from Util.EmbeddingUtil import text_to_embedding # 修改导入 from Config.Config import ES_CONFIG from elasticsearch import Elasticsearch import re from tqdm import tqdm import datetime import logging # 在文件开头添加logger配置 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 创建控制台handler并设置格式 handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) def split_sentences(text): """按句分割文本""" paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()] # 使用jieba进行分句 sentences = re.split(r'[。!?;\n]', text) # 添加这行定义sentences return [s.strip() for s in sentences if s.strip()] def save_to_es(text): """保存向量化文本和原始文本到ES""" vector = text_to_embedding(text) if vector is None: logger.warning(f"跳过无法生成向量的文本: {text}") return doc = { 'text': text, 'vector': vector, 'timestamp': datetime.datetime.now().isoformat(), 'analyzer': 'ik_smart' } try: es.index(index='knowledge_base', body=doc) es.index(index='raw_texts', body={'raw_text': text}) except Exception as e: logger.error(f"保存文本到ES失败: {e}") def process_file(file_path): """处理文本文件""" with open(file_path, 'r', encoding='utf-8') as f: content = f.read() sentences = split_sentences(content) # 添加进度条 for sentence in tqdm(sentences, desc='处理进度', unit='句'): save_to_es(sentence) print(f"\n处理完成,共保存{len(sentences)}个句子") if __name__ == '__main__': es = Elasticsearch( hosts=[ES_CONFIG['hosts']], basic_auth=ES_CONFIG['basic_auth'], verify_certs=ES_CONFIG['verify_certs'], ssl_show_warn=ES_CONFIG['ssl_show_warn'] ) file_path = 'Txt/人口变化趋势对云南教育的影响.txt' process_file(file_path)