# pip install bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import torch import threading from transformers import BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) # model_name = "netease-youdao/Confucius3-Math" model_name = r"D:\Confucius3-Math\netease-youdao\Confucius3-Math" SYSTEM_PROMPT_TEMPLATE = """用户与助手之间的对话。用户提出一个问题,助手予以解答。助手先在脑海中思考推理过程,然后为用户提供答案。推理过程和答案分别用 标签括起来,即 这里的推理过程 这里的答案 。""" USER_PROMPT_TEMPLATE = """{question}""" question = "1+1=?" model = AutoModelForCausalLM.from_pretrained( model_name, # torch_dtype="auto", quantization_config=bnb_config, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [ {'role': 'system', 'content': SYSTEM_PROMPT_TEMPLATE}, {'role': 'user', 'content': USER_PROMPT_TEMPLATE.format(question=question)}, ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # 创建流式输出器 streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, timeout=10.0) # 设置生成参数,添加streamer generation_kwargs = { **model_inputs, "streamer": streamer, "max_new_tokens": 32768 } # 创建线程来处理流式输出 thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # 流式输出结果 print("流式输出开始:") for chunk in streamer: if chunk: print(chunk, end="", flush=True) thread.join() print("\n流式输出结束")