""" pip install volcengine pip install --upgrade "volcengine-python-sdk[ark]" """ import json import logging import threading import time from dotenv import load_dotenv from volcengine.ApiInfo import ApiInfo from volcengine.Credentials import Credentials from volcengine.ServiceInfo import ServiceInfo from volcengine.auth.SignerV4 import SignerV4 from volcengine.base.Service import Service from volcenginesdkarkruntime import Ark from Config.Config import VOLC_SECRETKEY, VOLC_ACCESSKEY, VOLC_API_KEY # 配置日志 logger = logging.getLogger('CollectionMemory') logger.setLevel(logging.INFO) # 只添加一次处理器,避免重复日志 if not logger.handlers: handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(handler) # 记忆体集合名称 MEMORY_COLLECTION_NAME="dsideal_collection" class VikingDBMemoryException(Exception): def __init__(self, code, request_id, message=None): self.code = code self.request_id = request_id self.message = "{}, code:{},request_id:{}".format(message, self.code, self.request_id) def __str__(self): return self.message class VikingDBMemoryService(Service): _instance_lock = threading.Lock() def __new__(cls, *args, **kwargs): if not hasattr(VikingDBMemoryService, "_instance"): with VikingDBMemoryService._instance_lock: if not hasattr(VikingDBMemoryService, "_instance"): VikingDBMemoryService._instance = object.__new__(cls) return VikingDBMemoryService._instance def __init__(self, host="api-knowledgebase.mlp.cn-beijing.volces.com", region="cn-beijing", ak="", sk="", sts_token="", scheme='https', connection_timeout=30, socket_timeout=30): self.service_info = VikingDBMemoryService.get_service_info(host, region, scheme, connection_timeout, socket_timeout) self.api_info = VikingDBMemoryService.get_api_info() super(VikingDBMemoryService, self).__init__(self.service_info, self.api_info) if ak: self.set_ak(ak) if sk: self.set_sk(sk) if sts_token: self.set_session_token(session_token=sts_token) try: self.get_body("Ping", {}, json.dumps({})) except Exception as e: raise VikingDBMemoryException(1000028, "missed", "host or region is incorrect".format(str(e))) from None def setHeader(self, header): api_info = VikingDBMemoryService.get_api_info() for key in api_info: for item in header: api_info[key].header[item] = header[item] self.api_info = api_info @staticmethod def get_service_info(host, region, scheme, connection_timeout, socket_timeout): service_info = ServiceInfo(host, {"Host": host}, Credentials('', '', 'air', region), connection_timeout, socket_timeout, scheme=scheme) return service_info @staticmethod def get_api_info(): api_info = { "CreateCollection": ApiInfo("POST", "/api/memory/collection/create", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), "GetCollection": ApiInfo("POST", "/api/memory/collection/info", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), "DropCollection": ApiInfo("POST", "/api/memory/collection/delete", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), "UpdateCollection": ApiInfo("POST", "/api/memory/collection/update", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), "SearchMemory": ApiInfo("POST", "/api/memory/search", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), "AddSession": ApiInfo("POST", "/api/memory/session/add", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), "Ping": ApiInfo("GET", "/api/memory/ping", {}, {}, {'Accept': 'application/json', 'Content-Type': 'application/json'}), } return api_info def get_body(self, api, params, body): if not (api in self.api_info): raise Exception("no such api") api_info = self.api_info[api] r = self.prepare_request(api_info, params) r.headers['Content-Type'] = 'application/json' r.headers['Traffic-Source'] = 'SDK' r.body = body SignerV4.sign(r, self.service_info.credentials) url = r.build() resp = self.session.get(url, headers=r.headers, data=r.body, timeout=(self.service_info.connection_timeout, self.service_info.socket_timeout)) if resp.status_code == 200: return json.dumps(resp.json()) else: raise Exception(resp.text.encode("utf-8")) def get_body_exception(self, api, params, body): try: res = self.get_body(api, params, body) except Exception as e: try: res_json = json.loads(e.args[0].decode("utf-8")) except: raise VikingDBMemoryException(1000028, "missed", "json load res error, res:{}".format(str(e))) from