import os import subprocess import tempfile import urllib.parse import uuid from contextlib import asynccontextmanager from io import BytesIO from logging.handlers import RotatingFileHandler from typing import List import jieba # 导入 jieba 分词库 import uvicorn from fastapi import FastAPI, Request, HTTPException from fastapi.staticfiles import StaticFiles from gensim.models import KeyedVectors from pydantic import BaseModel, Field, ValidationError from starlette.responses import StreamingResponse from Config.Config import MS_MODEL_PATH, MS_MODEL_LIMIT, MS_HOST, MS_PORT, MS_MAX_CONNECTIONS, MS_NPROBE, \ MS_COLLECTION_NAME, ES_CONFIG from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * from Milvus.Utils.MilvusConnectionPool import MilvusConnectionPool from Util.ALiYunUtil import ALiYunUtil from Util.EsSearchUtil import EsSearchUtil # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5) handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) logger.addHandler(handler) # 将HTML文件转换为Word文件 def html_to_word_pandoc(html_file, output_file): subprocess.run(['pandoc', html_file, '-o', output_file]) async def lifespan(app: FastAPI): # 初始化阿里云大模型工具 app.state.aliyun_util = ALiYunUtil() yield app = FastAPI(lifespan=lifespan) # 挂载静态文件目录 app.mount("/static", StaticFiles(directory="Static"), name="static") class QueryRequest(BaseModel): query: str = Field(..., description="用户查询的问题") documents: List[str] = Field(..., description="用户上传的文档") class SaveWordRequest(BaseModel): html: str = Field(..., description="要保存为Word的HTML内容") @app.post("/api/save-word") async def save_to_word(request: Request): temp_html = None output_file = None try: # Parse request data try: data = await request.json() html_content = data.get('html_content', '') if not html_content: raise ValueError("Empty HTML content") except Exception as e: logger.error(f"Request parsing failed: {str(e)}") raise HTTPException(status_code=400, detail=f"Invalid request: {str(e)}") # 创建临时HTML文件 temp_html = os.path.join(tempfile.gettempdir(), uuid.uuid4().hex + ".html") with open(temp_html, "w", encoding="utf-8") as f: f.write(html_content) # 使用pandoc转换 output_file = os.path.join(tempfile.gettempdir(), "【理想大模型】问答.docx") subprocess.run(['pandoc', temp_html, '-o', output_file], check=True) # 读取生成的Word文件 with open(output_file, "rb") as f: stream = BytesIO(f.read()) # 返回响应 encoded_filename = urllib.parse.quote("【理想大模型】问答.docx") return StreamingResponse( stream, media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document", headers={"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"}) except HTTPException: raise except Exception as e: logger.error(f"Unexpected error: {str(e)}") raise HTTPException(status_code=500, detail="Internal server error") finally: # 清理临时文件 try: if temp_html and os.path.exists(temp_html): os.remove(temp_html) if output_file and os.path.exists(output_file): os.remove(output_file) except Exception as e: logger.warning(f"Failed to clean up temp files: {str(e)}") @app.post("/api/rag") async def rag_stream(request: Request): try: data = await request.json() query = data.get('query', '') query_tags = data.get('tags', []) # 获取EsSearchUtil实例 es_search_util = EsSearchUtil(ES_CONFIG) # 执行混合搜索 es_conn = es_search_util.es_pool.get_connection() try: # 向量搜索 logger.info(f"\n=== 开始执行查询 ===") logger.info(f"原始查询文本: {query}") logger.info(f"查询标签: {query_tags}") logger.info("\n=== 向量搜索阶段 ===") logger.info("1. 文本分词和向量化处理中...") query_embedding = es_search_util.text_to_embedding(query) logger.info(f"2. 生成的查询向量维度: {len(query_embedding)}") logger.info(f"3. 前3维向量值: {query_embedding[:3]}") logger.info("4. 正在执行Elasticsearch向量搜索...") vector_results = es_conn.search( index=ES_CONFIG['index_name'], body={ "query": { "script_score": { "query": { "bool": { "should": [ { "terms": { "tags.tags": query_tags } } ], "minimum_should_match": 1 } }, "script": { "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", "params": {"query_vector": query_embedding} } } }, "size": 3 } ) logger.info(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}") # 文本精确搜索 logger.info("\n=== 文本精确搜索阶段 ===") logger.info("1. 正在执行Elasticsearch文本精确搜索...") text_results = es_conn.search( index=ES_CONFIG['index_name'], body={ "query": { "bool": { "must": [ { "match": { "user_input": query } }, { "terms": { "tags.tags": query_tags } } ] } }, "size": 3 } ) logger.info(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}") # 合并结果 logger.info("\n=== 最终搜索结果 ===") logger.info(f"向量搜索结果: {len(vector_results['hits']['hits'])}条") for i, hit in enumerate(vector_results['hits']['hits'], 1): logger.info(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}") logger.info(f" 内容: {hit['_source']['user_input']}") logger.info("文本精确搜索结果:") for i, hit in enumerate(text_results['hits']['hits']): logger.info(f" {i + 1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}") logger.info(f" 内容: {hit['_source']['user_input']}") search_results = { "vector_results": [hit['_source'] for hit in vector_results['hits']['hits']], "text_results": [hit['_source'] for hit in text_results['hits']['hits']] } # 调用阿里云大模型整合结果 aliyun_util = request.app.state.aliyun_util # 构建提示词 context = "\n".join([ f"结果{i + 1}: {res['tags']['full_content']}" for i, res in enumerate(search_results['vector_results'] + search_results['text_results']) ]) prompt = f""" 信息检索与回答助手 根据以下关于'{query}'的相关信息: 基本信息 - 语言: 中文 - 描述: 根据提供的材料检索信息并回答问题 - 特点: 快速准确提取关键信息,清晰简洁地回答 相关信息 {context} 回答要求 1. 依托给定的资料,快速准确地回答问题,可以添加一些额外的信息,但请勿重复内容。 2. 如果未提供相关信息,请不要回答。 3. 如果发现相关信息与原来的问题契合度低,也不要回答 4. 使用HTML格式返回,包含适当的段落、列表和标题标签 5. 确保内容结构清晰,便于前端展示 """ # 调用阿里云大模型 if len(context) > 0: # 调用大模型生成回答 logger.info("正在调用阿里云大模型生成回答...") html_content = aliyun_util.chat(prompt) logger.info(f"调用阿里云大模型生成回答成功完成!") return {"data": html_content} else: logger.warning(f"未找到查询'{query}'的相关数据,tags: {query_tags}") return {"data": "没有在知识库中找到相关的信息,无法回答此问题。", "debug": {"query": query, "tags": query_tags}} except Exception as e: return {"data": f"生成报告时出错: {str(e)}"} finally: es_search_util.es_pool.release_connection(es_conn) except Exception as e: logger.error(f"RAG search error: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)