{"embedding_dim": 1024, "data": [{"__id__": "chunk-6a9910b62cfd73ddf1eb5ceabc7403a5", "__created_at__": 1752674825, "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/fd7863e5db8e4e4abbb1a9858cb8b789/media/image1.png)", "full_doc_id": "doc-6a9910b62cfd73ddf1eb5ceabc7403a5", "file_path": "unknown_source"}], "matrix": "LtPkPGxRCz0/rzi9brJJuRo1lLxAEHe9C6QbPUFWBj3CRxU8xp9IvPGJNr1GMBm97syFu0PlPbkMFvE8b88rvC2xtrstcia8nLVaPEzTp7zCqFO8D87VPHmXKLkhxws99/7LPIVk8buYqIK8/Vb/vAFJKD2iCMI8Qqt5uyXPF71gbKy9ZaIxvWRjoTy3/Tg83fCxOoJtfL2OTQ+90K/gup70aj1CZ529SlUHPembzLyzKHI86bguO2dalrySZjK912qFvKNCBr1hzeq8Zb8Tu809Cz1d0Sm8PXCou5zSvDxptoi9ZIXPvKnZyb0AChi8m5h4ulTBET3OTiK93d+avLv0rbxOXRM9ZgNwPX1xuzxXio28sHcMvfrTEr2iJSQ9tx9nO5UeF73eUfC8w+IXuwqYUDyskS69vnLOPAOq5jwKdiI8CP3NuxOjHL3xiTY80NgNPHAahz033jA8T4sMPYZk8brY1w69j6mBvH/NrTxhyB69y9VNvIwTyzr0Y8m8xkNWvTPFDT1n/qO8z40yueHnJj2FZPG7mb5lOzhc0bvolgC9cwUxvcp0D7wwDSk8wqjTPB3QFr2q9qs8mvipO5uClTylwCY95t4bO/wSI7wiKMq8DjPTvCXgLjwwaRu9l5y3PEKJS7xM2HM9DBGlvCoWNDyADL68oyrwO7ahRjpkhc+8wOuiOzvyh7tJWtO8PXAovTu4w7shzNe76biuuY326LtOkNg8u/l5PVo2p72eHRg9OCmMPA+x8zweFPO8PnX0PB9Ot736u/w75h2svKXApjwXmpE8PrsDvPw0UbzBaUM8Ff+OO5DoEbyGgVM9ZIXPuoQDszwjSni9QS1ZvXWl/7t5OzY8cvQZvJnbx7wfLIk8sxKPvZCMH7y1fxg9z40yvZioAr3EISg9iPonvNOhibr3G6671OXlvKSjxDzmAMo9wYvxPLq6aTv0MIS8FmDNvFm90rxkY6G7R79QvQuYUD37EiM9hUJDvIpb5ruLsgy8LyoLPck6y7v2ywa9QUq7vEu2RT15RwE9IaopvQukmzzLogi7M/OGvH1PDbzY3Fo7XhwFPU+turwa9oO8zOEYO5ywDjztryO9BNMTvSXgrrtHyxu9kknQPNIoNb3eEmC9AqWaPNkFiLyPkWs97u4zPONlR71h9hc8S5ljvYj/c7yko8Q8tGI2PAZAnTpF8Yg9LY+IvYlbZro9MRg951y8PHV+hTyBVxm9z6/gPEz1VT22vii9Fz4fPfgg+rwfTrc7Z1/iPJywDrxuzyu9sE5fPFZh4LwCa9Y7Q6v5PGl8RL2xa0E9ZwPwPIQgFT078ge9YM1qvY0TSz0gjUc7nLXavF20Rz2xa8E9C5OEvLRitrtAC6u7x4Jmve2eDL0/+hM9ZsRfPckd6bpRCS09m5Msuu4Q4rzyiTa7E6McPTGXFDxSZR89+ZlOPDfjfDwnAl28ryyxO4QDM7wkkIc8AAqYvGYgUjzD0QA+qHgLPY+uTT34Wj4712oFPQ5QNbxJOKU84gSJvd2gir3eDRQ8KtejOlOkrzx/6g+93LEhvNedSj0oPCE80czCvEvCED3dEuC7JKEevu8LFr1ZGUU8sE7fPMAqM7wUhro8eTs2vA5QtbyADL687u4zvbvjlr1KlBe9vZR8u14cBb3NMUA8YiSRPIz2aLp3/KU8eXpGPRyWUrxCpq28lR4XvKYcGT3HwXa66wOKvBE2Ez04KYy7wPDuu4Eu7Lxa/GK8r+2gvXrWOL3oeR48FNEVvFTjv7u1QIi7dGEjvR9OtzqBaLA8rJGuvPsBjD3c0089J0HtvGmZJrwFYku8sYgjPX/qDz0koZ48PDZkvNYkdrzPr+A8z06iu5JmMr2HwOM8KdzvvPwSozySJyI83JQ/PUAQ97yD5tC7tEAIPR9ON70hjUc8do8cvWg9tDqwje86g+bQO+/z/7pE5b08USaPvJ3eBz1M8Ak9+7v8PKtX6jvBTOG8Dm2XPYqEk71/zS28twkEPdEL0711fgW4kixuOxeC+ztfMmg8WRlFOyNFrDzclL+8MzKXvIfdxTzXgGg+C9fgO2sjkjyqEw69uF73u4zxHL0SZAw8VkR+PJSIYLyKeEg8PtHmvAt77jzxphg9T626uxOSBbuRLO48SOH+u7ahxjwEAQ09XJdlvMfZjLsgqqm68E/yPJTfhjyKlaq8GjpgvC2PCL2aVBw9injIPBkYMr0q1yO8vVVsPKYh5TtL0ye86ZvMvIeB0zy3H2e730yku2CJjj0KdiK9sulhugEsxrwcszS8ODqju4zgBT3Looi8xSZ0vGSRmrzFBEY9oc59vHArnjo3HUE8YeWAvHLozrw1jom8xp/IulebpLxY2jS7ypY9vdIoNT3VAsi6l10nvKxBBzyWXae8tq2RvFC5hbySLG477Fh9vRTRFT3iJjc9yletu0ALKz2qGFq8+CB6PdkWnzxMErg8Do/FPPfhaT2AKaC8wqjTu05uKr3WJHa8rJZ6vEVekjs1jgk8bpCbuqh91zsAChi8I0WsvPPUkTyr+3e8SOF+PL6UfDrdEmC8S9MnPD1fkTxI/mC8KvlRO2xzOb1OUUg9HfJEPbV/mDu1boG6cvQZvIqVqj0nAl28Jb6AvFr84jvfbtK8YgevO8TFtbzknws9XJKZvGHlgDzxphg9oevfPAvXYDsSZAw9p1spvS8vVz2uD8+8LDOWPAfbHzzd8DG7G5bSPJtZ6Lwxbme8KF5Puw+x8zw3HUE9fBVJvNHucLwHvj29nlDdPKMq8DxrIxI8VgVuPduUv7v5fOw8lkyQPJJmMr1KmWM8dGbvu0kbQ73IvKo8UQktPIQDMzwnXs889aLZu6bi1Dzu3Zw8hCCVu6tBBz3y1BG98ZUBPAy1Mrxpu1S830ykvKLJMb1cwBK7qZo5POq9erpSZR+9m3ZKPDbesDxbl+W8gWgwPZzSvD0XfS89tGI2vR9wZTsMtTK8quUUvUVjXjwEBtk8DlwAPbGN77wM9MK8fDIrvCHpuT1slec8zNABPYPhBLxgiQ49i7IMPEZj3jxCZx29A6rmvE5dEz15nPS704Qnu+607z2bmPi8sHeMvIpbZj0a9oO8qxhaPQTkKjxWXBQ9KHuxvJODFD2sNTw8bs8rPYKnQD3dzgO9fFRZvd47jTyKeMi8+nzsOtCNMjzd3xo8OtUlvZDtXb2d3ge88up0vMqWvbyXegk94ecmPYKK3ryEIBW9XNGpPHu51rpQrTq7WvzivPmZzryWTBA9+wEMvfsSI72GnjW9qhMOvFkZxTry5ai8GN5tPFZclDzXagU9JeAuPSHHizzgqBY9dURBPNZB2Lyu8mw7x7yqu0jh/jyXf9U8+AqXvEpVBzwnPCG9ZGjtPMyznzzyq+Q7TTTmvEzTp7y/8O48Fi2IvC8SdTzFQ1Y7SScOuyr5UbuY20e7nd4HuuNDGb0waZu6h8BjPQe+vbz1nY28QAurvcp5W7qmIeU8Q6v5udOEJ73VH6q89/7LO1eKjTxslee8JwLdvIKFkjxRCS28