error_message = str(e) if "collection not exist" in error_message: print(f"记忆集合 '{collection_name}' 未找到,正在创建...") try: memory_service.create_collection( collection_name=collection_name, description="中文情感陪伴场景测试", builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"], builtin_entity_types=["sys_profile_v1"] ) print(f"记忆集合 '{collection_name}' 创建成功。") print("等待集合准备就绪...") except Exception as create_e: print(f"创建集合失败: {create_e}") raise else: print(f"检查集合时出错: {e}") raise def search_relevant_memories(memory_service, collection_name, user_id, query): """搜索与用户查询相关的记忆,并在索引构建中时重试。""" print(f"正在搜索与 '{query}' 相关的记忆...") retry_attempt = 0 while True: try: filter_params = { "user_id": [user_id], "memory_type": ["sys_event_v1", "sys_profile_v1"] } response = memory_service.search_memory( collection_name=collection_name, query=query, filter=filter_params, limit=3 ) memories = [] if response.get('data', {}).get('count', 0) > 0: for result in response['data']['result_list']: if 'memory_info' in result and result['memory_info']: memories.append({ 'memory_info': result['memory_info'], 'score': result['score'] }) if memories: if retry_attempt > 0: print("重试后搜索成功。") print(f"找到 {len(memories)} 条相关记忆:") for i, memory in enumerate(memories, 1): print( f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}") else: print("未找到相关记忆。") return memories except Exception as e: error_message = str(e) if "1000023" in error_message: retry_attempt += 1 print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})") time.sleep(60) else: print(f"搜索记忆时出错 (不可重试): {e}") return [] def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history): """处理一轮对话,包括记忆搜索和LLM响应。""" print("\n" + "=" * 60) print(f"用户: {user_message}") relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message) system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。" if relevant_memories: memory_context = "\n".join( [f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories]) system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。" print("AI正在思考...") try: messages = [{"role": "system", "content": system_prompt}] + conversation_history + [ {"role": "user", "content": user_message}] completion = llm_client.chat.completions.create( model="doubao-seed-1-6-flash-250715", messages=messages ) assistant_reply = completion.choices[0].message.content except Exception as e: print(f"LLM调用失败: {e}") assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?" print(f"伙伴: {assistant_reply}") conversation_history.extend([ {"role": "user", "content": user_message}, {"role": "assistant", "content": assistant_reply} ]) return assistant_reply def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name): """将对话历史归档到记忆数据库。""" if not conversation_history: print("没有对话可以归档。") return False print(f"\n正在归档关于 '{topic_name}' 的对话...") session_id = f"{topic_name}_{int(time.time())}" metadata = { "default_user_id": user_id, "default_assistant_id": assistant_id, "time": int(time.time() * 1000) } try: memory_service.add_session( collection_name=collection_name, session_id=session_id, messages=conversation_history, metadata=metadata ) print(f"对话已成功归档,会话ID: {session_id}") print("正在等待记忆索引更新...") return True except Exception as e: print(f"归档对话失败: {e}") return False def main(): print("开始端到端记忆测试...") try: memory_service, llm_client = initialize_services() collection_name = "emotional_support" user_id = "xiaoming" assistant_id = "assistant" ensure_collection_exists(memory_service, collection_name) except Exception as e: print(f"初始化失败: {e}") return print("\n--- 阶段 1: 初始对话 ---") initial_conversation_history = [] handle_conversation_turn( memory_service, llm_client, collection_name, user_id, "你好,我是小明,今年18岁,但压力好大。", initial_conversation_history ) handle_conversation_turn( memory_service, llm_client, collection_name, user_id, "马上就要高考了,家里人的期待好高。", initial_conversation_history ) print("\n--- 阶段 2: 归档记忆 ---") archive_conversation( memory_service, collection_name, user_id, assistant_id, initial_conversation_history, "study_stress_discussion" ) print("\n--- 阶段 3: 验证记忆 ---") verification_conversation_history = [] handle_conversation_turn( memory_service, llm_client, collection_name, user_id, "我最近很焦虑,不知道该怎么办。", verification_conversation_history ) print("\n端到端记忆测试完成!") if __name__ == "__main__": main()