import logging import os import subprocess import tempfile import urllib.parse import uuid import warnings from io import BytesIO from logging.handlers import RotatingFileHandler import fastapi import uvicorn from fastapi import FastAPI, HTTPException from starlette.staticfiles import StaticFiles from Util.ALiYunUtil import ALiYunUtil from Util.SearchUtil import * # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 配置日志处理器 log_file = os.path.join(os.path.dirname(__file__), 'Logs', 'app.log') os.makedirs(os.path.dirname(log_file), exist_ok=True) # 文件处理器 file_handler = RotatingFileHandler( log_file, maxBytes=1024 * 1024, backupCount=5, encoding='utf-8') file_handler.setFormatter(logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) # 控制台处理器 console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(file_handler) logger.addHandler(console_handler) async def lifespan(app: FastAPI): # 初始化阿里云大模型工具 app.state.aliyun_util = ALiYunUtil() # 抑制HTTPS相关警告 warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') yield app = FastAPI(lifespan=lifespan) # 挂载静态文件目录 app.mount("/static", StaticFiles(directory="Static"), name="static") @app.post("/api/save-word") async def save_to_word(request: fastapi.Request): output_file = None try: # Parse request data try: data = await request.json() markdown_content = data.get('markdown_content', '') if not markdown_content: raise ValueError("Empty MarkDown content") except Exception as e: logger.error(f"Request parsing failed: {str(e)}") raise HTTPException(status_code=400, detail=f"Invalid request: {str(e)}") # 创建临时Markdown文件 temp_md = os.path.join(tempfile.gettempdir(), uuid.uuid4().hex + ".md") with open(temp_md, "w", encoding="utf-8") as f: f.write(markdown_content) # 使用pandoc转换 output_file = os.path.join(tempfile.gettempdir(), "【理想大模型】问答.docx") subprocess.run(['pandoc', temp_md, '-o', output_file, '--resource-path=static'], check=True) # 读取生成的Word文件 with open(output_file, "rb") as f: stream = BytesIO(f.read()) # 返回响应 encoded_filename = urllib.parse.quote("【理想大模型】问答.docx") return StreamingResponse( stream, media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document", headers={"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"}) except HTTPException: raise except Exception as e: logger.error(f"Unexpected error: {str(e)}") raise HTTPException(status_code=500, detail="Internal server error") finally: # 清理临时文件 try: if temp_md and os.path.exists(temp_md): os.remove(temp_md) if output_file and os.path.exists(output_file): os.remove(output_file) except Exception as e: logger.warning(f"Failed to clean up temp files: {str(e)}") @app.post("/api/rag", response_model=None) async def rag(request: fastapi.Request): data = await request.json() query = data.get('query', '') query_tags = data.get('tags', []) # 调用es进行混合搜索 search_results = queryByEs(query, query_tags, logger) # 调用大模型 markdown_content = callLLM(request, query, search_results, logger, False) # 如果有正确的结果 if markdown_content: return {"data": markdown_content, "format": "markdown"} return {"data": "没有在知识库中找到相关的信息,无法回答此问题。"} @app.post("/api/helloWorld", response_model=None) async def helloWorld(request: fastapi.Request): async def generate_hello_world(): message = "Hello,World," for char in message: yield f"data: {char}\n\n" import asyncio await asyncio.sleep(0.5) return StreamingResponse(generate_hello_world(), media_type="text/event-stream") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)