import json import logging import os import warnings from logging.handlers import RotatingFileHandler import fastapi import uvicorn from fastapi import FastAPI from lightrag.kg.shared_storage import initialize_pipeline_status from raganything import RAGAnything from sse_starlette import EventSourceResponse from starlette.staticfiles import StaticFiles from Util.RagUtil import initialize_rag, create_llm_model_func, create_vision_model_func, create_embedding_func from lightrag import QueryParam, LightRAG # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 配置日志处理器 log_file = os.path.join(os.path.dirname(__file__), 'Logs', 'app.log') os.makedirs(os.path.dirname(log_file), exist_ok=True) # 文件处理器 file_handler = RotatingFileHandler( log_file, maxBytes=1024 * 1024, backupCount=5, encoding='utf-8') file_handler.setFormatter(logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) # 控制台处理器 console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(file_handler) logger.addHandler(console_handler) async def lifespan(app: FastAPI): # 抑制HTTPS相关警告 warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') # 初始化RAG app.state.rag = await initialize_rag(working_dir="./Topic/Math") yield # 清理资源 await app.state.rag.finalize_storages() async def print_stream(stream): async for chunk in stream: if chunk: print(chunk, end="", flush=True) app = FastAPI(lifespan=lifespan) # 挂载静态文件目录 app.mount("/static", StaticFiles(directory="Static"), name="static") @app.post("/api/rag") async def rag(request: fastapi.Request): data = await request.json() query = data.get("query") lightrag_working_dir = "./Topic/Chinese" async def generate_response_stream(query: str): try: llm_model_func = create_llm_model_func() vision_model_func = create_vision_model_func(llm_model_func) embedding_func = create_embedding_func() lightrag_instance = LightRAG( working_dir=lightrag_working_dir, llm_model_func=llm_model_func, embedding_func=embedding_func ) await lightrag_instance.initialize_storages() await initialize_pipeline_status() rag = RAGAnything( lightrag=lightrag_instance, vision_model_func=vision_model_func, ) # 使用stream=True参数确保流式输出 resp = await rag.aquery( query=query, mode="hybrid", # 直接传入mode参数 stream=True # 直接传入stream参数 ) # 直接处理流式响应,不再打印完整结果 async for chunk in resp: if not chunk: continue yield f"data: {json.dumps({'reply': chunk})}\n\n" print(chunk, end='', flush=True) except Exception as e: yield f"data: {json.dumps({'error': str(e)})}\n\n" logger.error(f"处理查询时出错: {query}. 错误: {str(e)}") return EventSourceResponse(generate_response_stream(query=query)) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)