PV+RvMPRgDwBZgq9DdIUvUKmLTwoezE9bxoHvNt33bxzJ186KDwhvKCnAz3mHay7bCMSvRiaEbwCpRq9V5ukvKrZST2n/zY8dx5Uuw5y47zChqU6AmtWO7GIIzq3CQS8zBRevYFtfLxM9VW923fdvBTn+LyYuZm7XMASPaWG4rrLsx+9QqatvFig8LzmzQS9Bm4WvA+x8zxnX2I8Rl6SPYeqALyHqgA814DovMZsA73WJPa89EEbvYj6pzzqFKG8DBGlPIlWGrujCEK8NZ8gvYKKXjxNNGY8h8DjvF8tHLw6uEO83fAxPQUvhr0JNxI9CQkZvdUfKj3Hgma9nzN7u+m4rr3eL8I9Xk/KuwQG2TxkgAM8kScivena3DsjBhy8ati2PLQGxDxz6E67I0WsvHMiEzzBTOG8qJo5veh+ajwR94I8U4IBPSYfPzz+svE8n22/vH2Tabx6uVY6fU+NvMPFNT0cszS7CR/8O+h5njwmH7+89EZnvXffQzywjW880Si1u27PK72eDAE9X47auuraXDsZGLK8FNEVPKCP7bwE6Xa85KTXvGbE37siKMo8VKn7vP/4gDwRNhM9BOn2PNs4zTp3wuG8byueu0adorwxbmc8W4ECvkPlvbrL1c28v6wSvLwzPjxrVlc8H063vN3wsTxXig261Q4TvGSFTzxy6E682RYfPKSjxLy/2gs8AA9kPGCrvDvPkn47OWicPOibzDv2olk6vBGQvKdbKby0KPK8CllAPFi4BjwD5Kq6KGqavMp0DzyADD48EfcCPfRBmzwoQe07p1upPBSGOjx0YSM9O/KHPCrXI7lN9VW8liNjPNd7HD0ogH27u/StvMPFNTs6xI48oIqhvP5zYb1EJE69N/sSu6rlFL0zMpe8QAuruxX/DjxVAKI88EomvPsBjDwPsfO8f46dvBH3gr1wSIC8Aog4vQy6/jvOawS9ilvmvDhc0bsD5Kq78aYYvfsSIz2eUF08//gAvYlFg7wmHz89XLRHPAd/LbySSdA86D/avDbBTrwiKEo77rTvvLWhxjurUp6713ucPI41+bxgbCw8sE5fPNTDN70iKEq9wXUOPKoY2jvHfZo8Rkb8vBkYMr2M4AW98uUovBpXQr1hzeq7YKu8O9TDtzzM4Zi7UexKvI5vvTuLt9i46hltvKtX6rppfMS8upg7PYFt/DwZvD88pd2IPVdEfrv5d6C7MyEAvFzAErwXmpE8dqV/vOr3vjv8NNE8FOf4vN9RcLoLdqI64gnVvEkbw7wxqKu8kmt+vP/stTwALEY6eF1kPGb+I72VATW8YKs8Pc0xwLwnWQO99Z0NOy8v1zwXfS88LY+IvLHM/7wSCBo9klUbvQ4z07xKmWM8kSciOjhXhTuQuhi8A4g4PFc/srw2zZk8Gd7tPM0xQDxGgMC7urUdvGv6ZDw4XNG7KGqaPYPhBL0d8kQ9ZJGauql9V71HugS9kmayPJm+ZbzqFCG906EJvLcfZzzrWP077HCTPPv1QLwTkoU8Lw2pO4VCwzsDx0g8TnN2PN3wsTm79C293i9CPXbC4bu8Pwk9kQrAvDWCPj3VHyo8F4L7PE+5hT0PsfM8kcuvOnmc9LsMEaU9LFXEPCoWtLxNLxo9sDH9PFY/MjyCRoK7VOO/vOtYfbyY20c9scx/PI0fljyslvq7I2faOsOGpTxcl2W9WlMJPb1+mbwkZ1q8bHO5uxeakb3eL8I88+r0vM09i7zYuiw9/8oHvem4rrwBSag8gqdAPH1PDbsXbBi9PxB3OydB7bx+fYY9NAlqvbbg1jwOj8U8MwSeO6m8Zzy710s8xT4KvXlHAb1EAqA8EPeCO5NJULvXagW9pz5HvWHNajuPqYE7NUMuPQTpdjwH2x+9HdXiOwy1sjzsNk88O/IHPMfZDD2u7SA8ZiBSPA=="}