import json import logging import warnings import hashlib import time import requests from Config.Config import ES_CONFIG from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool from langchain_core.documents import Document from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings from pydantic import SecretStr from Config import Config from typing import List, Tuple, Dict # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class EsSearchUtil: def __init__(self, es_config): """ 初始化Elasticsearch搜索工具 :param es_config: Elasticsearch配置字典,包含hosts, username, password, index_name等 """ # 抑制HTTPS相关警告 warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') self.es_config = es_config # 初始化连接池 self.es_pool = ElasticsearchConnectionPool( hosts=es_config['hosts'], basic_auth=es_config['basic_auth'], verify_certs=es_config.get('verify_certs', False), max_connections=50 ) self.index_name = es_config['index_name'] logger.info(f"EsSearchUtil初始化成功,索引名称: {self.index_name}") def rebuild_mapping(self): """ 重建Elasticsearch索引和mapping结构 返回: bool: 操作是否成功 """ try: # 从连接池获取连接 conn = self.es_pool.get_connection() # 定义mapping结构 mapping = { "mappings": { "properties": { "embedding": { "type": "dense_vector", "dims": Config.EMBED_DIM, # embedding维度为Config.EMBED_DIM "index": True, "similarity": "l2_norm" # 使用L2距离 }, "user_input": {"type": "text"}, "tags": { "type": "object", "properties": { "tags": {"type": "keyword"}, "full_content": {"type": "text"} } } } } } # 检查索引是否存在,存在则删除 if conn.indices.exists(index=self.index_name): conn.indices.delete(index=self.index_name) logger.info(f"删除已存在的索引 '{self.index_name}'") print(f"删除已存在的索引 '{self.index_name}'") # 创建索引和mapping conn.indices.create(index=self.index_name, body=mapping) logger.info(f"索引 '{self.index_name}' 创建成功,mapping结构已设置") print(f"索引 '{self.index_name}' 创建成功,mapping结构已设置。") return True except Exception as e: logger.error(f"重建mapping失败: {str(e)}") print(f"重建mapping失败: {e}") return False finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def text_search(self, query, size=10): # 从连接池获取连接 conn = self.es_pool.get_connection() try: # 使用连接执行搜索 result = conn.search( index=self.es_config['index_name'], query={"match": {"user_input": query}}, size=size ) return result except Exception as e: logger.error(f"文本搜索失败: {str(e)}") raise finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def select_all_data(self, size=1000): """ 查询索引中的所有数据 参数: size: 返回的最大结果数量,默认1000 返回: dict: 查询结果 """ # 从连接池获取连接 conn = self.es_pool.get_connection() try: # 构建查询条件 - 匹配所有文档 query = { "query": { "match_all": {} }, "size": size } # 执行查询 response = conn.search(index=self.es_config['index_name'], body=query) return response except Exception as e: logger.error(f"查询所有数据失败: {str(e)}") raise finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def split_text_into_chunks(self,text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list: """ 将文本切割成块 参数: text: 要切割的文本 chunk_size: 每个块的大小 chunk_overlap: 块之间的重叠大小 返回: list: 文本块列表 """ # 创建文档对象 docs = [Document(page_content=text, metadata={"source": "simulated_document"})] # 切割文档 text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True ) all_splits = text_splitter.split_documents(docs) print(f"切割后的文档块数量:{len(all_splits)}") return [split.page_content for split in all_splits] def insert_long_text_to_es(self,long_text: str, tags: list = None) -> bool: """ 将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重 参数: long_text: 要插入的长文本 tags: 可选的标签列表 返回: bool: 插入是否成功 """ try: # 1. 创建EsSearchUtil实例以使用连接池 search_util = EsSearchUtil(Config.ES_CONFIG) # 2. 从连接池获取连接 conn = search_util.es_pool.get_connection() # 3. 检查索引是否存在,不存在则创建 index_name = Config.ES_CONFIG['index_name'] if not conn.indices.exists(index=index_name): # 定义mapping结构 mapping = { "mappings": { "properties": { "embedding": { "type": "dense_vector", "dims": 1024, # 根据实际embedding维度调整 "index": True, "similarity": "l2_norm" }, "user_input": {"type": "text"}, "tags": { "type": "object", "properties": { "tags": {"type": "keyword"}, "full_content": {"type": "text"} } }, "timestamp": {"type": "date"} } } } conn.indices.create(index=index_name, body=mapping) print(f"索引 '{index_name}' 创建成功") # 4. 切割文本 text_chunks = self.split_text_into_chunks(long_text) # 5. 准备标签 if tags is None: tags = ["general_text"] # 6. 获取当前时间 timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 7. 创建嵌入模型 embeddings = OpenAIEmbeddings( model=Config.EMBED_MODEL_NAME, base_url=Config.EMBED_BASE_URL, api_key=SecretStr(Config.EMBED_API_KEY) ) # 8. 