None code = res_json.get("code", 1000028) request_id = res_json.get("request_id", 1000028) message = res_json.get("message", None) raise VikingDBMemoryException(code, request_id, message) if res == '': raise VikingDBMemoryException(1000028, "missed", "empty response due to unknown error, please contact customer service") from None return res def get_exception(self, api, params): try: res = self.get(api, params) except Exception as e: try: res_json = json.loads(e.args[0].decode("utf-8")) except: raise VikingDBMemoryException(1000028, "missed", "json load res error, res:{}".format(str(e))) from None code = res_json.get("code", 1000028) request_id = res_json.get("request_id", 1000028) message = res_json.get("message", None) raise VikingDBMemoryException(code, request_id, message) if res == '': raise VikingDBMemoryException(1000028, "missed", "empty response due to unknown error, please contact customer service") from None return res def create_collection(self, collection_name, description="", custom_event_type_schemas=[], custom_entity_type_schemas=[], builtin_event_types=[], builtin_entity_types=[]): params = { "CollectionName": collection_name, "Description": description, "CustomEventTypeSchemas": custom_event_type_schemas, "CustomEntityTypeSchemas": custom_entity_type_schemas, "BuiltinEventTypes": builtin_event_types, "BuiltinEntityTypes": builtin_entity_types, } res = self.json("CreateCollection", {}, json.dumps(params)) return json.loads(res) def get_collection(self, collection_name): params = {"CollectionName": collection_name} res = self.json("GetCollection", {}, json.dumps(params)) return json.loads(res) def drop_collection(self, collection_name): params = {"CollectionName": collection_name} res = self.json("DropCollection", {}, json.dumps(params)) return json.loads(res) def update_collection(self, collection_name, custom_event_type_schemas=[], custom_entity_type_schemas=[], builtin_event_types=[], builtin_entity_types=[]): params = { "CollectionName": collection_name, "CustomEventTypeSchemas": custom_event_type_schemas, "CustomEntityTypeSchemas": custom_entity_type_schemas, "BuiltinEventTypes": builtin_event_types, "BuiltinEntityTypes": builtin_entity_types, } res = self.json("UpdateCollection", {}, json.dumps(params)) return json.loads(res) def search_memory(self, collection_name, query, filter, limit=10): params = { "collection_name": collection_name, "query": query, "limit": limit, "filter": filter, } res = self.json("SearchMemory", {}, json.dumps(params)) return json.loads(res) def add_session(self, collection_name, session_id, messages, metadata, entities=None): params = { "collection_name": collection_name, "session_id": session_id, "messages": messages, "metadata": metadata, } if entities is not None: params["entities"] = entities res = self.json("AddSession", {}, json.dumps(params)) return json.loads(res) def handle_conversation_turn(self, llm_client, user_id, user_message, conversation_history): """处理一轮对话,包括记忆搜索和LLM响应。""" logger.info("\n" + "=" * 60) logger.info(f"用户: {user_message}") # 修复:调用正确的search_relevant_memories方法 relevant_memories = self.search_relevant_memories(MEMORY_COLLECTION_NAME, user_id, user_message) system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。" if relevant_memories: memory_context = "\n".join( [f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories]) system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。" logger.info("AI正在思考...") try: messages = [{"role": "system", "content": system_prompt}] + conversation_history + [ {"role": "user", "content": user_message}] completion = llm_client.chat.completions.create( model="doubao-seed-1-6-flash-250715", messages=messages ) assistant_reply = completion.choices[0].message.content except Exception as e: logger.info(f"LLM调用失败: {e}") assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?" logger.info(f"伙伴: {assistant_reply}") conversation_history.extend([ {"role": "user", "content": user_message}, {"role": "assistant", "content": assistant_reply} ]) return assistant_reply def archive_conversation(self, user_id, assistant_id, conversation_history, topic_name): """将对话历史归档到记忆数据库。""" if not conversation_history: logger.info("没有对话可以归档。") return False logger.info(f"\n正在归档关于 '{topic_name}' 的对话...") session_id = f"{topic_name}_{int(time.time())}" metadata = { "default_user_id": user_id, "default_assistant_id": assistant_id, "time": int(time.time() * 1000) } try: self.add_session( collection_name=MEMORY_COLLECTION_NAME, session_id=session_id, messages=conversation_history, metadata=metadata ) logger.info(f"对话已成功归档,会话ID: {session_id}") logger.info("正在等待记忆索引更新...") return True except Exception as e: logger.info(f"归档对话失败: {e}") return False def wait_for_collection_ready(self, timeout=300, interval=10): """ 等待集合准备就绪 :param timeout: 超时时间(秒) :param interval: 检查间隔(秒) :return: True if ready, False if timeout """ start_time = time.time() while time.time() - start_time < timeout: try: collection_info = self.get_collection(MEMORY_COLLECTION_NAME) # 打印完整集合信息用于调试 logger.info(f"集合详细信息: {json.dumps(collection_info, ensure_ascii=False)}") # 尝试多种可能的状态字段名 status = collection_info.get("Status") or collection_info.get("status") or "UNKNOWN" logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 当前状态: {status}") # 检查是否为就绪状态(可能的值:READY, RUNNING, ACTIVE等) if status in ["READY", "RUNNING", "ACTIVE"]: return True time.sleep(interval) except Exception as e: logger.error(f"检查集合状态失败: {str(e)}") time.sleep(interval) logger.error(f"集合 '{MEMORY_COLLECTION_NAME}' 在{timeout}秒内未就绪") return False def initialize_services(self, ak=None, sk=None, ark_api_key=None): """初始化记忆数据库服务和LLM客户端""" load_dotenv() # 如果参数未提供,尝试从环境变量获取 if not ak: ak = VOLC_ACCESSKEY if not sk: sk = VOLC_SECRETKEY if not ark_api_key: ark_api_key = VOLC_API_KEY if not all([ak, sk, ark_api_key]): raise ValueError("必须提供 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 VOLC_API_KEY。") memory_service = VikingDBMemoryService(ak=ak, sk=sk) llm_client = Ark( base_url="https://ark.cn-beijing.volces.com/api/v3", api_key=ark_api_key, ) return memory_service, llm_client def ensure_collection_exists(self, collection_name, description="", builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"], builtin_entity_types=["sys_profile_v1"]): """检查记忆集合是否存在,如果不存在则创建。""" try: self.get_collection(collection_name) logger.info(f"记忆集合 '{collection_name}' 已存在。") except Exception as e: error_message = str(e) if "collection not exist" in error_message: logger.info(f"记忆集合 '{collection_name}' 未找到,正在创建...") try: self.create_collection( collection_name=collection_name, description=description, builtin_event_types=builtin_event_types, builtin_entity_types=builtin_entity_types ) logger.info(f"记忆集合 '{collection_name}' 创建成功。") logger.info("等待集合准备就绪...") except Exception as create_e: logger.info(f"创建集合失败: {create_e}") raise else: logger.info(f"检查集合时出错: {e}") raise def search_relevant_memories(self, collection_name, user_id, query, limit=3): """搜索与用户查询相关的记忆,并在索引构建中时重试。""" logger.info(f"正在搜索与 '{query}' 相关的记忆...") retry_attempt = 0 while True: try: filter_params = { "user_id": user_id, # 修正为字符串类型 "memory_type": ["sys_event_v1", "sys_profile_v1"] } response = self.search_memory( collection_name=collection_name, query=query, filter=filter_params, limit=limit ) memories = [] if response.get('data', {}).get('count', 0) > 0: for result in response['data']['result_list']: if 'memory_info' in result and result['memory_info']: memories.append({ 'memory_info': result['memory_info'], 'score': result['score'] }) if memories: if retry_attempt > 0: logger.info("重试后搜索成功。") logger.info(f"找到 {len(memories)} 条相关记忆:") for i, memory in enumerate(memories, 1): logger.info( f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}") else: logger.info("未找到相关记忆。") return memories except Exception as e: error_message = str(e) if "1000023" in error_message: retry_attempt += 1 logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})") time.sleep(60) else: logger.info(f"搜索记忆时出错 (不可重试): {e}") return [] def setup_memory_collection(self): """独立封装记忆体创建逻辑,返回memory_service供测试使用""" try: self.ensure_collection_exists(MEMORY_COLLECTION_NAME) logger.info(f"记忆体 '{MEMORY_COLLECTION_NAME}' 创建/验证成功") # 添加集合就绪等待 logger.info("等待集合准备就绪...") if self.wait_for_collection_ready(): logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 已就绪") return self else: logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 未能就绪") return None except Exception as e: logger.info(f"记忆体创建失败: {e}") return None