import json import logging import warnings import hashlib import time import requests from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool from langchain_core.documents import Document from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings from pydantic import SecretStr from Config import Config from typing import List, Tuple, Dict # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class EsSearchUtil: def __init__(self, es_config): """ 初始化Elasticsearch搜索工具 :param es_config: Elasticsearch配置字典,包含hosts, username, password, index_name等 """ # 抑制HTTPS相关警告 warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') self.es_config = es_config # 初始化连接池 self.es_pool = ElasticsearchConnectionPool( hosts=es_config['hosts'], basic_auth=es_config['basic_auth'], verify_certs=es_config.get('verify_certs', False), max_connections=50 ) self.index_name = es_config['index_name'] logger.info(f"EsSearchUtil初始化成功,索引名称: {self.index_name}") def rebuild_mapping(self, index_name=None): """ 重建Elasticsearch索引和mapping结构 参数: index_name: 可选,指定要重建的索引名称,默认使用初始化时的索引名称 返回: bool: 操作是否成功 """ try: # 从连接池获取连接 conn = self.es_pool.get_connection() # 使用指定的索引名称或默认索引名称 target_index = index_name if index_name else self.index_name logger.info(f"开始重建索引: {target_index}") # 定义mapping结构 if target_index == 'student_info': mapping = { "mappings": { "properties": { "user_id": {"type": "keyword"}, "grade": {"type": "keyword"}, "recent_questions": {"type": "text"}, "learned_knowledge": {"type": "text"}, "updated_at": {"type": "date"} } } } else: mapping = { "mappings": { "properties": { "embedding": { "type": "dense_vector", "dims": Config.EMBED_DIM, "index": True, "similarity": "l2_norm" }, "user_input": {"type": "text"}, "tags": { "type": "object", "properties": { "tags": {"type": "keyword"}, "full_content": {"type": "text"} } } } } } # 检查索引是否存在,存在则删除 if conn.indices.exists(index=target_index): conn.indices.delete(index=target_index) logger.info(f"删除已存在的索引 '{target_index}'") print(f"删除已存在的索引 '{target_index}'") # 创建索引和mapping conn.indices.create(index=target_index, body=mapping) logger.info(f"索引 '{target_index}' 创建成功,mapping结构已设置") print(f"索引 '{target_index}' 创建成功,mapping结构已设置。") return True except Exception as e: logger.error(f"重建索引 '{target_index}' 失败: {str(e)}") print(f"重建索引 '{target_index}' 失败: {e}") # 提供认证错误的具体提示 if 'AuthenticationException' in str(e): print("认证失败提示: 请检查Config.py中的ES_CONFIG配置,确保用户名和密码正确。") logger.error("认证失败: 请检查Config.py中的ES_CONFIG配置,确保用户名和密码正确。") return False finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def text_search(self, query, size=10): # 从连接池获取连接 conn = self.es_pool.get_connection() try: # 使用连接执行搜索 result = conn.search( index=self.es_config['index_name'], query={"match": {"user_input": query}}, size=size ) return result except Exception as e: logger.error(f"文本搜索失败: {str(e)}") raise finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def select_all_data(self, size=1000): """ 查询索引中的所有数据 参数: size: 返回的最大结果数量,默认1000 返回: dict: 查询结果 """ # 从连接池获取连接 conn = self.es_pool.get_connection() try: # 构建查询条件 - 匹配所有文档 query = { "query": { "match_all": {} }, "size": size } # 执行查询 response = conn.search(index=self.es_config['index_name'], body=query) return response except Exception as e: logger.error(f"查询所有数据失败: {str(e)}") raise finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def split_text_into_chunks(self,text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list: """ 将文本切割成块 参数: text: 要切割的文本 chunk_size: 每个块的大小 chunk_overlap: 块之间的重叠大小 返回: list: 文本块列表 """ # 创建文档对象 docs = [Document(page_content=text, metadata={"source": "simulated_document"})] # 切割文档 text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True ) all_splits = text_splitter.split_documents(docs) print(f"切割后的文档块数量:{len(all_splits)}") return [split.page_content for split in all_splits] def insert_long_text_to_es(self,long_text: str, tags: list = None) -> bool: """ 将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重 参数: long_text: 要插入的长文本 tags: 可选的标签列表 返回: bool: 插入是否成功 """ try: # 1. 