from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.utils import EmbeddingFunc from Config.Config import * def create_llm_model_func(history_messages): def llm_model_func(prompt, system_prompt=None, **kwargs): return openai_complete_if_cache( LLM_MODEL_NAME, prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=LLM_API_KEY, base_url=LLM_BASE_URL, **kwargs, ) return llm_model_func def create_vision_model_func(llm_model_func): def vision_model_func( prompt, system_prompt=None, history_messages=[], image_data=None, **kwargs ): if image_data: return openai_complete_if_cache( VISION_MODEL_NAME, "", system_prompt=None, history_messages=[], messages=[ {"role": "system", "content": system_prompt} if system_prompt else None, { "role": "user", "content": [ {"type": "text", "text": prompt}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_data}" }, }, ], } if image_data else {"role": "user", "content": prompt}, ], api_key=VISION_API_KEY, base_url=VISION_BASE_URL, **kwargs, ) else: return llm_model_func(prompt, system_prompt, history_messages, **kwargs) return vision_model_func def create_embedding_func(): return EmbeddingFunc( embedding_dim=1024, max_token_size=8192, func=lambda texts: openai_embed( texts, model=EMBED_MODEL_NAME, api_key=EMBED_API_KEY, base_url=EMBED_BASE_URL, ), )