为每个文本块生成向量并插入 for i, chunk in enumerate(text_chunks): # 生成文本块的哈希值作为文档ID doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest() # 检查文档是否已存在 if conn.exists(index=index_name, id=doc_id): print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}") continue # 生成文本块的嵌入向量 embedding = embeddings.embed_documents([chunk])[0] # 准备文档数据 doc = { 'tags': {"tags": tags, "full_content": long_text}, 'user_input': chunk, 'timestamp': timestamp, 'embedding': embedding } # 插入数据到Elasticsearch conn.index(index=index_name, id=doc_id, document=doc) print(f"文档块 {i+1} 插入成功: {doc_id}") return True except Exception as e: print(f"插入数据失败: {e}") return False finally: # 确保释放连接回连接池 if 'conn' in locals() and 'search_util' in locals(): search_util.es_pool.release_connection(conn) def get_query_embedding(self, query: str) -> list: """ 将查询文本转换为向量 参数: query: 查询文本 返回: list: 向量表示 """ # 创建嵌入模型 embeddings = OpenAIEmbeddings( model=Config.EMBED_MODEL_NAME, base_url=Config.EMBED_BASE_URL, api_key=SecretStr(Config.EMBED_API_KEY) ) # 生成查询向量 query_embedding = embeddings.embed_query(query) return query_embedding def rerank_results(self, query: str, results: List[Dict]) -> List[Tuple[Dict, float]]: """ 对搜索结果进行重排 参数: query: 查询文本 results: 搜索结果列表 返回: list: 重排后的结果列表,每个元素是(文档, 分数)元组 """ if len(results) <= 1: return [(doc, 1.0) for doc in results] # 准备重排请求数据 rerank_data = { "model": Config.RERANK_MODEL, "query": query, "documents": [doc['_source']['user_input'] for doc in results], "top_n": len(results) } # 调用API进行重排 headers = { "Content-Type": "application/json", "Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}" } try: response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data)) response.raise_for_status() rerank_result = response.json() # 处理重排结果 reranked_docs_with_scores = [] if "results" in rerank_result: for item in rerank_result["results"]: # 尝试获取index和relevance_score字段 doc_idx = item.get("index") score = item.get("relevance_score", 0.0) # 如果找不到,尝试fallback到document和score字段 if doc_idx is None: doc_idx = item.get("document") if score == 0.0: score = item.get("score", 0.0) if doc_idx is not None and 0 <= doc_idx < len(results): reranked_docs_with_scores.append((results[doc_idx], score)) logger.debug(f"重排结果: 文档索引={doc_idx}, 分数={score}") else: logger.warning(f"重排结果项索引无效: {doc_idx}") # 如果没有有效的重排结果,返回原始结果 if not reranked_docs_with_scores: logger.warning("没有获取到有效的重排结果,返回原始结果") return [(doc, 1.0) for doc in results] return reranked_docs_with_scores except Exception as e: logger.error(f"重排失败: {str(e)}") return [(doc, 1.0) for doc in results] def search_by_vector(self, query_embedding: list, k: int = 10) -> dict: """ 在Elasticsearch中按向量搜索 参数: query_embedding: 查询向量 k: 返回结果数量 返回: dict: 搜索结果 """ # 从连接池获取连接 conn = self.es_pool.get_connection() try: # 构建向量搜索查询 query = { "query": { "script_score": { "query": { "bool": { "should": [], "minimum_should_match": 0 } }, "script": { "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", "params": {"query_vector": query_embedding} } } }, "size": k } # 执行查询 response = conn.search(index=self.es_config['index_name'], body=query) return response except Exception as e: logger.error(f"向量搜索失败: {str(e)}") raise finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def display_results(self, results: list, show_score: bool = True) -> None: """ 展示搜索结果 参数: results: 搜索结果列表 show_score: 是否显示分数 """ if not results: print("没有找到匹配的结果。") return print(f"找到 {len(results)} 条结果:\n") for i, (result, score) in enumerate(results, 1): print(f"结果 {i}:") print(f"内容: {result['_source']['user_input']}") if show_score: print(f"分数: {score:.4f}") print("---") def merge_results(self, keyword_results: List[Tuple[Dict, float]], vector_results: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float, str]]: """ 合并关键字搜索和向量搜索结果 参数: keyword_results: 关键字搜索结果列表,每个元素是(文档, 分数)元组 vector_results: 向量搜索结果列表,每个元素是(文档, 分数)元组 返回: list: 合并后的结果列表,每个元素是(文档, 分数, 来源)元组 """ # 标记结果来源并合并 all_results = [] for doc, score in keyword_results: all_results.append((doc, score, "关键字搜索")) for doc, score in vector_results: all_results.append((doc, score, "向量搜索")) # 去重并按分数排序 unique_results = {} for doc, score, source in all_results: doc_id = doc['_id'] if doc_id not in unique_results or score > unique_results[doc_id][1]: unique_results[doc_id] = (doc, score, source) # 按分数降序排序 sorted_results = sorted(unique_results.values(), key=lambda x: x[1], reverse=True) return sorted_results