创建EsSearchUtil实例以使用连接池 search_util = EsSearchUtil(Config.ES_CONFIG) # 2. 从连接池获取连接 conn = search_util.es_pool.get_connection() # # 3. 检查索引是否存在,不存在则创建 index_name = Config.ES_CONFIG['index_name'] # if not conn.indices.exists(index=index_name): # # 定义mapping结构 # mapping = { # "mappings": { # "properties": { # "embedding": { # "type": "dense_vector", # "dims": Config.EMBED_DIM, # 根据实际embedding维度调整 # "index": True, # "similarity": "l2_norm" # }, # "user_input": {"type": "text"}, # "tags": { # "type": "object", # "properties": { # "tags": {"type": "keyword"}, # "full_content": {"type": "text"} # } # }, # "timestamp": {"type": "date"} # } # } # } # conn.indices.create(index=index_name, body=mapping) # print(f"索引 '{index_name}' 创建成功") # 4. 切割文本 text_chunks = self.split_text_into_chunks(long_text) # 5. 准备标签 if tags is None: tags = ["general_text"] # 6. 获取当前时间 timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 7. 创建嵌入模型 embeddings = OpenAIEmbeddings( model=Config.EMBED_MODEL_NAME, base_url=Config.EMBED_BASE_URL, api_key=SecretStr(Config.EMBED_API_KEY) ) # 8. 为每个文本块生成向量并插入 for i, chunk in enumerate(text_chunks): # 生成文本块的哈希值作为文档ID doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest() # 检查文档是否已存在 if conn.exists(index=index_name, id=doc_id): print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}") continue # 生成文本块的嵌入向量 embedding = embeddings.embed_documents([chunk])[0] # 准备文档数据 doc = { 'tags': {"tags": tags, "full_content": long_text}, 'user_input': chunk, 'timestamp': timestamp, 'embedding': embedding } # 插入数据到Elasticsearch conn.index(index=index_name, id=doc_id, document=doc) print(f"文档块 {i+1} 插入成功: {doc_id}") return True except Exception as e: print(f"插入数据失败: {e}") return False finally: # 确保释放连接回连接池 if 'conn' in locals() and 'search_util' in locals(): search_util.es_pool.release_connection(conn) def get_query_embedding(self, query: str) -> list: """ 将查询文本转换为向量 参数: query: 查询文本 返回: list: 向量表示 """ # 创建嵌入模型 embeddings = OpenAIEmbeddings( model=Config.EMBED_MODEL_NAME, base_url=Config.EMBED_BASE_URL, api_key=SecretStr(Config.EMBED_API_KEY) ) # 生成查询向量 query_embedding = embeddings.embed_query(query) return query_embedding def rerank_results(self, query: str, results: list) -> list: """ 使用重排模型对搜索结果进行重排 参数: query: 查询文本 results: 搜索结果列表 返回: list: 重排后的结果列表,每个元素是(文档对象, 分数)的元组 """ if not results: print("警告: 没有搜索结果可供重排") return [] try: # 准备重排请求数据 # 确保doc是字典并包含'_source'和'user_input'字段 documents = [] valid_results = [] for i, doc in enumerate(results): if isinstance(doc, dict) and '_source' in doc and 'user_input' in doc['_source']: documents.append(doc['_source']['user_input']) valid_results.append(doc) else: print(f"警告: 结果项 {i} 格式不正确,跳过该结果") print(f"结果项内容: {doc}") if not documents: print("警告: 没有有效的文档可供重排") # 返回原始结果,但转换为(结果, 分数)的元组格式 return [(doc, doc.get('_score', 0.0)) for doc in results] rerank_data = { "model": Config.RERANK_MODEL, "query": query, "documents": documents, "top_n": len(documents) } # 调用重排API headers = { "Content-Type": "application/json", "Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}" } response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data)) response.raise_for_status() # 检查请求是否成功 rerank_result = response.json() # 处理重排结果 reranked_results = [] if "results" in rerank_result: for item in rerank_result["results"]: doc_idx = item.get("index") score = item.get("relevance_score", 0.0) if 0 <= doc_idx < len(valid_results): result = valid_results[doc_idx] reranked_results.append((result, score)) else: print("警告: 无法识别重排API响应格式") # 返回原始结果,但转换为(结果, 分数)的元组格式 reranked_results = [(doc, doc.get('_score', 0.0)) for doc in valid_results] print(f"重排后结果数量:{len(reranked_results)}") return reranked_results except Exception as e: print(f"重排失败: {e}") print("将使用原始搜索结果") # 返回原始结果,但转换为(结果, 分数)的元组格式 return [(doc, doc.get('_score', 0.0)) for doc in results] def search_by_vector(self, query_embedding: list, k: int = 10) -> list: """ 根据向量进行相似性搜索 参数: query_embedding: 查询向量 k: 返回的结果数量 返回: list: 搜索结果列表 """ try: # 从连接池获取连接 conn = self.es_pool.get_connection() index_name = Config.ES_CONFIG['index_name'] # 执行向量搜索 response = conn.search( index=index_name, body={ "query": { "script_score": { "query": {"match_all": {}}, "script": { "source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0", "params": { "query_vector": query_embedding } } } }, "size": k } ) # 提取结果 # 确保我们提取的是 hits.hits 部分 if 'hits' in response and 'hits' in response['hits']: results = response['hits']['hits'] print(f"向量搜索结果数量: {len(results)}") return results else: print("警告: 向量搜索响应格式不正确") print(f"响应内容: {response}") return [] except Exception as e: print(f"向量搜索失败: {e}") return [] finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def display_results(self, results: list, show_score: bool = True) -> None: """ 展示搜索结果 参数: results: 搜索结果列表 show_score: 是否显示分数 """ if not results: print("没有找到匹配的结果。") return print(f"找到 {len(results)} 条结果:\n") for i, item in enumerate(results, 1): print(f"结果 {i}:") try: # 检查item是否为元组格式 (result, score) if isinstance(item, tuple): if len(item) >= 2: result, score = item[0], item[1] else: result, score = item[0], 0.0 else: # 如果不是元组,假设item就是result result = item score = result.get('_score', 0.0) # 确保result是字典类型 if not isinstance(result, dict): print(f"警告: 结果项 {i} 不是字典类型,跳过显示") print(f"结果项内容: {result}") print("---") continue # 尝试获取user_input内容 if '_source' in result and 'user_input' in result['_source']: content = result['_source']['user_input'] print(f"内容: {content}") elif 'user_input' in result: content = result['user_input'] print(f"内容: {content}") else: print(f"警告: 结果项 {i} 缺少'user_input'字段") print(f"结果项内容: {result}") print("---") continue # 显示分数 if show_score: print(f"分数: {score:.4f}") # 如果有标签信息,也显示出来 if '_source' in result and 'tags' in result['_source']: tags = result['_source']['tags'] if isinstance(tags, dict) and 'tags' in tags: print(f"标签: {tags['tags']}") except Exception as e: print(f"处理结果项 {i} 时出错: {str(e)}") print(f"结果项内容: {item}") print("---") def merge_results(self, keyword_results: List[Tuple[Dict, float]], vector_results: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float, str]]: """ 合并关键字搜索和向量搜索结果 参数: keyword_results: 关键字搜索结果列表,每个元素是(文档, 分数)元组 vector_results: 向量搜索结果列表,每个元素是(文档, 分数)元组 返回: list: 合并后的结果列表,每个元素是(文档, 分数, 来源)元组 """ # 标记结果来源并合并 all_results = [] for doc, score in keyword_results: all_results.append((doc, score, "关键字搜索")) for doc, score in vector_results: all_results.append((doc, score, "向量搜索")) # 去重并按分数排序 unique_results = {} for doc, score, source in all_results: doc_id = doc['_id'] if doc_id not in unique_results or score > unique_results[doc_id][1]: unique_results[doc_id] = (doc, score, source) # 按分数降序排序 sorted_results = sorted(unique_results.values(), key=lambda x: x[1], reverse=True) return sorted_results